Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 :
3 : #include <linux/kernel.h>
4 : #include <linux/irqflags.h>
5 : #include <linux/string.h>
6 : #include <linux/errno.h>
7 : #include <linux/bug.h>
8 : #include "printk_ringbuffer.h"
9 :
10 : /**
11 : * DOC: printk_ringbuffer overview
12 : *
13 : * Data Structure
14 : * --------------
15 : * The printk_ringbuffer is made up of 3 internal ringbuffers:
16 : *
17 : * desc_ring
18 : * A ring of descriptors and their meta data (such as sequence number,
19 : * timestamp, loglevel, etc.) as well as internal state information about
20 : * the record and logical positions specifying where in the other
21 : * ringbuffer the text strings are located.
22 : *
23 : * text_data_ring
24 : * A ring of data blocks. A data block consists of an unsigned long
25 : * integer (ID) that maps to a desc_ring index followed by the text
26 : * string of the record.
27 : *
28 : * The internal state information of a descriptor is the key element to allow
29 : * readers and writers to locklessly synchronize access to the data.
30 : *
31 : * Implementation
32 : * --------------
33 : *
34 : * Descriptor Ring
35 : * ~~~~~~~~~~~~~~~
36 : * The descriptor ring is an array of descriptors. A descriptor contains
37 : * essential meta data to track the data of a printk record using
38 : * blk_lpos structs pointing to associated text data blocks (see
39 : * "Data Rings" below). Each descriptor is assigned an ID that maps
40 : * directly to index values of the descriptor array and has a state. The ID
41 : * and the state are bitwise combined into a single descriptor field named
42 : * @state_var, allowing ID and state to be synchronously and atomically
43 : * updated.
44 : *
45 : * Descriptors have four states:
46 : *
47 : * reserved
48 : * A writer is modifying the record.
49 : *
50 : * committed
51 : * The record and all its data are written. A writer can reopen the
52 : * descriptor (transitioning it back to reserved), but in the committed
53 : * state the data is consistent.
54 : *
55 : * finalized
56 : * The record and all its data are complete and available for reading. A
57 : * writer cannot reopen the descriptor.
58 : *
59 : * reusable
60 : * The record exists, but its text and/or meta data may no longer be
61 : * available.
62 : *
63 : * Querying the @state_var of a record requires providing the ID of the
64 : * descriptor to query. This can yield a possible fifth (pseudo) state:
65 : *
66 : * miss
67 : * The descriptor being queried has an unexpected ID.
68 : *
69 : * The descriptor ring has a @tail_id that contains the ID of the oldest
70 : * descriptor and @head_id that contains the ID of the newest descriptor.
71 : *
72 : * When a new descriptor should be created (and the ring is full), the tail
73 : * descriptor is invalidated by first transitioning to the reusable state and
74 : * then invalidating all tail data blocks up to and including the data blocks
75 : * associated with the tail descriptor (for the text ring). Then
76 : * @tail_id is advanced, followed by advancing @head_id. And finally the
77 : * @state_var of the new descriptor is initialized to the new ID and reserved
78 : * state.
79 : *
80 : * The @tail_id can only be advanced if the new @tail_id would be in the
81 : * committed or reusable queried state. This makes it possible that a valid
82 : * sequence number of the tail is always available.
83 : *
84 : * Descriptor Finalization
85 : * ~~~~~~~~~~~~~~~~~~~~~~~
86 : * When a writer calls the commit function prb_commit(), record data is
87 : * fully stored and is consistent within the ringbuffer. However, a writer can
88 : * reopen that record, claiming exclusive access (as with prb_reserve()), and
89 : * modify that record. When finished, the writer must again commit the record.
90 : *
91 : * In order for a record to be made available to readers (and also become
92 : * recyclable for writers), it must be finalized. A finalized record cannot be
93 : * reopened and can never become "unfinalized". Record finalization can occur
94 : * in three different scenarios:
95 : *
96 : * 1) A writer can simultaneously commit and finalize its record by calling
97 : * prb_final_commit() instead of prb_commit().
98 : *
99 : * 2) When a new record is reserved and the previous record has been
100 : * committed via prb_commit(), that previous record is automatically
101 : * finalized.
102 : *
103 : * 3) When a record is committed via prb_commit() and a newer record
104 : * already exists, the record being committed is automatically finalized.
105 : *
106 : * Data Ring
107 : * ~~~~~~~~~
108 : * The text data ring is a byte array composed of data blocks. Data blocks are
109 : * referenced by blk_lpos structs that point to the logical position of the
110 : * beginning of a data block and the beginning of the next adjacent data
111 : * block. Logical positions are mapped directly to index values of the byte
112 : * array ringbuffer.
113 : *
114 : * Each data block consists of an ID followed by the writer data. The ID is
115 : * the identifier of a descriptor that is associated with the data block. A
116 : * given data block is considered valid if all of the following conditions
117 : * are met:
118 : *
119 : * 1) The descriptor associated with the data block is in the committed
120 : * or finalized queried state.
121 : *
122 : * 2) The blk_lpos struct within the descriptor associated with the data
123 : * block references back to the same data block.
124 : *
125 : * 3) The data block is within the head/tail logical position range.
126 : *
127 : * If the writer data of a data block would extend beyond the end of the
128 : * byte array, only the ID of the data block is stored at the logical
129 : * position and the full data block (ID and writer data) is stored at the
130 : * beginning of the byte array. The referencing blk_lpos will point to the
131 : * ID before the wrap and the next data block will be at the logical
132 : * position adjacent the full data block after the wrap.
133 : *
134 : * Data rings have a @tail_lpos that points to the beginning of the oldest
135 : * data block and a @head_lpos that points to the logical position of the
136 : * next (not yet existing) data block.
137 : *
138 : * When a new data block should be created (and the ring is full), tail data
139 : * blocks will first be invalidated by putting their associated descriptors
140 : * into the reusable state and then pushing the @tail_lpos forward beyond
141 : * them. Then the @head_lpos is pushed forward and is associated with a new
142 : * descriptor. If a data block is not valid, the @tail_lpos cannot be
143 : * advanced beyond it.
144 : *
145 : * Info Array
146 : * ~~~~~~~~~~
147 : * The general meta data of printk records are stored in printk_info structs,
148 : * stored in an array with the same number of elements as the descriptor ring.
149 : * Each info corresponds to the descriptor of the same index in the
150 : * descriptor ring. Info validity is confirmed by evaluating the corresponding
151 : * descriptor before and after loading the info.
152 : *
153 : * Usage
154 : * -----
155 : * Here are some simple examples demonstrating writers and readers. For the
156 : * examples a global ringbuffer (test_rb) is available (which is not the
157 : * actual ringbuffer used by printk)::
158 : *
159 : * DEFINE_PRINTKRB(test_rb, 15, 5);
160 : *
161 : * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
162 : * 1 MiB (2 ^ (15 + 5)) for text data.
163 : *
164 : * Sample writer code::
165 : *
166 : * const char *textstr = "message text";
167 : * struct prb_reserved_entry e;
168 : * struct printk_record r;
169 : *
170 : * // specify how much to allocate
171 : * prb_rec_init_wr(&r, strlen(textstr) + 1);
172 : *
173 : * if (prb_reserve(&e, &test_rb, &r)) {
174 : * snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
175 : *
176 : * r.info->text_len = strlen(textstr);
177 : * r.info->ts_nsec = local_clock();
178 : * r.info->caller_id = printk_caller_id();
179 : *
180 : * // commit and finalize the record
181 : * prb_final_commit(&e);
182 : * }
183 : *
184 : * Note that additional writer functions are available to extend a record
185 : * after it has been committed but not yet finalized. This can be done as
186 : * long as no new records have been reserved and the caller is the same.
187 : *
188 : * Sample writer code (record extending)::
189 : *
190 : * // alternate rest of previous example
191 : *
192 : * r.info->text_len = strlen(textstr);
193 : * r.info->ts_nsec = local_clock();
194 : * r.info->caller_id = printk_caller_id();
195 : *
196 : * // commit the record (but do not finalize yet)
197 : * prb_commit(&e);
198 : * }
199 : *
200 : * ...
201 : *
202 : * // specify additional 5 bytes text space to extend
203 : * prb_rec_init_wr(&r, 5);
204 : *
205 : * // try to extend, but only if it does not exceed 32 bytes
206 : * if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id()), 32) {
207 : * snprintf(&r.text_buf[r.info->text_len],
208 : * r.text_buf_size - r.info->text_len, "hello");
209 : *
210 : * r.info->text_len += 5;
211 : *
212 : * // commit and finalize the record
213 : * prb_final_commit(&e);
214 : * }
215 : *
216 : * Sample reader code::
217 : *
218 : * struct printk_info info;
219 : * struct printk_record r;
220 : * char text_buf[32];
221 : * u64 seq;
222 : *
223 : * prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf));
224 : *
225 : * prb_for_each_record(0, &test_rb, &seq, &r) {
226 : * if (info.seq != seq)
227 : * pr_warn("lost %llu records\n", info.seq - seq);
228 : *
229 : * if (info.text_len > r.text_buf_size) {
230 : * pr_warn("record %llu text truncated\n", info.seq);
231 : * text_buf[r.text_buf_size - 1] = 0;
232 : * }
233 : *
234 : * pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec,
235 : * &text_buf[0]);
236 : * }
237 : *
238 : * Note that additional less convenient reader functions are available to
239 : * allow complex record access.
240 : *
241 : * ABA Issues
242 : * ~~~~~~~~~~
243 : * To help avoid ABA issues, descriptors are referenced by IDs (array index
244 : * values combined with tagged bits counting array wraps) and data blocks are
245 : * referenced by logical positions (array index values combined with tagged
246 : * bits counting array wraps). However, on 32-bit systems the number of
247 : * tagged bits is relatively small such that an ABA incident is (at least
248 : * theoretically) possible. For example, if 4 million maximally sized (1KiB)
249 : * printk messages were to occur in NMI context on a 32-bit system, the
250 : * interrupted context would not be able to recognize that the 32-bit integer
251 : * completely wrapped and thus represents a different data block than the one
252 : * the interrupted context expects.
253 : *
254 : * To help combat this possibility, additional state checking is performed
255 : * (such as using cmpxchg() even though set() would suffice). These extra
256 : * checks are commented as such and will hopefully catch any ABA issue that
257 : * a 32-bit system might experience.
258 : *
259 : * Memory Barriers
260 : * ~~~~~~~~~~~~~~~
261 : * Multiple memory barriers are used. To simplify proving correctness and
262 : * generating litmus tests, lines of code related to memory barriers
263 : * (loads, stores, and the associated memory barriers) are labeled::
264 : *
265 : * LMM(function:letter)
266 : *
267 : * Comments reference the labels using only the "function:letter" part.
268 : *
269 : * The memory barrier pairs and their ordering are:
270 : *
271 : * desc_reserve:D / desc_reserve:B
272 : * push descriptor tail (id), then push descriptor head (id)
273 : *
274 : * desc_reserve:D / data_push_tail:B
275 : * push data tail (lpos), then set new descriptor reserved (state)
276 : *
277 : * desc_reserve:D / desc_push_tail:C
278 : * push descriptor tail (id), then set new descriptor reserved (state)
279 : *
280 : * desc_reserve:D / prb_first_seq:C
281 : * push descriptor tail (id), then set new descriptor reserved (state)
282 : *
283 : * desc_reserve:F / desc_read:D
284 : * set new descriptor id and reserved (state), then allow writer changes
285 : *
286 : * data_alloc:A (or data_realloc:A) / desc_read:D
287 : * set old descriptor reusable (state), then modify new data block area
288 : *
289 : * data_alloc:A (or data_realloc:A) / data_push_tail:B
290 : * push data tail (lpos), then modify new data block area
291 : *
292 : * _prb_commit:B / desc_read:B
293 : * store writer changes, then set new descriptor committed (state)
294 : *
295 : * desc_reopen_last:A / _prb_commit:B
296 : * set descriptor reserved (state), then read descriptor data
297 : *
298 : * _prb_commit:B / desc_reserve:D
299 : * set new descriptor committed (state), then check descriptor head (id)
300 : *
301 : * data_push_tail:D / data_push_tail:A
302 : * set descriptor reusable (state), then push data tail (lpos)
303 : *
304 : * desc_push_tail:B / desc_reserve:D
305 : * set descriptor reusable (state), then push descriptor tail (id)
306 : */
307 :
308 : #define DATA_SIZE(data_ring) _DATA_SIZE((data_ring)->size_bits)
309 : #define DATA_SIZE_MASK(data_ring) (DATA_SIZE(data_ring) - 1)
310 :
311 : #define DESCS_COUNT(desc_ring) _DESCS_COUNT((desc_ring)->count_bits)
312 : #define DESCS_COUNT_MASK(desc_ring) (DESCS_COUNT(desc_ring) - 1)
313 :
314 : /* Determine the data array index from a logical position. */
315 : #define DATA_INDEX(data_ring, lpos) ((lpos) & DATA_SIZE_MASK(data_ring))
316 :
317 : /* Determine the desc array index from an ID or sequence number. */
318 : #define DESC_INDEX(desc_ring, n) ((n) & DESCS_COUNT_MASK(desc_ring))
319 :
320 : /* Determine how many times the data array has wrapped. */
321 : #define DATA_WRAPS(data_ring, lpos) ((lpos) >> (data_ring)->size_bits)
322 :
323 : /* Determine if a logical position refers to a data-less block. */
324 : #define LPOS_DATALESS(lpos) ((lpos) & 1UL)
325 : #define BLK_DATALESS(blk) (LPOS_DATALESS((blk)->begin) && \
326 : LPOS_DATALESS((blk)->next))
327 :
328 : /* Get the logical position at index 0 of the current wrap. */
329 : #define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
330 : ((lpos) & ~DATA_SIZE_MASK(data_ring))
331 :
332 : /* Get the ID for the same index of the previous wrap as the given ID. */
333 : #define DESC_ID_PREV_WRAP(desc_ring, id) \
334 : DESC_ID((id) - DESCS_COUNT(desc_ring))
335 :
336 : /*
337 : * A data block: mapped directly to the beginning of the data block area
338 : * specified as a logical position within the data ring.
339 : *
340 : * @id: the ID of the associated descriptor
341 : * @data: the writer data
342 : *
343 : * Note that the size of a data block is only known by its associated
344 : * descriptor.
345 : */
346 : struct prb_data_block {
347 : unsigned long id;
348 : char data[];
349 : };
350 :
351 : /*
352 : * Return the descriptor associated with @n. @n can be either a
353 : * descriptor ID or a sequence number.
354 : */
355 7308 : static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
356 : {
357 7308 : return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
358 : }
359 :
360 : /*
361 : * Return the printk_info associated with @n. @n can be either a
362 : * descriptor ID or a sequence number.
363 : */
364 6464 : static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n)
365 : {
366 6464 : return &desc_ring->infos[DESC_INDEX(desc_ring, n)];
367 : }
368 :
369 1241 : static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
370 : unsigned long begin_lpos)
371 : {
372 1241 : return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
373 : }
374 :
375 : /*
376 : * Increase the data size to account for data block meta data plus any
377 : * padding so that the adjacent data block is aligned on the ID size.
378 : */
379 614 : static unsigned int to_blk_size(unsigned int size)
380 : {
381 614 : struct prb_data_block *db = NULL;
382 :
383 614 : size += sizeof(*db);
384 614 : size = ALIGN(size, sizeof(db->id));
385 614 : return size;
386 : }
387 :
388 : /*
389 : * Sanity checker for reserve size. The ringbuffer code assumes that a data
390 : * block does not exceed the maximum possible size that could fit within the
391 : * ringbuffer. This function provides that basic size check so that the
392 : * assumption is safe.
393 : */
394 307 : static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
395 : {
396 307 : struct prb_data_block *db = NULL;
397 :
398 307 : if (size == 0)
399 : return true;
400 :
401 : /*
402 : * Ensure the alignment padded size could possibly fit in the data
403 : * array. The largest possible data block must still leave room for
404 : * at least the ID of the next block.
405 : */
406 307 : size = to_blk_size(size);
407 307 : if (size > DATA_SIZE(data_ring) - sizeof(db->id))
408 0 : return false;
409 :
410 : return true;
411 : }
412 :
413 : /* Query the state of a descriptor. */
414 7257 : static enum desc_state get_desc_state(unsigned long id,
415 : unsigned long state_val)
416 : {
417 7257 : if (id != DESC_ID(state_val))
418 : return desc_miss;
419 :
420 6292 : return DESC_STATE(state_val);
421 : }
422 :
423 : /*
424 : * Get a copy of a specified descriptor and return its queried state. If the
425 : * descriptor is in an inconsistent state (miss or reserved), the caller can
426 : * only expect the descriptor's @state_var field to be valid.
427 : *
428 : * The sequence number and caller_id can be optionally retrieved. Like all
429 : * non-state_var data, they are only valid if the descriptor is in a
430 : * consistent state.
431 : */
432 4111 : static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
433 : unsigned long id, struct prb_desc *desc_out,
434 : u64 *seq_out, u32 *caller_id_out)
435 : {
436 4111 : struct printk_info *info = to_info(desc_ring, id);
437 4111 : struct prb_desc *desc = to_desc(desc_ring, id);
438 4111 : atomic_long_t *state_var = &desc->state_var;
439 4111 : enum desc_state d_state;
440 4111 : unsigned long state_val;
441 :
442 : /* Check the descriptor state. */
443 4111 : state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */
444 4111 : d_state = get_desc_state(id, state_val);
445 4111 : if (d_state == desc_miss || d_state == desc_reserved) {
446 : /*
447 : * The descriptor is in an inconsistent state. Set at least
448 : * @state_var so that the caller can see the details of
449 : * the inconsistent state.
450 : */
451 965 : goto out;
452 : }
453 :
454 : /*
455 : * Guarantee the state is loaded before copying the descriptor
456 : * content. This avoids copying obsolete descriptor content that might
457 : * not apply to the descriptor state. This pairs with _prb_commit:B.
458 : *
459 : * Memory barrier involvement:
460 : *
461 : * If desc_read:A reads from _prb_commit:B, then desc_read:C reads
462 : * from _prb_commit:A.
463 : *
464 : * Relies on:
465 : *
466 : * WMB from _prb_commit:A to _prb_commit:B
467 : * matching
468 : * RMB from desc_read:A to desc_read:C
469 : */
470 3146 : smp_rmb(); /* LMM(desc_read:B) */
471 :
472 : /*
473 : * Copy the descriptor data. The data is not valid until the
474 : * state has been re-checked. A memcpy() for all of @desc
475 : * cannot be used because of the atomic_t @state_var field.
476 : */
477 3146 : memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos,
478 : sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */
479 3146 : if (seq_out)
480 3106 : *seq_out = info->seq; /* also part of desc_read:C */
481 3146 : if (caller_id_out)
482 40 : *caller_id_out = info->caller_id; /* also part of desc_read:C */
483 :
484 : /*
485 : * 1. Guarantee the descriptor content is loaded before re-checking
486 : * the state. This avoids reading an obsolete descriptor state
487 : * that may not apply to the copied content. This pairs with
488 : * desc_reserve:F.
489 : *
490 : * Memory barrier involvement:
491 : *
492 : * If desc_read:C reads from desc_reserve:G, then desc_read:E
493 : * reads from desc_reserve:F.
494 : *
495 : * Relies on:
496 : *
497 : * WMB from desc_reserve:F to desc_reserve:G
498 : * matching
499 : * RMB from desc_read:C to desc_read:E
500 : *
501 : * 2. Guarantee the record data is loaded before re-checking the
502 : * state. This avoids reading an obsolete descriptor state that may
503 : * not apply to the copied data. This pairs with data_alloc:A and
504 : * data_realloc:A.
505 : *
506 : * Memory barrier involvement:
507 : *
508 : * If copy_data:A reads from data_alloc:B, then desc_read:E
509 : * reads from desc_make_reusable:A.
510 : *
511 : * Relies on:
512 : *
513 : * MB from desc_make_reusable:A to data_alloc:B
514 : * matching
515 : * RMB from desc_read:C to desc_read:E
516 : *
517 : * Note: desc_make_reusable:A and data_alloc:B can be different
518 : * CPUs. However, the data_alloc:B CPU (which performs the
519 : * full memory barrier) must have previously seen
520 : * desc_make_reusable:A.
521 : */
522 3146 : smp_rmb(); /* LMM(desc_read:D) */
523 :
524 : /*
525 : * The data has been copied. Return the current descriptor state,
526 : * which may have changed since the load above.
527 : */
528 3146 : state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */
529 3146 : d_state = get_desc_state(id, state_val);
530 4111 : out:
531 4111 : atomic_long_set(&desc_out->state_var, state_val);
532 4111 : return d_state;
533 : }
534 :
535 : /*
536 : * Take a specified descriptor out of the finalized state by attempting
537 : * the transition from finalized to reusable. Either this context or some
538 : * other context will have been successful.
539 : */
540 0 : static void desc_make_reusable(struct prb_desc_ring *desc_ring,
541 : unsigned long id)
542 : {
543 0 : unsigned long val_finalized = DESC_SV(id, desc_finalized);
544 0 : unsigned long val_reusable = DESC_SV(id, desc_reusable);
545 0 : struct prb_desc *desc = to_desc(desc_ring, id);
546 0 : atomic_long_t *state_var = &desc->state_var;
547 :
548 0 : atomic_long_cmpxchg_relaxed(state_var, val_finalized,
549 : val_reusable); /* LMM(desc_make_reusable:A) */
550 0 : }
551 :
552 : /*
553 : * Given the text data ring, put the associated descriptor of each
554 : * data block from @lpos_begin until @lpos_end into the reusable state.
555 : *
556 : * If there is any problem making the associated descriptor reusable, either
557 : * the descriptor has not yet been finalized or another writer context has
558 : * already pushed the tail lpos past the problematic data block. Regardless,
559 : * on error the caller can re-load the tail lpos to determine the situation.
560 : */
561 0 : static bool data_make_reusable(struct printk_ringbuffer *rb,
562 : unsigned long lpos_begin,
563 : unsigned long lpos_end,
564 : unsigned long *lpos_out)
565 : {
566 :
567 0 : struct prb_data_ring *data_ring = &rb->text_data_ring;
568 0 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
569 0 : struct prb_data_block *blk;
570 0 : enum desc_state d_state;
571 0 : struct prb_desc desc;
572 0 : struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos;
573 0 : unsigned long id;
574 :
575 : /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
576 0 : while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
577 0 : blk = to_block(data_ring, lpos_begin);
578 :
579 : /*
580 : * Load the block ID from the data block. This is a data race
581 : * against a writer that may have newly reserved this data
582 : * area. If the loaded value matches a valid descriptor ID,
583 : * the blk_lpos of that descriptor will be checked to make
584 : * sure it points back to this data block. If the check fails,
585 : * the data area has been recycled by another writer.
586 : */
587 0 : id = blk->id; /* LMM(data_make_reusable:A) */
588 :
589 0 : d_state = desc_read(desc_ring, id, &desc,
590 : NULL, NULL); /* LMM(data_make_reusable:B) */
591 :
592 0 : switch (d_state) {
593 : case desc_miss:
594 : case desc_reserved:
595 : case desc_committed:
596 : return false;
597 0 : case desc_finalized:
598 : /*
599 : * This data block is invalid if the descriptor
600 : * does not point back to it.
601 : */
602 0 : if (blk_lpos->begin != lpos_begin)
603 : return false;
604 0 : desc_make_reusable(desc_ring, id);
605 0 : break;
606 0 : case desc_reusable:
607 : /*
608 : * This data block is invalid if the descriptor
609 : * does not point back to it.
610 : */
611 0 : if (blk_lpos->begin != lpos_begin)
612 : return false;
613 : break;
614 : }
615 :
616 : /* Advance @lpos_begin to the next data block. */
617 0 : lpos_begin = blk_lpos->next;
618 : }
619 :
620 0 : *lpos_out = lpos_begin;
621 0 : return true;
622 : }
623 :
624 : /*
625 : * Advance the data ring tail to at least @lpos. This function puts
626 : * descriptors into the reusable state if the tail is pushed beyond
627 : * their associated data block.
628 : */
629 291 : static bool data_push_tail(struct printk_ringbuffer *rb, unsigned long lpos)
630 : {
631 291 : struct prb_data_ring *data_ring = &rb->text_data_ring;
632 291 : unsigned long tail_lpos_new;
633 291 : unsigned long tail_lpos;
634 291 : unsigned long next_lpos;
635 :
636 : /* If @lpos is from a data-less block, there is nothing to do. */
637 291 : if (LPOS_DATALESS(lpos))
638 : return true;
639 :
640 : /*
641 : * Any descriptor states that have transitioned to reusable due to the
642 : * data tail being pushed to this loaded value will be visible to this
643 : * CPU. This pairs with data_push_tail:D.
644 : *
645 : * Memory barrier involvement:
646 : *
647 : * If data_push_tail:A reads from data_push_tail:D, then this CPU can
648 : * see desc_make_reusable:A.
649 : *
650 : * Relies on:
651 : *
652 : * MB from desc_make_reusable:A to data_push_tail:D
653 : * matches
654 : * READFROM from data_push_tail:D to data_push_tail:A
655 : * thus
656 : * READFROM from desc_make_reusable:A to this CPU
657 : */
658 291 : tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */
659 :
660 : /*
661 : * Loop until the tail lpos is at or beyond @lpos. This condition
662 : * may already be satisfied, resulting in no full memory barrier
663 : * from data_push_tail:D being performed. However, since this CPU
664 : * sees the new tail lpos, any descriptor states that transitioned to
665 : * the reusable state must already be visible.
666 : */
667 291 : while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
668 : /*
669 : * Make all descriptors reusable that are associated with
670 : * data blocks before @lpos.
671 : */
672 0 : if (!data_make_reusable(rb, tail_lpos, lpos, &next_lpos)) {
673 : /*
674 : * 1. Guarantee the block ID loaded in
675 : * data_make_reusable() is performed before
676 : * reloading the tail lpos. The failed
677 : * data_make_reusable() may be due to a newly
678 : * recycled data area causing the tail lpos to
679 : * have been previously pushed. This pairs with
680 : * data_alloc:A and data_realloc:A.
681 : *
682 : * Memory barrier involvement:
683 : *
684 : * If data_make_reusable:A reads from data_alloc:B,
685 : * then data_push_tail:C reads from
686 : * data_push_tail:D.
687 : *
688 : * Relies on:
689 : *
690 : * MB from data_push_tail:D to data_alloc:B
691 : * matching
692 : * RMB from data_make_reusable:A to
693 : * data_push_tail:C
694 : *
695 : * Note: data_push_tail:D and data_alloc:B can be
696 : * different CPUs. However, the data_alloc:B
697 : * CPU (which performs the full memory
698 : * barrier) must have previously seen
699 : * data_push_tail:D.
700 : *
701 : * 2. Guarantee the descriptor state loaded in
702 : * data_make_reusable() is performed before
703 : * reloading the tail lpos. The failed
704 : * data_make_reusable() may be due to a newly
705 : * recycled descriptor causing the tail lpos to
706 : * have been previously pushed. This pairs with
707 : * desc_reserve:D.
708 : *
709 : * Memory barrier involvement:
710 : *
711 : * If data_make_reusable:B reads from
712 : * desc_reserve:F, then data_push_tail:C reads
713 : * from data_push_tail:D.
714 : *
715 : * Relies on:
716 : *
717 : * MB from data_push_tail:D to desc_reserve:F
718 : * matching
719 : * RMB from data_make_reusable:B to
720 : * data_push_tail:C
721 : *
722 : * Note: data_push_tail:D and desc_reserve:F can
723 : * be different CPUs. However, the
724 : * desc_reserve:F CPU (which performs the
725 : * full memory barrier) must have previously
726 : * seen data_push_tail:D.
727 : */
728 0 : smp_rmb(); /* LMM(data_push_tail:B) */
729 :
730 0 : tail_lpos_new = atomic_long_read(&data_ring->tail_lpos
731 : ); /* LMM(data_push_tail:C) */
732 0 : if (tail_lpos_new == tail_lpos)
733 : return false;
734 :
735 : /* Another CPU pushed the tail. Try again. */
736 0 : tail_lpos = tail_lpos_new;
737 0 : continue;
738 : }
739 :
740 : /*
741 : * Guarantee any descriptor states that have transitioned to
742 : * reusable are stored before pushing the tail lpos. A full
743 : * memory barrier is needed since other CPUs may have made
744 : * the descriptor states reusable. This pairs with
745 : * data_push_tail:A.
746 : */
747 0 : if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos,
748 : next_lpos)) { /* LMM(data_push_tail:D) */
749 : break;
750 : }
751 : }
752 :
753 : return true;
754 : }
755 :
756 : /*
757 : * Advance the desc ring tail. This function advances the tail by one
758 : * descriptor, thus invalidating the oldest descriptor. Before advancing
759 : * the tail, the tail descriptor is made reusable and all data blocks up to
760 : * and including the descriptor's data block are invalidated (i.e. the data
761 : * ring tail is pushed past the data block of the descriptor being made
762 : * reusable).
763 : */
764 0 : static bool desc_push_tail(struct printk_ringbuffer *rb,
765 : unsigned long tail_id)
766 : {
767 0 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
768 0 : enum desc_state d_state;
769 0 : struct prb_desc desc;
770 :
771 0 : d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL);
772 :
773 0 : switch (d_state) {
774 : case desc_miss:
775 : /*
776 : * If the ID is exactly 1 wrap behind the expected, it is
777 : * in the process of being reserved by another writer and
778 : * must be considered reserved.
779 : */
780 0 : if (DESC_ID(atomic_long_read(&desc.state_var)) ==
781 0 : DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
782 0 : return false;
783 : }
784 :
785 : /*
786 : * The ID has changed. Another writer must have pushed the
787 : * tail and recycled the descriptor already. Success is
788 : * returned because the caller is only interested in the
789 : * specified tail being pushed, which it was.
790 : */
791 : return true;
792 : case desc_reserved:
793 : case desc_committed:
794 : return false;
795 0 : case desc_finalized:
796 0 : desc_make_reusable(desc_ring, tail_id);
797 0 : break;
798 : case desc_reusable:
799 : break;
800 : }
801 :
802 : /*
803 : * Data blocks must be invalidated before their associated
804 : * descriptor can be made available for recycling. Invalidating
805 : * them later is not possible because there is no way to trust
806 : * data blocks once their associated descriptor is gone.
807 : */
808 :
809 0 : if (!data_push_tail(rb, desc.text_blk_lpos.next))
810 : return false;
811 :
812 : /*
813 : * Check the next descriptor after @tail_id before pushing the tail
814 : * to it because the tail must always be in a finalized or reusable
815 : * state. The implementation of prb_first_seq() relies on this.
816 : *
817 : * A successful read implies that the next descriptor is less than or
818 : * equal to @head_id so there is no risk of pushing the tail past the
819 : * head.
820 : */
821 0 : d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc,
822 : NULL, NULL); /* LMM(desc_push_tail:A) */
823 :
824 0 : if (d_state == desc_finalized || d_state == desc_reusable) {
825 : /*
826 : * Guarantee any descriptor states that have transitioned to
827 : * reusable are stored before pushing the tail ID. This allows
828 : * verifying the recycled descriptor state. A full memory
829 : * barrier is needed since other CPUs may have made the
830 : * descriptor states reusable. This pairs with desc_reserve:D.
831 : */
832 0 : atomic_long_cmpxchg(&desc_ring->tail_id, tail_id,
833 0 : DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
834 : } else {
835 : /*
836 : * Guarantee the last state load from desc_read() is before
837 : * reloading @tail_id in order to see a new tail ID in the
838 : * case that the descriptor has been recycled. This pairs
839 : * with desc_reserve:D.
840 : *
841 : * Memory barrier involvement:
842 : *
843 : * If desc_push_tail:A reads from desc_reserve:F, then
844 : * desc_push_tail:D reads from desc_push_tail:B.
845 : *
846 : * Relies on:
847 : *
848 : * MB from desc_push_tail:B to desc_reserve:F
849 : * matching
850 : * RMB from desc_push_tail:A to desc_push_tail:D
851 : *
852 : * Note: desc_push_tail:B and desc_reserve:F can be different
853 : * CPUs. However, the desc_reserve:F CPU (which performs
854 : * the full memory barrier) must have previously seen
855 : * desc_push_tail:B.
856 : */
857 0 : smp_rmb(); /* LMM(desc_push_tail:C) */
858 :
859 : /*
860 : * Re-check the tail ID. The descriptor following @tail_id is
861 : * not in an allowed tail state. But if the tail has since
862 : * been moved by another CPU, then it does not matter.
863 : */
864 0 : if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
865 0 : return false;
866 : }
867 :
868 : return true;
869 : }
870 :
871 : /* Reserve a new descriptor, invalidating the oldest if necessary. */
872 269 : static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
873 : {
874 269 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
875 269 : unsigned long prev_state_val;
876 269 : unsigned long id_prev_wrap;
877 269 : struct prb_desc *desc;
878 269 : unsigned long head_id;
879 269 : unsigned long id;
880 :
881 269 : head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */
882 :
883 269 : do {
884 269 : id = DESC_ID(head_id + 1);
885 269 : id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
886 :
887 : /*
888 : * Guarantee the head ID is read before reading the tail ID.
889 : * Since the tail ID is updated before the head ID, this
890 : * guarantees that @id_prev_wrap is never ahead of the tail
891 : * ID. This pairs with desc_reserve:D.
892 : *
893 : * Memory barrier involvement:
894 : *
895 : * If desc_reserve:A reads from desc_reserve:D, then
896 : * desc_reserve:C reads from desc_push_tail:B.
897 : *
898 : * Relies on:
899 : *
900 : * MB from desc_push_tail:B to desc_reserve:D
901 : * matching
902 : * RMB from desc_reserve:A to desc_reserve:C
903 : *
904 : * Note: desc_push_tail:B and desc_reserve:D can be different
905 : * CPUs. However, the desc_reserve:D CPU (which performs
906 : * the full memory barrier) must have previously seen
907 : * desc_push_tail:B.
908 : */
909 269 : smp_rmb(); /* LMM(desc_reserve:B) */
910 :
911 269 : if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id
912 : )) { /* LMM(desc_reserve:C) */
913 : /*
914 : * Make space for the new descriptor by
915 : * advancing the tail.
916 : */
917 0 : if (!desc_push_tail(rb, id_prev_wrap))
918 : return false;
919 : }
920 :
921 : /*
922 : * 1. Guarantee the tail ID is read before validating the
923 : * recycled descriptor state. A read memory barrier is
924 : * sufficient for this. This pairs with desc_push_tail:B.
925 : *
926 : * Memory barrier involvement:
927 : *
928 : * If desc_reserve:C reads from desc_push_tail:B, then
929 : * desc_reserve:E reads from desc_make_reusable:A.
930 : *
931 : * Relies on:
932 : *
933 : * MB from desc_make_reusable:A to desc_push_tail:B
934 : * matching
935 : * RMB from desc_reserve:C to desc_reserve:E
936 : *
937 : * Note: desc_make_reusable:A and desc_push_tail:B can be
938 : * different CPUs. However, the desc_push_tail:B CPU
939 : * (which performs the full memory barrier) must have
940 : * previously seen desc_make_reusable:A.
941 : *
942 : * 2. Guarantee the tail ID is stored before storing the head
943 : * ID. This pairs with desc_reserve:B.
944 : *
945 : * 3. Guarantee any data ring tail changes are stored before
946 : * recycling the descriptor. Data ring tail changes can
947 : * happen via desc_push_tail()->data_push_tail(). A full
948 : * memory barrier is needed since another CPU may have
949 : * pushed the data ring tails. This pairs with
950 : * data_push_tail:B.
951 : *
952 : * 4. Guarantee a new tail ID is stored before recycling the
953 : * descriptor. A full memory barrier is needed since
954 : * another CPU may have pushed the tail ID. This pairs
955 : * with desc_push_tail:C and this also pairs with
956 : * prb_first_seq:C.
957 : *
958 : * 5. Guarantee the head ID is stored before trying to
959 : * finalize the previous descriptor. This pairs with
960 : * _prb_commit:B.
961 : */
962 269 : } while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id,
963 269 : id)); /* LMM(desc_reserve:D) */
964 :
965 269 : desc = to_desc(desc_ring, id);
966 :
967 : /*
968 : * If the descriptor has been recycled, verify the old state val.
969 : * See "ABA Issues" about why this verification is performed.
970 : */
971 269 : prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */
972 269 : if (prev_state_val &&
973 0 : get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) {
974 0 : WARN_ON_ONCE(1);
975 0 : return false;
976 : }
977 :
978 : /*
979 : * Assign the descriptor a new ID and set its state to reserved.
980 : * See "ABA Issues" about why cmpxchg() instead of set() is used.
981 : *
982 : * Guarantee the new descriptor ID and state is stored before making
983 : * any other changes. A write memory barrier is sufficient for this.
984 : * This pairs with desc_read:D.
985 : */
986 538 : if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val,
987 : DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */
988 0 : WARN_ON_ONCE(1);
989 0 : return false;
990 : }
991 :
992 : /* Now data in @desc can be modified: LMM(desc_reserve:G) */
993 :
994 269 : *id_out = id;
995 269 : return true;
996 : }
997 :
998 : /* Determine the end of a data block. */
999 307 : static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
1000 : unsigned long lpos, unsigned int size)
1001 : {
1002 307 : unsigned long begin_lpos;
1003 307 : unsigned long next_lpos;
1004 :
1005 307 : begin_lpos = lpos;
1006 307 : next_lpos = lpos + size;
1007 :
1008 : /* First check if the data block does not wrap. */
1009 307 : if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
1010 : return next_lpos;
1011 :
1012 : /* Wrapping data blocks store their data at the beginning. */
1013 0 : return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
1014 : }
1015 :
1016 : /*
1017 : * Allocate a new data block, invalidating the oldest data block(s)
1018 : * if necessary. This function also associates the data block with
1019 : * a specified descriptor.
1020 : */
1021 269 : static char *data_alloc(struct printk_ringbuffer *rb, unsigned int size,
1022 : struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1023 : {
1024 269 : struct prb_data_ring *data_ring = &rb->text_data_ring;
1025 269 : struct prb_data_block *blk;
1026 269 : unsigned long begin_lpos;
1027 269 : unsigned long next_lpos;
1028 :
1029 269 : if (size == 0) {
1030 : /* Specify a data-less block. */
1031 0 : blk_lpos->begin = NO_LPOS;
1032 0 : blk_lpos->next = NO_LPOS;
1033 0 : return NULL;
1034 : }
1035 :
1036 269 : size = to_blk_size(size);
1037 :
1038 269 : begin_lpos = atomic_long_read(&data_ring->head_lpos);
1039 :
1040 269 : do {
1041 269 : next_lpos = get_next_lpos(data_ring, begin_lpos, size);
1042 :
1043 269 : if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) {
1044 : /* Failed to allocate, specify a data-less block. */
1045 0 : blk_lpos->begin = FAILED_LPOS;
1046 0 : blk_lpos->next = FAILED_LPOS;
1047 0 : return NULL;
1048 : }
1049 :
1050 : /*
1051 : * 1. Guarantee any descriptor states that have transitioned
1052 : * to reusable are stored before modifying the newly
1053 : * allocated data area. A full memory barrier is needed
1054 : * since other CPUs may have made the descriptor states
1055 : * reusable. See data_push_tail:A about why the reusable
1056 : * states are visible. This pairs with desc_read:D.
1057 : *
1058 : * 2. Guarantee any updated tail lpos is stored before
1059 : * modifying the newly allocated data area. Another CPU may
1060 : * be in data_make_reusable() and is reading a block ID
1061 : * from this area. data_make_reusable() can handle reading
1062 : * a garbage block ID value, but then it must be able to
1063 : * load a new tail lpos. A full memory barrier is needed
1064 : * since other CPUs may have updated the tail lpos. This
1065 : * pairs with data_push_tail:B.
1066 : */
1067 269 : } while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos,
1068 269 : next_lpos)); /* LMM(data_alloc:A) */
1069 :
1070 269 : blk = to_block(data_ring, begin_lpos);
1071 269 : blk->id = id; /* LMM(data_alloc:B) */
1072 :
1073 269 : if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
1074 : /* Wrapping data blocks store their data at the beginning. */
1075 0 : blk = to_block(data_ring, 0);
1076 :
1077 : /*
1078 : * Store the ID on the wrapped block for consistency.
1079 : * The printk_ringbuffer does not actually use it.
1080 : */
1081 0 : blk->id = id;
1082 : }
1083 :
1084 269 : blk_lpos->begin = begin_lpos;
1085 269 : blk_lpos->next = next_lpos;
1086 :
1087 269 : return &blk->data[0];
1088 : }
1089 :
1090 : /*
1091 : * Try to resize an existing data block associated with the descriptor
1092 : * specified by @id. If the resized data block should become wrapped, it
1093 : * copies the old data to the new data block. If @size yields a data block
1094 : * with the same or less size, the data block is left as is.
1095 : *
1096 : * Fail if this is not the last allocated data block or if there is not
1097 : * enough space or it is not possible make enough space.
1098 : *
1099 : * Return a pointer to the beginning of the entire data buffer or NULL on
1100 : * failure.
1101 : */
1102 38 : static char *data_realloc(struct printk_ringbuffer *rb, unsigned int size,
1103 : struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1104 : {
1105 38 : struct prb_data_ring *data_ring = &rb->text_data_ring;
1106 38 : struct prb_data_block *blk;
1107 38 : unsigned long head_lpos;
1108 38 : unsigned long next_lpos;
1109 38 : bool wrapped;
1110 :
1111 : /* Reallocation only works if @blk_lpos is the newest data block. */
1112 38 : head_lpos = atomic_long_read(&data_ring->head_lpos);
1113 38 : if (head_lpos != blk_lpos->next)
1114 : return NULL;
1115 :
1116 : /* Keep track if @blk_lpos was a wrapping data block. */
1117 38 : wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next));
1118 :
1119 38 : size = to_blk_size(size);
1120 :
1121 38 : next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size);
1122 :
1123 : /* If the data block does not increase, there is nothing to do. */
1124 38 : if (head_lpos - next_lpos < DATA_SIZE(data_ring)) {
1125 16 : if (wrapped)
1126 0 : blk = to_block(data_ring, 0);
1127 : else
1128 16 : blk = to_block(data_ring, blk_lpos->begin);
1129 16 : return &blk->data[0];
1130 : }
1131 :
1132 22 : if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring)))
1133 : return NULL;
1134 :
1135 : /* The memory barrier involvement is the same as data_alloc:A. */
1136 44 : if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos,
1137 : next_lpos)) { /* LMM(data_realloc:A) */
1138 : return NULL;
1139 : }
1140 :
1141 22 : blk = to_block(data_ring, blk_lpos->begin);
1142 :
1143 22 : if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) {
1144 0 : struct prb_data_block *old_blk = blk;
1145 :
1146 : /* Wrapping data blocks store their data at the beginning. */
1147 0 : blk = to_block(data_ring, 0);
1148 :
1149 : /*
1150 : * Store the ID on the wrapped block for consistency.
1151 : * The printk_ringbuffer does not actually use it.
1152 : */
1153 0 : blk->id = id;
1154 :
1155 0 : if (!wrapped) {
1156 : /*
1157 : * Since the allocated space is now in the newly
1158 : * created wrapping data block, copy the content
1159 : * from the old data block.
1160 : */
1161 0 : memcpy(&blk->data[0], &old_blk->data[0],
1162 0 : (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id));
1163 : }
1164 : }
1165 :
1166 22 : blk_lpos->next = next_lpos;
1167 :
1168 22 : return &blk->data[0];
1169 : }
1170 :
1171 : /* Return the number of bytes used by a data block. */
1172 307 : static unsigned int space_used(struct prb_data_ring *data_ring,
1173 : struct prb_data_blk_lpos *blk_lpos)
1174 : {
1175 : /* Data-less blocks take no space. */
1176 307 : if (BLK_DATALESS(blk_lpos))
1177 : return 0;
1178 :
1179 307 : if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
1180 : /* Data block does not wrap. */
1181 307 : return (DATA_INDEX(data_ring, blk_lpos->next) -
1182 307 : DATA_INDEX(data_ring, blk_lpos->begin));
1183 : }
1184 :
1185 : /*
1186 : * For wrapping data blocks, the trailing (wasted) space is
1187 : * also counted.
1188 : */
1189 0 : return (DATA_INDEX(data_ring, blk_lpos->next) +
1190 0 : DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
1191 : }
1192 :
1193 : /*
1194 : * Given @blk_lpos, return a pointer to the writer data from the data block
1195 : * and calculate the size of the data part. A NULL pointer is returned if
1196 : * @blk_lpos specifies values that could never be legal.
1197 : *
1198 : * This function (used by readers) performs strict validation on the lpos
1199 : * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1200 : * triggered if an internal error is detected.
1201 : */
1202 934 : static const char *get_data(struct prb_data_ring *data_ring,
1203 : struct prb_data_blk_lpos *blk_lpos,
1204 : unsigned int *data_size)
1205 : {
1206 934 : struct prb_data_block *db;
1207 :
1208 : /* Data-less data block description. */
1209 934 : if (BLK_DATALESS(blk_lpos)) {
1210 0 : if (blk_lpos->begin == NO_LPOS && blk_lpos->next == NO_LPOS) {
1211 0 : *data_size = 0;
1212 0 : return "";
1213 : }
1214 : return NULL;
1215 : }
1216 :
1217 : /* Regular data block: @begin less than @next and in same wrap. */
1218 934 : if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
1219 : blk_lpos->begin < blk_lpos->next) {
1220 934 : db = to_block(data_ring, blk_lpos->begin);
1221 934 : *data_size = blk_lpos->next - blk_lpos->begin;
1222 :
1223 : /* Wrapping data block: @begin is one wrap behind @next. */
1224 0 : } else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
1225 : DATA_WRAPS(data_ring, blk_lpos->next)) {
1226 0 : db = to_block(data_ring, 0);
1227 0 : *data_size = DATA_INDEX(data_ring, blk_lpos->next);
1228 :
1229 : /* Illegal block description. */
1230 : } else {
1231 0 : WARN_ON_ONCE(1);
1232 0 : return NULL;
1233 : }
1234 :
1235 : /* A valid data block will always be aligned to the ID size. */
1236 934 : if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
1237 934 : WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
1238 : return NULL;
1239 : }
1240 :
1241 : /* A valid data block will always have at least an ID. */
1242 934 : if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
1243 : return NULL;
1244 :
1245 : /* Subtract block ID space from size to reflect data size. */
1246 934 : *data_size -= sizeof(db->id);
1247 :
1248 934 : return &db->data[0];
1249 : }
1250 :
1251 : /*
1252 : * Attempt to transition the newest descriptor from committed back to reserved
1253 : * so that the record can be modified by a writer again. This is only possible
1254 : * if the descriptor is not yet finalized and the provided @caller_id matches.
1255 : */
1256 40 : static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring,
1257 : u32 caller_id, unsigned long *id_out)
1258 : {
1259 40 : unsigned long prev_state_val;
1260 40 : enum desc_state d_state;
1261 40 : struct prb_desc desc;
1262 40 : struct prb_desc *d;
1263 40 : unsigned long id;
1264 40 : u32 cid;
1265 :
1266 40 : id = atomic_long_read(&desc_ring->head_id);
1267 :
1268 : /*
1269 : * To reduce unnecessarily reopening, first check if the descriptor
1270 : * state and caller ID are correct.
1271 : */
1272 40 : d_state = desc_read(desc_ring, id, &desc, NULL, &cid);
1273 40 : if (d_state != desc_committed || cid != caller_id)
1274 : return NULL;
1275 :
1276 38 : d = to_desc(desc_ring, id);
1277 :
1278 38 : prev_state_val = DESC_SV(id, desc_committed);
1279 :
1280 : /*
1281 : * Guarantee the reserved state is stored before reading any
1282 : * record data. A full memory barrier is needed because @state_var
1283 : * modification is followed by reading. This pairs with _prb_commit:B.
1284 : *
1285 : * Memory barrier involvement:
1286 : *
1287 : * If desc_reopen_last:A reads from _prb_commit:B, then
1288 : * prb_reserve_in_last:A reads from _prb_commit:A.
1289 : *
1290 : * Relies on:
1291 : *
1292 : * WMB from _prb_commit:A to _prb_commit:B
1293 : * matching
1294 : * MB If desc_reopen_last:A to prb_reserve_in_last:A
1295 : */
1296 76 : if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1297 : DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */
1298 : return NULL;
1299 : }
1300 :
1301 38 : *id_out = id;
1302 38 : return d;
1303 : }
1304 :
1305 : /**
1306 : * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer
1307 : * used by the newest record.
1308 : *
1309 : * @e: The entry structure to setup.
1310 : * @rb: The ringbuffer to re-reserve and extend data in.
1311 : * @r: The record structure to allocate buffers for.
1312 : * @caller_id: The caller ID of the caller (reserving writer).
1313 : * @max_size: Fail if the extended size would be greater than this.
1314 : *
1315 : * This is the public function available to writers to re-reserve and extend
1316 : * data.
1317 : *
1318 : * The writer specifies the text size to extend (not the new total size) by
1319 : * setting the @text_buf_size field of @r. To ensure proper initialization
1320 : * of @r, prb_rec_init_wr() should be used.
1321 : *
1322 : * This function will fail if @caller_id does not match the caller ID of the
1323 : * newest record. In that case the caller must reserve new data using
1324 : * prb_reserve().
1325 : *
1326 : * Context: Any context. Disables local interrupts on success.
1327 : * Return: true if text data could be extended, otherwise false.
1328 : *
1329 : * On success:
1330 : *
1331 : * - @r->text_buf points to the beginning of the entire text buffer.
1332 : *
1333 : * - @r->text_buf_size is set to the new total size of the buffer.
1334 : *
1335 : * - @r->info is not touched so that @r->info->text_len could be used
1336 : * to append the text.
1337 : *
1338 : * - prb_record_text_space() can be used on @e to query the new
1339 : * actually used space.
1340 : *
1341 : * Important: All @r->info fields will already be set with the current values
1342 : * for the record. I.e. @r->info->text_len will be less than
1343 : * @text_buf_size. Writers can use @r->info->text_len to know
1344 : * where concatenation begins and writers should update
1345 : * @r->info->text_len after concatenating.
1346 : */
1347 40 : bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1348 : struct printk_record *r, u32 caller_id, unsigned int max_size)
1349 : {
1350 40 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
1351 40 : struct printk_info *info;
1352 40 : unsigned int data_size;
1353 40 : struct prb_desc *d;
1354 40 : unsigned long id;
1355 :
1356 80 : local_irq_save(e->irqflags);
1357 :
1358 : /* Transition the newest descriptor back to the reserved state. */
1359 40 : d = desc_reopen_last(desc_ring, caller_id, &id);
1360 40 : if (!d) {
1361 2 : local_irq_restore(e->irqflags);
1362 2 : goto fail_reopen;
1363 : }
1364 :
1365 : /* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */
1366 :
1367 38 : info = to_info(desc_ring, id);
1368 :
1369 : /*
1370 : * Set the @e fields here so that prb_commit() can be used if
1371 : * anything fails from now on.
1372 : */
1373 38 : e->rb = rb;
1374 38 : e->id = id;
1375 :
1376 : /*
1377 : * desc_reopen_last() checked the caller_id, but there was no
1378 : * exclusive access at that point. The descriptor may have
1379 : * changed since then.
1380 : */
1381 38 : if (caller_id != info->caller_id)
1382 0 : goto fail;
1383 :
1384 38 : if (BLK_DATALESS(&d->text_blk_lpos)) {
1385 0 : if (WARN_ON_ONCE(info->text_len != 0)) {
1386 0 : pr_warn_once("wrong text_len value (%hu, expecting 0)\n",
1387 : info->text_len);
1388 0 : info->text_len = 0;
1389 : }
1390 :
1391 0 : if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1392 0 : goto fail;
1393 :
1394 0 : if (r->text_buf_size > max_size)
1395 0 : goto fail;
1396 :
1397 0 : r->text_buf = data_alloc(rb, r->text_buf_size,
1398 : &d->text_blk_lpos, id);
1399 : } else {
1400 38 : if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size))
1401 0 : goto fail;
1402 :
1403 : /*
1404 : * Increase the buffer size to include the original size. If
1405 : * the meta data (@text_len) is not sane, use the full data
1406 : * block size.
1407 : */
1408 38 : if (WARN_ON_ONCE(info->text_len > data_size)) {
1409 0 : pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n",
1410 : info->text_len, data_size);
1411 0 : info->text_len = data_size;
1412 : }
1413 38 : r->text_buf_size += info->text_len;
1414 :
1415 38 : if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1416 0 : goto fail;
1417 :
1418 38 : if (r->text_buf_size > max_size)
1419 0 : goto fail;
1420 :
1421 38 : r->text_buf = data_realloc(rb, r->text_buf_size,
1422 : &d->text_blk_lpos, id);
1423 : }
1424 38 : if (r->text_buf_size && !r->text_buf)
1425 0 : goto fail;
1426 :
1427 38 : r->info = info;
1428 :
1429 38 : e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1430 :
1431 38 : return true;
1432 0 : fail:
1433 0 : prb_commit(e);
1434 : /* prb_commit() re-enabled interrupts. */
1435 2 : fail_reopen:
1436 : /* Make it clear to the caller that the re-reserve failed. */
1437 2 : memset(r, 0, sizeof(*r));
1438 2 : return false;
1439 : }
1440 :
1441 : /*
1442 : * Attempt to finalize a specified descriptor. If this fails, the descriptor
1443 : * is either already final or it will finalize itself when the writer commits.
1444 : */
1445 268 : static void desc_make_final(struct prb_desc_ring *desc_ring, unsigned long id)
1446 : {
1447 268 : unsigned long prev_state_val = DESC_SV(id, desc_committed);
1448 268 : struct prb_desc *d = to_desc(desc_ring, id);
1449 :
1450 536 : atomic_long_cmpxchg_relaxed(&d->state_var, prev_state_val,
1451 268 : DESC_SV(id, desc_finalized)); /* LMM(desc_make_final:A) */
1452 268 : }
1453 :
1454 : /**
1455 : * prb_reserve() - Reserve space in the ringbuffer.
1456 : *
1457 : * @e: The entry structure to setup.
1458 : * @rb: The ringbuffer to reserve data in.
1459 : * @r: The record structure to allocate buffers for.
1460 : *
1461 : * This is the public function available to writers to reserve data.
1462 : *
1463 : * The writer specifies the text size to reserve by setting the
1464 : * @text_buf_size field of @r. To ensure proper initialization of @r,
1465 : * prb_rec_init_wr() should be used.
1466 : *
1467 : * Context: Any context. Disables local interrupts on success.
1468 : * Return: true if at least text data could be allocated, otherwise false.
1469 : *
1470 : * On success, the fields @info and @text_buf of @r will be set by this
1471 : * function and should be filled in by the writer before committing. Also
1472 : * on success, prb_record_text_space() can be used on @e to query the actual
1473 : * space used for the text data block.
1474 : *
1475 : * Important: @info->text_len needs to be set correctly by the writer in
1476 : * order for data to be readable and/or extended. Its value
1477 : * is initialized to 0.
1478 : */
1479 269 : bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1480 : struct printk_record *r)
1481 : {
1482 269 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
1483 269 : struct printk_info *info;
1484 269 : struct prb_desc *d;
1485 269 : unsigned long id;
1486 269 : u64 seq;
1487 :
1488 269 : if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1489 0 : goto fail;
1490 :
1491 : /*
1492 : * Descriptors in the reserved state act as blockers to all further
1493 : * reservations once the desc_ring has fully wrapped. Disable
1494 : * interrupts during the reserve/commit window in order to minimize
1495 : * the likelihood of this happening.
1496 : */
1497 538 : local_irq_save(e->irqflags);
1498 :
1499 269 : if (!desc_reserve(rb, &id)) {
1500 : /* Descriptor reservation failures are tracked. */
1501 0 : atomic_long_inc(&rb->fail);
1502 0 : local_irq_restore(e->irqflags);
1503 0 : goto fail;
1504 : }
1505 :
1506 269 : d = to_desc(desc_ring, id);
1507 269 : info = to_info(desc_ring, id);
1508 :
1509 : /*
1510 : * All @info fields (except @seq) are cleared and must be filled in
1511 : * by the writer. Save @seq before clearing because it is used to
1512 : * determine the new sequence number.
1513 : */
1514 269 : seq = info->seq;
1515 269 : memset(info, 0, sizeof(*info));
1516 :
1517 : /*
1518 : * Set the @e fields here so that prb_commit() can be used if
1519 : * text data allocation fails.
1520 : */
1521 269 : e->rb = rb;
1522 269 : e->id = id;
1523 :
1524 : /*
1525 : * Initialize the sequence number if it has "never been set".
1526 : * Otherwise just increment it by a full wrap.
1527 : *
1528 : * @seq is considered "never been set" if it has a value of 0,
1529 : * _except_ for @infos[0], which was specially setup by the ringbuffer
1530 : * initializer and therefore is always considered as set.
1531 : *
1532 : * See the "Bootstrap" comment block in printk_ringbuffer.h for
1533 : * details about how the initializer bootstraps the descriptors.
1534 : */
1535 269 : if (seq == 0 && DESC_INDEX(desc_ring, id) != 0)
1536 268 : info->seq = DESC_INDEX(desc_ring, id);
1537 : else
1538 1 : info->seq = seq + DESCS_COUNT(desc_ring);
1539 :
1540 : /*
1541 : * New data is about to be reserved. Once that happens, previous
1542 : * descriptors are no longer able to be extended. Finalize the
1543 : * previous descriptor now so that it can be made available to
1544 : * readers. (For seq==0 there is no previous descriptor.)
1545 : */
1546 269 : if (info->seq > 0)
1547 268 : desc_make_final(desc_ring, DESC_ID(id - 1));
1548 :
1549 269 : r->text_buf = data_alloc(rb, r->text_buf_size, &d->text_blk_lpos, id);
1550 : /* If text data allocation fails, a data-less record is committed. */
1551 269 : if (r->text_buf_size && !r->text_buf) {
1552 0 : prb_commit(e);
1553 : /* prb_commit() re-enabled interrupts. */
1554 0 : goto fail;
1555 : }
1556 :
1557 269 : r->info = info;
1558 :
1559 : /* Record full text space used by record. */
1560 269 : e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1561 :
1562 269 : return true;
1563 0 : fail:
1564 : /* Make it clear to the caller that the reserve failed. */
1565 0 : memset(r, 0, sizeof(*r));
1566 0 : return false;
1567 : }
1568 :
1569 : /* Commit the data (possibly finalizing it) and restore interrupts. */
1570 307 : static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val)
1571 : {
1572 307 : struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1573 307 : struct prb_desc *d = to_desc(desc_ring, e->id);
1574 307 : unsigned long prev_state_val = DESC_SV(e->id, desc_reserved);
1575 :
1576 : /* Now the writer has finished all writing: LMM(_prb_commit:A) */
1577 :
1578 : /*
1579 : * Set the descriptor as committed. See "ABA Issues" about why
1580 : * cmpxchg() instead of set() is used.
1581 : *
1582 : * 1 Guarantee all record data is stored before the descriptor state
1583 : * is stored as committed. A write memory barrier is sufficient
1584 : * for this. This pairs with desc_read:B and desc_reopen_last:A.
1585 : *
1586 : * 2. Guarantee the descriptor state is stored as committed before
1587 : * re-checking the head ID in order to possibly finalize this
1588 : * descriptor. This pairs with desc_reserve:D.
1589 : *
1590 : * Memory barrier involvement:
1591 : *
1592 : * If prb_commit:A reads from desc_reserve:D, then
1593 : * desc_make_final:A reads from _prb_commit:B.
1594 : *
1595 : * Relies on:
1596 : *
1597 : * MB _prb_commit:B to prb_commit:A
1598 : * matching
1599 : * MB desc_reserve:D to desc_make_final:A
1600 : */
1601 307 : if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1602 307 : DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */
1603 0 : WARN_ON_ONCE(1);
1604 : }
1605 :
1606 : /* Restore interrupts, the reserve/commit window is finished. */
1607 307 : local_irq_restore(e->irqflags);
1608 307 : }
1609 :
1610 : /**
1611 : * prb_commit() - Commit (previously reserved) data to the ringbuffer.
1612 : *
1613 : * @e: The entry containing the reserved data information.
1614 : *
1615 : * This is the public function available to writers to commit data.
1616 : *
1617 : * Note that the data is not yet available to readers until it is finalized.
1618 : * Finalizing happens automatically when space for the next record is
1619 : * reserved.
1620 : *
1621 : * See prb_final_commit() for a version of this function that finalizes
1622 : * immediately.
1623 : *
1624 : * Context: Any context. Enables local interrupts.
1625 : */
1626 48 : void prb_commit(struct prb_reserved_entry *e)
1627 : {
1628 48 : struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1629 48 : unsigned long head_id;
1630 :
1631 48 : _prb_commit(e, desc_committed);
1632 :
1633 : /*
1634 : * If this descriptor is no longer the head (i.e. a new record has
1635 : * been allocated), extending the data for this record is no longer
1636 : * allowed and therefore it must be finalized.
1637 : */
1638 48 : head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */
1639 48 : if (head_id != e->id)
1640 0 : desc_make_final(desc_ring, e->id);
1641 48 : }
1642 :
1643 : /**
1644 : * prb_final_commit() - Commit and finalize (previously reserved) data to
1645 : * the ringbuffer.
1646 : *
1647 : * @e: The entry containing the reserved data information.
1648 : *
1649 : * This is the public function available to writers to commit+finalize data.
1650 : *
1651 : * By finalizing, the data is made immediately available to readers.
1652 : *
1653 : * This function should only be used if there are no intentions of extending
1654 : * this data using prb_reserve_in_last().
1655 : *
1656 : * Context: Any context. Enables local interrupts.
1657 : */
1658 259 : void prb_final_commit(struct prb_reserved_entry *e)
1659 : {
1660 259 : _prb_commit(e, desc_finalized);
1661 259 : }
1662 :
1663 : /*
1664 : * Count the number of lines in provided text. All text has at least 1 line
1665 : * (even if @text_size is 0). Each '\n' processed is counted as an additional
1666 : * line.
1667 : */
1668 0 : static unsigned int count_lines(const char *text, unsigned int text_size)
1669 : {
1670 0 : unsigned int next_size = text_size;
1671 0 : unsigned int line_count = 1;
1672 0 : const char *next = text;
1673 :
1674 0 : while (next_size) {
1675 0 : next = memchr(next, '\n', next_size);
1676 0 : if (!next)
1677 : break;
1678 0 : line_count++;
1679 0 : next++;
1680 0 : next_size = text_size - (next - text);
1681 : }
1682 :
1683 0 : return line_count;
1684 : }
1685 :
1686 : /*
1687 : * Given @blk_lpos, copy an expected @len of data into the provided buffer.
1688 : * If @line_count is provided, count the number of lines in the data.
1689 : *
1690 : * This function (used by readers) performs strict validation on the data
1691 : * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1692 : * triggered if an internal error is detected.
1693 : */
1694 964 : static bool copy_data(struct prb_data_ring *data_ring,
1695 : struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
1696 : unsigned int buf_size, unsigned int *line_count)
1697 : {
1698 964 : unsigned int data_size;
1699 964 : const char *data;
1700 :
1701 : /* Caller might not want any data. */
1702 964 : if ((!buf || !buf_size) && !line_count)
1703 : return true;
1704 :
1705 896 : data = get_data(data_ring, blk_lpos, &data_size);
1706 896 : if (!data)
1707 : return false;
1708 :
1709 : /*
1710 : * Actual cannot be less than expected. It can be more than expected
1711 : * because of the trailing alignment padding.
1712 : *
1713 : * Note that invalid @len values can occur because the caller loads
1714 : * the value during an allowed data race.
1715 : */
1716 896 : if (data_size < (unsigned int)len)
1717 : return false;
1718 :
1719 : /* Caller interested in the line count? */
1720 896 : if (line_count)
1721 0 : *line_count = count_lines(data, len);
1722 :
1723 : /* Caller interested in the data content? */
1724 896 : if (!buf || !buf_size)
1725 : return true;
1726 :
1727 896 : data_size = min_t(u16, buf_size, len);
1728 :
1729 896 : memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */
1730 896 : return true;
1731 : }
1732 :
1733 : /*
1734 : * This is an extended version of desc_read(). It gets a copy of a specified
1735 : * descriptor. However, it also verifies that the record is finalized and has
1736 : * the sequence number @seq. On success, 0 is returned.
1737 : *
1738 : * Error return values:
1739 : * -EINVAL: A finalized record with sequence number @seq does not exist.
1740 : * -ENOENT: A finalized record with sequence number @seq exists, but its data
1741 : * is not available. This is a valid record, so readers should
1742 : * continue with the next record.
1743 : */
1744 3010 : static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring,
1745 : unsigned long id, u64 seq,
1746 : struct prb_desc *desc_out)
1747 : {
1748 3010 : struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
1749 3010 : enum desc_state d_state;
1750 3010 : u64 s;
1751 :
1752 3010 : d_state = desc_read(desc_ring, id, desc_out, &s, NULL);
1753 :
1754 : /*
1755 : * An unexpected @id (desc_miss) or @seq mismatch means the record
1756 : * does not exist. A descriptor in the reserved or committed state
1757 : * means the record does not yet exist for the reader.
1758 : */
1759 3010 : if (d_state == desc_miss ||
1760 2045 : d_state == desc_reserved ||
1761 1949 : d_state == desc_committed ||
1762 1949 : s != seq) {
1763 : return -EINVAL;
1764 : }
1765 :
1766 : /*
1767 : * A descriptor in the reusable state may no longer have its data
1768 : * available; report it as existing but with lost data. Or the record
1769 : * may actually be a record with lost data.
1770 : */
1771 1949 : if (d_state == desc_reusable ||
1772 1949 : (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) {
1773 0 : return -ENOENT;
1774 : }
1775 :
1776 : return 0;
1777 : }
1778 :
1779 : /*
1780 : * Copy the ringbuffer data from the record with @seq to the provided
1781 : * @r buffer. On success, 0 is returned.
1782 : *
1783 : * See desc_read_finalized_seq() for error return values.
1784 : */
1785 2046 : static int prb_read(struct printk_ringbuffer *rb, u64 seq,
1786 : struct printk_record *r, unsigned int *line_count)
1787 : {
1788 2046 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
1789 2046 : struct printk_info *info = to_info(desc_ring, seq);
1790 2046 : struct prb_desc *rdesc = to_desc(desc_ring, seq);
1791 2046 : atomic_long_t *state_var = &rdesc->state_var;
1792 2046 : struct prb_desc desc;
1793 2046 : unsigned long id;
1794 2046 : int err;
1795 :
1796 : /* Extract the ID, used to specify the descriptor to read. */
1797 2046 : id = DESC_ID(atomic_long_read(state_var));
1798 :
1799 : /* Get a local copy of the correct descriptor (if available). */
1800 2046 : err = desc_read_finalized_seq(desc_ring, id, seq, &desc);
1801 :
1802 : /*
1803 : * If @r is NULL, the caller is only interested in the availability
1804 : * of the record.
1805 : */
1806 2046 : if (err || !r)
1807 : return err;
1808 :
1809 : /* If requested, copy meta data. */
1810 964 : if (r->info)
1811 964 : memcpy(r->info, info, sizeof(*(r->info)));
1812 :
1813 : /* Copy text data. If it fails, this is a data-less record. */
1814 964 : if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len,
1815 : r->text_buf, r->text_buf_size, line_count)) {
1816 : return -ENOENT;
1817 : }
1818 :
1819 : /* Ensure the record is still finalized and has the same @seq. */
1820 964 : return desc_read_finalized_seq(desc_ring, id, seq, &desc);
1821 : }
1822 :
1823 : /* Get the sequence number of the tail descriptor. */
1824 1061 : static u64 prb_first_seq(struct printk_ringbuffer *rb)
1825 : {
1826 1061 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
1827 1061 : enum desc_state d_state;
1828 1061 : struct prb_desc desc;
1829 1061 : unsigned long id;
1830 1061 : u64 seq;
1831 :
1832 1061 : for (;;) {
1833 1061 : id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
1834 :
1835 1061 : d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */
1836 :
1837 : /*
1838 : * This loop will not be infinite because the tail is
1839 : * _always_ in the finalized or reusable state.
1840 : */
1841 1061 : if (d_state == desc_finalized || d_state == desc_reusable)
1842 : break;
1843 :
1844 : /*
1845 : * Guarantee the last state load from desc_read() is before
1846 : * reloading @tail_id in order to see a new tail in the case
1847 : * that the descriptor has been recycled. This pairs with
1848 : * desc_reserve:D.
1849 : *
1850 : * Memory barrier involvement:
1851 : *
1852 : * If prb_first_seq:B reads from desc_reserve:F, then
1853 : * prb_first_seq:A reads from desc_push_tail:B.
1854 : *
1855 : * Relies on:
1856 : *
1857 : * MB from desc_push_tail:B to desc_reserve:F
1858 : * matching
1859 : * RMB prb_first_seq:B to prb_first_seq:A
1860 : */
1861 0 : smp_rmb(); /* LMM(prb_first_seq:C) */
1862 : }
1863 :
1864 1061 : return seq;
1865 : }
1866 :
1867 : /*
1868 : * Non-blocking read of a record. Updates @seq to the last finalized record
1869 : * (which may have no data available).
1870 : *
1871 : * See the description of prb_read_valid() and prb_read_valid_info()
1872 : * for details.
1873 : */
1874 2046 : static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
1875 : struct printk_record *r, unsigned int *line_count)
1876 : {
1877 2046 : u64 tail_seq;
1878 2046 : int err;
1879 :
1880 2046 : while ((err = prb_read(rb, *seq, r, line_count))) {
1881 1061 : tail_seq = prb_first_seq(rb);
1882 :
1883 1061 : if (*seq < tail_seq) {
1884 : /*
1885 : * Behind the tail. Catch up and try again. This
1886 : * can happen for -ENOENT and -EINVAL cases.
1887 : */
1888 0 : *seq = tail_seq;
1889 :
1890 1061 : } else if (err == -ENOENT) {
1891 : /* Record exists, but no data available. Skip. */
1892 0 : (*seq)++;
1893 :
1894 : } else {
1895 : /* Non-existent/non-finalized record. Must stop. */
1896 : return false;
1897 : }
1898 : }
1899 :
1900 : return true;
1901 : }
1902 :
1903 : /**
1904 : * prb_read_valid() - Non-blocking read of a requested record or (if gone)
1905 : * the next available record.
1906 : *
1907 : * @rb: The ringbuffer to read from.
1908 : * @seq: The sequence number of the record to read.
1909 : * @r: A record data buffer to store the read record to.
1910 : *
1911 : * This is the public function available to readers to read a record.
1912 : *
1913 : * The reader provides the @info and @text_buf buffers of @r to be
1914 : * filled in. Any of the buffer pointers can be set to NULL if the reader
1915 : * is not interested in that data. To ensure proper initialization of @r,
1916 : * prb_rec_init_rd() should be used.
1917 : *
1918 : * Context: Any context.
1919 : * Return: true if a record was read, otherwise false.
1920 : *
1921 : * On success, the reader must check r->info.seq to see which record was
1922 : * actually read. This allows the reader to detect dropped records.
1923 : *
1924 : * Failure means @seq refers to a not yet written record.
1925 : */
1926 1952 : bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
1927 : struct printk_record *r)
1928 : {
1929 1952 : return _prb_read_valid(rb, &seq, r, NULL);
1930 : }
1931 :
1932 : /**
1933 : * prb_read_valid_info() - Non-blocking read of meta data for a requested
1934 : * record or (if gone) the next available record.
1935 : *
1936 : * @rb: The ringbuffer to read from.
1937 : * @seq: The sequence number of the record to read.
1938 : * @info: A buffer to store the read record meta data to.
1939 : * @line_count: A buffer to store the number of lines in the record text.
1940 : *
1941 : * This is the public function available to readers to read only the
1942 : * meta data of a record.
1943 : *
1944 : * The reader provides the @info, @line_count buffers to be filled in.
1945 : * Either of the buffer pointers can be set to NULL if the reader is not
1946 : * interested in that data.
1947 : *
1948 : * Context: Any context.
1949 : * Return: true if a record's meta data was read, otherwise false.
1950 : *
1951 : * On success, the reader must check info->seq to see which record meta data
1952 : * was actually read. This allows the reader to detect dropped records.
1953 : *
1954 : * Failure means @seq refers to a not yet written record.
1955 : */
1956 76 : bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
1957 : struct printk_info *info, unsigned int *line_count)
1958 : {
1959 76 : struct printk_record r;
1960 :
1961 76 : prb_rec_init_rd(&r, info, NULL, 0);
1962 :
1963 76 : return _prb_read_valid(rb, &seq, &r, line_count);
1964 : }
1965 :
1966 : /**
1967 : * prb_first_valid_seq() - Get the sequence number of the oldest available
1968 : * record.
1969 : *
1970 : * @rb: The ringbuffer to get the sequence number from.
1971 : *
1972 : * This is the public function available to readers to see what the
1973 : * first/oldest valid sequence number is.
1974 : *
1975 : * This provides readers a starting point to begin iterating the ringbuffer.
1976 : *
1977 : * Context: Any context.
1978 : * Return: The sequence number of the first/oldest record or, if the
1979 : * ringbuffer is empty, 0 is returned.
1980 : */
1981 18 : u64 prb_first_valid_seq(struct printk_ringbuffer *rb)
1982 : {
1983 18 : u64 seq = 0;
1984 :
1985 18 : if (!_prb_read_valid(rb, &seq, NULL, NULL))
1986 : return 0;
1987 :
1988 18 : return seq;
1989 : }
1990 :
1991 : /**
1992 : * prb_next_seq() - Get the sequence number after the last available record.
1993 : *
1994 : * @rb: The ringbuffer to get the sequence number from.
1995 : *
1996 : * This is the public function available to readers to see what the next
1997 : * newest sequence number available to readers will be.
1998 : *
1999 : * This provides readers a sequence number to jump to if all currently
2000 : * available records should be skipped.
2001 : *
2002 : * Context: Any context.
2003 : * Return: The sequence number of the next newest (not yet available) record
2004 : * for readers.
2005 : */
2006 0 : u64 prb_next_seq(struct printk_ringbuffer *rb)
2007 : {
2008 0 : u64 seq = 0;
2009 :
2010 : /* Search forward from the oldest descriptor. */
2011 0 : while (_prb_read_valid(rb, &seq, NULL, NULL))
2012 0 : seq++;
2013 :
2014 0 : return seq;
2015 : }
2016 :
2017 : /**
2018 : * prb_init() - Initialize a ringbuffer to use provided external buffers.
2019 : *
2020 : * @rb: The ringbuffer to initialize.
2021 : * @text_buf: The data buffer for text data.
2022 : * @textbits: The size of @text_buf as a power-of-2 value.
2023 : * @descs: The descriptor buffer for ringbuffer records.
2024 : * @descbits: The count of @descs items as a power-of-2 value.
2025 : * @infos: The printk_info buffer for ringbuffer records.
2026 : *
2027 : * This is the public function available to writers to setup a ringbuffer
2028 : * during runtime using provided buffers.
2029 : *
2030 : * This must match the initialization of DEFINE_PRINTKRB().
2031 : *
2032 : * Context: Any context.
2033 : */
2034 0 : void prb_init(struct printk_ringbuffer *rb,
2035 : char *text_buf, unsigned int textbits,
2036 : struct prb_desc *descs, unsigned int descbits,
2037 : struct printk_info *infos)
2038 : {
2039 0 : memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
2040 0 : memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0]));
2041 :
2042 0 : rb->desc_ring.count_bits = descbits;
2043 0 : rb->desc_ring.descs = descs;
2044 0 : rb->desc_ring.infos = infos;
2045 0 : atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits));
2046 0 : atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits));
2047 :
2048 0 : rb->text_data_ring.size_bits = textbits;
2049 0 : rb->text_data_ring.data = text_buf;
2050 0 : atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
2051 0 : atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
2052 :
2053 0 : atomic_long_set(&rb->fail, 0);
2054 :
2055 0 : atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
2056 0 : descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS;
2057 0 : descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS;
2058 :
2059 0 : infos[0].seq = -(u64)_DESCS_COUNT(descbits);
2060 0 : infos[_DESCS_COUNT(descbits) - 1].seq = 0;
2061 0 : }
2062 :
2063 : /**
2064 : * prb_record_text_space() - Query the full actual used ringbuffer space for
2065 : * the text data of a reserved entry.
2066 : *
2067 : * @e: The successfully reserved entry to query.
2068 : *
2069 : * This is the public function available to writers to see how much actual
2070 : * space is used in the ringbuffer to store the text data of the specified
2071 : * entry.
2072 : *
2073 : * This function is only valid if @e has been successfully reserved using
2074 : * prb_reserve().
2075 : *
2076 : * Context: Any context.
2077 : * Return: The size in bytes used by the text data of the associated record.
2078 : */
2079 0 : unsigned int prb_record_text_space(struct prb_reserved_entry *e)
2080 : {
2081 0 : return e->text_space;
2082 : }
|