Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef _GEN_PV_LOCK_SLOWPATH
3 : #error "do not include this file"
4 : #endif
5 :
6 : #include <linux/hash.h>
7 : #include <linux/memblock.h>
8 : #include <linux/debug_locks.h>
9 :
10 : /*
11 : * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
12 : * of spinning them.
13 : *
14 : * This relies on the architecture to provide two paravirt hypercalls:
15 : *
16 : * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
17 : * pv_kick(cpu) -- wakes a suspended vcpu
18 : *
19 : * Using these we implement __pv_queued_spin_lock_slowpath() and
20 : * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
21 : * native_queued_spin_unlock().
22 : */
23 :
24 : #define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET)
25 :
26 : /*
27 : * Queue Node Adaptive Spinning
28 : *
29 : * A queue node vCPU will stop spinning if the vCPU in the previous node is
30 : * not running. The one lock stealing attempt allowed at slowpath entry
31 : * mitigates the slight slowdown for non-overcommitted guest with this
32 : * aggressive wait-early mechanism.
33 : *
34 : * The status of the previous node will be checked at fixed interval
35 : * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't
36 : * pound on the cacheline of the previous node too heavily.
37 : */
38 : #define PV_PREV_CHECK_MASK 0xff
39 :
40 : /*
41 : * Queue node uses: vcpu_running & vcpu_halted.
42 : * Queue head uses: vcpu_running & vcpu_hashed.
43 : */
44 : enum vcpu_state {
45 : vcpu_running = 0,
46 : vcpu_halted, /* Used only in pv_wait_node */
47 : vcpu_hashed, /* = pv_hash'ed + vcpu_halted */
48 : };
49 :
50 : struct pv_node {
51 : struct mcs_spinlock mcs;
52 : int cpu;
53 : u8 state;
54 : };
55 :
56 : /*
57 : * Hybrid PV queued/unfair lock
58 : *
59 : * By replacing the regular queued_spin_trylock() with the function below,
60 : * it will be called once when a lock waiter enter the PV slowpath before
61 : * being queued.
62 : *
63 : * The pending bit is set by the queue head vCPU of the MCS wait queue in
64 : * pv_wait_head_or_lock() to signal that it is ready to spin on the lock.
65 : * When that bit becomes visible to the incoming waiters, no lock stealing
66 : * is allowed. The function will return immediately to make the waiters
67 : * enter the MCS wait queue. So lock starvation shouldn't happen as long
68 : * as the queued mode vCPUs are actively running to set the pending bit
69 : * and hence disabling lock stealing.
70 : *
71 : * When the pending bit isn't set, the lock waiters will stay in the unfair
72 : * mode spinning on the lock unless the MCS wait queue is empty. In this
73 : * case, the lock waiters will enter the queued mode slowpath trying to
74 : * become the queue head and set the pending bit.
75 : *
76 : * This hybrid PV queued/unfair lock combines the best attributes of a
77 : * queued lock (no lock starvation) and an unfair lock (good performance
78 : * on not heavily contended locks).
79 : */
80 : #define queued_spin_trylock(l) pv_hybrid_queued_unfair_trylock(l)
81 379147 : static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock)
82 : {
83 : /*
84 : * Stay in unfair lock mode as long as queued mode waiters are
85 : * present in the MCS wait queue but the pending bit isn't set.
86 : */
87 689731 : for (;;) {
88 689731 : int val = atomic_read(&lock->val);
89 :
90 689733 : if (!(val & _Q_LOCKED_PENDING_MASK) &&
91 86795 : (cmpxchg_acquire(&lock->locked, 0, _Q_LOCKED_VAL) == 0)) {
92 : lockevent_inc(pv_lock_stealing);
93 : return true;
94 : }
95 631876 : if (!(val & _Q_TAIL_MASK) || (val & _Q_PENDING_MASK))
96 : break;
97 :
98 310584 : cpu_relax();
99 : }
100 :
101 : return false;
102 : }
103 :
104 : /*
105 : * The pending bit is used by the queue head vCPU to indicate that it
106 : * is actively spinning on the lock and no lock stealing is allowed.
107 : */
108 : #if _Q_PENDING_BITS == 8
109 321421 : static __always_inline void set_pending(struct qspinlock *lock)
110 : {
111 321421 : WRITE_ONCE(lock->pending, 1);
112 : }
113 :
114 : /*
115 : * The pending bit check in pv_queued_spin_steal_lock() isn't a memory
116 : * barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the
117 : * lock just to be sure that it will get it.
118 : */
119 7032741 : static __always_inline int trylock_clear_pending(struct qspinlock *lock)
120 : {
121 7354118 : return !READ_ONCE(lock->locked) &&
122 321377 : (cmpxchg_acquire(&lock->locked_pending, _Q_PENDING_VAL,
123 : _Q_LOCKED_VAL) == _Q_PENDING_VAL);
124 : }
125 : #else /* _Q_PENDING_BITS == 8 */
126 : static __always_inline void set_pending(struct qspinlock *lock)
127 : {
128 : atomic_or(_Q_PENDING_VAL, &lock->val);
129 : }
130 :
131 : static __always_inline int trylock_clear_pending(struct qspinlock *lock)
132 : {
133 : int val = atomic_read(&lock->val);
134 :
135 : for (;;) {
136 : int old, new;
137 :
138 : if (val & _Q_LOCKED_MASK)
139 : break;
140 :
141 : /*
142 : * Try to clear pending bit & set locked bit
143 : */
144 : old = val;
145 : new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
146 : val = atomic_cmpxchg_acquire(&lock->val, old, new);
147 :
148 : if (val == old)
149 : return 1;
150 : }
151 : return 0;
152 : }
153 : #endif /* _Q_PENDING_BITS == 8 */
154 :
155 : /*
156 : * Lock and MCS node addresses hash table for fast lookup
157 : *
158 : * Hashing is done on a per-cacheline basis to minimize the need to access
159 : * more than one cacheline.
160 : *
161 : * Dynamically allocate a hash table big enough to hold at least 4X the
162 : * number of possible cpus in the system. Allocation is done on page
163 : * granularity. So the minimum number of hash buckets should be at least
164 : * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
165 : *
166 : * Since we should not be holding locks from NMI context (very rare indeed) the
167 : * max load factor is 0.75, which is around the point where open addressing
168 : * breaks down.
169 : *
170 : */
171 : struct pv_hash_entry {
172 : struct qspinlock *lock;
173 : struct pv_node *node;
174 : };
175 :
176 : #define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
177 : #define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry))
178 :
179 : static struct pv_hash_entry *pv_lock_hash;
180 : static unsigned int pv_lock_hash_bits __read_mostly;
181 :
182 : /*
183 : * Allocate memory for the PV qspinlock hash buckets
184 : *
185 : * This function should be called from the paravirt spinlock initialization
186 : * routine.
187 : */
188 1 : void __init __pv_init_lock_hash(void)
189 : {
190 1 : int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
191 :
192 1 : if (pv_hash_size < PV_HE_MIN)
193 1 : pv_hash_size = PV_HE_MIN;
194 :
195 : /*
196 : * Allocate space from bootmem which should be page-size aligned
197 : * and hence cacheline aligned.
198 : */
199 1 : pv_lock_hash = alloc_large_system_hash("PV qspinlock",
200 : sizeof(struct pv_hash_entry),
201 : pv_hash_size, 0,
202 : HASH_EARLY | HASH_ZERO,
203 : &pv_lock_hash_bits, NULL,
204 : pv_hash_size, pv_hash_size);
205 1 : }
206 :
207 : #define for_each_hash_entry(he, offset, hash) \
208 : for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \
209 : offset < (1 << pv_lock_hash_bits); \
210 : offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
211 :
212 67 : static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
213 : {
214 67 : unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
215 67 : struct pv_hash_entry *he;
216 67 : int hopcnt = 0;
217 :
218 67 : for_each_hash_entry(he, offset, hash) {
219 67 : hopcnt++;
220 67 : if (!cmpxchg(&he->lock, NULL, lock)) {
221 67 : WRITE_ONCE(he->node, node);
222 67 : lockevent_pv_hop(hopcnt);
223 67 : return &he->lock;
224 : }
225 : }
226 : /*
227 : * Hard assume there is a free entry for us.
228 : *
229 : * This is guaranteed by ensuring every blocked lock only ever consumes
230 : * a single entry, and since we only have 4 nesting levels per CPU
231 : * and allocated 4*nr_possible_cpus(), this must be so.
232 : *
233 : * The single entry is guaranteed by having the lock owner unhash
234 : * before it releases.
235 : */
236 67 : BUG();
237 : }
238 :
239 67 : static struct pv_node *pv_unhash(struct qspinlock *lock)
240 : {
241 67 : unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
242 67 : struct pv_hash_entry *he;
243 67 : struct pv_node *node;
244 :
245 67 : for_each_hash_entry(he, offset, hash) {
246 67 : if (READ_ONCE(he->lock) == lock) {
247 67 : node = READ_ONCE(he->node);
248 67 : WRITE_ONCE(he->lock, NULL);
249 67 : return node;
250 : }
251 : }
252 : /*
253 : * Hard assume we'll find an entry.
254 : *
255 : * This guarantees a limited lookup time and is itself guaranteed by
256 : * having the lock owner do the unhash -- IFF the unlock sees the
257 : * SLOW flag, there MUST be a hash entry.
258 : */
259 67 : BUG();
260 : }
261 :
262 : /*
263 : * Return true if when it is time to check the previous node which is not
264 : * in a running state.
265 : */
266 : static inline bool
267 561929 : pv_wait_early(struct pv_node *prev, int loop)
268 : {
269 561929 : if ((loop & PV_PREV_CHECK_MASK) != 0)
270 : return false;
271 :
272 6613 : return READ_ONCE(prev->state) != vcpu_running;
273 : }
274 :
275 : /*
276 : * Initialize the PV part of the mcs_spinlock node.
277 : */
278 379159 : static void pv_init_node(struct mcs_spinlock *node)
279 : {
280 379159 : struct pv_node *pn = (struct pv_node *)node;
281 :
282 379159 : BUILD_BUG_ON(sizeof(struct pv_node) > sizeof(struct qnode));
283 :
284 379159 : pn->cpu = smp_processor_id();
285 379159 : pn->state = vcpu_running;
286 : }
287 :
288 : /*
289 : * Wait for node->locked to become true, halt the vcpu after a short spin.
290 : * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its
291 : * behalf.
292 : */
293 3990 : static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
294 : {
295 3990 : struct pv_node *pn = (struct pv_node *)node;
296 3990 : struct pv_node *pp = (struct pv_node *)prev;
297 4000 : int loop;
298 4000 : bool wait_early;
299 :
300 4010 : for (;;) {
301 565923 : for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
302 565920 : if (READ_ONCE(node->locked))
303 3991 : return;
304 561929 : if (pv_wait_early(pp, loop)) {
305 10 : wait_early = true;
306 : break;
307 : }
308 561922 : cpu_relax();
309 : }
310 :
311 : /*
312 : * Order pn->state vs pn->locked thusly:
313 : *
314 : * [S] pn->state = vcpu_halted [S] next->locked = 1
315 : * MB MB
316 : * [L] pn->locked [RmW] pn->state = vcpu_hashed
317 : *
318 : * Matches the cmpxchg() from pv_kick_node().
319 : */
320 10 : smp_store_mb(pn->state, vcpu_halted);
321 :
322 10 : if (!READ_ONCE(node->locked)) {
323 10 : lockevent_inc(pv_wait_node);
324 10 : lockevent_cond_inc(pv_wait_early, wait_early);
325 10 : pv_wait(&pn->state, vcpu_halted);
326 : }
327 :
328 : /*
329 : * If pv_kick_node() changed us to vcpu_hashed, retain that
330 : * value so that pv_wait_head_or_lock() knows to not also try
331 : * to hash this lock.
332 : */
333 10 : cmpxchg(&pn->state, vcpu_halted, vcpu_running);
334 :
335 : /*
336 : * If the locked flag is still not set after wakeup, it is a
337 : * spurious wakeup and the vCPU should wait again. However,
338 : * there is a pretty high overhead for CPU halting and kicking.
339 : * So it is better to spin for a while in the hope that the
340 : * MCS lock will be released soon.
341 : */
342 : lockevent_cond_inc(pv_spurious_wakeup,
343 10 : !READ_ONCE(node->locked));
344 : }
345 :
346 : /*
347 : * By now our node->locked should be 1 and our caller will not actually
348 : * spin-wait for it. We do however rely on our caller to do a
349 : * load-acquire for us.
350 : */
351 : }
352 :
353 : /*
354 : * Called after setting next->locked = 1 when we're the lock owner.
355 : *
356 : * Instead of waking the waiters stuck in pv_wait_node() advance their state
357 : * such that they're waiting in pv_wait_head_or_lock(), this avoids a
358 : * wake/sleep cycle.
359 : */
360 3991 : static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
361 : {
362 3991 : struct pv_node *pn = (struct pv_node *)node;
363 :
364 : /*
365 : * If the vCPU is indeed halted, advance its state to match that of
366 : * pv_wait_node(). If OTOH this fails, the vCPU was running and will
367 : * observe its next->locked value and advance itself.
368 : *
369 : * Matches with smp_store_mb() and cmpxchg() in pv_wait_node()
370 : *
371 : * The write to next->locked in arch_mcs_spin_unlock_contended()
372 : * must be ordered before the read of pn->state in the cmpxchg()
373 : * below for the code to work correctly. To guarantee full ordering
374 : * irrespective of the success or failure of the cmpxchg(),
375 : * a relaxed version with explicit barrier is used. The control
376 : * dependency will order the reading of pn->state before any
377 : * subsequent writes.
378 : */
379 3991 : smp_mb__before_atomic();
380 3991 : if (cmpxchg_relaxed(&pn->state, vcpu_halted, vcpu_hashed)
381 : != vcpu_halted)
382 : return;
383 :
384 : /*
385 : * Put the lock into the hash table and set the _Q_SLOW_VAL.
386 : *
387 : * As this is the same vCPU that will check the _Q_SLOW_VAL value and
388 : * the hash table later on at unlock time, no atomic instruction is
389 : * needed.
390 : */
391 10 : WRITE_ONCE(lock->locked, _Q_SLOW_VAL);
392 10 : (void)pv_hash(lock, pn);
393 : }
394 :
395 : /*
396 : * Wait for l->locked to become clear and acquire the lock;
397 : * halt the vcpu after a short spin.
398 : * __pv_queued_spin_unlock() will wake us.
399 : *
400 : * The current value of the lock will be returned for additional processing.
401 : */
402 : static u32
403 321364 : pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
404 : {
405 321364 : struct pv_node *pn = (struct pv_node *)node;
406 321364 : struct qspinlock **lp = NULL;
407 321364 : int waitcnt = 0;
408 321364 : int loop;
409 :
410 : /*
411 : * If pv_kick_node() already advanced our state, we don't need to
412 : * insert ourselves into the hash table anymore.
413 : */
414 321364 : if (READ_ONCE(pn->state) == vcpu_hashed)
415 10 : lp = (struct qspinlock **)1;
416 :
417 : /*
418 : * Tracking # of slowpath locking operations
419 : */
420 321421 : lockevent_inc(lock_slowpath);
421 :
422 57 : for (;; waitcnt++) {
423 : /*
424 : * Set correct vCPU state to be used by queue node wait-early
425 : * mechanism.
426 : */
427 57 : WRITE_ONCE(pn->state, vcpu_running);
428 :
429 : /*
430 : * Set the pending bit in the active lock spinning loop to
431 : * disable lock stealing before attempting to acquire the lock.
432 : */
433 321421 : set_pending(lock);
434 7032798 : for (loop = SPIN_THRESHOLD; loop; loop--) {
435 7032741 : if (trylock_clear_pending(lock))
436 321365 : goto gotlock;
437 6711376 : cpu_relax();
438 : }
439 57 : clear_pending(lock);
440 :
441 :
442 57 : if (!lp) { /* ONCE */
443 57 : lp = pv_hash(lock, pn);
444 :
445 : /*
446 : * We must hash before setting _Q_SLOW_VAL, such that
447 : * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
448 : * we'll be sure to be able to observe our hash entry.
449 : *
450 : * [S] <hash> [Rmw] l->locked == _Q_SLOW_VAL
451 : * MB RMB
452 : * [RmW] l->locked = _Q_SLOW_VAL [L] <unhash>
453 : *
454 : * Matches the smp_rmb() in __pv_queued_spin_unlock().
455 : */
456 57 : if (xchg(&lock->locked, _Q_SLOW_VAL) == 0) {
457 : /*
458 : * The lock was free and now we own the lock.
459 : * Change the lock value back to _Q_LOCKED_VAL
460 : * and unhash the table.
461 : */
462 0 : WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
463 0 : WRITE_ONCE(*lp, NULL);
464 0 : goto gotlock;
465 : }
466 : }
467 57 : WRITE_ONCE(pn->state, vcpu_hashed);
468 57 : lockevent_inc(pv_wait_head);
469 57 : lockevent_cond_inc(pv_wait_again, waitcnt);
470 57 : pv_wait(&lock->locked, _Q_SLOW_VAL);
471 :
472 : /*
473 : * Because of lock stealing, the queue head vCPU may not be
474 : * able to acquire the lock before it has to wait again.
475 : */
476 : }
477 :
478 : /*
479 : * The cmpxchg() or xchg() call before coming here provides the
480 : * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL
481 : * here is to indicate to the compiler that the value will always
482 : * be nozero to enable better code optimization.
483 : */
484 321365 : gotlock:
485 321365 : return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL);
486 : }
487 :
488 : /*
489 : * PV versions of the unlock fastpath and slowpath functions to be used
490 : * instead of queued_spin_unlock().
491 : */
492 : __visible void
493 67 : __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
494 : {
495 67 : struct pv_node *node;
496 :
497 67 : if (unlikely(locked != _Q_SLOW_VAL)) {
498 0 : WARN(!debug_locks_silent,
499 : "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
500 : (unsigned long)lock, atomic_read(&lock->val));
501 0 : return;
502 : }
503 :
504 : /*
505 : * A failed cmpxchg doesn't provide any memory-ordering guarantees,
506 : * so we need a barrier to order the read of the node data in
507 : * pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
508 : *
509 : * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL.
510 : */
511 67 : smp_rmb();
512 :
513 : /*
514 : * Since the above failed to release, this must be the SLOW path.
515 : * Therefore start by looking up the blocked node and unhashing it.
516 : */
517 67 : node = pv_unhash(lock);
518 :
519 : /*
520 : * Now that we have a reference to the (likely) blocked pv_node,
521 : * release the lock.
522 : */
523 67 : smp_store_release(&lock->locked, 0);
524 :
525 : /*
526 : * At this point the memory pointed at by lock can be freed/reused,
527 : * however we can still use the pv_node to kick the CPU.
528 : * The other vCPU may not really be halted, but kicking an active
529 : * vCPU is harmless other than the additional latency in completing
530 : * the unlock.
531 : */
532 67 : lockevent_inc(pv_kick_unlock);
533 67 : pv_kick(node->cpu);
534 : }
535 :
536 : /*
537 : * Include the architecture specific callee-save thunk of the
538 : * __pv_queued_spin_unlock(). This thunk is put together with
539 : * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock
540 : * function close to each other sharing consecutive instruction cachelines.
541 : * Alternatively, architecture specific version of __pv_queued_spin_unlock()
542 : * can be defined.
543 : */
544 : #include <asm/qspinlock_paravirt.h>
545 :
546 : #ifndef __pv_queued_spin_unlock
547 : __visible void __pv_queued_spin_unlock(struct qspinlock *lock)
548 : {
549 : u8 locked;
550 :
551 : /*
552 : * We must not unlock if SLOW, because in that case we must first
553 : * unhash. Otherwise it would be possible to have multiple @lock
554 : * entries, which would be BAD.
555 : */
556 : locked = cmpxchg_release(&lock->locked, _Q_LOCKED_VAL, 0);
557 : if (likely(locked == _Q_LOCKED_VAL))
558 : return;
559 :
560 : __pv_queued_spin_unlock_slowpath(lock, locked);
561 : }
562 : #endif /* __pv_queued_spin_unlock */
|