LCOV - code coverage report
Current view: top level - kernel/sched - fair.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 1874 2320 80.8 %
Date: 2021-04-22 12:43:58 Functions: 128 163 78.5 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
       4             :  *
       5             :  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
       6             :  *
       7             :  *  Interactivity improvements by Mike Galbraith
       8             :  *  (C) 2007 Mike Galbraith <efault@gmx.de>
       9             :  *
      10             :  *  Various enhancements by Dmitry Adamushko.
      11             :  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
      12             :  *
      13             :  *  Group scheduling enhancements by Srivatsa Vaddagiri
      14             :  *  Copyright IBM Corporation, 2007
      15             :  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
      16             :  *
      17             :  *  Scaled math optimizations by Thomas Gleixner
      18             :  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
      19             :  *
      20             :  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
      21             :  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
      22             :  */
      23             : #include "sched.h"
      24             : 
      25             : /*
      26             :  * Targeted preemption latency for CPU-bound tasks:
      27             :  *
      28             :  * NOTE: this latency value is not the same as the concept of
      29             :  * 'timeslice length' - timeslices in CFS are of variable length
      30             :  * and have no persistent notion like in traditional, time-slice
      31             :  * based scheduling concepts.
      32             :  *
      33             :  * (to see the precise effective timeslice length of your workload,
      34             :  *  run vmstat and monitor the context-switches (cs) field)
      35             :  *
      36             :  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
      37             :  */
      38             : unsigned int sysctl_sched_latency                       = 6000000ULL;
      39             : static unsigned int normalized_sysctl_sched_latency     = 6000000ULL;
      40             : 
      41             : /*
      42             :  * The initial- and re-scaling of tunables is configurable
      43             :  *
      44             :  * Options are:
      45             :  *
      46             :  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
      47             :  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
      48             :  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
      49             :  *
      50             :  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
      51             :  */
      52             : enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
      53             : 
      54             : /*
      55             :  * Minimal preemption granularity for CPU-bound tasks:
      56             :  *
      57             :  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
      58             :  */
      59             : unsigned int sysctl_sched_min_granularity                       = 750000ULL;
      60             : static unsigned int normalized_sysctl_sched_min_granularity     = 750000ULL;
      61             : 
      62             : /*
      63             :  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
      64             :  */
      65             : static unsigned int sched_nr_latency = 8;
      66             : 
      67             : /*
      68             :  * After fork, child runs first. If set to 0 (default) then
      69             :  * parent will (try to) run first.
      70             :  */
      71             : unsigned int sysctl_sched_child_runs_first __read_mostly;
      72             : 
      73             : /*
      74             :  * SCHED_OTHER wake-up granularity.
      75             :  *
      76             :  * This option delays the preemption effects of decoupled workloads
      77             :  * and reduces their over-scheduling. Synchronous workloads will still
      78             :  * have immediate wakeup/sleep latencies.
      79             :  *
      80             :  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
      81             :  */
      82             : unsigned int sysctl_sched_wakeup_granularity                    = 1000000UL;
      83             : static unsigned int normalized_sysctl_sched_wakeup_granularity  = 1000000UL;
      84             : 
      85             : const_debug unsigned int sysctl_sched_migration_cost    = 500000UL;
      86             : 
      87             : int sched_thermal_decay_shift;
      88           0 : static int __init setup_sched_thermal_decay_shift(char *str)
      89             : {
      90           0 :         int _shift = 0;
      91             : 
      92           0 :         if (kstrtoint(str, 0, &_shift))
      93           0 :                 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
      94             : 
      95           0 :         sched_thermal_decay_shift = clamp(_shift, 0, 10);
      96           0 :         return 1;
      97             : }
      98             : __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
      99             : 
     100             : #ifdef CONFIG_SMP
     101             : /*
     102             :  * For asym packing, by default the lower numbered CPU has higher priority.
     103             :  */
     104           0 : int __weak arch_asym_cpu_priority(int cpu)
     105             : {
     106           0 :         return -cpu;
     107             : }
     108             : 
     109             : /*
     110             :  * The margin used when comparing utilization with CPU capacity.
     111             :  *
     112             :  * (default: ~20%)
     113             :  */
     114             : #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
     115             : 
     116             : #endif
     117             : 
     118             : #ifdef CONFIG_CFS_BANDWIDTH
     119             : /*
     120             :  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
     121             :  * each time a cfs_rq requests quota.
     122             :  *
     123             :  * Note: in the case that the slice exceeds the runtime remaining (either due
     124             :  * to consumption or the quota being specified to be smaller than the slice)
     125             :  * we will always only issue the remaining available time.
     126             :  *
     127             :  * (default: 5 msec, units: microseconds)
     128             :  */
     129             : unsigned int sysctl_sched_cfs_bandwidth_slice           = 5000UL;
     130             : #endif
     131             : 
     132       16754 : static inline void update_load_add(struct load_weight *lw, unsigned long inc)
     133             : {
     134       16754 :         lw->weight += inc;
     135       16754 :         lw->inv_weight = 0;
     136           0 : }
     137             : 
     138       15767 : static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
     139             : {
     140       15767 :         lw->weight -= dec;
     141       15767 :         lw->inv_weight = 0;
     142           0 : }
     143             : 
     144          25 : static inline void update_load_set(struct load_weight *lw, unsigned long w)
     145             : {
     146          25 :         lw->weight = w;
     147          25 :         lw->inv_weight = 0;
     148             : }
     149             : 
     150             : /*
     151             :  * Increase the granularity value when there are more CPUs,
     152             :  * because with more CPUs the 'effective latency' as visible
     153             :  * to users decreases. But the relationship is not linear,
     154             :  * so pick a second-best guess by going with the log2 of the
     155             :  * number of CPUs.
     156             :  *
     157             :  * This idea comes from the SD scheduler of Con Kolivas:
     158             :  */
     159          13 : static unsigned int get_update_sysctl_factor(void)
     160             : {
     161          13 :         unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
     162          13 :         unsigned int factor;
     163             : 
     164          13 :         switch (sysctl_sched_tunable_scaling) {
     165             :         case SCHED_TUNABLESCALING_NONE:
     166             :                 factor = 1;
     167             :                 break;
     168           0 :         case SCHED_TUNABLESCALING_LINEAR:
     169           0 :                 factor = cpus;
     170           0 :                 break;
     171          13 :         case SCHED_TUNABLESCALING_LOG:
     172             :         default:
     173          13 :                 factor = 1 + ilog2(cpus);
     174             :                 break;
     175             :         }
     176             : 
     177          13 :         return factor;
     178             : }
     179             : 
     180          13 : static void update_sysctl(void)
     181             : {
     182          13 :         unsigned int factor = get_update_sysctl_factor();
     183             : 
     184             : #define SET_SYSCTL(name) \
     185             :         (sysctl_##name = (factor) * normalized_sysctl_##name)
     186          13 :         SET_SYSCTL(sched_min_granularity);
     187          13 :         SET_SYSCTL(sched_latency);
     188          13 :         SET_SYSCTL(sched_wakeup_granularity);
     189             : #undef SET_SYSCTL
     190          13 : }
     191             : 
     192           1 : void __init sched_init_granularity(void)
     193             : {
     194           1 :         update_sysctl();
     195           1 : }
     196             : 
     197             : #define WMULT_CONST     (~0U)
     198             : #define WMULT_SHIFT     32
     199             : 
     200        7846 : static void __update_inv_weight(struct load_weight *lw)
     201             : {
     202        7846 :         unsigned long w;
     203             : 
     204        7846 :         if (likely(lw->inv_weight))
     205             :                 return;
     206             : 
     207        3512 :         w = scale_load_down(lw->weight);
     208             : 
     209        3512 :         if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
     210           0 :                 lw->inv_weight = 1;
     211        3512 :         else if (unlikely(!w))
     212           0 :                 lw->inv_weight = WMULT_CONST;
     213             :         else
     214        3512 :                 lw->inv_weight = WMULT_CONST / w;
     215             : }
     216             : 
     217             : /*
     218             :  * delta_exec * weight / lw.weight
     219             :  *   OR
     220             :  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
     221             :  *
     222             :  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
     223             :  * we're guaranteed shift stays positive because inv_weight is guaranteed to
     224             :  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
     225             :  *
     226             :  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
     227             :  * weight/lw.weight <= 1, and therefore our shift will also be positive.
     228             :  */
     229        7859 : static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
     230             : {
     231        7859 :         u64 fact = scale_load_down(weight);
     232        7859 :         int shift = WMULT_SHIFT;
     233             : 
     234        7859 :         __update_inv_weight(lw);
     235             : 
     236        7854 :         if (unlikely(fact >> 32)) {
     237           0 :                 while (fact >> 32) {
     238           0 :                         fact >>= 1;
     239           0 :                         shift--;
     240             :                 }
     241             :         }
     242             : 
     243        7854 :         fact = mul_u32_u32(fact, lw->inv_weight);
     244             : 
     245       23833 :         while (fact >> 32) {
     246       15979 :                 fact >>= 1;
     247       15979 :                 shift--;
     248             :         }
     249             : 
     250        7854 :         return mul_u64_u32_shr(delta_exec, fact, shift);
     251             : }
     252             : 
     253             : 
     254             : const struct sched_class fair_sched_class;
     255             : 
     256             : /**************************************************************
     257             :  * CFS operations on generic schedulable entities:
     258             :  */
     259             : 
     260             : #ifdef CONFIG_FAIR_GROUP_SCHED
     261             : static inline struct task_struct *task_of(struct sched_entity *se)
     262             : {
     263             :         SCHED_WARN_ON(!entity_is_task(se));
     264             :         return container_of(se, struct task_struct, se);
     265             : }
     266             : 
     267             : /* Walk up scheduling entities hierarchy */
     268             : #define for_each_sched_entity(se) \
     269             :                 for (; se; se = se->parent)
     270             : 
     271             : static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
     272             : {
     273             :         return p->se.cfs_rq;
     274             : }
     275             : 
     276             : /* runqueue on which this entity is (to be) queued */
     277             : static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
     278             : {
     279             :         return se->cfs_rq;
     280             : }
     281             : 
     282             : /* runqueue "owned" by this group */
     283             : static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
     284             : {
     285             :         return grp->my_q;
     286             : }
     287             : 
     288             : static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
     289             : {
     290             :         if (!path)
     291             :                 return;
     292             : 
     293             :         if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
     294             :                 autogroup_path(cfs_rq->tg, path, len);
     295             :         else if (cfs_rq && cfs_rq->tg->css.cgroup)
     296             :                 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
     297             :         else
     298             :                 strlcpy(path, "(null)", len);
     299             : }
     300             : 
     301             : static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     302             : {
     303             :         struct rq *rq = rq_of(cfs_rq);
     304             :         int cpu = cpu_of(rq);
     305             : 
     306             :         if (cfs_rq->on_list)
     307             :                 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
     308             : 
     309             :         cfs_rq->on_list = 1;
     310             : 
     311             :         /*
     312             :          * Ensure we either appear before our parent (if already
     313             :          * enqueued) or force our parent to appear after us when it is
     314             :          * enqueued. The fact that we always enqueue bottom-up
     315             :          * reduces this to two cases and a special case for the root
     316             :          * cfs_rq. Furthermore, it also means that we will always reset
     317             :          * tmp_alone_branch either when the branch is connected
     318             :          * to a tree or when we reach the top of the tree
     319             :          */
     320             :         if (cfs_rq->tg->parent &&
     321             :             cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
     322             :                 /*
     323             :                  * If parent is already on the list, we add the child
     324             :                  * just before. Thanks to circular linked property of
     325             :                  * the list, this means to put the child at the tail
     326             :                  * of the list that starts by parent.
     327             :                  */
     328             :                 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
     329             :                         &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
     330             :                 /*
     331             :                  * The branch is now connected to its tree so we can
     332             :                  * reset tmp_alone_branch to the beginning of the
     333             :                  * list.
     334             :                  */
     335             :                 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
     336             :                 return true;
     337             :         }
     338             : 
     339             :         if (!cfs_rq->tg->parent) {
     340             :                 /*
     341             :                  * cfs rq without parent should be put
     342             :                  * at the tail of the list.
     343             :                  */
     344             :                 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
     345             :                         &rq->leaf_cfs_rq_list);
     346             :                 /*
     347             :                  * We have reach the top of a tree so we can reset
     348             :                  * tmp_alone_branch to the beginning of the list.
     349             :                  */
     350             :                 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
     351             :                 return true;
     352             :         }
     353             : 
     354             :         /*
     355             :          * The parent has not already been added so we want to
     356             :          * make sure that it will be put after us.
     357             :          * tmp_alone_branch points to the begin of the branch
     358             :          * where we will add parent.
     359             :          */
     360             :         list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
     361             :         /*
     362             :          * update tmp_alone_branch to points to the new begin
     363             :          * of the branch
     364             :          */
     365             :         rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
     366             :         return false;
     367             : }
     368             : 
     369             : static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     370             : {
     371             :         if (cfs_rq->on_list) {
     372             :                 struct rq *rq = rq_of(cfs_rq);
     373             : 
     374             :                 /*
     375             :                  * With cfs_rq being unthrottled/throttled during an enqueue,
     376             :                  * it can happen the tmp_alone_branch points the a leaf that
     377             :                  * we finally want to del. In this case, tmp_alone_branch moves
     378             :                  * to the prev element but it will point to rq->leaf_cfs_rq_list
     379             :                  * at the end of the enqueue.
     380             :                  */
     381             :                 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
     382             :                         rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
     383             : 
     384             :                 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
     385             :                 cfs_rq->on_list = 0;
     386             :         }
     387             : }
     388             : 
     389             : static inline void assert_list_leaf_cfs_rq(struct rq *rq)
     390             : {
     391             :         SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
     392             : }
     393             : 
     394             : /* Iterate thr' all leaf cfs_rq's on a runqueue */
     395             : #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)                      \
     396             :         list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,     \
     397             :                                  leaf_cfs_rq_list)
     398             : 
     399             : /* Do the two (enqueued) entities belong to the same group ? */
     400             : static inline struct cfs_rq *
     401             : is_same_group(struct sched_entity *se, struct sched_entity *pse)
     402             : {
     403             :         if (se->cfs_rq == pse->cfs_rq)
     404             :                 return se->cfs_rq;
     405             : 
     406             :         return NULL;
     407             : }
     408             : 
     409             : static inline struct sched_entity *parent_entity(struct sched_entity *se)
     410             : {
     411             :         return se->parent;
     412             : }
     413             : 
     414             : static void
     415             : find_matching_se(struct sched_entity **se, struct sched_entity **pse)
     416             : {
     417             :         int se_depth, pse_depth;
     418             : 
     419             :         /*
     420             :          * preemption test can be made between sibling entities who are in the
     421             :          * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
     422             :          * both tasks until we find their ancestors who are siblings of common
     423             :          * parent.
     424             :          */
     425             : 
     426             :         /* First walk up until both entities are at same depth */
     427             :         se_depth = (*se)->depth;
     428             :         pse_depth = (*pse)->depth;
     429             : 
     430             :         while (se_depth > pse_depth) {
     431             :                 se_depth--;
     432             :                 *se = parent_entity(*se);
     433             :         }
     434             : 
     435             :         while (pse_depth > se_depth) {
     436             :                 pse_depth--;
     437             :                 *pse = parent_entity(*pse);
     438             :         }
     439             : 
     440             :         while (!is_same_group(*se, *pse)) {
     441             :                 *se = parent_entity(*se);
     442             :                 *pse = parent_entity(*pse);
     443             :         }
     444             : }
     445             : 
     446             : #else   /* !CONFIG_FAIR_GROUP_SCHED */
     447             : 
     448      203536 : static inline struct task_struct *task_of(struct sched_entity *se)
     449             : {
     450      203536 :         return container_of(se, struct task_struct, se);
     451             : }
     452             : 
     453             : #define for_each_sched_entity(se) \
     454             :                 for (; se; se = NULL)
     455             : 
     456        9362 : static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
     457             : {
     458         990 :         return &task_rq(p)->cfs;
     459             : }
     460             : 
     461      104734 : static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
     462             : {
     463      104734 :         struct task_struct *p = task_of(se);
     464           0 :         struct rq *rq = task_rq(p);
     465             : 
     466        7763 :         return &rq->cfs;
     467             : }
     468             : 
     469             : /* runqueue "owned" by this group */
     470       21076 : static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
     471             : {
     472       21076 :         return NULL;
     473             : }
     474             : 
     475           0 : static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
     476             : {
     477           0 :         if (path)
     478           0 :                 strlcpy(path, "(null)", len);
     479             : }
     480             : 
     481             : static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     482             : {
     483             :         return true;
     484             : }
     485             : 
     486             : static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
     487             : {
     488             : }
     489             : 
     490       15764 : static inline void assert_list_leaf_cfs_rq(struct rq *rq)
     491             : {
     492       15764 : }
     493             : 
     494             : #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)      \
     495             :                 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
     496             : 
     497             : static inline struct sched_entity *parent_entity(struct sched_entity *se)
     498             : {
     499             :         return NULL;
     500             : }
     501             : 
     502             : static inline void
     503        7714 : find_matching_se(struct sched_entity **se, struct sched_entity **pse)
     504             : {
     505        7714 : }
     506             : 
     507             : #endif  /* CONFIG_FAIR_GROUP_SCHED */
     508             : 
     509             : static __always_inline
     510             : void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
     511             : 
     512             : /**************************************************************
     513             :  * Scheduling class tree data structure manipulation methods:
     514             :  */
     515             : 
     516       71722 : static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
     517             : {
     518       71722 :         s64 delta = (s64)(vruntime - max_vruntime);
     519       71722 :         if (delta > 0)
     520       29432 :                 max_vruntime = vruntime;
     521             : 
     522       71722 :         return max_vruntime;
     523             : }
     524             : 
     525       16236 : static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
     526             : {
     527       16236 :         s64 delta = (s64)(vruntime - min_vruntime);
     528       16236 :         if (delta < 0)
     529        6350 :                 min_vruntime = vruntime;
     530             : 
     531             :         return min_vruntime;
     532             : }
     533             : 
     534       10321 : static inline bool entity_before(struct sched_entity *a,
     535             :                                 struct sched_entity *b)
     536             : {
     537       10321 :         return (s64)(a->vruntime - b->vruntime) < 0;
     538             : }
     539             : 
     540             : #define __node_2_se(node) \
     541             :         rb_entry((node), struct sched_entity, run_node)
     542             : 
     543       56851 : static void update_min_vruntime(struct cfs_rq *cfs_rq)
     544             : {
     545       56851 :         struct sched_entity *curr = cfs_rq->curr;
     546       56851 :         struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
     547             : 
     548       56851 :         u64 vruntime = cfs_rq->min_vruntime;
     549             : 
     550       56851 :         if (curr) {
     551       56813 :                 if (curr->on_rq)
     552       41458 :                         vruntime = curr->vruntime;
     553             :                 else
     554             :                         curr = NULL;
     555             :         }
     556             : 
     557       56851 :         if (leftmost) { /* non-empty tree */
     558       23725 :                 struct sched_entity *se = __node_2_se(leftmost);
     559             : 
     560       23725 :                 if (!curr)
     561        7489 :                         vruntime = se->vruntime;
     562             :                 else
     563       16236 :                         vruntime = min_vruntime(vruntime, se->vruntime);
     564             :         }
     565             : 
     566             :         /* ensure we never gain time by being placed backwards. */
     567       56851 :         cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
     568             : #ifndef CONFIG_64BIT
     569             :         smp_wmb();
     570             :         cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
     571             : #endif
     572       56851 : }
     573             : 
     574       10321 : static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
     575             : {
     576       10321 :         return entity_before(__node_2_se(a), __node_2_se(b));
     577             : }
     578             : 
     579             : /*
     580             :  * Enqueue an entity into the rb-tree:
     581             :  */
     582       21979 : static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
     583             : {
     584       21979 :         rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
     585       21977 : }
     586             : 
     587       21981 : static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
     588             : {
     589       21981 :         rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
     590         887 : }
     591             : 
     592       23017 : struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
     593             : {
     594       23017 :         struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
     595             : 
     596           0 :         if (!left)
     597             :                 return NULL;
     598             : 
     599        1942 :         return __node_2_se(left);
     600             : }
     601             : 
     602           0 : static struct sched_entity *__pick_next_entity(struct sched_entity *se)
     603             : {
     604           0 :         struct rb_node *next = rb_next(&se->run_node);
     605             : 
     606           0 :         if (!next)
     607             :                 return NULL;
     608             : 
     609           0 :         return __node_2_se(next);
     610             : }
     611             : 
     612             : #ifdef CONFIG_SCHED_DEBUG
     613             : struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
     614             : {
     615             :         struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
     616             : 
     617             :         if (!last)
     618             :                 return NULL;
     619             : 
     620             :         return __node_2_se(last);
     621             : }
     622             : 
     623             : /**************************************************************
     624             :  * Scheduling class statistics methods:
     625             :  */
     626             : 
     627             : int sched_proc_update_handler(struct ctl_table *table, int write,
     628             :                 void *buffer, size_t *lenp, loff_t *ppos)
     629             : {
     630             :         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
     631             :         unsigned int factor = get_update_sysctl_factor();
     632             : 
     633             :         if (ret || !write)
     634             :                 return ret;
     635             : 
     636             :         sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
     637             :                                         sysctl_sched_min_granularity);
     638             : 
     639             : #define WRT_SYSCTL(name) \
     640             :         (normalized_sysctl_##name = sysctl_##name / (factor))
     641             :         WRT_SYSCTL(sched_min_granularity);
     642             :         WRT_SYSCTL(sched_latency);
     643             :         WRT_SYSCTL(sched_wakeup_granularity);
     644             : #undef WRT_SYSCTL
     645             : 
     646             :         return 0;
     647             : }
     648             : #endif
     649             : 
     650             : /*
     651             :  * delta /= w
     652             :  */
     653       48421 : static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
     654             : {
     655       48421 :         if (unlikely(se->load.weight != NICE_0_LOAD))
     656        2787 :                 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
     657             : 
     658       48420 :         return delta;
     659             : }
     660             : 
     661             : /*
     662             :  * The idea is to set a period in which each task runs once.
     663             :  *
     664             :  * When there are too many tasks (sched_nr_latency) we have to stretch
     665             :  * this period because otherwise the slices get too small.
     666             :  *
     667             :  * p = (nr <= nl) ? l : l*nr/nl
     668             :  */
     669        5097 : static u64 __sched_period(unsigned long nr_running)
     670             : {
     671        5097 :         if (unlikely(nr_running > sched_nr_latency))
     672           0 :                 return nr_running * sysctl_sched_min_granularity;
     673             :         else
     674        5097 :                 return sysctl_sched_latency;
     675             : }
     676             : 
     677             : /*
     678             :  * We calculate the wall-time slice from the period by taking a part
     679             :  * proportional to the weight.
     680             :  *
     681             :  * s = p*P[w/rw]
     682             :  */
     683        5097 : static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
     684             : {
     685        5097 :         u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
     686             : 
     687        5097 :         for_each_sched_entity(se) {
     688        5097 :                 struct load_weight *load;
     689        5097 :                 struct load_weight lw;
     690             : 
     691        5097 :                 cfs_rq = cfs_rq_of(se);
     692        5097 :                 load = &cfs_rq->load;
     693             : 
     694        5097 :                 if (unlikely(!se->on_rq)) {
     695         990 :                         lw = cfs_rq->load;
     696             : 
     697         990 :                         update_load_add(&lw, se->load.weight);
     698         990 :                         load = &lw;
     699             :                 }
     700        5097 :                 slice = __calc_delta(slice, se->load.weight, load);
     701             :         }
     702        5115 :         return slice;
     703             : }
     704             : 
     705             : /*
     706             :  * We calculate the vruntime slice of a to-be-inserted task.
     707             :  *
     708             :  * vs = s/w
     709             :  */
     710         990 : static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
     711             : {
     712         990 :         return calc_delta_fair(sched_slice(cfs_rq, se), se);
     713             : }
     714             : 
     715             : #include "pelt.h"
     716             : #ifdef CONFIG_SMP
     717             : 
     718             : static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
     719             : static unsigned long task_h_load(struct task_struct *p);
     720             : static unsigned long capacity_of(int cpu);
     721             : 
     722             : /* Give new sched_entity start runnable values to heavy its load in infant time */
     723         990 : void init_entity_runnable_average(struct sched_entity *se)
     724             : {
     725         990 :         struct sched_avg *sa = &se->avg;
     726             : 
     727         990 :         memset(sa, 0, sizeof(*sa));
     728             : 
     729             :         /*
     730             :          * Tasks are initialized with full load to be seen as heavy tasks until
     731             :          * they get a chance to stabilize to their real load level.
     732             :          * Group entities are initialized with zero load to reflect the fact that
     733             :          * nothing has been attached to the task group yet.
     734             :          */
     735         990 :         if (entity_is_task(se))
     736         990 :                 sa->load_avg = scale_load_down(se->load.weight);
     737             : 
     738             :         /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
     739         990 : }
     740             : 
     741             : static void attach_entity_cfs_rq(struct sched_entity *se);
     742             : 
     743             : /*
     744             :  * With new tasks being created, their initial util_avgs are extrapolated
     745             :  * based on the cfs_rq's current util_avg:
     746             :  *
     747             :  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
     748             :  *
     749             :  * However, in many cases, the above util_avg does not give a desired
     750             :  * value. Moreover, the sum of the util_avgs may be divergent, such
     751             :  * as when the series is a harmonic series.
     752             :  *
     753             :  * To solve this problem, we also cap the util_avg of successive tasks to
     754             :  * only 1/2 of the left utilization budget:
     755             :  *
     756             :  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
     757             :  *
     758             :  * where n denotes the nth task and cpu_scale the CPU capacity.
     759             :  *
     760             :  * For example, for a CPU with 1024 of capacity, a simplest series from
     761             :  * the beginning would be like:
     762             :  *
     763             :  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
     764             :  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
     765             :  *
     766             :  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
     767             :  * if util_avg > util_avg_cap.
     768             :  */
     769         987 : void post_init_entity_util_avg(struct task_struct *p)
     770             : {
     771         987 :         struct sched_entity *se = &p->se;
     772         987 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
     773         987 :         struct sched_avg *sa = &se->avg;
     774         987 :         long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
     775         987 :         long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
     776             : 
     777         987 :         if (cap > 0) {
     778         970 :                 if (cfs_rq->avg.util_avg != 0) {
     779         964 :                         sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
     780         964 :                         sa->util_avg /= (cfs_rq->avg.load_avg + 1);
     781             : 
     782         964 :                         if (sa->util_avg > cap)
     783         962 :                                 sa->util_avg = cap;
     784             :                 } else {
     785           6 :                         sa->util_avg = cap;
     786             :                 }
     787             :         }
     788             : 
     789         987 :         sa->runnable_avg = sa->util_avg;
     790             : 
     791         987 :         if (p->sched_class != &fair_sched_class) {
     792             :                 /*
     793             :                  * For !fair tasks do:
     794             :                  *
     795             :                 update_cfs_rq_load_avg(now, cfs_rq);
     796             :                 attach_entity_load_avg(cfs_rq, se);
     797             :                 switched_from_fair(rq, p);
     798             :                  *
     799             :                  * such that the next switched_to_fair() has the
     800             :                  * expected state.
     801             :                  */
     802           0 :                 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
     803           0 :                 return;
     804             :         }
     805             : 
     806         987 :         attach_entity_cfs_rq(se);
     807             : }
     808             : 
     809             : #else /* !CONFIG_SMP */
     810             : void init_entity_runnable_average(struct sched_entity *se)
     811             : {
     812             : }
     813             : void post_init_entity_util_avg(struct task_struct *p)
     814             : {
     815             : }
     816             : static void update_tg_load_avg(struct cfs_rq *cfs_rq)
     817             : {
     818             : }
     819             : #endif /* CONFIG_SMP */
     820             : 
     821             : /*
     822             :  * Update the current task's runtime statistics.
     823             :  */
     824       61115 : static void update_curr(struct cfs_rq *cfs_rq)
     825             : {
     826       61115 :         struct sched_entity *curr = cfs_rq->curr;
     827       61115 :         u64 now = rq_clock_task(rq_of(cfs_rq));
     828       61385 :         u64 delta_exec;
     829             : 
     830       61385 :         if (unlikely(!curr))
     831             :                 return;
     832             : 
     833       53789 :         delta_exec = now - curr->exec_start;
     834       53789 :         if (unlikely((s64)delta_exec <= 0))
     835             :                 return;
     836             : 
     837       41065 :         curr->exec_start = now;
     838             : 
     839       41065 :         schedstat_set(curr->statistics.exec_max,
     840             :                       max(delta_exec, curr->statistics.exec_max));
     841             : 
     842       41065 :         curr->sum_exec_runtime += delta_exec;
     843       41065 :         schedstat_add(cfs_rq->exec_clock, delta_exec);
     844             : 
     845       41065 :         curr->vruntime += calc_delta_fair(delta_exec, curr);
     846       41074 :         update_min_vruntime(cfs_rq);
     847             : 
     848       41098 :         if (entity_is_task(curr)) {
     849       41098 :                 struct task_struct *curtask = task_of(curr);
     850             : 
     851       41098 :                 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
     852       40958 :                 cgroup_account_cputime(curtask, delta_exec);
     853       41013 :                 account_group_exec_runtime(curtask, delta_exec);
     854             :         }
     855             : 
     856      102358 :         account_cfs_rq_runtime(cfs_rq, delta_exec);
     857             : }
     858             : 
     859          49 : static void update_curr_fair(struct rq *rq)
     860             : {
     861          49 :         update_curr(cfs_rq_of(&rq->curr->se));
     862          49 : }
     863             : 
     864             : static inline void
     865        6213 : update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
     866             : {
     867        6213 :         u64 wait_start, prev_wait_start;
     868             : 
     869        6213 :         if (!schedstat_enabled())
     870        6213 :                 return;
     871             : 
     872             :         wait_start = rq_clock(rq_of(cfs_rq));
     873             :         prev_wait_start = schedstat_val(se->statistics.wait_start);
     874             : 
     875             :         if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
     876             :             likely(wait_start > prev_wait_start))
     877             :                 wait_start -= prev_wait_start;
     878             : 
     879        6213 :         __schedstat_set(se->statistics.wait_start, wait_start);
     880             : }
     881             : 
     882             : static inline void
     883       21093 : update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
     884             : {
     885       21093 :         struct task_struct *p;
     886       21093 :         u64 delta;
     887             : 
     888       21093 :         if (!schedstat_enabled())
     889       21093 :                 return;
     890             : 
     891             :         /*
     892             :          * When the sched_schedstat changes from 0 to 1, some sched se
     893             :          * maybe already in the runqueue, the se->statistics.wait_start
     894             :          * will be 0.So it will let the delta wrong. We need to avoid this
     895             :          * scenario.
     896             :          */
     897             :         if (unlikely(!schedstat_val(se->statistics.wait_start)))
     898             :                 return;
     899             : 
     900             :         delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
     901             : 
     902             :         if (entity_is_task(se)) {
     903             :                 p = task_of(se);
     904             :                 if (task_on_rq_migrating(p)) {
     905             :                         /*
     906             :                          * Preserve migrating task's wait time so wait_start
     907             :                          * time stamp can be adjusted to accumulate wait time
     908             :                          * prior to migration.
     909             :                          */
     910             :                         __schedstat_set(se->statistics.wait_start, delta);
     911             :                         return;
     912             :                 }
     913             :                 trace_sched_stat_wait(p, delta);
     914             :         }
     915             : 
     916       21093 :         __schedstat_set(se->statistics.wait_max,
     917             :                       max(schedstat_val(se->statistics.wait_max), delta));
     918       21093 :         __schedstat_inc(se->statistics.wait_count);
     919       21093 :         __schedstat_add(se->statistics.wait_sum, delta);
     920       21093 :         __schedstat_set(se->statistics.wait_start, 0);
     921             : }
     922             : 
     923             : static inline void
     924             : update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
     925             : {
     926             :         struct task_struct *tsk = NULL;
     927             :         u64 sleep_start, block_start;
     928             : 
     929             :         if (!schedstat_enabled())
     930             :                 return;
     931             : 
     932             :         sleep_start = schedstat_val(se->statistics.sleep_start);
     933             :         block_start = schedstat_val(se->statistics.block_start);
     934             : 
     935             :         if (entity_is_task(se))
     936             :                 tsk = task_of(se);
     937             : 
     938             :         if (sleep_start) {
     939             :                 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
     940             : 
     941             :                 if ((s64)delta < 0)
     942             :                         delta = 0;
     943             : 
     944             :                 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
     945             :                         __schedstat_set(se->statistics.sleep_max, delta);
     946             : 
     947             :                 __schedstat_set(se->statistics.sleep_start, 0);
     948             :                 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
     949             : 
     950             :                 if (tsk) {
     951             :                         account_scheduler_latency(tsk, delta >> 10, 1);
     952             :                         trace_sched_stat_sleep(tsk, delta);
     953             :                 }
     954             :         }
     955             :         if (block_start) {
     956             :                 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
     957             : 
     958             :                 if ((s64)delta < 0)
     959             :                         delta = 0;
     960             : 
     961             :                 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
     962             :                         __schedstat_set(se->statistics.block_max, delta);
     963             : 
     964             :                 __schedstat_set(se->statistics.block_start, 0);
     965             :                 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
     966             : 
     967             :                 if (tsk) {
     968             :                         if (tsk->in_iowait) {
     969             :                                 __schedstat_add(se->statistics.iowait_sum, delta);
     970             :                                 __schedstat_inc(se->statistics.iowait_count);
     971             :                                 trace_sched_stat_iowait(tsk, delta);
     972             :                         }
     973             : 
     974             :                         trace_sched_stat_blocked(tsk, delta);
     975             : 
     976             :                         /*
     977             :                          * Blocking time is in units of nanosecs, so shift by
     978             :                          * 20 to get a milliseconds-range estimation of the
     979             :                          * amount of time that the task spent sleeping:
     980             :                          */
     981             :                         if (unlikely(prof_on == SLEEP_PROFILING)) {
     982             :                                 profile_hits(SLEEP_PROFILING,
     983             :                                                 (void *)get_wchan(tsk),
     984             :                                                 delta >> 20);
     985             :                         }
     986             :                         account_scheduler_latency(tsk, delta >> 10, 0);
     987             :                 }
     988             :         }
     989             : }
     990             : 
     991             : /*
     992             :  * Task is being enqueued - update stats:
     993             :  */
     994             : static inline void
     995       15767 : update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
     996             : {
     997       15767 :         if (!schedstat_enabled())
     998       15767 :                 return;
     999             : 
    1000             :         /*
    1001             :          * Are we enqueueing a waiting task? (for current tasks
    1002             :          * a dequeue/enqueue event is a NOP)
    1003             :          */
    1004             :         if (se != cfs_rq->curr)
    1005             :                 update_stats_wait_start(cfs_rq, se);
    1006             : 
    1007             :         if (flags & ENQUEUE_WAKEUP)
    1008             :                 update_stats_enqueue_sleeper(cfs_rq, se);
    1009             : }
    1010             : 
    1011             : static inline void
    1012       15768 : update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    1013             : {
    1014             : 
    1015       15768 :         if (!schedstat_enabled())
    1016       15768 :                 return;
    1017             : 
    1018             :         /*
    1019             :          * Mark the end of the wait period if dequeueing a
    1020             :          * waiting task:
    1021             :          */
    1022             :         if (se != cfs_rq->curr)
    1023             :                 update_stats_wait_end(cfs_rq, se);
    1024             : 
    1025             :         if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
    1026             :                 struct task_struct *tsk = task_of(se);
    1027             : 
    1028             :                 if (tsk->state & TASK_INTERRUPTIBLE)
    1029             :                         __schedstat_set(se->statistics.sleep_start,
    1030             :                                       rq_clock(rq_of(cfs_rq)));
    1031             :                 if (tsk->state & TASK_UNINTERRUPTIBLE)
    1032       15768 :                         __schedstat_set(se->statistics.block_start,
    1033             :                                       rq_clock(rq_of(cfs_rq)));
    1034             :         }
    1035             : }
    1036             : 
    1037             : /*
    1038             :  * We are picking a new current task - update its stats:
    1039             :  */
    1040             : static inline void
    1041       21087 : update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
    1042             : {
    1043             :         /*
    1044             :          * We are starting a new run period:
    1045             :          */
    1046       42179 :         se->exec_start = rq_clock_task(rq_of(cfs_rq));
    1047             : }
    1048             : 
    1049             : /**************************************************
    1050             :  * Scheduling class queueing methods:
    1051             :  */
    1052             : 
    1053             : #ifdef CONFIG_NUMA_BALANCING
    1054             : /*
    1055             :  * Approximate time to scan a full NUMA task in ms. The task scan period is
    1056             :  * calculated based on the tasks virtual memory size and
    1057             :  * numa_balancing_scan_size.
    1058             :  */
    1059             : unsigned int sysctl_numa_balancing_scan_period_min = 1000;
    1060             : unsigned int sysctl_numa_balancing_scan_period_max = 60000;
    1061             : 
    1062             : /* Portion of address space to scan in MB */
    1063             : unsigned int sysctl_numa_balancing_scan_size = 256;
    1064             : 
    1065             : /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
    1066             : unsigned int sysctl_numa_balancing_scan_delay = 1000;
    1067             : 
    1068             : struct numa_group {
    1069             :         refcount_t refcount;
    1070             : 
    1071             :         spinlock_t lock; /* nr_tasks, tasks */
    1072             :         int nr_tasks;
    1073             :         pid_t gid;
    1074             :         int active_nodes;
    1075             : 
    1076             :         struct rcu_head rcu;
    1077             :         unsigned long total_faults;
    1078             :         unsigned long max_faults_cpu;
    1079             :         /*
    1080             :          * Faults_cpu is used to decide whether memory should move
    1081             :          * towards the CPU. As a consequence, these stats are weighted
    1082             :          * more by CPU use than by memory faults.
    1083             :          */
    1084             :         unsigned long *faults_cpu;
    1085             :         unsigned long faults[];
    1086             : };
    1087             : 
    1088             : /*
    1089             :  * For functions that can be called in multiple contexts that permit reading
    1090             :  * ->numa_group (see struct task_struct for locking rules).
    1091             :  */
    1092             : static struct numa_group *deref_task_numa_group(struct task_struct *p)
    1093             : {
    1094             :         return rcu_dereference_check(p->numa_group, p == current ||
    1095             :                 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
    1096             : }
    1097             : 
    1098             : static struct numa_group *deref_curr_numa_group(struct task_struct *p)
    1099             : {
    1100             :         return rcu_dereference_protected(p->numa_group, p == current);
    1101             : }
    1102             : 
    1103             : static inline unsigned long group_faults_priv(struct numa_group *ng);
    1104             : static inline unsigned long group_faults_shared(struct numa_group *ng);
    1105             : 
    1106             : static unsigned int task_nr_scan_windows(struct task_struct *p)
    1107             : {
    1108             :         unsigned long rss = 0;
    1109             :         unsigned long nr_scan_pages;
    1110             : 
    1111             :         /*
    1112             :          * Calculations based on RSS as non-present and empty pages are skipped
    1113             :          * by the PTE scanner and NUMA hinting faults should be trapped based
    1114             :          * on resident pages
    1115             :          */
    1116             :         nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
    1117             :         rss = get_mm_rss(p->mm);
    1118             :         if (!rss)
    1119             :                 rss = nr_scan_pages;
    1120             : 
    1121             :         rss = round_up(rss, nr_scan_pages);
    1122             :         return rss / nr_scan_pages;
    1123             : }
    1124             : 
    1125             : /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
    1126             : #define MAX_SCAN_WINDOW 2560
    1127             : 
    1128             : static unsigned int task_scan_min(struct task_struct *p)
    1129             : {
    1130             :         unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
    1131             :         unsigned int scan, floor;
    1132             :         unsigned int windows = 1;
    1133             : 
    1134             :         if (scan_size < MAX_SCAN_WINDOW)
    1135             :                 windows = MAX_SCAN_WINDOW / scan_size;
    1136             :         floor = 1000 / windows;
    1137             : 
    1138             :         scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
    1139             :         return max_t(unsigned int, floor, scan);
    1140             : }
    1141             : 
    1142             : static unsigned int task_scan_start(struct task_struct *p)
    1143             : {
    1144             :         unsigned long smin = task_scan_min(p);
    1145             :         unsigned long period = smin;
    1146             :         struct numa_group *ng;
    1147             : 
    1148             :         /* Scale the maximum scan period with the amount of shared memory. */
    1149             :         rcu_read_lock();
    1150             :         ng = rcu_dereference(p->numa_group);
    1151             :         if (ng) {
    1152             :                 unsigned long shared = group_faults_shared(ng);
    1153             :                 unsigned long private = group_faults_priv(ng);
    1154             : 
    1155             :                 period *= refcount_read(&ng->refcount);
    1156             :                 period *= shared + 1;
    1157             :                 period /= private + shared + 1;
    1158             :         }
    1159             :         rcu_read_unlock();
    1160             : 
    1161             :         return max(smin, period);
    1162             : }
    1163             : 
    1164             : static unsigned int task_scan_max(struct task_struct *p)
    1165             : {
    1166             :         unsigned long smin = task_scan_min(p);
    1167             :         unsigned long smax;
    1168             :         struct numa_group *ng;
    1169             : 
    1170             :         /* Watch for min being lower than max due to floor calculations */
    1171             :         smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
    1172             : 
    1173             :         /* Scale the maximum scan period with the amount of shared memory. */
    1174             :         ng = deref_curr_numa_group(p);
    1175             :         if (ng) {
    1176             :                 unsigned long shared = group_faults_shared(ng);
    1177             :                 unsigned long private = group_faults_priv(ng);
    1178             :                 unsigned long period = smax;
    1179             : 
    1180             :                 period *= refcount_read(&ng->refcount);
    1181             :                 period *= shared + 1;
    1182             :                 period /= private + shared + 1;
    1183             : 
    1184             :                 smax = max(smax, period);
    1185             :         }
    1186             : 
    1187             :         return max(smin, smax);
    1188             : }
    1189             : 
    1190             : static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
    1191             : {
    1192             :         rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
    1193             :         rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
    1194             : }
    1195             : 
    1196             : static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
    1197             : {
    1198             :         rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
    1199             :         rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
    1200             : }
    1201             : 
    1202             : /* Shared or private faults. */
    1203             : #define NR_NUMA_HINT_FAULT_TYPES 2
    1204             : 
    1205             : /* Memory and CPU locality */
    1206             : #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
    1207             : 
    1208             : /* Averaged statistics, and temporary buffers. */
    1209             : #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
    1210             : 
    1211             : pid_t task_numa_group_id(struct task_struct *p)
    1212             : {
    1213             :         struct numa_group *ng;
    1214             :         pid_t gid = 0;
    1215             : 
    1216             :         rcu_read_lock();
    1217             :         ng = rcu_dereference(p->numa_group);
    1218             :         if (ng)
    1219             :                 gid = ng->gid;
    1220             :         rcu_read_unlock();
    1221             : 
    1222             :         return gid;
    1223             : }
    1224             : 
    1225             : /*
    1226             :  * The averaged statistics, shared & private, memory & CPU,
    1227             :  * occupy the first half of the array. The second half of the
    1228             :  * array is for current counters, which are averaged into the
    1229             :  * first set by task_numa_placement.
    1230             :  */
    1231             : static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
    1232             : {
    1233             :         return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
    1234             : }
    1235             : 
    1236             : static inline unsigned long task_faults(struct task_struct *p, int nid)
    1237             : {
    1238             :         if (!p->numa_faults)
    1239             :                 return 0;
    1240             : 
    1241             :         return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
    1242             :                 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
    1243             : }
    1244             : 
    1245             : static inline unsigned long group_faults(struct task_struct *p, int nid)
    1246             : {
    1247             :         struct numa_group *ng = deref_task_numa_group(p);
    1248             : 
    1249             :         if (!ng)
    1250             :                 return 0;
    1251             : 
    1252             :         return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
    1253             :                 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
    1254             : }
    1255             : 
    1256             : static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
    1257             : {
    1258             :         return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
    1259             :                 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
    1260             : }
    1261             : 
    1262             : static inline unsigned long group_faults_priv(struct numa_group *ng)
    1263             : {
    1264             :         unsigned long faults = 0;
    1265             :         int node;
    1266             : 
    1267             :         for_each_online_node(node) {
    1268             :                 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
    1269             :         }
    1270             : 
    1271             :         return faults;
    1272             : }
    1273             : 
    1274             : static inline unsigned long group_faults_shared(struct numa_group *ng)
    1275             : {
    1276             :         unsigned long faults = 0;
    1277             :         int node;
    1278             : 
    1279             :         for_each_online_node(node) {
    1280             :                 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
    1281             :         }
    1282             : 
    1283             :         return faults;
    1284             : }
    1285             : 
    1286             : /*
    1287             :  * A node triggering more than 1/3 as many NUMA faults as the maximum is
    1288             :  * considered part of a numa group's pseudo-interleaving set. Migrations
    1289             :  * between these nodes are slowed down, to allow things to settle down.
    1290             :  */
    1291             : #define ACTIVE_NODE_FRACTION 3
    1292             : 
    1293             : static bool numa_is_active_node(int nid, struct numa_group *ng)
    1294             : {
    1295             :         return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
    1296             : }
    1297             : 
    1298             : /* Handle placement on systems where not all nodes are directly connected. */
    1299             : static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
    1300             :                                         int maxdist, bool task)
    1301             : {
    1302             :         unsigned long score = 0;
    1303             :         int node;
    1304             : 
    1305             :         /*
    1306             :          * All nodes are directly connected, and the same distance
    1307             :          * from each other. No need for fancy placement algorithms.
    1308             :          */
    1309             :         if (sched_numa_topology_type == NUMA_DIRECT)
    1310             :                 return 0;
    1311             : 
    1312             :         /*
    1313             :          * This code is called for each node, introducing N^2 complexity,
    1314             :          * which should be ok given the number of nodes rarely exceeds 8.
    1315             :          */
    1316             :         for_each_online_node(node) {
    1317             :                 unsigned long faults;
    1318             :                 int dist = node_distance(nid, node);
    1319             : 
    1320             :                 /*
    1321             :                  * The furthest away nodes in the system are not interesting
    1322             :                  * for placement; nid was already counted.
    1323             :                  */
    1324             :                 if (dist == sched_max_numa_distance || node == nid)
    1325             :                         continue;
    1326             : 
    1327             :                 /*
    1328             :                  * On systems with a backplane NUMA topology, compare groups
    1329             :                  * of nodes, and move tasks towards the group with the most
    1330             :                  * memory accesses. When comparing two nodes at distance
    1331             :                  * "hoplimit", only nodes closer by than "hoplimit" are part
    1332             :                  * of each group. Skip other nodes.
    1333             :                  */
    1334             :                 if (sched_numa_topology_type == NUMA_BACKPLANE &&
    1335             :                                         dist >= maxdist)
    1336             :                         continue;
    1337             : 
    1338             :                 /* Add up the faults from nearby nodes. */
    1339             :                 if (task)
    1340             :                         faults = task_faults(p, node);
    1341             :                 else
    1342             :                         faults = group_faults(p, node);
    1343             : 
    1344             :                 /*
    1345             :                  * On systems with a glueless mesh NUMA topology, there are
    1346             :                  * no fixed "groups of nodes". Instead, nodes that are not
    1347             :                  * directly connected bounce traffic through intermediate
    1348             :                  * nodes; a numa_group can occupy any set of nodes.
    1349             :                  * The further away a node is, the less the faults count.
    1350             :                  * This seems to result in good task placement.
    1351             :                  */
    1352             :                 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
    1353             :                         faults *= (sched_max_numa_distance - dist);
    1354             :                         faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
    1355             :                 }
    1356             : 
    1357             :                 score += faults;
    1358             :         }
    1359             : 
    1360             :         return score;
    1361             : }
    1362             : 
    1363             : /*
    1364             :  * These return the fraction of accesses done by a particular task, or
    1365             :  * task group, on a particular numa node.  The group weight is given a
    1366             :  * larger multiplier, in order to group tasks together that are almost
    1367             :  * evenly spread out between numa nodes.
    1368             :  */
    1369             : static inline unsigned long task_weight(struct task_struct *p, int nid,
    1370             :                                         int dist)
    1371             : {
    1372             :         unsigned long faults, total_faults;
    1373             : 
    1374             :         if (!p->numa_faults)
    1375             :                 return 0;
    1376             : 
    1377             :         total_faults = p->total_numa_faults;
    1378             : 
    1379             :         if (!total_faults)
    1380             :                 return 0;
    1381             : 
    1382             :         faults = task_faults(p, nid);
    1383             :         faults += score_nearby_nodes(p, nid, dist, true);
    1384             : 
    1385             :         return 1000 * faults / total_faults;
    1386             : }
    1387             : 
    1388             : static inline unsigned long group_weight(struct task_struct *p, int nid,
    1389             :                                          int dist)
    1390             : {
    1391             :         struct numa_group *ng = deref_task_numa_group(p);
    1392             :         unsigned long faults, total_faults;
    1393             : 
    1394             :         if (!ng)
    1395             :                 return 0;
    1396             : 
    1397             :         total_faults = ng->total_faults;
    1398             : 
    1399             :         if (!total_faults)
    1400             :                 return 0;
    1401             : 
    1402             :         faults = group_faults(p, nid);
    1403             :         faults += score_nearby_nodes(p, nid, dist, false);
    1404             : 
    1405             :         return 1000 * faults / total_faults;
    1406             : }
    1407             : 
    1408             : bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
    1409             :                                 int src_nid, int dst_cpu)
    1410             : {
    1411             :         struct numa_group *ng = deref_curr_numa_group(p);
    1412             :         int dst_nid = cpu_to_node(dst_cpu);
    1413             :         int last_cpupid, this_cpupid;
    1414             : 
    1415             :         this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
    1416             :         last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
    1417             : 
    1418             :         /*
    1419             :          * Allow first faults or private faults to migrate immediately early in
    1420             :          * the lifetime of a task. The magic number 4 is based on waiting for
    1421             :          * two full passes of the "multi-stage node selection" test that is
    1422             :          * executed below.
    1423             :          */
    1424             :         if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
    1425             :             (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
    1426             :                 return true;
    1427             : 
    1428             :         /*
    1429             :          * Multi-stage node selection is used in conjunction with a periodic
    1430             :          * migration fault to build a temporal task<->page relation. By using
    1431             :          * a two-stage filter we remove short/unlikely relations.
    1432             :          *
    1433             :          * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
    1434             :          * a task's usage of a particular page (n_p) per total usage of this
    1435             :          * page (n_t) (in a given time-span) to a probability.
    1436             :          *
    1437             :          * Our periodic faults will sample this probability and getting the
    1438             :          * same result twice in a row, given these samples are fully
    1439             :          * independent, is then given by P(n)^2, provided our sample period
    1440             :          * is sufficiently short compared to the usage pattern.
    1441             :          *
    1442             :          * This quadric squishes small probabilities, making it less likely we
    1443             :          * act on an unlikely task<->page relation.
    1444             :          */
    1445             :         if (!cpupid_pid_unset(last_cpupid) &&
    1446             :                                 cpupid_to_nid(last_cpupid) != dst_nid)
    1447             :                 return false;
    1448             : 
    1449             :         /* Always allow migrate on private faults */
    1450             :         if (cpupid_match_pid(p, last_cpupid))
    1451             :                 return true;
    1452             : 
    1453             :         /* A shared fault, but p->numa_group has not been set up yet. */
    1454             :         if (!ng)
    1455             :                 return true;
    1456             : 
    1457             :         /*
    1458             :          * Destination node is much more heavily used than the source
    1459             :          * node? Allow migration.
    1460             :          */
    1461             :         if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
    1462             :                                         ACTIVE_NODE_FRACTION)
    1463             :                 return true;
    1464             : 
    1465             :         /*
    1466             :          * Distribute memory according to CPU & memory use on each node,
    1467             :          * with 3/4 hysteresis to avoid unnecessary memory migrations:
    1468             :          *
    1469             :          * faults_cpu(dst)   3   faults_cpu(src)
    1470             :          * --------------- * - > ---------------
    1471             :          * faults_mem(dst)   4   faults_mem(src)
    1472             :          */
    1473             :         return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
    1474             :                group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
    1475             : }
    1476             : 
    1477             : /*
    1478             :  * 'numa_type' describes the node at the moment of load balancing.
    1479             :  */
    1480             : enum numa_type {
    1481             :         /* The node has spare capacity that can be used to run more tasks.  */
    1482             :         node_has_spare = 0,
    1483             :         /*
    1484             :          * The node is fully used and the tasks don't compete for more CPU
    1485             :          * cycles. Nevertheless, some tasks might wait before running.
    1486             :          */
    1487             :         node_fully_busy,
    1488             :         /*
    1489             :          * The node is overloaded and can't provide expected CPU cycles to all
    1490             :          * tasks.
    1491             :          */
    1492             :         node_overloaded
    1493             : };
    1494             : 
    1495             : /* Cached statistics for all CPUs within a node */
    1496             : struct numa_stats {
    1497             :         unsigned long load;
    1498             :         unsigned long runnable;
    1499             :         unsigned long util;
    1500             :         /* Total compute capacity of CPUs on a node */
    1501             :         unsigned long compute_capacity;
    1502             :         unsigned int nr_running;
    1503             :         unsigned int weight;
    1504             :         enum numa_type node_type;
    1505             :         int idle_cpu;
    1506             : };
    1507             : 
    1508             : static inline bool is_core_idle(int cpu)
    1509             : {
    1510             : #ifdef CONFIG_SCHED_SMT
    1511             :         int sibling;
    1512             : 
    1513             :         for_each_cpu(sibling, cpu_smt_mask(cpu)) {
    1514             :                 if (cpu == sibling)
    1515             :                         continue;
    1516             : 
    1517             :                 if (!idle_cpu(cpu))
    1518             :                         return false;
    1519             :         }
    1520             : #endif
    1521             : 
    1522             :         return true;
    1523             : }
    1524             : 
    1525             : struct task_numa_env {
    1526             :         struct task_struct *p;
    1527             : 
    1528             :         int src_cpu, src_nid;
    1529             :         int dst_cpu, dst_nid;
    1530             : 
    1531             :         struct numa_stats src_stats, dst_stats;
    1532             : 
    1533             :         int imbalance_pct;
    1534             :         int dist;
    1535             : 
    1536             :         struct task_struct *best_task;
    1537             :         long best_imp;
    1538             :         int best_cpu;
    1539             : };
    1540             : 
    1541             : static unsigned long cpu_load(struct rq *rq);
    1542             : static unsigned long cpu_runnable(struct rq *rq);
    1543             : static unsigned long cpu_util(int cpu);
    1544             : static inline long adjust_numa_imbalance(int imbalance,
    1545             :                                         int dst_running, int dst_weight);
    1546             : 
    1547             : static inline enum
    1548             : numa_type numa_classify(unsigned int imbalance_pct,
    1549             :                          struct numa_stats *ns)
    1550             : {
    1551             :         if ((ns->nr_running > ns->weight) &&
    1552             :             (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
    1553             :              ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
    1554             :                 return node_overloaded;
    1555             : 
    1556             :         if ((ns->nr_running < ns->weight) ||
    1557             :             (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
    1558             :              ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
    1559             :                 return node_has_spare;
    1560             : 
    1561             :         return node_fully_busy;
    1562             : }
    1563             : 
    1564             : #ifdef CONFIG_SCHED_SMT
    1565             : /* Forward declarations of select_idle_sibling helpers */
    1566             : static inline bool test_idle_cores(int cpu, bool def);
    1567             : static inline int numa_idle_core(int idle_core, int cpu)
    1568             : {
    1569             :         if (!static_branch_likely(&sched_smt_present) ||
    1570             :             idle_core >= 0 || !test_idle_cores(cpu, false))
    1571             :                 return idle_core;
    1572             : 
    1573             :         /*
    1574             :          * Prefer cores instead of packing HT siblings
    1575             :          * and triggering future load balancing.
    1576             :          */
    1577             :         if (is_core_idle(cpu))
    1578             :                 idle_core = cpu;
    1579             : 
    1580             :         return idle_core;
    1581             : }
    1582             : #else
    1583             : static inline int numa_idle_core(int idle_core, int cpu)
    1584             : {
    1585             :         return idle_core;
    1586             : }
    1587             : #endif
    1588             : 
    1589             : /*
    1590             :  * Gather all necessary information to make NUMA balancing placement
    1591             :  * decisions that are compatible with standard load balancer. This
    1592             :  * borrows code and logic from update_sg_lb_stats but sharing a
    1593             :  * common implementation is impractical.
    1594             :  */
    1595             : static void update_numa_stats(struct task_numa_env *env,
    1596             :                               struct numa_stats *ns, int nid,
    1597             :                               bool find_idle)
    1598             : {
    1599             :         int cpu, idle_core = -1;
    1600             : 
    1601             :         memset(ns, 0, sizeof(*ns));
    1602             :         ns->idle_cpu = -1;
    1603             : 
    1604             :         rcu_read_lock();
    1605             :         for_each_cpu(cpu, cpumask_of_node(nid)) {
    1606             :                 struct rq *rq = cpu_rq(cpu);
    1607             : 
    1608             :                 ns->load += cpu_load(rq);
    1609             :                 ns->runnable += cpu_runnable(rq);
    1610             :                 ns->util += cpu_util(cpu);
    1611             :                 ns->nr_running += rq->cfs.h_nr_running;
    1612             :                 ns->compute_capacity += capacity_of(cpu);
    1613             : 
    1614             :                 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
    1615             :                         if (READ_ONCE(rq->numa_migrate_on) ||
    1616             :                             !cpumask_test_cpu(cpu, env->p->cpus_ptr))
    1617             :                                 continue;
    1618             : 
    1619             :                         if (ns->idle_cpu == -1)
    1620             :                                 ns->idle_cpu = cpu;
    1621             : 
    1622             :                         idle_core = numa_idle_core(idle_core, cpu);
    1623             :                 }
    1624             :         }
    1625             :         rcu_read_unlock();
    1626             : 
    1627             :         ns->weight = cpumask_weight(cpumask_of_node(nid));
    1628             : 
    1629             :         ns->node_type = numa_classify(env->imbalance_pct, ns);
    1630             : 
    1631             :         if (idle_core >= 0)
    1632             :                 ns->idle_cpu = idle_core;
    1633             : }
    1634             : 
    1635             : static void task_numa_assign(struct task_numa_env *env,
    1636             :                              struct task_struct *p, long imp)
    1637             : {
    1638             :         struct rq *rq = cpu_rq(env->dst_cpu);
    1639             : 
    1640             :         /* Check if run-queue part of active NUMA balance. */
    1641             :         if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
    1642             :                 int cpu;
    1643             :                 int start = env->dst_cpu;
    1644             : 
    1645             :                 /* Find alternative idle CPU. */
    1646             :                 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
    1647             :                         if (cpu == env->best_cpu || !idle_cpu(cpu) ||
    1648             :                             !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
    1649             :                                 continue;
    1650             :                         }
    1651             : 
    1652             :                         env->dst_cpu = cpu;
    1653             :                         rq = cpu_rq(env->dst_cpu);
    1654             :                         if (!xchg(&rq->numa_migrate_on, 1))
    1655             :                                 goto assign;
    1656             :                 }
    1657             : 
    1658             :                 /* Failed to find an alternative idle CPU */
    1659             :                 return;
    1660             :         }
    1661             : 
    1662             : assign:
    1663             :         /*
    1664             :          * Clear previous best_cpu/rq numa-migrate flag, since task now
    1665             :          * found a better CPU to move/swap.
    1666             :          */
    1667             :         if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
    1668             :                 rq = cpu_rq(env->best_cpu);
    1669             :                 WRITE_ONCE(rq->numa_migrate_on, 0);
    1670             :         }
    1671             : 
    1672             :         if (env->best_task)
    1673             :                 put_task_struct(env->best_task);
    1674             :         if (p)
    1675             :                 get_task_struct(p);
    1676             : 
    1677             :         env->best_task = p;
    1678             :         env->best_imp = imp;
    1679             :         env->best_cpu = env->dst_cpu;
    1680             : }
    1681             : 
    1682             : static bool load_too_imbalanced(long src_load, long dst_load,
    1683             :                                 struct task_numa_env *env)
    1684             : {
    1685             :         long imb, old_imb;
    1686             :         long orig_src_load, orig_dst_load;
    1687             :         long src_capacity, dst_capacity;
    1688             : 
    1689             :         /*
    1690             :          * The load is corrected for the CPU capacity available on each node.
    1691             :          *
    1692             :          * src_load        dst_load
    1693             :          * ------------ vs ---------
    1694             :          * src_capacity    dst_capacity
    1695             :          */
    1696             :         src_capacity = env->src_stats.compute_capacity;
    1697             :         dst_capacity = env->dst_stats.compute_capacity;
    1698             : 
    1699             :         imb = abs(dst_load * src_capacity - src_load * dst_capacity);
    1700             : 
    1701             :         orig_src_load = env->src_stats.load;
    1702             :         orig_dst_load = env->dst_stats.load;
    1703             : 
    1704             :         old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
    1705             : 
    1706             :         /* Would this change make things worse? */
    1707             :         return (imb > old_imb);
    1708             : }
    1709             : 
    1710             : /*
    1711             :  * Maximum NUMA importance can be 1998 (2*999);
    1712             :  * SMALLIMP @ 30 would be close to 1998/64.
    1713             :  * Used to deter task migration.
    1714             :  */
    1715             : #define SMALLIMP        30
    1716             : 
    1717             : /*
    1718             :  * This checks if the overall compute and NUMA accesses of the system would
    1719             :  * be improved if the source tasks was migrated to the target dst_cpu taking
    1720             :  * into account that it might be best if task running on the dst_cpu should
    1721             :  * be exchanged with the source task
    1722             :  */
    1723             : static bool task_numa_compare(struct task_numa_env *env,
    1724             :                               long taskimp, long groupimp, bool maymove)
    1725             : {
    1726             :         struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
    1727             :         struct rq *dst_rq = cpu_rq(env->dst_cpu);
    1728             :         long imp = p_ng ? groupimp : taskimp;
    1729             :         struct task_struct *cur;
    1730             :         long src_load, dst_load;
    1731             :         int dist = env->dist;
    1732             :         long moveimp = imp;
    1733             :         long load;
    1734             :         bool stopsearch = false;
    1735             : 
    1736             :         if (READ_ONCE(dst_rq->numa_migrate_on))
    1737             :                 return false;
    1738             : 
    1739             :         rcu_read_lock();
    1740             :         cur = rcu_dereference(dst_rq->curr);
    1741             :         if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
    1742             :                 cur = NULL;
    1743             : 
    1744             :         /*
    1745             :          * Because we have preemption enabled we can get migrated around and
    1746             :          * end try selecting ourselves (current == env->p) as a swap candidate.
    1747             :          */
    1748             :         if (cur == env->p) {
    1749             :                 stopsearch = true;
    1750             :                 goto unlock;
    1751             :         }
    1752             : 
    1753             :         if (!cur) {
    1754             :                 if (maymove && moveimp >= env->best_imp)
    1755             :                         goto assign;
    1756             :                 else
    1757             :                         goto unlock;
    1758             :         }
    1759             : 
    1760             :         /* Skip this swap candidate if cannot move to the source cpu. */
    1761             :         if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
    1762             :                 goto unlock;
    1763             : 
    1764             :         /*
    1765             :          * Skip this swap candidate if it is not moving to its preferred
    1766             :          * node and the best task is.
    1767             :          */
    1768             :         if (env->best_task &&
    1769             :             env->best_task->numa_preferred_nid == env->src_nid &&
    1770             :             cur->numa_preferred_nid != env->src_nid) {
    1771             :                 goto unlock;
    1772             :         }
    1773             : 
    1774             :         /*
    1775             :          * "imp" is the fault differential for the source task between the
    1776             :          * source and destination node. Calculate the total differential for
    1777             :          * the source task and potential destination task. The more negative
    1778             :          * the value is, the more remote accesses that would be expected to
    1779             :          * be incurred if the tasks were swapped.
    1780             :          *
    1781             :          * If dst and source tasks are in the same NUMA group, or not
    1782             :          * in any group then look only at task weights.
    1783             :          */
    1784             :         cur_ng = rcu_dereference(cur->numa_group);
    1785             :         if (cur_ng == p_ng) {
    1786             :                 imp = taskimp + task_weight(cur, env->src_nid, dist) -
    1787             :                       task_weight(cur, env->dst_nid, dist);
    1788             :                 /*
    1789             :                  * Add some hysteresis to prevent swapping the
    1790             :                  * tasks within a group over tiny differences.
    1791             :                  */
    1792             :                 if (cur_ng)
    1793             :                         imp -= imp / 16;
    1794             :         } else {
    1795             :                 /*
    1796             :                  * Compare the group weights. If a task is all by itself
    1797             :                  * (not part of a group), use the task weight instead.
    1798             :                  */
    1799             :                 if (cur_ng && p_ng)
    1800             :                         imp += group_weight(cur, env->src_nid, dist) -
    1801             :                                group_weight(cur, env->dst_nid, dist);
    1802             :                 else
    1803             :                         imp += task_weight(cur, env->src_nid, dist) -
    1804             :                                task_weight(cur, env->dst_nid, dist);
    1805             :         }
    1806             : 
    1807             :         /* Discourage picking a task already on its preferred node */
    1808             :         if (cur->numa_preferred_nid == env->dst_nid)
    1809             :                 imp -= imp / 16;
    1810             : 
    1811             :         /*
    1812             :          * Encourage picking a task that moves to its preferred node.
    1813             :          * This potentially makes imp larger than it's maximum of
    1814             :          * 1998 (see SMALLIMP and task_weight for why) but in this
    1815             :          * case, it does not matter.
    1816             :          */
    1817             :         if (cur->numa_preferred_nid == env->src_nid)
    1818             :                 imp += imp / 8;
    1819             : 
    1820             :         if (maymove && moveimp > imp && moveimp > env->best_imp) {
    1821             :                 imp = moveimp;
    1822             :                 cur = NULL;
    1823             :                 goto assign;
    1824             :         }
    1825             : 
    1826             :         /*
    1827             :          * Prefer swapping with a task moving to its preferred node over a
    1828             :          * task that is not.
    1829             :          */
    1830             :         if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
    1831             :             env->best_task->numa_preferred_nid != env->src_nid) {
    1832             :                 goto assign;
    1833             :         }
    1834             : 
    1835             :         /*
    1836             :          * If the NUMA importance is less than SMALLIMP,
    1837             :          * task migration might only result in ping pong
    1838             :          * of tasks and also hurt performance due to cache
    1839             :          * misses.
    1840             :          */
    1841             :         if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
    1842             :                 goto unlock;
    1843             : 
    1844             :         /*
    1845             :          * In the overloaded case, try and keep the load balanced.
    1846             :          */
    1847             :         load = task_h_load(env->p) - task_h_load(cur);
    1848             :         if (!load)
    1849             :                 goto assign;
    1850             : 
    1851             :         dst_load = env->dst_stats.load + load;
    1852             :         src_load = env->src_stats.load - load;
    1853             : 
    1854             :         if (load_too_imbalanced(src_load, dst_load, env))
    1855             :                 goto unlock;
    1856             : 
    1857             : assign:
    1858             :         /* Evaluate an idle CPU for a task numa move. */
    1859             :         if (!cur) {
    1860             :                 int cpu = env->dst_stats.idle_cpu;
    1861             : 
    1862             :                 /* Nothing cached so current CPU went idle since the search. */
    1863             :                 if (cpu < 0)
    1864             :                         cpu = env->dst_cpu;
    1865             : 
    1866             :                 /*
    1867             :                  * If the CPU is no longer truly idle and the previous best CPU
    1868             :                  * is, keep using it.
    1869             :                  */
    1870             :                 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
    1871             :                     idle_cpu(env->best_cpu)) {
    1872             :                         cpu = env->best_cpu;
    1873             :                 }
    1874             : 
    1875             :                 env->dst_cpu = cpu;
    1876             :         }
    1877             : 
    1878             :         task_numa_assign(env, cur, imp);
    1879             : 
    1880             :         /*
    1881             :          * If a move to idle is allowed because there is capacity or load
    1882             :          * balance improves then stop the search. While a better swap
    1883             :          * candidate may exist, a search is not free.
    1884             :          */
    1885             :         if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
    1886             :                 stopsearch = true;
    1887             : 
    1888             :         /*
    1889             :          * If a swap candidate must be identified and the current best task
    1890             :          * moves its preferred node then stop the search.
    1891             :          */
    1892             :         if (!maymove && env->best_task &&
    1893             :             env->best_task->numa_preferred_nid == env->src_nid) {
    1894             :                 stopsearch = true;
    1895             :         }
    1896             : unlock:
    1897             :         rcu_read_unlock();
    1898             : 
    1899             :         return stopsearch;
    1900             : }
    1901             : 
    1902             : static void task_numa_find_cpu(struct task_numa_env *env,
    1903             :                                 long taskimp, long groupimp)
    1904             : {
    1905             :         bool maymove = false;
    1906             :         int cpu;
    1907             : 
    1908             :         /*
    1909             :          * If dst node has spare capacity, then check if there is an
    1910             :          * imbalance that would be overruled by the load balancer.
    1911             :          */
    1912             :         if (env->dst_stats.node_type == node_has_spare) {
    1913             :                 unsigned int imbalance;
    1914             :                 int src_running, dst_running;
    1915             : 
    1916             :                 /*
    1917             :                  * Would movement cause an imbalance? Note that if src has
    1918             :                  * more running tasks that the imbalance is ignored as the
    1919             :                  * move improves the imbalance from the perspective of the
    1920             :                  * CPU load balancer.
    1921             :                  * */
    1922             :                 src_running = env->src_stats.nr_running - 1;
    1923             :                 dst_running = env->dst_stats.nr_running + 1;
    1924             :                 imbalance = max(0, dst_running - src_running);
    1925             :                 imbalance = adjust_numa_imbalance(imbalance, dst_running,
    1926             :                                                         env->dst_stats.weight);
    1927             : 
    1928             :                 /* Use idle CPU if there is no imbalance */
    1929             :                 if (!imbalance) {
    1930             :                         maymove = true;
    1931             :                         if (env->dst_stats.idle_cpu >= 0) {
    1932             :                                 env->dst_cpu = env->dst_stats.idle_cpu;
    1933             :                                 task_numa_assign(env, NULL, 0);
    1934             :                                 return;
    1935             :                         }
    1936             :                 }
    1937             :         } else {
    1938             :                 long src_load, dst_load, load;
    1939             :                 /*
    1940             :                  * If the improvement from just moving env->p direction is better
    1941             :                  * than swapping tasks around, check if a move is possible.
    1942             :                  */
    1943             :                 load = task_h_load(env->p);
    1944             :                 dst_load = env->dst_stats.load + load;
    1945             :                 src_load = env->src_stats.load - load;
    1946             :                 maymove = !load_too_imbalanced(src_load, dst_load, env);
    1947             :         }
    1948             : 
    1949             :         for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
    1950             :                 /* Skip this CPU if the source task cannot migrate */
    1951             :                 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
    1952             :                         continue;
    1953             : 
    1954             :                 env->dst_cpu = cpu;
    1955             :                 if (task_numa_compare(env, taskimp, groupimp, maymove))
    1956             :                         break;
    1957             :         }
    1958             : }
    1959             : 
    1960             : static int task_numa_migrate(struct task_struct *p)
    1961             : {
    1962             :         struct task_numa_env env = {
    1963             :                 .p = p,
    1964             : 
    1965             :                 .src_cpu = task_cpu(p),
    1966             :                 .src_nid = task_node(p),
    1967             : 
    1968             :                 .imbalance_pct = 112,
    1969             : 
    1970             :                 .best_task = NULL,
    1971             :                 .best_imp = 0,
    1972             :                 .best_cpu = -1,
    1973             :         };
    1974             :         unsigned long taskweight, groupweight;
    1975             :         struct sched_domain *sd;
    1976             :         long taskimp, groupimp;
    1977             :         struct numa_group *ng;
    1978             :         struct rq *best_rq;
    1979             :         int nid, ret, dist;
    1980             : 
    1981             :         /*
    1982             :          * Pick the lowest SD_NUMA domain, as that would have the smallest
    1983             :          * imbalance and would be the first to start moving tasks about.
    1984             :          *
    1985             :          * And we want to avoid any moving of tasks about, as that would create
    1986             :          * random movement of tasks -- counter the numa conditions we're trying
    1987             :          * to satisfy here.
    1988             :          */
    1989             :         rcu_read_lock();
    1990             :         sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
    1991             :         if (sd)
    1992             :                 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
    1993             :         rcu_read_unlock();
    1994             : 
    1995             :         /*
    1996             :          * Cpusets can break the scheduler domain tree into smaller
    1997             :          * balance domains, some of which do not cross NUMA boundaries.
    1998             :          * Tasks that are "trapped" in such domains cannot be migrated
    1999             :          * elsewhere, so there is no point in (re)trying.
    2000             :          */
    2001             :         if (unlikely(!sd)) {
    2002             :                 sched_setnuma(p, task_node(p));
    2003             :                 return -EINVAL;
    2004             :         }
    2005             : 
    2006             :         env.dst_nid = p->numa_preferred_nid;
    2007             :         dist = env.dist = node_distance(env.src_nid, env.dst_nid);
    2008             :         taskweight = task_weight(p, env.src_nid, dist);
    2009             :         groupweight = group_weight(p, env.src_nid, dist);
    2010             :         update_numa_stats(&env, &env.src_stats, env.src_nid, false);
    2011             :         taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
    2012             :         groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
    2013             :         update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
    2014             : 
    2015             :         /* Try to find a spot on the preferred nid. */
    2016             :         task_numa_find_cpu(&env, taskimp, groupimp);
    2017             : 
    2018             :         /*
    2019             :          * Look at other nodes in these cases:
    2020             :          * - there is no space available on the preferred_nid
    2021             :          * - the task is part of a numa_group that is interleaved across
    2022             :          *   multiple NUMA nodes; in order to better consolidate the group,
    2023             :          *   we need to check other locations.
    2024             :          */
    2025             :         ng = deref_curr_numa_group(p);
    2026             :         if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
    2027             :                 for_each_online_node(nid) {
    2028             :                         if (nid == env.src_nid || nid == p->numa_preferred_nid)
    2029             :                                 continue;
    2030             : 
    2031             :                         dist = node_distance(env.src_nid, env.dst_nid);
    2032             :                         if (sched_numa_topology_type == NUMA_BACKPLANE &&
    2033             :                                                 dist != env.dist) {
    2034             :                                 taskweight = task_weight(p, env.src_nid, dist);
    2035             :                                 groupweight = group_weight(p, env.src_nid, dist);
    2036             :                         }
    2037             : 
    2038             :                         /* Only consider nodes where both task and groups benefit */
    2039             :                         taskimp = task_weight(p, nid, dist) - taskweight;
    2040             :                         groupimp = group_weight(p, nid, dist) - groupweight;
    2041             :                         if (taskimp < 0 && groupimp < 0)
    2042             :                                 continue;
    2043             : 
    2044             :                         env.dist = dist;
    2045             :                         env.dst_nid = nid;
    2046             :                         update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
    2047             :                         task_numa_find_cpu(&env, taskimp, groupimp);
    2048             :                 }
    2049             :         }
    2050             : 
    2051             :         /*
    2052             :          * If the task is part of a workload that spans multiple NUMA nodes,
    2053             :          * and is migrating into one of the workload's active nodes, remember
    2054             :          * this node as the task's preferred numa node, so the workload can
    2055             :          * settle down.
    2056             :          * A task that migrated to a second choice node will be better off
    2057             :          * trying for a better one later. Do not set the preferred node here.
    2058             :          */
    2059             :         if (ng) {
    2060             :                 if (env.best_cpu == -1)
    2061             :                         nid = env.src_nid;
    2062             :                 else
    2063             :                         nid = cpu_to_node(env.best_cpu);
    2064             : 
    2065             :                 if (nid != p->numa_preferred_nid)
    2066             :                         sched_setnuma(p, nid);
    2067             :         }
    2068             : 
    2069             :         /* No better CPU than the current one was found. */
    2070             :         if (env.best_cpu == -1) {
    2071             :                 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
    2072             :                 return -EAGAIN;
    2073             :         }
    2074             : 
    2075             :         best_rq = cpu_rq(env.best_cpu);
    2076             :         if (env.best_task == NULL) {
    2077             :                 ret = migrate_task_to(p, env.best_cpu);
    2078             :                 WRITE_ONCE(best_rq->numa_migrate_on, 0);
    2079             :                 if (ret != 0)
    2080             :                         trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
    2081             :                 return ret;
    2082             :         }
    2083             : 
    2084             :         ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
    2085             :         WRITE_ONCE(best_rq->numa_migrate_on, 0);
    2086             : 
    2087             :         if (ret != 0)
    2088             :                 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
    2089             :         put_task_struct(env.best_task);
    2090             :         return ret;
    2091             : }
    2092             : 
    2093             : /* Attempt to migrate a task to a CPU on the preferred node. */
    2094             : static void numa_migrate_preferred(struct task_struct *p)
    2095             : {
    2096             :         unsigned long interval = HZ;
    2097             : 
    2098             :         /* This task has no NUMA fault statistics yet */
    2099             :         if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
    2100             :                 return;
    2101             : 
    2102             :         /* Periodically retry migrating the task to the preferred node */
    2103             :         interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
    2104             :         p->numa_migrate_retry = jiffies + interval;
    2105             : 
    2106             :         /* Success if task is already running on preferred CPU */
    2107             :         if (task_node(p) == p->numa_preferred_nid)
    2108             :                 return;
    2109             : 
    2110             :         /* Otherwise, try migrate to a CPU on the preferred node */
    2111             :         task_numa_migrate(p);
    2112             : }
    2113             : 
    2114             : /*
    2115             :  * Find out how many nodes on the workload is actively running on. Do this by
    2116             :  * tracking the nodes from which NUMA hinting faults are triggered. This can
    2117             :  * be different from the set of nodes where the workload's memory is currently
    2118             :  * located.
    2119             :  */
    2120             : static void numa_group_count_active_nodes(struct numa_group *numa_group)
    2121             : {
    2122             :         unsigned long faults, max_faults = 0;
    2123             :         int nid, active_nodes = 0;
    2124             : 
    2125             :         for_each_online_node(nid) {
    2126             :                 faults = group_faults_cpu(numa_group, nid);
    2127             :                 if (faults > max_faults)
    2128             :                         max_faults = faults;
    2129             :         }
    2130             : 
    2131             :         for_each_online_node(nid) {
    2132             :                 faults = group_faults_cpu(numa_group, nid);
    2133             :                 if (faults * ACTIVE_NODE_FRACTION > max_faults)
    2134             :                         active_nodes++;
    2135             :         }
    2136             : 
    2137             :         numa_group->max_faults_cpu = max_faults;
    2138             :         numa_group->active_nodes = active_nodes;
    2139             : }
    2140             : 
    2141             : /*
    2142             :  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
    2143             :  * increments. The more local the fault statistics are, the higher the scan
    2144             :  * period will be for the next scan window. If local/(local+remote) ratio is
    2145             :  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
    2146             :  * the scan period will decrease. Aim for 70% local accesses.
    2147             :  */
    2148             : #define NUMA_PERIOD_SLOTS 10
    2149             : #define NUMA_PERIOD_THRESHOLD 7
    2150             : 
    2151             : /*
    2152             :  * Increase the scan period (slow down scanning) if the majority of
    2153             :  * our memory is already on our local node, or if the majority of
    2154             :  * the page accesses are shared with other processes.
    2155             :  * Otherwise, decrease the scan period.
    2156             :  */
    2157             : static void update_task_scan_period(struct task_struct *p,
    2158             :                         unsigned long shared, unsigned long private)
    2159             : {
    2160             :         unsigned int period_slot;
    2161             :         int lr_ratio, ps_ratio;
    2162             :         int diff;
    2163             : 
    2164             :         unsigned long remote = p->numa_faults_locality[0];
    2165             :         unsigned long local = p->numa_faults_locality[1];
    2166             : 
    2167             :         /*
    2168             :          * If there were no record hinting faults then either the task is
    2169             :          * completely idle or all activity is areas that are not of interest
    2170             :          * to automatic numa balancing. Related to that, if there were failed
    2171             :          * migration then it implies we are migrating too quickly or the local
    2172             :          * node is overloaded. In either case, scan slower
    2173             :          */
    2174             :         if (local + shared == 0 || p->numa_faults_locality[2]) {
    2175             :                 p->numa_scan_period = min(p->numa_scan_period_max,
    2176             :                         p->numa_scan_period << 1);
    2177             : 
    2178             :                 p->mm->numa_next_scan = jiffies +
    2179             :                         msecs_to_jiffies(p->numa_scan_period);
    2180             : 
    2181             :                 return;
    2182             :         }
    2183             : 
    2184             :         /*
    2185             :          * Prepare to scale scan period relative to the current period.
    2186             :          *       == NUMA_PERIOD_THRESHOLD scan period stays the same
    2187             :          *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
    2188             :          *       >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
    2189             :          */
    2190             :         period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
    2191             :         lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
    2192             :         ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
    2193             : 
    2194             :         if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
    2195             :                 /*
    2196             :                  * Most memory accesses are local. There is no need to
    2197             :                  * do fast NUMA scanning, since memory is already local.
    2198             :                  */
    2199             :                 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
    2200             :                 if (!slot)
    2201             :                         slot = 1;
    2202             :                 diff = slot * period_slot;
    2203             :         } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
    2204             :                 /*
    2205             :                  * Most memory accesses are shared with other tasks.
    2206             :                  * There is no point in continuing fast NUMA scanning,
    2207             :                  * since other tasks may just move the memory elsewhere.
    2208             :                  */
    2209             :                 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
    2210             :                 if (!slot)
    2211             :                         slot = 1;
    2212             :                 diff = slot * period_slot;
    2213             :         } else {
    2214             :                 /*
    2215             :                  * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
    2216             :                  * yet they are not on the local NUMA node. Speed up
    2217             :                  * NUMA scanning to get the memory moved over.
    2218             :                  */
    2219             :                 int ratio = max(lr_ratio, ps_ratio);
    2220             :                 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
    2221             :         }
    2222             : 
    2223             :         p->numa_scan_period = clamp(p->numa_scan_period + diff,
    2224             :                         task_scan_min(p), task_scan_max(p));
    2225             :         memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
    2226             : }
    2227             : 
    2228             : /*
    2229             :  * Get the fraction of time the task has been running since the last
    2230             :  * NUMA placement cycle. The scheduler keeps similar statistics, but
    2231             :  * decays those on a 32ms period, which is orders of magnitude off
    2232             :  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
    2233             :  * stats only if the task is so new there are no NUMA statistics yet.
    2234             :  */
    2235             : static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
    2236             : {
    2237             :         u64 runtime, delta, now;
    2238             :         /* Use the start of this time slice to avoid calculations. */
    2239             :         now = p->se.exec_start;
    2240             :         runtime = p->se.sum_exec_runtime;
    2241             : 
    2242             :         if (p->last_task_numa_placement) {
    2243             :                 delta = runtime - p->last_sum_exec_runtime;
    2244             :                 *period = now - p->last_task_numa_placement;
    2245             : 
    2246             :                 /* Avoid time going backwards, prevent potential divide error: */
    2247             :                 if (unlikely((s64)*period < 0))
    2248             :                         *period = 0;
    2249             :         } else {
    2250             :                 delta = p->se.avg.load_sum;
    2251             :                 *period = LOAD_AVG_MAX;
    2252             :         }
    2253             : 
    2254             :         p->last_sum_exec_runtime = runtime;
    2255             :         p->last_task_numa_placement = now;
    2256             : 
    2257             :         return delta;
    2258             : }
    2259             : 
    2260             : /*
    2261             :  * Determine the preferred nid for a task in a numa_group. This needs to
    2262             :  * be done in a way that produces consistent results with group_weight,
    2263             :  * otherwise workloads might not converge.
    2264             :  */
    2265             : static int preferred_group_nid(struct task_struct *p, int nid)
    2266             : {
    2267             :         nodemask_t nodes;
    2268             :         int dist;
    2269             : 
    2270             :         /* Direct connections between all NUMA nodes. */
    2271             :         if (sched_numa_topology_type == NUMA_DIRECT)
    2272             :                 return nid;
    2273             : 
    2274             :         /*
    2275             :          * On a system with glueless mesh NUMA topology, group_weight
    2276             :          * scores nodes according to the number of NUMA hinting faults on
    2277             :          * both the node itself, and on nearby nodes.
    2278             :          */
    2279             :         if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
    2280             :                 unsigned long score, max_score = 0;
    2281             :                 int node, max_node = nid;
    2282             : 
    2283             :                 dist = sched_max_numa_distance;
    2284             : 
    2285             :                 for_each_online_node(node) {
    2286             :                         score = group_weight(p, node, dist);
    2287             :                         if (score > max_score) {
    2288             :                                 max_score = score;
    2289             :                                 max_node = node;
    2290             :                         }
    2291             :                 }
    2292             :                 return max_node;
    2293             :         }
    2294             : 
    2295             :         /*
    2296             :          * Finding the preferred nid in a system with NUMA backplane
    2297             :          * interconnect topology is more involved. The goal is to locate
    2298             :          * tasks from numa_groups near each other in the system, and
    2299             :          * untangle workloads from different sides of the system. This requires
    2300             :          * searching down the hierarchy of node groups, recursively searching
    2301             :          * inside the highest scoring group of nodes. The nodemask tricks
    2302             :          * keep the complexity of the search down.
    2303             :          */
    2304             :         nodes = node_online_map;
    2305             :         for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
    2306             :                 unsigned long max_faults = 0;
    2307             :                 nodemask_t max_group = NODE_MASK_NONE;
    2308             :                 int a, b;
    2309             : 
    2310             :                 /* Are there nodes at this distance from each other? */
    2311             :                 if (!find_numa_distance(dist))
    2312             :                         continue;
    2313             : 
    2314             :                 for_each_node_mask(a, nodes) {
    2315             :                         unsigned long faults = 0;
    2316             :                         nodemask_t this_group;
    2317             :                         nodes_clear(this_group);
    2318             : 
    2319             :                         /* Sum group's NUMA faults; includes a==b case. */
    2320             :                         for_each_node_mask(b, nodes) {
    2321             :                                 if (node_distance(a, b) < dist) {
    2322             :                                         faults += group_faults(p, b);
    2323             :                                         node_set(b, this_group);
    2324             :                                         node_clear(b, nodes);
    2325             :                                 }
    2326             :                         }
    2327             : 
    2328             :                         /* Remember the top group. */
    2329             :                         if (faults > max_faults) {
    2330             :                                 max_faults = faults;
    2331             :                                 max_group = this_group;
    2332             :                                 /*
    2333             :                                  * subtle: at the smallest distance there is
    2334             :                                  * just one node left in each "group", the
    2335             :                                  * winner is the preferred nid.
    2336             :                                  */
    2337             :                                 nid = a;
    2338             :                         }
    2339             :                 }
    2340             :                 /* Next round, evaluate the nodes within max_group. */
    2341             :                 if (!max_faults)
    2342             :                         break;
    2343             :                 nodes = max_group;
    2344             :         }
    2345             :         return nid;
    2346             : }
    2347             : 
    2348             : static void task_numa_placement(struct task_struct *p)
    2349             : {
    2350             :         int seq, nid, max_nid = NUMA_NO_NODE;
    2351             :         unsigned long max_faults = 0;
    2352             :         unsigned long fault_types[2] = { 0, 0 };
    2353             :         unsigned long total_faults;
    2354             :         u64 runtime, period;
    2355             :         spinlock_t *group_lock = NULL;
    2356             :         struct numa_group *ng;
    2357             : 
    2358             :         /*
    2359             :          * The p->mm->numa_scan_seq field gets updated without
    2360             :          * exclusive access. Use READ_ONCE() here to ensure
    2361             :          * that the field is read in a single access:
    2362             :          */
    2363             :         seq = READ_ONCE(p->mm->numa_scan_seq);
    2364             :         if (p->numa_scan_seq == seq)
    2365             :                 return;
    2366             :         p->numa_scan_seq = seq;
    2367             :         p->numa_scan_period_max = task_scan_max(p);
    2368             : 
    2369             :         total_faults = p->numa_faults_locality[0] +
    2370             :                        p->numa_faults_locality[1];
    2371             :         runtime = numa_get_avg_runtime(p, &period);
    2372             : 
    2373             :         /* If the task is part of a group prevent parallel updates to group stats */
    2374             :         ng = deref_curr_numa_group(p);
    2375             :         if (ng) {
    2376             :                 group_lock = &ng->lock;
    2377             :                 spin_lock_irq(group_lock);
    2378             :         }
    2379             : 
    2380             :         /* Find the node with the highest number of faults */
    2381             :         for_each_online_node(nid) {
    2382             :                 /* Keep track of the offsets in numa_faults array */
    2383             :                 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
    2384             :                 unsigned long faults = 0, group_faults = 0;
    2385             :                 int priv;
    2386             : 
    2387             :                 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
    2388             :                         long diff, f_diff, f_weight;
    2389             : 
    2390             :                         mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
    2391             :                         membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
    2392             :                         cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
    2393             :                         cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
    2394             : 
    2395             :                         /* Decay existing window, copy faults since last scan */
    2396             :                         diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
    2397             :                         fault_types[priv] += p->numa_faults[membuf_idx];
    2398             :                         p->numa_faults[membuf_idx] = 0;
    2399             : 
    2400             :                         /*
    2401             :                          * Normalize the faults_from, so all tasks in a group
    2402             :                          * count according to CPU use, instead of by the raw
    2403             :                          * number of faults. Tasks with little runtime have
    2404             :                          * little over-all impact on throughput, and thus their
    2405             :                          * faults are less important.
    2406             :                          */
    2407             :                         f_weight = div64_u64(runtime << 16, period + 1);
    2408             :                         f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
    2409             :                                    (total_faults + 1);
    2410             :                         f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
    2411             :                         p->numa_faults[cpubuf_idx] = 0;
    2412             : 
    2413             :                         p->numa_faults[mem_idx] += diff;
    2414             :                         p->numa_faults[cpu_idx] += f_diff;
    2415             :                         faults += p->numa_faults[mem_idx];
    2416             :                         p->total_numa_faults += diff;
    2417             :                         if (ng) {
    2418             :                                 /*
    2419             :                                  * safe because we can only change our own group
    2420             :                                  *
    2421             :                                  * mem_idx represents the offset for a given
    2422             :                                  * nid and priv in a specific region because it
    2423             :                                  * is at the beginning of the numa_faults array.
    2424             :                                  */
    2425             :                                 ng->faults[mem_idx] += diff;
    2426             :                                 ng->faults_cpu[mem_idx] += f_diff;
    2427             :                                 ng->total_faults += diff;
    2428             :                                 group_faults += ng->faults[mem_idx];
    2429             :                         }
    2430             :                 }
    2431             : 
    2432             :                 if (!ng) {
    2433             :                         if (faults > max_faults) {
    2434             :                                 max_faults = faults;
    2435             :                                 max_nid = nid;
    2436             :                         }
    2437             :                 } else if (group_faults > max_faults) {
    2438             :                         max_faults = group_faults;
    2439             :                         max_nid = nid;
    2440             :                 }
    2441             :         }
    2442             : 
    2443             :         if (ng) {
    2444             :                 numa_group_count_active_nodes(ng);
    2445             :                 spin_unlock_irq(group_lock);
    2446             :                 max_nid = preferred_group_nid(p, max_nid);
    2447             :         }
    2448             : 
    2449             :         if (max_faults) {
    2450             :                 /* Set the new preferred node */
    2451             :                 if (max_nid != p->numa_preferred_nid)
    2452             :                         sched_setnuma(p, max_nid);
    2453             :         }
    2454             : 
    2455             :         update_task_scan_period(p, fault_types[0], fault_types[1]);
    2456             : }
    2457             : 
    2458             : static inline int get_numa_group(struct numa_group *grp)
    2459             : {
    2460             :         return refcount_inc_not_zero(&grp->refcount);
    2461             : }
    2462             : 
    2463             : static inline void put_numa_group(struct numa_group *grp)
    2464             : {
    2465             :         if (refcount_dec_and_test(&grp->refcount))
    2466             :                 kfree_rcu(grp, rcu);
    2467             : }
    2468             : 
    2469             : static void task_numa_group(struct task_struct *p, int cpupid, int flags,
    2470             :                         int *priv)
    2471             : {
    2472             :         struct numa_group *grp, *my_grp;
    2473             :         struct task_struct *tsk;
    2474             :         bool join = false;
    2475             :         int cpu = cpupid_to_cpu(cpupid);
    2476             :         int i;
    2477             : 
    2478             :         if (unlikely(!deref_curr_numa_group(p))) {
    2479             :                 unsigned int size = sizeof(struct numa_group) +
    2480             :                                     4*nr_node_ids*sizeof(unsigned long);
    2481             : 
    2482             :                 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
    2483             :                 if (!grp)
    2484             :                         return;
    2485             : 
    2486             :                 refcount_set(&grp->refcount, 1);
    2487             :                 grp->active_nodes = 1;
    2488             :                 grp->max_faults_cpu = 0;
    2489             :                 spin_lock_init(&grp->lock);
    2490             :                 grp->gid = p->pid;
    2491             :                 /* Second half of the array tracks nids where faults happen */
    2492             :                 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
    2493             :                                                 nr_node_ids;
    2494             : 
    2495             :                 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
    2496             :                         grp->faults[i] = p->numa_faults[i];
    2497             : 
    2498             :                 grp->total_faults = p->total_numa_faults;
    2499             : 
    2500             :                 grp->nr_tasks++;
    2501             :                 rcu_assign_pointer(p->numa_group, grp);
    2502             :         }
    2503             : 
    2504             :         rcu_read_lock();
    2505             :         tsk = READ_ONCE(cpu_rq(cpu)->curr);
    2506             : 
    2507             :         if (!cpupid_match_pid(tsk, cpupid))
    2508             :                 goto no_join;
    2509             : 
    2510             :         grp = rcu_dereference(tsk->numa_group);
    2511             :         if (!grp)
    2512             :                 goto no_join;
    2513             : 
    2514             :         my_grp = deref_curr_numa_group(p);
    2515             :         if (grp == my_grp)
    2516             :                 goto no_join;
    2517             : 
    2518             :         /*
    2519             :          * Only join the other group if its bigger; if we're the bigger group,
    2520             :          * the other task will join us.
    2521             :          */
    2522             :         if (my_grp->nr_tasks > grp->nr_tasks)
    2523             :                 goto no_join;
    2524             : 
    2525             :         /*
    2526             :          * Tie-break on the grp address.
    2527             :          */
    2528             :         if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
    2529             :                 goto no_join;
    2530             : 
    2531             :         /* Always join threads in the same process. */
    2532             :         if (tsk->mm == current->mm)
    2533             :                 join = true;
    2534             : 
    2535             :         /* Simple filter to avoid false positives due to PID collisions */
    2536             :         if (flags & TNF_SHARED)
    2537             :                 join = true;
    2538             : 
    2539             :         /* Update priv based on whether false sharing was detected */
    2540             :         *priv = !join;
    2541             : 
    2542             :         if (join && !get_numa_group(grp))
    2543             :                 goto no_join;
    2544             : 
    2545             :         rcu_read_unlock();
    2546             : 
    2547             :         if (!join)
    2548             :                 return;
    2549             : 
    2550             :         BUG_ON(irqs_disabled());
    2551             :         double_lock_irq(&my_grp->lock, &grp->lock);
    2552             : 
    2553             :         for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
    2554             :                 my_grp->faults[i] -= p->numa_faults[i];
    2555             :                 grp->faults[i] += p->numa_faults[i];
    2556             :         }
    2557             :         my_grp->total_faults -= p->total_numa_faults;
    2558             :         grp->total_faults += p->total_numa_faults;
    2559             : 
    2560             :         my_grp->nr_tasks--;
    2561             :         grp->nr_tasks++;
    2562             : 
    2563             :         spin_unlock(&my_grp->lock);
    2564             :         spin_unlock_irq(&grp->lock);
    2565             : 
    2566             :         rcu_assign_pointer(p->numa_group, grp);
    2567             : 
    2568             :         put_numa_group(my_grp);
    2569             :         return;
    2570             : 
    2571             : no_join:
    2572             :         rcu_read_unlock();
    2573             :         return;
    2574             : }
    2575             : 
    2576             : /*
    2577             :  * Get rid of NUMA staticstics associated with a task (either current or dead).
    2578             :  * If @final is set, the task is dead and has reached refcount zero, so we can
    2579             :  * safely free all relevant data structures. Otherwise, there might be
    2580             :  * concurrent reads from places like load balancing and procfs, and we should
    2581             :  * reset the data back to default state without freeing ->numa_faults.
    2582             :  */
    2583             : void task_numa_free(struct task_struct *p, bool final)
    2584             : {
    2585             :         /* safe: p either is current or is being freed by current */
    2586             :         struct numa_group *grp = rcu_dereference_raw(p->numa_group);
    2587             :         unsigned long *numa_faults = p->numa_faults;
    2588             :         unsigned long flags;
    2589             :         int i;
    2590             : 
    2591             :         if (!numa_faults)
    2592             :                 return;
    2593             : 
    2594             :         if (grp) {
    2595             :                 spin_lock_irqsave(&grp->lock, flags);
    2596             :                 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
    2597             :                         grp->faults[i] -= p->numa_faults[i];
    2598             :                 grp->total_faults -= p->total_numa_faults;
    2599             : 
    2600             :                 grp->nr_tasks--;
    2601             :                 spin_unlock_irqrestore(&grp->lock, flags);
    2602             :                 RCU_INIT_POINTER(p->numa_group, NULL);
    2603             :                 put_numa_group(grp);
    2604             :         }
    2605             : 
    2606             :         if (final) {
    2607             :                 p->numa_faults = NULL;
    2608             :                 kfree(numa_faults);
    2609             :         } else {
    2610             :                 p->total_numa_faults = 0;
    2611             :                 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
    2612             :                         numa_faults[i] = 0;
    2613             :         }
    2614             : }
    2615             : 
    2616             : /*
    2617             :  * Got a PROT_NONE fault for a page on @node.
    2618             :  */
    2619             : void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
    2620             : {
    2621             :         struct task_struct *p = current;
    2622             :         bool migrated = flags & TNF_MIGRATED;
    2623             :         int cpu_node = task_node(current);
    2624             :         int local = !!(flags & TNF_FAULT_LOCAL);
    2625             :         struct numa_group *ng;
    2626             :         int priv;
    2627             : 
    2628             :         if (!static_branch_likely(&sched_numa_balancing))
    2629             :                 return;
    2630             : 
    2631             :         /* for example, ksmd faulting in a user's mm */
    2632             :         if (!p->mm)
    2633             :                 return;
    2634             : 
    2635             :         /* Allocate buffer to track faults on a per-node basis */
    2636             :         if (unlikely(!p->numa_faults)) {
    2637             :                 int size = sizeof(*p->numa_faults) *
    2638             :                            NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
    2639             : 
    2640             :                 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
    2641             :                 if (!p->numa_faults)
    2642             :                         return;
    2643             : 
    2644             :                 p->total_numa_faults = 0;
    2645             :                 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
    2646             :         }
    2647             : 
    2648             :         /*
    2649             :          * First accesses are treated as private, otherwise consider accesses
    2650             :          * to be private if the accessing pid has not changed
    2651             :          */
    2652             :         if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
    2653             :                 priv = 1;
    2654             :         } else {
    2655             :                 priv = cpupid_match_pid(p, last_cpupid);
    2656             :                 if (!priv && !(flags & TNF_NO_GROUP))
    2657             :                         task_numa_group(p, last_cpupid, flags, &priv);
    2658             :         }
    2659             : 
    2660             :         /*
    2661             :          * If a workload spans multiple NUMA nodes, a shared fault that
    2662             :          * occurs wholly within the set of nodes that the workload is
    2663             :          * actively using should be counted as local. This allows the
    2664             :          * scan rate to slow down when a workload has settled down.
    2665             :          */
    2666             :         ng = deref_curr_numa_group(p);
    2667             :         if (!priv && !local && ng && ng->active_nodes > 1 &&
    2668             :                                 numa_is_active_node(cpu_node, ng) &&
    2669             :                                 numa_is_active_node(mem_node, ng))
    2670             :                 local = 1;
    2671             : 
    2672             :         /*
    2673             :          * Retry to migrate task to preferred node periodically, in case it
    2674             :          * previously failed, or the scheduler moved us.
    2675             :          */
    2676             :         if (time_after(jiffies, p->numa_migrate_retry)) {
    2677             :                 task_numa_placement(p);
    2678             :                 numa_migrate_preferred(p);
    2679             :         }
    2680             : 
    2681             :         if (migrated)
    2682             :                 p->numa_pages_migrated += pages;
    2683             :         if (flags & TNF_MIGRATE_FAIL)
    2684             :                 p->numa_faults_locality[2] += pages;
    2685             : 
    2686             :         p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
    2687             :         p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
    2688             :         p->numa_faults_locality[local] += pages;
    2689             : }
    2690             : 
    2691             : static void reset_ptenuma_scan(struct task_struct *p)
    2692             : {
    2693             :         /*
    2694             :          * We only did a read acquisition of the mmap sem, so
    2695             :          * p->mm->numa_scan_seq is written to without exclusive access
    2696             :          * and the update is not guaranteed to be atomic. That's not
    2697             :          * much of an issue though, since this is just used for
    2698             :          * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
    2699             :          * expensive, to avoid any form of compiler optimizations:
    2700             :          */
    2701             :         WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
    2702             :         p->mm->numa_scan_offset = 0;
    2703             : }
    2704             : 
    2705             : /*
    2706             :  * The expensive part of numa migration is done from task_work context.
    2707             :  * Triggered from task_tick_numa().
    2708             :  */
    2709             : static void task_numa_work(struct callback_head *work)
    2710             : {
    2711             :         unsigned long migrate, next_scan, now = jiffies;
    2712             :         struct task_struct *p = current;
    2713             :         struct mm_struct *mm = p->mm;
    2714             :         u64 runtime = p->se.sum_exec_runtime;
    2715             :         struct vm_area_struct *vma;
    2716             :         unsigned long start, end;
    2717             :         unsigned long nr_pte_updates = 0;
    2718             :         long pages, virtpages;
    2719             : 
    2720             :         SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
    2721             : 
    2722             :         work->next = work;
    2723             :         /*
    2724             :          * Who cares about NUMA placement when they're dying.
    2725             :          *
    2726             :          * NOTE: make sure not to dereference p->mm before this check,
    2727             :          * exit_task_work() happens _after_ exit_mm() so we could be called
    2728             :          * without p->mm even though we still had it when we enqueued this
    2729             :          * work.
    2730             :          */
    2731             :         if (p->flags & PF_EXITING)
    2732             :                 return;
    2733             : 
    2734             :         if (!mm->numa_next_scan) {
    2735             :                 mm->numa_next_scan = now +
    2736             :                         msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
    2737             :         }
    2738             : 
    2739             :         /*
    2740             :          * Enforce maximal scan/migration frequency..
    2741             :          */
    2742             :         migrate = mm->numa_next_scan;
    2743             :         if (time_before(now, migrate))
    2744             :                 return;
    2745             : 
    2746             :         if (p->numa_scan_period == 0) {
    2747             :                 p->numa_scan_period_max = task_scan_max(p);
    2748             :                 p->numa_scan_period = task_scan_start(p);
    2749             :         }
    2750             : 
    2751             :         next_scan = now + msecs_to_jiffies(p->numa_scan_period);
    2752             :         if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
    2753             :                 return;
    2754             : 
    2755             :         /*
    2756             :          * Delay this task enough that another task of this mm will likely win
    2757             :          * the next time around.
    2758             :          */
    2759             :         p->node_stamp += 2 * TICK_NSEC;
    2760             : 
    2761             :         start = mm->numa_scan_offset;
    2762             :         pages = sysctl_numa_balancing_scan_size;
    2763             :         pages <<= 20 - PAGE_SHIFT; /* MB in pages */
    2764             :         virtpages = pages * 8;     /* Scan up to this much virtual space */
    2765             :         if (!pages)
    2766             :                 return;
    2767             : 
    2768             : 
    2769             :         if (!mmap_read_trylock(mm))
    2770             :                 return;
    2771             :         vma = find_vma(mm, start);
    2772             :         if (!vma) {
    2773             :                 reset_ptenuma_scan(p);
    2774             :                 start = 0;
    2775             :                 vma = mm->mmap;
    2776             :         }
    2777             :         for (; vma; vma = vma->vm_next) {
    2778             :                 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
    2779             :                         is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
    2780             :                         continue;
    2781             :                 }
    2782             : 
    2783             :                 /*
    2784             :                  * Shared library pages mapped by multiple processes are not
    2785             :                  * migrated as it is expected they are cache replicated. Avoid
    2786             :                  * hinting faults in read-only file-backed mappings or the vdso
    2787             :                  * as migrating the pages will be of marginal benefit.
    2788             :                  */
    2789             :                 if (!vma->vm_mm ||
    2790             :                     (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
    2791             :                         continue;
    2792             : 
    2793             :                 /*
    2794             :                  * Skip inaccessible VMAs to avoid any confusion between
    2795             :                  * PROT_NONE and NUMA hinting ptes
    2796             :                  */
    2797             :                 if (!vma_is_accessible(vma))
    2798             :                         continue;
    2799             : 
    2800             :                 do {
    2801             :                         start = max(start, vma->vm_start);
    2802             :                         end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
    2803             :                         end = min(end, vma->vm_end);
    2804             :                         nr_pte_updates = change_prot_numa(vma, start, end);
    2805             : 
    2806             :                         /*
    2807             :                          * Try to scan sysctl_numa_balancing_size worth of
    2808             :                          * hpages that have at least one present PTE that
    2809             :                          * is not already pte-numa. If the VMA contains
    2810             :                          * areas that are unused or already full of prot_numa
    2811             :                          * PTEs, scan up to virtpages, to skip through those
    2812             :                          * areas faster.
    2813             :                          */
    2814             :                         if (nr_pte_updates)
    2815             :                                 pages -= (end - start) >> PAGE_SHIFT;
    2816             :                         virtpages -= (end - start) >> PAGE_SHIFT;
    2817             : 
    2818             :                         start = end;
    2819             :                         if (pages <= 0 || virtpages <= 0)
    2820             :                                 goto out;
    2821             : 
    2822             :                         cond_resched();
    2823             :                 } while (end != vma->vm_end);
    2824             :         }
    2825             : 
    2826             : out:
    2827             :         /*
    2828             :          * It is possible to reach the end of the VMA list but the last few
    2829             :          * VMAs are not guaranteed to the vma_migratable. If they are not, we
    2830             :          * would find the !migratable VMA on the next scan but not reset the
    2831             :          * scanner to the start so check it now.
    2832             :          */
    2833             :         if (vma)
    2834             :                 mm->numa_scan_offset = start;
    2835             :         else
    2836             :                 reset_ptenuma_scan(p);
    2837             :         mmap_read_unlock(mm);
    2838             : 
    2839             :         /*
    2840             :          * Make sure tasks use at least 32x as much time to run other code
    2841             :          * than they used here, to limit NUMA PTE scanning overhead to 3% max.
    2842             :          * Usually update_task_scan_period slows down scanning enough; on an
    2843             :          * overloaded system we need to limit overhead on a per task basis.
    2844             :          */
    2845             :         if (unlikely(p->se.sum_exec_runtime != runtime)) {
    2846             :                 u64 diff = p->se.sum_exec_runtime - runtime;
    2847             :                 p->node_stamp += 32 * diff;
    2848             :         }
    2849             : }
    2850             : 
    2851             : void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
    2852             : {
    2853             :         int mm_users = 0;
    2854             :         struct mm_struct *mm = p->mm;
    2855             : 
    2856             :         if (mm) {
    2857             :                 mm_users = atomic_read(&mm->mm_users);
    2858             :                 if (mm_users == 1) {
    2859             :                         mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
    2860             :                         mm->numa_scan_seq = 0;
    2861             :                 }
    2862             :         }
    2863             :         p->node_stamp                        = 0;
    2864             :         p->numa_scan_seq             = mm ? mm->numa_scan_seq : 0;
    2865             :         p->numa_scan_period          = sysctl_numa_balancing_scan_delay;
    2866             :         /* Protect against double add, see task_tick_numa and task_numa_work */
    2867             :         p->numa_work.next            = &p->numa_work;
    2868             :         p->numa_faults                       = NULL;
    2869             :         RCU_INIT_POINTER(p->numa_group, NULL);
    2870             :         p->last_task_numa_placement  = 0;
    2871             :         p->last_sum_exec_runtime     = 0;
    2872             : 
    2873             :         init_task_work(&p->numa_work, task_numa_work);
    2874             : 
    2875             :         /* New address space, reset the preferred nid */
    2876             :         if (!(clone_flags & CLONE_VM)) {
    2877             :                 p->numa_preferred_nid = NUMA_NO_NODE;
    2878             :                 return;
    2879             :         }
    2880             : 
    2881             :         /*
    2882             :          * New thread, keep existing numa_preferred_nid which should be copied
    2883             :          * already by arch_dup_task_struct but stagger when scans start.
    2884             :          */
    2885             :         if (mm) {
    2886             :                 unsigned int delay;
    2887             : 
    2888             :                 delay = min_t(unsigned int, task_scan_max(current),
    2889             :                         current->numa_scan_period * mm_users * NSEC_PER_MSEC);
    2890             :                 delay += 2 * TICK_NSEC;
    2891             :                 p->node_stamp = delay;
    2892             :         }
    2893             : }
    2894             : 
    2895             : /*
    2896             :  * Drive the periodic memory faults..
    2897             :  */
    2898             : static void task_tick_numa(struct rq *rq, struct task_struct *curr)
    2899             : {
    2900             :         struct callback_head *work = &curr->numa_work;
    2901             :         u64 period, now;
    2902             : 
    2903             :         /*
    2904             :          * We don't care about NUMA placement if we don't have memory.
    2905             :          */
    2906             :         if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
    2907             :                 return;
    2908             : 
    2909             :         /*
    2910             :          * Using runtime rather than walltime has the dual advantage that
    2911             :          * we (mostly) drive the selection from busy threads and that the
    2912             :          * task needs to have done some actual work before we bother with
    2913             :          * NUMA placement.
    2914             :          */
    2915             :         now = curr->se.sum_exec_runtime;
    2916             :         period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
    2917             : 
    2918             :         if (now > curr->node_stamp + period) {
    2919             :                 if (!curr->node_stamp)
    2920             :                         curr->numa_scan_period = task_scan_start(curr);
    2921             :                 curr->node_stamp += period;
    2922             : 
    2923             :                 if (!time_before(jiffies, curr->mm->numa_next_scan))
    2924             :                         task_work_add(curr, work, TWA_RESUME);
    2925             :         }
    2926             : }
    2927             : 
    2928             : static void update_scan_period(struct task_struct *p, int new_cpu)
    2929             : {
    2930             :         int src_nid = cpu_to_node(task_cpu(p));
    2931             :         int dst_nid = cpu_to_node(new_cpu);
    2932             : 
    2933             :         if (!static_branch_likely(&sched_numa_balancing))
    2934             :                 return;
    2935             : 
    2936             :         if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
    2937             :                 return;
    2938             : 
    2939             :         if (src_nid == dst_nid)
    2940             :                 return;
    2941             : 
    2942             :         /*
    2943             :          * Allow resets if faults have been trapped before one scan
    2944             :          * has completed. This is most likely due to a new task that
    2945             :          * is pulled cross-node due to wakeups or load balancing.
    2946             :          */
    2947             :         if (p->numa_scan_seq) {
    2948             :                 /*
    2949             :                  * Avoid scan adjustments if moving to the preferred
    2950             :                  * node or if the task was not previously running on
    2951             :                  * the preferred node.
    2952             :                  */
    2953             :                 if (dst_nid == p->numa_preferred_nid ||
    2954             :                     (p->numa_preferred_nid != NUMA_NO_NODE &&
    2955             :                         src_nid != p->numa_preferred_nid))
    2956             :                         return;
    2957             :         }
    2958             : 
    2959             :         p->numa_scan_period = task_scan_start(p);
    2960             : }
    2961             : 
    2962             : #else
    2963             : static void task_tick_numa(struct rq *rq, struct task_struct *curr)
    2964             : {
    2965             : }
    2966             : 
    2967       15764 : static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
    2968             : {
    2969       15764 : }
    2970             : 
    2971       15767 : static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
    2972             : {
    2973       15767 : }
    2974             : 
    2975         994 : static inline void update_scan_period(struct task_struct *p, int new_cpu)
    2976             : {
    2977         994 : }
    2978             : 
    2979             : #endif /* CONFIG_NUMA_BALANCING */
    2980             : 
    2981             : static void
    2982       15764 : account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    2983             : {
    2984       15764 :         update_load_add(&cfs_rq->load, se->load.weight);
    2985             : #ifdef CONFIG_SMP
    2986       15764 :         if (entity_is_task(se)) {
    2987       15764 :                 struct rq *rq = rq_of(cfs_rq);
    2988             : 
    2989       15764 :                 account_numa_enqueue(rq, task_of(se));
    2990       15764 :                 list_add(&se->group_node, &rq->cfs_tasks);
    2991             :         }
    2992             : #endif
    2993       15764 :         cfs_rq->nr_running++;
    2994             : }
    2995             : 
    2996             : static void
    2997       15767 : account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
    2998             : {
    2999       15767 :         update_load_sub(&cfs_rq->load, se->load.weight);
    3000             : #ifdef CONFIG_SMP
    3001       15767 :         if (entity_is_task(se)) {
    3002       15767 :                 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
    3003       15767 :                 list_del_init(&se->group_node);
    3004             :         }
    3005             : #endif
    3006       15767 :         cfs_rq->nr_running--;
    3007             : }
    3008             : 
    3009             : /*
    3010             :  * Signed add and clamp on underflow.
    3011             :  *
    3012             :  * Explicitly do a load-store to ensure the intermediate value never hits
    3013             :  * memory. This allows lockless observations without ever seeing the negative
    3014             :  * values.
    3015             :  */
    3016             : #define add_positive(_ptr, _val) do {                           \
    3017             :         typeof(_ptr) ptr = (_ptr);                              \
    3018             :         typeof(_val) val = (_val);                              \
    3019             :         typeof(*ptr) res, var = READ_ONCE(*ptr);                \
    3020             :                                                                 \
    3021             :         res = var + val;                                        \
    3022             :                                                                 \
    3023             :         if (val < 0 && res > var)                               \
    3024             :                 res = 0;                                        \
    3025             :                                                                 \
    3026             :         WRITE_ONCE(*ptr, res);                                  \
    3027             : } while (0)
    3028             : 
    3029             : /*
    3030             :  * Unsigned subtract and clamp on underflow.
    3031             :  *
    3032             :  * Explicitly do a load-store to ensure the intermediate value never hits
    3033             :  * memory. This allows lockless observations without ever seeing the negative
    3034             :  * values.
    3035             :  */
    3036             : #define sub_positive(_ptr, _val) do {                           \
    3037             :         typeof(_ptr) ptr = (_ptr);                              \
    3038             :         typeof(*ptr) val = (_val);                              \
    3039             :         typeof(*ptr) res, var = READ_ONCE(*ptr);                \
    3040             :         res = var - val;                                        \
    3041             :         if (res > var)                                               \
    3042             :                 res = 0;                                        \
    3043             :         WRITE_ONCE(*ptr, res);                                  \
    3044             : } while (0)
    3045             : 
    3046             : /*
    3047             :  * Remove and clamp on negative, from a local variable.
    3048             :  *
    3049             :  * A variant of sub_positive(), which does not use explicit load-store
    3050             :  * and is thus optimized for local variable updates.
    3051             :  */
    3052             : #define lsub_positive(_ptr, _val) do {                          \
    3053             :         typeof(_ptr) ptr = (_ptr);                              \
    3054             :         *ptr -= min_t(typeof(*ptr), *ptr, _val);                \
    3055             : } while (0)
    3056             : 
    3057             : #ifdef CONFIG_SMP
    3058             : static inline void
    3059        2007 : enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3060             : {
    3061        2007 :         cfs_rq->avg.load_avg += se->avg.load_avg;
    3062        2007 :         cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
    3063        2007 : }
    3064             : 
    3065             : static inline void
    3066         916 : dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3067             : {
    3068         916 :         sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
    3069        1833 :         sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
    3070         916 : }
    3071             : #else
    3072             : static inline void
    3073             : enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
    3074             : static inline void
    3075             : dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
    3076             : #endif
    3077             : 
    3078          25 : static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
    3079             :                             unsigned long weight)
    3080             : {
    3081          25 :         if (se->on_rq) {
    3082             :                 /* commit outstanding execution time */
    3083           0 :                 if (cfs_rq->curr == se)
    3084           0 :                         update_curr(cfs_rq);
    3085           0 :                 update_load_sub(&cfs_rq->load, se->load.weight);
    3086             :         }
    3087          25 :         dequeue_load_avg(cfs_rq, se);
    3088             : 
    3089          25 :         update_load_set(&se->load, weight);
    3090             : 
    3091             : #ifdef CONFIG_SMP
    3092          25 :         do {
    3093          25 :                 u32 divider = get_pelt_divider(&se->avg);
    3094             : 
    3095          50 :                 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
    3096          25 :         } while (0);
    3097             : #endif
    3098             : 
    3099          25 :         enqueue_load_avg(cfs_rq, se);
    3100          25 :         if (se->on_rq)
    3101           0 :                 update_load_add(&cfs_rq->load, se->load.weight);
    3102             : 
    3103          25 : }
    3104             : 
    3105          25 : void reweight_task(struct task_struct *p, int prio)
    3106             : {
    3107          25 :         struct sched_entity *se = &p->se;
    3108          25 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    3109          25 :         struct load_weight *load = &se->load;
    3110          25 :         unsigned long weight = scale_load(sched_prio_to_weight[prio]);
    3111             : 
    3112          25 :         reweight_entity(cfs_rq, se, weight);
    3113          25 :         load->inv_weight = sched_prio_to_wmult[prio];
    3114          25 : }
    3115             : 
    3116             : #ifdef CONFIG_FAIR_GROUP_SCHED
    3117             : #ifdef CONFIG_SMP
    3118             : /*
    3119             :  * All this does is approximate the hierarchical proportion which includes that
    3120             :  * global sum we all love to hate.
    3121             :  *
    3122             :  * That is, the weight of a group entity, is the proportional share of the
    3123             :  * group weight based on the group runqueue weights. That is:
    3124             :  *
    3125             :  *                     tg->weight * grq->load.weight
    3126             :  *   ge->load.weight = -----------------------------               (1)
    3127             :  *                        \Sum grq->load.weight
    3128             :  *
    3129             :  * Now, because computing that sum is prohibitively expensive to compute (been
    3130             :  * there, done that) we approximate it with this average stuff. The average
    3131             :  * moves slower and therefore the approximation is cheaper and more stable.
    3132             :  *
    3133             :  * So instead of the above, we substitute:
    3134             :  *
    3135             :  *   grq->load.weight -> grq->avg.load_avg                         (2)
    3136             :  *
    3137             :  * which yields the following:
    3138             :  *
    3139             :  *                     tg->weight * grq->avg.load_avg
    3140             :  *   ge->load.weight = ------------------------------              (3)
    3141             :  *                              tg->load_avg
    3142             :  *
    3143             :  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
    3144             :  *
    3145             :  * That is shares_avg, and it is right (given the approximation (2)).
    3146             :  *
    3147             :  * The problem with it is that because the average is slow -- it was designed
    3148             :  * to be exactly that of course -- this leads to transients in boundary
    3149             :  * conditions. In specific, the case where the group was idle and we start the
    3150             :  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
    3151             :  * yielding bad latency etc..
    3152             :  *
    3153             :  * Now, in that special case (1) reduces to:
    3154             :  *
    3155             :  *                     tg->weight * grq->load.weight
    3156             :  *   ge->load.weight = ----------------------------- = tg->weight   (4)
    3157             :  *                          grp->load.weight
    3158             :  *
    3159             :  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
    3160             :  *
    3161             :  * So what we do is modify our approximation (3) to approach (4) in the (near)
    3162             :  * UP case, like:
    3163             :  *
    3164             :  *   ge->load.weight =
    3165             :  *
    3166             :  *              tg->weight * grq->load.weight
    3167             :  *     ---------------------------------------------------         (5)
    3168             :  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
    3169             :  *
    3170             :  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
    3171             :  * we need to use grq->avg.load_avg as its lower bound, which then gives:
    3172             :  *
    3173             :  *
    3174             :  *                     tg->weight * grq->load.weight
    3175             :  *   ge->load.weight = -----------------------------            (6)
    3176             :  *                              tg_load_avg'
    3177             :  *
    3178             :  * Where:
    3179             :  *
    3180             :  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
    3181             :  *                  max(grq->load.weight, grq->avg.load_avg)
    3182             :  *
    3183             :  * And that is shares_weight and is icky. In the (near) UP case it approaches
    3184             :  * (4) while in the normal case it approaches (3). It consistently
    3185             :  * overestimates the ge->load.weight and therefore:
    3186             :  *
    3187             :  *   \Sum ge->load.weight >= tg->weight
    3188             :  *
    3189             :  * hence icky!
    3190             :  */
    3191             : static long calc_group_shares(struct cfs_rq *cfs_rq)
    3192             : {
    3193             :         long tg_weight, tg_shares, load, shares;
    3194             :         struct task_group *tg = cfs_rq->tg;
    3195             : 
    3196             :         tg_shares = READ_ONCE(tg->shares);
    3197             : 
    3198             :         load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
    3199             : 
    3200             :         tg_weight = atomic_long_read(&tg->load_avg);
    3201             : 
    3202             :         /* Ensure tg_weight >= load */
    3203             :         tg_weight -= cfs_rq->tg_load_avg_contrib;
    3204             :         tg_weight += load;
    3205             : 
    3206             :         shares = (tg_shares * load);
    3207             :         if (tg_weight)
    3208             :                 shares /= tg_weight;
    3209             : 
    3210             :         /*
    3211             :          * MIN_SHARES has to be unscaled here to support per-CPU partitioning
    3212             :          * of a group with small tg->shares value. It is a floor value which is
    3213             :          * assigned as a minimum load.weight to the sched_entity representing
    3214             :          * the group on a CPU.
    3215             :          *
    3216             :          * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
    3217             :          * on an 8-core system with 8 tasks each runnable on one CPU shares has
    3218             :          * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
    3219             :          * case no task is runnable on a CPU MIN_SHARES=2 should be returned
    3220             :          * instead of 0.
    3221             :          */
    3222             :         return clamp_t(long, shares, MIN_SHARES, tg_shares);
    3223             : }
    3224             : #endif /* CONFIG_SMP */
    3225             : 
    3226             : static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
    3227             : 
    3228             : /*
    3229             :  * Recomputes the group entity based on the current state of its group
    3230             :  * runqueue.
    3231             :  */
    3232             : static void update_cfs_group(struct sched_entity *se)
    3233             : {
    3234             :         struct cfs_rq *gcfs_rq = group_cfs_rq(se);
    3235             :         long shares;
    3236             : 
    3237             :         if (!gcfs_rq)
    3238             :                 return;
    3239             : 
    3240             :         if (throttled_hierarchy(gcfs_rq))
    3241             :                 return;
    3242             : 
    3243             : #ifndef CONFIG_SMP
    3244             :         shares = READ_ONCE(gcfs_rq->tg->shares);
    3245             : 
    3246             :         if (likely(se->load.weight == shares))
    3247             :                 return;
    3248             : #else
    3249             :         shares   = calc_group_shares(gcfs_rq);
    3250             : #endif
    3251             : 
    3252             :         reweight_entity(cfs_rq_of(se), se, shares);
    3253             : }
    3254             : 
    3255             : #else /* CONFIG_FAIR_GROUP_SCHED */
    3256       46286 : static inline void update_cfs_group(struct sched_entity *se)
    3257             : {
    3258       46286 : }
    3259             : #endif /* CONFIG_FAIR_GROUP_SCHED */
    3260             : 
    3261        2874 : static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
    3262             : {
    3263        2874 :         struct rq *rq = rq_of(cfs_rq);
    3264             : 
    3265        2874 :         if (&rq->cfs == cfs_rq) {
    3266             :                 /*
    3267             :                  * There are a few boundary cases this might miss but it should
    3268             :                  * get called often enough that that should (hopefully) not be
    3269             :                  * a real problem.
    3270             :                  *
    3271             :                  * It will not get called when we go idle, because the idle
    3272             :                  * thread is a different class (!fair), nor will the utilization
    3273             :                  * number include things like RT tasks.
    3274             :                  *
    3275             :                  * As is, the util number is not freq-invariant (we'd have to
    3276             :                  * implement arch_scale_freq_capacity() for that).
    3277             :                  *
    3278             :                  * See cpu_util().
    3279             :                  */
    3280        2874 :                 cpufreq_update_util(rq, flags);
    3281             :         }
    3282             : }
    3283             : 
    3284             : #ifdef CONFIG_SMP
    3285             : #ifdef CONFIG_FAIR_GROUP_SCHED
    3286             : /**
    3287             :  * update_tg_load_avg - update the tg's load avg
    3288             :  * @cfs_rq: the cfs_rq whose avg changed
    3289             :  *
    3290             :  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
    3291             :  * However, because tg->load_avg is a global value there are performance
    3292             :  * considerations.
    3293             :  *
    3294             :  * In order to avoid having to look at the other cfs_rq's, we use a
    3295             :  * differential update where we store the last value we propagated. This in
    3296             :  * turn allows skipping updates if the differential is 'small'.
    3297             :  *
    3298             :  * Updating tg's load_avg is necessary before update_cfs_share().
    3299             :  */
    3300             : static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
    3301             : {
    3302             :         long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
    3303             : 
    3304             :         /*
    3305             :          * No need to update load_avg for root_task_group as it is not used.
    3306             :          */
    3307             :         if (cfs_rq->tg == &root_task_group)
    3308             :                 return;
    3309             : 
    3310             :         if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
    3311             :                 atomic_long_add(delta, &cfs_rq->tg->load_avg);
    3312             :                 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
    3313             :         }
    3314             : }
    3315             : 
    3316             : /*
    3317             :  * Called within set_task_rq() right before setting a task's CPU. The
    3318             :  * caller only guarantees p->pi_lock is held; no other assumptions,
    3319             :  * including the state of rq->lock, should be made.
    3320             :  */
    3321             : void set_task_rq_fair(struct sched_entity *se,
    3322             :                       struct cfs_rq *prev, struct cfs_rq *next)
    3323             : {
    3324             :         u64 p_last_update_time;
    3325             :         u64 n_last_update_time;
    3326             : 
    3327             :         if (!sched_feat(ATTACH_AGE_LOAD))
    3328             :                 return;
    3329             : 
    3330             :         /*
    3331             :          * We are supposed to update the task to "current" time, then its up to
    3332             :          * date and ready to go to new CPU/cfs_rq. But we have difficulty in
    3333             :          * getting what current time is, so simply throw away the out-of-date
    3334             :          * time. This will result in the wakee task is less decayed, but giving
    3335             :          * the wakee more load sounds not bad.
    3336             :          */
    3337             :         if (!(se->avg.last_update_time && prev))
    3338             :                 return;
    3339             : 
    3340             : #ifndef CONFIG_64BIT
    3341             :         {
    3342             :                 u64 p_last_update_time_copy;
    3343             :                 u64 n_last_update_time_copy;
    3344             : 
    3345             :                 do {
    3346             :                         p_last_update_time_copy = prev->load_last_update_time_copy;
    3347             :                         n_last_update_time_copy = next->load_last_update_time_copy;
    3348             : 
    3349             :                         smp_rmb();
    3350             : 
    3351             :                         p_last_update_time = prev->avg.last_update_time;
    3352             :                         n_last_update_time = next->avg.last_update_time;
    3353             : 
    3354             :                 } while (p_last_update_time != p_last_update_time_copy ||
    3355             :                          n_last_update_time != n_last_update_time_copy);
    3356             :         }
    3357             : #else
    3358             :         p_last_update_time = prev->avg.last_update_time;
    3359             :         n_last_update_time = next->avg.last_update_time;
    3360             : #endif
    3361             :         __update_load_avg_blocked_se(p_last_update_time, se);
    3362             :         se->avg.last_update_time = n_last_update_time;
    3363             : }
    3364             : 
    3365             : 
    3366             : /*
    3367             :  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
    3368             :  * propagate its contribution. The key to this propagation is the invariant
    3369             :  * that for each group:
    3370             :  *
    3371             :  *   ge->avg == grq->avg                                          (1)
    3372             :  *
    3373             :  * _IFF_ we look at the pure running and runnable sums. Because they
    3374             :  * represent the very same entity, just at different points in the hierarchy.
    3375             :  *
    3376             :  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
    3377             :  * and simply copies the running/runnable sum over (but still wrong, because
    3378             :  * the group entity and group rq do not have their PELT windows aligned).
    3379             :  *
    3380             :  * However, update_tg_cfs_load() is more complex. So we have:
    3381             :  *
    3382             :  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg         (2)
    3383             :  *
    3384             :  * And since, like util, the runnable part should be directly transferable,
    3385             :  * the following would _appear_ to be the straight forward approach:
    3386             :  *
    3387             :  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg      (3)
    3388             :  *
    3389             :  * And per (1) we have:
    3390             :  *
    3391             :  *   ge->avg.runnable_avg == grq->avg.runnable_avg
    3392             :  *
    3393             :  * Which gives:
    3394             :  *
    3395             :  *                      ge->load.weight * grq->avg.load_avg
    3396             :  *   ge->avg.load_avg = -----------------------------------          (4)
    3397             :  *                               grq->load.weight
    3398             :  *
    3399             :  * Except that is wrong!
    3400             :  *
    3401             :  * Because while for entities historical weight is not important and we
    3402             :  * really only care about our future and therefore can consider a pure
    3403             :  * runnable sum, runqueues can NOT do this.
    3404             :  *
    3405             :  * We specifically want runqueues to have a load_avg that includes
    3406             :  * historical weights. Those represent the blocked load, the load we expect
    3407             :  * to (shortly) return to us. This only works by keeping the weights as
    3408             :  * integral part of the sum. We therefore cannot decompose as per (3).
    3409             :  *
    3410             :  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
    3411             :  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
    3412             :  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
    3413             :  * runnable section of these tasks overlap (or not). If they were to perfectly
    3414             :  * align the rq as a whole would be runnable 2/3 of the time. If however we
    3415             :  * always have at least 1 runnable task, the rq as a whole is always runnable.
    3416             :  *
    3417             :  * So we'll have to approximate.. :/
    3418             :  *
    3419             :  * Given the constraint:
    3420             :  *
    3421             :  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
    3422             :  *
    3423             :  * We can construct a rule that adds runnable to a rq by assuming minimal
    3424             :  * overlap.
    3425             :  *
    3426             :  * On removal, we'll assume each task is equally runnable; which yields:
    3427             :  *
    3428             :  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
    3429             :  *
    3430             :  * XXX: only do this for the part of runnable > running ?
    3431             :  *
    3432             :  */
    3433             : 
    3434             : static inline void
    3435             : update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
    3436             : {
    3437             :         long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
    3438             :         u32 divider;
    3439             : 
    3440             :         /* Nothing to update */
    3441             :         if (!delta)
    3442             :                 return;
    3443             : 
    3444             :         /*
    3445             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3446             :          * See ___update_load_avg() for details.
    3447             :          */
    3448             :         divider = get_pelt_divider(&cfs_rq->avg);
    3449             : 
    3450             :         /* Set new sched_entity's utilization */
    3451             :         se->avg.util_avg = gcfs_rq->avg.util_avg;
    3452             :         se->avg.util_sum = se->avg.util_avg * divider;
    3453             : 
    3454             :         /* Update parent cfs_rq utilization */
    3455             :         add_positive(&cfs_rq->avg.util_avg, delta);
    3456             :         cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
    3457             : }
    3458             : 
    3459             : static inline void
    3460             : update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
    3461             : {
    3462             :         long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
    3463             :         u32 divider;
    3464             : 
    3465             :         /* Nothing to update */
    3466             :         if (!delta)
    3467             :                 return;
    3468             : 
    3469             :         /*
    3470             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3471             :          * See ___update_load_avg() for details.
    3472             :          */
    3473             :         divider = get_pelt_divider(&cfs_rq->avg);
    3474             : 
    3475             :         /* Set new sched_entity's runnable */
    3476             :         se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
    3477             :         se->avg.runnable_sum = se->avg.runnable_avg * divider;
    3478             : 
    3479             :         /* Update parent cfs_rq runnable */
    3480             :         add_positive(&cfs_rq->avg.runnable_avg, delta);
    3481             :         cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
    3482             : }
    3483             : 
    3484             : static inline void
    3485             : update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
    3486             : {
    3487             :         long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
    3488             :         unsigned long load_avg;
    3489             :         u64 load_sum = 0;
    3490             :         s64 delta_sum;
    3491             :         u32 divider;
    3492             : 
    3493             :         if (!runnable_sum)
    3494             :                 return;
    3495             : 
    3496             :         gcfs_rq->prop_runnable_sum = 0;
    3497             : 
    3498             :         /*
    3499             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3500             :          * See ___update_load_avg() for details.
    3501             :          */
    3502             :         divider = get_pelt_divider(&cfs_rq->avg);
    3503             : 
    3504             :         if (runnable_sum >= 0) {
    3505             :                 /*
    3506             :                  * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
    3507             :                  * the CPU is saturated running == runnable.
    3508             :                  */
    3509             :                 runnable_sum += se->avg.load_sum;
    3510             :                 runnable_sum = min_t(long, runnable_sum, divider);
    3511             :         } else {
    3512             :                 /*
    3513             :                  * Estimate the new unweighted runnable_sum of the gcfs_rq by
    3514             :                  * assuming all tasks are equally runnable.
    3515             :                  */
    3516             :                 if (scale_load_down(gcfs_rq->load.weight)) {
    3517             :                         load_sum = div_s64(gcfs_rq->avg.load_sum,
    3518             :                                 scale_load_down(gcfs_rq->load.weight));
    3519             :                 }
    3520             : 
    3521             :                 /* But make sure to not inflate se's runnable */
    3522             :                 runnable_sum = min(se->avg.load_sum, load_sum);
    3523             :         }
    3524             : 
    3525             :         /*
    3526             :          * runnable_sum can't be lower than running_sum
    3527             :          * Rescale running sum to be in the same range as runnable sum
    3528             :          * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
    3529             :          * runnable_sum is in [0 : LOAD_AVG_MAX]
    3530             :          */
    3531             :         running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
    3532             :         runnable_sum = max(runnable_sum, running_sum);
    3533             : 
    3534             :         load_sum = (s64)se_weight(se) * runnable_sum;
    3535             :         load_avg = div_s64(load_sum, divider);
    3536             : 
    3537             :         delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
    3538             :         delta_avg = load_avg - se->avg.load_avg;
    3539             : 
    3540             :         se->avg.load_sum = runnable_sum;
    3541             :         se->avg.load_avg = load_avg;
    3542             :         add_positive(&cfs_rq->avg.load_avg, delta_avg);
    3543             :         add_positive(&cfs_rq->avg.load_sum, delta_sum);
    3544             : }
    3545             : 
    3546             : static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
    3547             : {
    3548             :         cfs_rq->propagate = 1;
    3549             :         cfs_rq->prop_runnable_sum += runnable_sum;
    3550             : }
    3551             : 
    3552             : /* Update task and its cfs_rq load average */
    3553             : static inline int propagate_entity_load_avg(struct sched_entity *se)
    3554             : {
    3555             :         struct cfs_rq *cfs_rq, *gcfs_rq;
    3556             : 
    3557             :         if (entity_is_task(se))
    3558             :                 return 0;
    3559             : 
    3560             :         gcfs_rq = group_cfs_rq(se);
    3561             :         if (!gcfs_rq->propagate)
    3562             :                 return 0;
    3563             : 
    3564             :         gcfs_rq->propagate = 0;
    3565             : 
    3566             :         cfs_rq = cfs_rq_of(se);
    3567             : 
    3568             :         add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
    3569             : 
    3570             :         update_tg_cfs_util(cfs_rq, se, gcfs_rq);
    3571             :         update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
    3572             :         update_tg_cfs_load(cfs_rq, se, gcfs_rq);
    3573             : 
    3574             :         trace_pelt_cfs_tp(cfs_rq);
    3575             :         trace_pelt_se_tp(se);
    3576             : 
    3577             :         return 1;
    3578             : }
    3579             : 
    3580             : /*
    3581             :  * Check if we need to update the load and the utilization of a blocked
    3582             :  * group_entity:
    3583             :  */
    3584             : static inline bool skip_blocked_update(struct sched_entity *se)
    3585             : {
    3586             :         struct cfs_rq *gcfs_rq = group_cfs_rq(se);
    3587             : 
    3588             :         /*
    3589             :          * If sched_entity still have not zero load or utilization, we have to
    3590             :          * decay it:
    3591             :          */
    3592             :         if (se->avg.load_avg || se->avg.util_avg)
    3593             :                 return false;
    3594             : 
    3595             :         /*
    3596             :          * If there is a pending propagation, we have to update the load and
    3597             :          * the utilization of the sched_entity:
    3598             :          */
    3599             :         if (gcfs_rq->propagate)
    3600             :                 return false;
    3601             : 
    3602             :         /*
    3603             :          * Otherwise, the load and the utilization of the sched_entity is
    3604             :          * already zero and there is no pending propagation, so it will be a
    3605             :          * waste of time to try to decay it:
    3606             :          */
    3607             :         return true;
    3608             : }
    3609             : 
    3610             : #else /* CONFIG_FAIR_GROUP_SCHED */
    3611             : 
    3612        2872 : static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
    3613             : 
    3614       75448 : static inline int propagate_entity_load_avg(struct sched_entity *se)
    3615             : {
    3616       75448 :         return 0;
    3617             : }
    3618             : 
    3619        3879 : static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
    3620             : 
    3621             : #endif /* CONFIG_FAIR_GROUP_SCHED */
    3622             : 
    3623             : /**
    3624             :  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
    3625             :  * @now: current time, as per cfs_rq_clock_pelt()
    3626             :  * @cfs_rq: cfs_rq to update
    3627             :  *
    3628             :  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
    3629             :  * avg. The immediate corollary is that all (fair) tasks must be attached, see
    3630             :  * post_init_entity_util_avg().
    3631             :  *
    3632             :  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
    3633             :  *
    3634             :  * Returns true if the load decayed or we removed load.
    3635             :  *
    3636             :  * Since both these conditions indicate a changed cfs_rq->avg.load we should
    3637             :  * call update_tg_load_avg() when this function returns true.
    3638             :  */
    3639             : static inline int
    3640       87683 : update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
    3641             : {
    3642       87683 :         unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
    3643       87683 :         struct sched_avg *sa = &cfs_rq->avg;
    3644       87683 :         int decayed = 0;
    3645             : 
    3646       87683 :         if (cfs_rq->removed.nr) {
    3647        1005 :                 unsigned long r;
    3648        1005 :                 u32 divider = get_pelt_divider(&cfs_rq->avg);
    3649             : 
    3650        1005 :                 raw_spin_lock(&cfs_rq->removed.lock);
    3651        1006 :                 swap(cfs_rq->removed.util_avg, removed_util);
    3652        1006 :                 swap(cfs_rq->removed.load_avg, removed_load);
    3653        1006 :                 swap(cfs_rq->removed.runnable_avg, removed_runnable);
    3654        1006 :                 cfs_rq->removed.nr = 0;
    3655        1006 :                 raw_spin_unlock(&cfs_rq->removed.lock);
    3656             : 
    3657        1005 :                 r = removed_load;
    3658        1005 :                 sub_positive(&sa->load_avg, r);
    3659        1005 :                 sub_positive(&sa->load_sum, r * divider);
    3660             : 
    3661        1005 :                 r = removed_util;
    3662        1005 :                 sub_positive(&sa->util_avg, r);
    3663        1005 :                 sub_positive(&sa->util_sum, r * divider);
    3664             : 
    3665        1005 :                 r = removed_runnable;
    3666        1005 :                 sub_positive(&sa->runnable_avg, r);
    3667        1005 :                 sub_positive(&sa->runnable_sum, r * divider);
    3668             : 
    3669             :                 /*
    3670             :                  * removed_runnable is the unweighted version of removed_load so we
    3671             :                  * can use it to estimate removed_load_sum.
    3672             :                  */
    3673        1005 :                 add_tg_cfs_propagate(cfs_rq,
    3674        1005 :                         -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
    3675             : 
    3676        1005 :                 decayed = 1;
    3677             :         }
    3678             : 
    3679       87683 :         decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
    3680             : 
    3681             : #ifndef CONFIG_64BIT
    3682             :         smp_wmb();
    3683             :         cfs_rq->load_last_update_time_copy = sa->last_update_time;
    3684             : #endif
    3685             : 
    3686       87651 :         return decayed;
    3687             : }
    3688             : 
    3689             : /**
    3690             :  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
    3691             :  * @cfs_rq: cfs_rq to attach to
    3692             :  * @se: sched_entity to attach
    3693             :  *
    3694             :  * Must call update_cfs_rq_load_avg() before this, since we rely on
    3695             :  * cfs_rq->avg.last_update_time being current.
    3696             :  */
    3697        1982 : static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3698             : {
    3699             :         /*
    3700             :          * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
    3701             :          * See ___update_load_avg() for details.
    3702             :          */
    3703        1982 :         u32 divider = get_pelt_divider(&cfs_rq->avg);
    3704             : 
    3705             :         /*
    3706             :          * When we attach the @se to the @cfs_rq, we must align the decay
    3707             :          * window because without that, really weird and wonderful things can
    3708             :          * happen.
    3709             :          *
    3710             :          * XXX illustrate
    3711             :          */
    3712        1982 :         se->avg.last_update_time = cfs_rq->avg.last_update_time;
    3713        1982 :         se->avg.period_contrib = cfs_rq->avg.period_contrib;
    3714             : 
    3715             :         /*
    3716             :          * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
    3717             :          * period_contrib. This isn't strictly correct, but since we're
    3718             :          * entirely outside of the PELT hierarchy, nobody cares if we truncate
    3719             :          * _sum a little.
    3720             :          */
    3721        1982 :         se->avg.util_sum = se->avg.util_avg * divider;
    3722             : 
    3723        1982 :         se->avg.runnable_sum = se->avg.runnable_avg * divider;
    3724             : 
    3725        1982 :         se->avg.load_sum = divider;
    3726        3964 :         if (se_weight(se)) {
    3727        1982 :                 se->avg.load_sum =
    3728        1982 :                         div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
    3729             :         }
    3730             : 
    3731        1982 :         enqueue_load_avg(cfs_rq, se);
    3732        1982 :         cfs_rq->avg.util_avg += se->avg.util_avg;
    3733        1982 :         cfs_rq->avg.util_sum += se->avg.util_sum;
    3734        1982 :         cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
    3735        1982 :         cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
    3736             : 
    3737        1982 :         add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
    3738             : 
    3739        1982 :         cfs_rq_util_change(cfs_rq, 0);
    3740             : 
    3741        1982 :         trace_pelt_cfs_tp(cfs_rq);
    3742        1981 : }
    3743             : 
    3744             : /**
    3745             :  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
    3746             :  * @cfs_rq: cfs_rq to detach from
    3747             :  * @se: sched_entity to detach
    3748             :  *
    3749             :  * Must call update_cfs_rq_load_avg() before this, since we rely on
    3750             :  * cfs_rq->avg.last_update_time being current.
    3751             :  */
    3752         892 : static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
    3753             : {
    3754         892 :         dequeue_load_avg(cfs_rq, se);
    3755         892 :         sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
    3756         892 :         sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
    3757         892 :         sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
    3758         892 :         sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
    3759             : 
    3760         892 :         add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
    3761             : 
    3762         892 :         cfs_rq_util_change(cfs_rq, 0);
    3763             : 
    3764         892 :         trace_pelt_cfs_tp(cfs_rq);
    3765         892 : }
    3766             : 
    3767             : /*
    3768             :  * Optional action to be done while updating the load average
    3769             :  */
    3770             : #define UPDATE_TG       0x1
    3771             : #define SKIP_AGE_LOAD   0x2
    3772             : #define DO_ATTACH       0x4
    3773             : 
    3774             : /* Update task and its cfs_rq load average */
    3775       75517 : static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    3776             : {
    3777       75517 :         u64 now = cfs_rq_clock_pelt(cfs_rq);
    3778       75605 :         int decayed;
    3779             : 
    3780             :         /*
    3781             :          * Track task load average for carrying it to new CPU after migrated, and
    3782             :          * track group sched_entity load average for task_h_load calc in migration
    3783             :          */
    3784       75605 :         if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
    3785       73647 :                 __update_load_avg_se(now, cfs_rq, se);
    3786             : 
    3787       75365 :         decayed  = update_cfs_rq_load_avg(now, cfs_rq);
    3788       75448 :         decayed |= propagate_entity_load_avg(se);
    3789             : 
    3790       75448 :         if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
    3791             : 
    3792             :                 /*
    3793             :                  * DO_ATTACH means we're here from enqueue_entity().
    3794             :                  * !last_update_time means we've passed through
    3795             :                  * migrate_task_rq_fair() indicating we migrated.
    3796             :                  *
    3797             :                  * IOW we're enqueueing a task on a new CPU.
    3798             :                  */
    3799         995 :                 attach_entity_load_avg(cfs_rq, se);
    3800         995 :                 update_tg_load_avg(cfs_rq);
    3801             : 
    3802             :         } else if (decayed) {
    3803             :                 cfs_rq_util_change(cfs_rq, 0);
    3804             : 
    3805             :                 if (flags & UPDATE_TG)
    3806       75447 :                         update_tg_load_avg(cfs_rq);
    3807             :         }
    3808       75447 : }
    3809             : 
    3810             : #ifndef CONFIG_64BIT
    3811             : static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
    3812             : {
    3813             :         u64 last_update_time_copy;
    3814             :         u64 last_update_time;
    3815             : 
    3816             :         do {
    3817             :                 last_update_time_copy = cfs_rq->load_last_update_time_copy;
    3818             :                 smp_rmb();
    3819             :                 last_update_time = cfs_rq->avg.last_update_time;
    3820             :         } while (last_update_time != last_update_time_copy);
    3821             : 
    3822             :         return last_update_time;
    3823             : }
    3824             : #else
    3825        1642 : static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
    3826             : {
    3827        1642 :         return cfs_rq->avg.last_update_time;
    3828             : }
    3829             : #endif
    3830             : 
    3831             : /*
    3832             :  * Synchronize entity load avg of dequeued entity without locking
    3833             :  * the previous rq.
    3834             :  */
    3835        1642 : static void sync_entity_load_avg(struct sched_entity *se)
    3836             : {
    3837        1642 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    3838        1642 :         u64 last_update_time;
    3839             : 
    3840        1642 :         last_update_time = cfs_rq_last_update_time(cfs_rq);
    3841        1642 :         __update_load_avg_blocked_se(last_update_time, se);
    3842        1642 : }
    3843             : 
    3844             : /*
    3845             :  * Task first catches up with cfs_rq, and then subtract
    3846             :  * itself from the cfs_rq (task must be off the queue now).
    3847             :  */
    3848        1017 : static void remove_entity_load_avg(struct sched_entity *se)
    3849             : {
    3850        1017 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    3851        1017 :         unsigned long flags;
    3852             : 
    3853             :         /*
    3854             :          * tasks cannot exit without having gone through wake_up_new_task() ->
    3855             :          * post_init_entity_util_avg() which will have added things to the
    3856             :          * cfs_rq, so we can remove unconditionally.
    3857             :          */
    3858             : 
    3859        1017 :         sync_entity_load_avg(se);
    3860             : 
    3861        1017 :         raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
    3862        1017 :         ++cfs_rq->removed.nr;
    3863        1017 :         cfs_rq->removed.util_avg     += se->avg.util_avg;
    3864        1017 :         cfs_rq->removed.load_avg     += se->avg.load_avg;
    3865        1017 :         cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
    3866        1017 :         raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
    3867        1017 : }
    3868             : 
    3869       43262 : static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
    3870             : {
    3871       43262 :         return cfs_rq->avg.runnable_avg;
    3872             : }
    3873             : 
    3874       43863 : static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
    3875             : {
    3876       43863 :         return cfs_rq->avg.load_avg;
    3877             : }
    3878             : 
    3879             : static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
    3880             : 
    3881       22274 : static inline unsigned long task_util(struct task_struct *p)
    3882             : {
    3883       22274 :         return READ_ONCE(p->se.avg.util_avg);
    3884             : }
    3885             : 
    3886       33622 : static inline unsigned long _task_util_est(struct task_struct *p)
    3887             : {
    3888       33622 :         struct util_est ue = READ_ONCE(p->se.avg.util_est);
    3889             : 
    3890       33622 :         return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
    3891             : }
    3892             : 
    3893        1465 : static inline unsigned long task_util_est(struct task_struct *p)
    3894             : {
    3895        1465 :         return max(task_util(p), _task_util_est(p));
    3896             : }
    3897             : 
    3898             : #ifdef CONFIG_UCLAMP_TASK
    3899             : static inline unsigned long uclamp_task_util(struct task_struct *p)
    3900             : {
    3901             :         return clamp(task_util_est(p),
    3902             :                      uclamp_eff_value(p, UCLAMP_MIN),
    3903             :                      uclamp_eff_value(p, UCLAMP_MAX));
    3904             : }
    3905             : #else
    3906           0 : static inline unsigned long uclamp_task_util(struct task_struct *p)
    3907             : {
    3908           0 :         return task_util_est(p);
    3909             : }
    3910             : #endif
    3911             : 
    3912       15763 : static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
    3913             :                                     struct task_struct *p)
    3914             : {
    3915       15763 :         unsigned int enqueued;
    3916             : 
    3917       15763 :         if (!sched_feat(UTIL_EST))
    3918             :                 return;
    3919             : 
    3920             :         /* Update root cfs_rq's estimated utilization */
    3921       15763 :         enqueued  = cfs_rq->avg.util_est.enqueued;
    3922       15763 :         enqueued += _task_util_est(p);
    3923       15763 :         WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
    3924             : 
    3925       15763 :         trace_sched_util_est_cfs_tp(cfs_rq);
    3926             : }
    3927             : 
    3928       15769 : static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
    3929             :                                     struct task_struct *p)
    3930             : {
    3931       15769 :         unsigned int enqueued;
    3932             : 
    3933       15769 :         if (!sched_feat(UTIL_EST))
    3934             :                 return;
    3935             : 
    3936             :         /* Update root cfs_rq's estimated utilization */
    3937       15769 :         enqueued  = cfs_rq->avg.util_est.enqueued;
    3938       15769 :         enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
    3939       15769 :         WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
    3940             : 
    3941       15769 :         trace_sched_util_est_cfs_tp(cfs_rq);
    3942             : }
    3943             : 
    3944             : /*
    3945             :  * Check if a (signed) value is within a specified (unsigned) margin,
    3946             :  * based on the observation that:
    3947             :  *
    3948             :  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
    3949             :  *
    3950             :  * NOTE: this only works when value + maring < INT_MAX.
    3951             :  */
    3952       10516 : static inline bool within_margin(int value, int margin)
    3953             : {
    3954       10516 :         return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
    3955             : }
    3956             : 
    3957       15768 : static inline void util_est_update(struct cfs_rq *cfs_rq,
    3958             :                                    struct task_struct *p,
    3959             :                                    bool task_sleep)
    3960             : {
    3961       15768 :         long last_ewma_diff;
    3962       15768 :         struct util_est ue;
    3963             : 
    3964       15768 :         if (!sched_feat(UTIL_EST))
    3965       15767 :                 return;
    3966             : 
    3967             :         /*
    3968             :          * Skip update of task's estimated utilization when the task has not
    3969             :          * yet completed an activation, e.g. being migrated.
    3970             :          */
    3971       15768 :         if (!task_sleep)
    3972             :                 return;
    3973             : 
    3974             :         /*
    3975             :          * If the PELT values haven't changed since enqueue time,
    3976             :          * skip the util_est update.
    3977             :          */
    3978       14866 :         ue = p->se.avg.util_est;
    3979       14866 :         if (ue.enqueued & UTIL_AVG_UNCHANGED)
    3980             :                 return;
    3981             : 
    3982             :         /*
    3983             :          * Reset EWMA on utilization increases, the moving average is used only
    3984             :          * to smooth utilization decreases.
    3985             :          */
    3986       14160 :         ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
    3987       14160 :         if (sched_feat(UTIL_EST_FASTUP)) {
    3988       14160 :                 if (ue.ewma < ue.enqueued) {
    3989        3644 :                         ue.ewma = ue.enqueued;
    3990        3644 :                         goto done;
    3991             :                 }
    3992             :         }
    3993             : 
    3994             :         /*
    3995             :          * Skip update of task's estimated utilization when its EWMA is
    3996             :          * already ~1% close to its last activation value.
    3997             :          */
    3998       10516 :         last_ewma_diff = ue.enqueued - ue.ewma;
    3999       10516 :         if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
    4000             :                 return;
    4001             : 
    4002             :         /*
    4003             :          * To avoid overestimation of actual task utilization, skip updates if
    4004             :          * we cannot grant there is idle time in this CPU.
    4005             :          */
    4006        6024 :         if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
    4007             :                 return;
    4008             : 
    4009             :         /*
    4010             :          * Update Task's estimated utilization
    4011             :          *
    4012             :          * When *p completes an activation we can consolidate another sample
    4013             :          * of the task size. This is done by storing the current PELT value
    4014             :          * as ue.enqueued and by using this value to update the Exponential
    4015             :          * Weighted Moving Average (EWMA):
    4016             :          *
    4017             :          *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
    4018             :          *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
    4019             :          *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
    4020             :          *          = w * (      last_ewma_diff            ) +     ewma(t-1)
    4021             :          *          = w * (last_ewma_diff  +  ewma(t-1) / w)
    4022             :          *
    4023             :          * Where 'w' is the weight of new samples, which is configured to be
    4024             :          * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
    4025             :          */
    4026        6024 :         ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
    4027        6024 :         ue.ewma  += last_ewma_diff;
    4028        6024 :         ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
    4029        9668 : done:
    4030        9668 :         WRITE_ONCE(p->se.avg.util_est, ue);
    4031             : 
    4032        9668 :         trace_sched_util_est_se_tp(&p->se);
    4033             : }
    4034             : 
    4035           0 : static inline int task_fits_capacity(struct task_struct *p, long capacity)
    4036             : {
    4037           0 :         return fits_capacity(uclamp_task_util(p), capacity);
    4038             : }
    4039             : 
    4040       43208 : static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
    4041             : {
    4042       43208 :         if (!static_branch_unlikely(&sched_asym_cpucapacity))
    4043             :                 return;
    4044             : 
    4045           0 :         if (!p || p->nr_cpus_allowed == 1) {
    4046           0 :                 rq->misfit_task_load = 0;
    4047           0 :                 return;
    4048             :         }
    4049             : 
    4050           0 :         if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
    4051           0 :                 rq->misfit_task_load = 0;
    4052           0 :                 return;
    4053             :         }
    4054             : 
    4055             :         /*
    4056             :          * Make sure that misfit_task_load will not be null even if
    4057             :          * task_h_load() returns 0.
    4058             :          */
    4059           0 :         rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
    4060             : }
    4061             : 
    4062             : #else /* CONFIG_SMP */
    4063             : 
    4064             : #define UPDATE_TG       0x0
    4065             : #define SKIP_AGE_LOAD   0x0
    4066             : #define DO_ATTACH       0x0
    4067             : 
    4068             : static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
    4069             : {
    4070             :         cfs_rq_util_change(cfs_rq, 0);
    4071             : }
    4072             : 
    4073             : static inline void remove_entity_load_avg(struct sched_entity *se) {}
    4074             : 
    4075             : static inline void
    4076             : attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
    4077             : static inline void
    4078             : detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
    4079             : 
    4080             : static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
    4081             : {
    4082             :         return 0;
    4083             : }
    4084             : 
    4085             : static inline void
    4086             : util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
    4087             : 
    4088             : static inline void
    4089             : util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
    4090             : 
    4091             : static inline void
    4092             : util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
    4093             :                 bool task_sleep) {}
    4094             : static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
    4095             : 
    4096             : #endif /* CONFIG_SMP */
    4097             : 
    4098       36854 : static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4099             : {
    4100             : #ifdef CONFIG_SCHED_DEBUG
    4101             :         s64 d = se->vruntime - cfs_rq->min_vruntime;
    4102             : 
    4103             :         if (d < 0)
    4104             :                 d = -d;
    4105             : 
    4106             :         if (d > 3*sysctl_sched_latency)
    4107             :                 schedstat_inc(cfs_rq->nr_spread_over);
    4108             : #endif
    4109       36854 : }
    4110             : 
    4111             : static void
    4112       14871 : place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
    4113             : {
    4114       14871 :         u64 vruntime = cfs_rq->min_vruntime;
    4115             : 
    4116             :         /*
    4117             :          * The 'current' period is already promised to the current tasks,
    4118             :          * however the extra weight of the new task will slow them down a
    4119             :          * little, place the new task so that it fits in the slot that
    4120             :          * stays open at the end.
    4121             :          */
    4122       14871 :         if (initial && sched_feat(START_DEBIT))
    4123         990 :                 vruntime += sched_vslice(cfs_rq, se);
    4124             : 
    4125             :         /* sleeps up to a single latency don't count. */
    4126       14871 :         if (!initial) {
    4127       13874 :                 unsigned long thresh = sysctl_sched_latency;
    4128             : 
    4129             :                 /*
    4130             :                  * Halve their sleep time's effect, to allow
    4131             :                  * for a gentler effect of sleepers:
    4132             :                  */
    4133       13874 :                 if (sched_feat(GENTLE_FAIR_SLEEPERS))
    4134       13874 :                         thresh >>= 1;
    4135             : 
    4136       13874 :                 vruntime -= thresh;
    4137             :         }
    4138             : 
    4139             :         /* ensure we never gain time by being placed backwards. */
    4140       14871 :         se->vruntime = max_vruntime(se->vruntime, vruntime);
    4141       14871 : }
    4142             : 
    4143             : static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
    4144             : 
    4145       15767 : static inline void check_schedstat_required(void)
    4146             : {
    4147             : #ifdef CONFIG_SCHEDSTATS
    4148             :         if (schedstat_enabled())
    4149             :                 return;
    4150             : 
    4151             :         /* Force schedstat enabled if a dependent tracepoint is active */
    4152             :         if (trace_sched_stat_wait_enabled()    ||
    4153             :                         trace_sched_stat_sleep_enabled()   ||
    4154             :                         trace_sched_stat_iowait_enabled()  ||
    4155             :                         trace_sched_stat_blocked_enabled() ||
    4156             :                         trace_sched_stat_runtime_enabled())  {
    4157             :                 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
    4158             :                              "stat_blocked and stat_runtime require the "
    4159             :                              "kernel parameter schedstats=enable or "
    4160             :                              "kernel.sched_schedstats=1\n");
    4161             :         }
    4162             : #endif
    4163       15767 : }
    4164             : 
    4165             : static inline bool cfs_bandwidth_used(void);
    4166             : 
    4167             : /*
    4168             :  * MIGRATION
    4169             :  *
    4170             :  *      dequeue
    4171             :  *        update_curr()
    4172             :  *          update_min_vruntime()
    4173             :  *        vruntime -= min_vruntime
    4174             :  *
    4175             :  *      enqueue
    4176             :  *        update_curr()
    4177             :  *          update_min_vruntime()
    4178             :  *        vruntime += min_vruntime
    4179             :  *
    4180             :  * this way the vruntime transition between RQs is done when both
    4181             :  * min_vruntime are up-to-date.
    4182             :  *
    4183             :  * WAKEUP (remote)
    4184             :  *
    4185             :  *      ->migrate_task_rq_fair() (p->state == TASK_WAKING)
    4186             :  *        vruntime -= min_vruntime
    4187             :  *
    4188             :  *      enqueue
    4189             :  *        update_curr()
    4190             :  *          update_min_vruntime()
    4191             :  *        vruntime += min_vruntime
    4192             :  *
    4193             :  * this way we don't have the most up-to-date min_vruntime on the originating
    4194             :  * CPU and an up-to-date min_vruntime on the destination CPU.
    4195             :  */
    4196             : 
    4197             : static void
    4198       15764 : enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    4199             : {
    4200       15764 :         bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
    4201       15764 :         bool curr = cfs_rq->curr == se;
    4202             : 
    4203             :         /*
    4204             :          * If we're the current task, we must renormalise before calling
    4205             :          * update_curr().
    4206             :          */
    4207       15764 :         if (renorm && curr)
    4208           0 :                 se->vruntime += cfs_rq->min_vruntime;
    4209             : 
    4210       15764 :         update_curr(cfs_rq);
    4211             : 
    4212             :         /*
    4213             :          * Otherwise, renormalise after, such that we're placed at the current
    4214             :          * moment in time, instead of some random moment in the past. Being
    4215             :          * placed in the past could significantly boost this task to the
    4216             :          * fairness detriment of existing tasks.
    4217             :          */
    4218       15769 :         if (renorm && !curr)
    4219        1997 :                 se->vruntime += cfs_rq->min_vruntime;
    4220             : 
    4221             :         /*
    4222             :          * When enqueuing a sched_entity, we must:
    4223             :          *   - Update loads to have both entity and cfs_rq synced with now.
    4224             :          *   - Add its load to cfs_rq->runnable_avg
    4225             :          *   - For group_entity, update its weight to reflect the new share of
    4226             :          *     its group cfs_rq
    4227             :          *   - Add its new weight to cfs_rq->load.weight
    4228             :          */
    4229       15769 :         update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
    4230       15764 :         se_update_runnable(se);
    4231       15764 :         update_cfs_group(se);
    4232       15764 :         account_entity_enqueue(cfs_rq, se);
    4233             : 
    4234       15764 :         if (flags & ENQUEUE_WAKEUP)
    4235       13875 :                 place_entity(cfs_rq, se, 0);
    4236             : 
    4237       15767 :         check_schedstat_required();
    4238       15767 :         update_stats_enqueue(cfs_rq, se, flags);
    4239       15767 :         check_spread(cfs_rq, se);
    4240       15767 :         if (!curr)
    4241       15767 :                 __enqueue_entity(cfs_rq, se);
    4242       15762 :         se->on_rq = 1;
    4243             : 
    4244             :         /*
    4245             :          * When bandwidth control is enabled, cfs might have been removed
    4246             :          * because of a parent been throttled but cfs->nr_running > 1. Try to
    4247             :          * add it unconditionnally.
    4248             :          */
    4249       15762 :         if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
    4250       15762 :                 list_add_leaf_cfs_rq(cfs_rq);
    4251             : 
    4252       15762 :         if (cfs_rq->nr_running == 1)
    4253       15762 :                 check_enqueue_throttle(cfs_rq);
    4254       15762 : }
    4255             : 
    4256           0 : static void __clear_buddies_last(struct sched_entity *se)
    4257             : {
    4258           0 :         for_each_sched_entity(se) {
    4259           0 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4260           0 :                 if (cfs_rq->last != se)
    4261             :                         break;
    4262             : 
    4263           0 :                 cfs_rq->last = NULL;
    4264             :         }
    4265           0 : }
    4266             : 
    4267        5098 : static void __clear_buddies_next(struct sched_entity *se)
    4268             : {
    4269        5098 :         for_each_sched_entity(se) {
    4270        5098 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4271        5098 :                 if (cfs_rq->next != se)
    4272             :                         break;
    4273             : 
    4274        5098 :                 cfs_rq->next = NULL;
    4275             :         }
    4276        5098 : }
    4277             : 
    4278           0 : static void __clear_buddies_skip(struct sched_entity *se)
    4279             : {
    4280           0 :         for_each_sched_entity(se) {
    4281           0 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    4282           0 :                 if (cfs_rq->skip != se)
    4283             :                         break;
    4284             : 
    4285           0 :                 cfs_rq->skip = NULL;
    4286             :         }
    4287           0 : }
    4288             : 
    4289       37719 : static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4290             : {
    4291       37719 :         if (cfs_rq->last == se)
    4292           0 :                 __clear_buddies_last(se);
    4293             : 
    4294       37719 :         if (cfs_rq->next == se)
    4295        5098 :                 __clear_buddies_next(se);
    4296             : 
    4297       37719 :         if (cfs_rq->skip == se)
    4298           0 :                 __clear_buddies_skip(se);
    4299       37719 : }
    4300             : 
    4301             : static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
    4302             : 
    4303             : static void
    4304       15767 : dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
    4305             : {
    4306             :         /*
    4307             :          * Update run-time statistics of the 'current'.
    4308             :          */
    4309       15767 :         update_curr(cfs_rq);
    4310             : 
    4311             :         /*
    4312             :          * When dequeuing a sched_entity, we must:
    4313             :          *   - Update loads to have both entity and cfs_rq synced with now.
    4314             :          *   - Subtract its load from the cfs_rq->runnable_avg.
    4315             :          *   - Subtract its previous weight from cfs_rq->load.weight.
    4316             :          *   - For group entity, update its weight to reflect the new share
    4317             :          *     of its group cfs_rq.
    4318             :          */
    4319       15768 :         update_load_avg(cfs_rq, se, UPDATE_TG);
    4320       15768 :         se_update_runnable(se);
    4321             : 
    4322       15768 :         update_stats_dequeue(cfs_rq, se, flags);
    4323             : 
    4324       15768 :         clear_buddies(cfs_rq, se);
    4325             : 
    4326       15768 :         if (se != cfs_rq->curr)
    4327         888 :                 __dequeue_entity(cfs_rq, se);
    4328       15767 :         se->on_rq = 0;
    4329       15767 :         account_entity_dequeue(cfs_rq, se);
    4330             : 
    4331             :         /*
    4332             :          * Normalize after update_curr(); which will also have moved
    4333             :          * min_vruntime if @se is the one holding it back. But before doing
    4334             :          * update_min_vruntime() again, which will discount @se's position and
    4335             :          * can move min_vruntime forward still more.
    4336             :          */
    4337       15767 :         if (!(flags & DEQUEUE_SLEEP))
    4338         902 :                 se->vruntime -= cfs_rq->min_vruntime;
    4339             : 
    4340             :         /* return excess runtime on last dequeue */
    4341       15767 :         return_cfs_rq_runtime(cfs_rq);
    4342             : 
    4343       15767 :         update_cfs_group(se);
    4344             : 
    4345             :         /*
    4346             :          * Now advance min_vruntime if @se was the entity holding it back,
    4347             :          * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
    4348             :          * put back on, and if we advance min_vruntime, we'll be placed back
    4349             :          * further than we started -- ie. we'll be penalized.
    4350             :          */
    4351       15767 :         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
    4352       15752 :                 update_min_vruntime(cfs_rq);
    4353       15768 : }
    4354             : 
    4355             : /*
    4356             :  * Preempt the current task with a newly woken task if needed:
    4357             :  */
    4358             : static void
    4359        4128 : check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
    4360             : {
    4361        4128 :         unsigned long ideal_runtime, delta_exec;
    4362        4128 :         struct sched_entity *se;
    4363        4128 :         s64 delta;
    4364             : 
    4365        4128 :         ideal_runtime = sched_slice(cfs_rq, curr);
    4366        4169 :         delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
    4367        4169 :         if (delta_exec > ideal_runtime) {
    4368         868 :                 resched_curr(rq_of(cfs_rq));
    4369             :                 /*
    4370             :                  * The current task ran long enough, ensure it doesn't get
    4371             :                  * re-elected due to buddy favours.
    4372             :                  */
    4373         874 :                 clear_buddies(cfs_rq, curr);
    4374         874 :                 return;
    4375             :         }
    4376             : 
    4377             :         /*
    4378             :          * Ensure that a task that missed wakeup preemption by a
    4379             :          * narrow margin doesn't have to wait for a full slice.
    4380             :          * This also mitigates buddy induced latencies under load.
    4381             :          */
    4382        3301 :         if (delta_exec < sysctl_sched_min_granularity)
    4383             :                 return;
    4384             : 
    4385        1942 :         se = __pick_first_entity(cfs_rq);
    4386        1942 :         delta = curr->vruntime - se->vruntime;
    4387             : 
    4388        1942 :         if (delta < 0)
    4389             :                 return;
    4390             : 
    4391        1069 :         if (delta > ideal_runtime)
    4392          92 :                 resched_curr(rq_of(cfs_rq));
    4393             : }
    4394             : 
    4395             : static void
    4396       21088 : set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
    4397             : {
    4398             :         /* 'current' is not kept within the tree. */
    4399       21088 :         if (se->on_rq) {
    4400             :                 /*
    4401             :                  * Any task has to be enqueued before it get to execute on
    4402             :                  * a CPU. So account for the time it spent waiting on the
    4403             :                  * runqueue.
    4404             :                  */
    4405       21093 :                 update_stats_wait_end(cfs_rq, se);
    4406       21093 :                 __dequeue_entity(cfs_rq, se);
    4407       21090 :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    4408             :         }
    4409             : 
    4410       21087 :         update_stats_curr_start(cfs_rq, se);
    4411       21092 :         cfs_rq->curr = se;
    4412             : 
    4413             :         /*
    4414             :          * Track our maximum slice length, if the CPU's load is at
    4415             :          * least twice that of our own weight (i.e. dont track it
    4416             :          * when there are only lesser-weight tasks around):
    4417             :          */
    4418       21092 :         if (schedstat_enabled() &&
    4419             :             rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
    4420       21092 :                 schedstat_set(se->statistics.slice_max,
    4421             :                         max((u64)schedstat_val(se->statistics.slice_max),
    4422             :                             se->sum_exec_runtime - se->prev_sum_exec_runtime));
    4423             :         }
    4424             : 
    4425       21092 :         se->prev_sum_exec_runtime = se->sum_exec_runtime;
    4426       21092 : }
    4427             : 
    4428             : static int
    4429             : wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
    4430             : 
    4431             : /*
    4432             :  * Pick the next process, keeping these things in mind, in this order:
    4433             :  * 1) keep things fair between processes/task groups
    4434             :  * 2) pick the "next" process, since someone really wants that to run
    4435             :  * 3) pick the "last" process, for cache locality
    4436             :  * 4) do not run the "skip" process, if something else is available
    4437             :  */
    4438             : static struct sched_entity *
    4439       21075 : pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
    4440             : {
    4441       21075 :         struct sched_entity *left = __pick_first_entity(cfs_rq);
    4442       21075 :         struct sched_entity *se;
    4443             : 
    4444             :         /*
    4445             :          * If curr is set we have to see if its left of the leftmost entity
    4446             :          * still in the tree, provided there was anything in the tree at all.
    4447             :          */
    4448       21075 :         if (!left || (curr && entity_before(curr, left)))
    4449             :                 left = curr;
    4450             : 
    4451       21075 :         se = left; /* ideally we run the leftmost entity */
    4452             : 
    4453             :         /*
    4454             :          * Avoid running the skip buddy, if running something else can
    4455             :          * be done without getting too unfair.
    4456             :          */
    4457       21075 :         if (cfs_rq->skip == se) {
    4458           0 :                 struct sched_entity *second;
    4459             : 
    4460           0 :                 if (se == curr) {
    4461           0 :                         second = __pick_first_entity(cfs_rq);
    4462             :                 } else {
    4463           0 :                         second = __pick_next_entity(se);
    4464           0 :                         if (!second || (curr && entity_before(curr, second)))
    4465             :                                 second = curr;
    4466             :                 }
    4467             : 
    4468           0 :                 if (second && wakeup_preempt_entity(second, left) < 1)
    4469           0 :                         se = second;
    4470             :         }
    4471             : 
    4472       21075 :         if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
    4473             :                 /*
    4474             :                  * Someone really wants this to run. If it's not unfair, run it.
    4475             :                  */
    4476        4936 :                 se = cfs_rq->next;
    4477       16139 :         } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
    4478             :                 /*
    4479             :                  * Prefer last buddy, try to return the CPU to a preempted task.
    4480             :                  */
    4481           0 :                 se = cfs_rq->last;
    4482             :         }
    4483             : 
    4484       21075 :         clear_buddies(cfs_rq, se);
    4485             : 
    4486       21077 :         return se;
    4487             : }
    4488             : 
    4489             : static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
    4490             : 
    4491       21087 : static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
    4492             : {
    4493             :         /*
    4494             :          * If still on the runqueue then deactivate_task()
    4495             :          * was not called and update_curr() has to be done:
    4496             :          */
    4497       21087 :         if (prev->on_rq)
    4498        6213 :                 update_curr(cfs_rq);
    4499             : 
    4500             :         /* throttle cfs_rqs exceeding runtime */
    4501       21087 :         check_cfs_rq_runtime(cfs_rq);
    4502             : 
    4503       21087 :         check_spread(cfs_rq, prev);
    4504             : 
    4505       21087 :         if (prev->on_rq) {
    4506        6213 :                 update_stats_wait_start(cfs_rq, prev);
    4507             :                 /* Put 'current' back into the tree. */
    4508        6213 :                 __enqueue_entity(cfs_rq, prev);
    4509             :                 /* in !on_rq case, update occurred at dequeue */
    4510        6213 :                 update_load_avg(cfs_rq, prev, 0);
    4511             :         }
    4512       21087 :         cfs_rq->curr = NULL;
    4513       21087 : }
    4514             : 
    4515             : static void
    4516       14657 : entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
    4517             : {
    4518             :         /*
    4519             :          * Update run-time statistics of the 'current'.
    4520             :          */
    4521       14657 :         update_curr(cfs_rq);
    4522             : 
    4523             :         /*
    4524             :          * Ensure that runnable average is periodically updated.
    4525             :          */
    4526       14847 :         update_load_avg(cfs_rq, curr, UPDATE_TG);
    4527       14755 :         update_cfs_group(curr);
    4528             : 
    4529             : #ifdef CONFIG_SCHED_HRTICK
    4530             :         /*
    4531             :          * queued ticks are scheduled to match the slice, so don't bother
    4532             :          * validating it and just reschedule.
    4533             :          */
    4534             :         if (queued) {
    4535             :                 resched_curr(rq_of(cfs_rq));
    4536             :                 return;
    4537             :         }
    4538             :         /*
    4539             :          * don't let the period tick interfere with the hrtick preemption
    4540             :          */
    4541             :         if (!sched_feat(DOUBLE_TICK) &&
    4542             :                         hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
    4543             :                 return;
    4544             : #endif
    4545             : 
    4546       14755 :         if (cfs_rq->nr_running > 1)
    4547        4142 :                 check_preempt_tick(cfs_rq, curr);
    4548       14763 : }
    4549             : 
    4550             : 
    4551             : /**************************************************
    4552             :  * CFS bandwidth control machinery
    4553             :  */
    4554             : 
    4555             : #ifdef CONFIG_CFS_BANDWIDTH
    4556             : 
    4557             : #ifdef CONFIG_JUMP_LABEL
    4558             : static struct static_key __cfs_bandwidth_used;
    4559             : 
    4560             : static inline bool cfs_bandwidth_used(void)
    4561             : {
    4562             :         return static_key_false(&__cfs_bandwidth_used);
    4563             : }
    4564             : 
    4565             : void cfs_bandwidth_usage_inc(void)
    4566             : {
    4567             :         static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
    4568             : }
    4569             : 
    4570             : void cfs_bandwidth_usage_dec(void)
    4571             : {
    4572             :         static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
    4573             : }
    4574             : #else /* CONFIG_JUMP_LABEL */
    4575             : static bool cfs_bandwidth_used(void)
    4576             : {
    4577             :         return true;
    4578             : }
    4579             : 
    4580             : void cfs_bandwidth_usage_inc(void) {}
    4581             : void cfs_bandwidth_usage_dec(void) {}
    4582             : #endif /* CONFIG_JUMP_LABEL */
    4583             : 
    4584             : /*
    4585             :  * default period for cfs group bandwidth.
    4586             :  * default: 0.1s, units: nanoseconds
    4587             :  */
    4588             : static inline u64 default_cfs_period(void)
    4589             : {
    4590             :         return 100000000ULL;
    4591             : }
    4592             : 
    4593             : static inline u64 sched_cfs_bandwidth_slice(void)
    4594             : {
    4595             :         return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
    4596             : }
    4597             : 
    4598             : /*
    4599             :  * Replenish runtime according to assigned quota. We use sched_clock_cpu
    4600             :  * directly instead of rq->clock to avoid adding additional synchronization
    4601             :  * around rq->lock.
    4602             :  *
    4603             :  * requires cfs_b->lock
    4604             :  */
    4605             : void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
    4606             : {
    4607             :         if (cfs_b->quota != RUNTIME_INF)
    4608             :                 cfs_b->runtime = cfs_b->quota;
    4609             : }
    4610             : 
    4611             : static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
    4612             : {
    4613             :         return &tg->cfs_bandwidth;
    4614             : }
    4615             : 
    4616             : /* returns 0 on failure to allocate runtime */
    4617             : static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
    4618             :                                    struct cfs_rq *cfs_rq, u64 target_runtime)
    4619             : {
    4620             :         u64 min_amount, amount = 0;
    4621             : 
    4622             :         lockdep_assert_held(&cfs_b->lock);
    4623             : 
    4624             :         /* note: this is a positive sum as runtime_remaining <= 0 */
    4625             :         min_amount = target_runtime - cfs_rq->runtime_remaining;
    4626             : 
    4627             :         if (cfs_b->quota == RUNTIME_INF)
    4628             :                 amount = min_amount;
    4629             :         else {
    4630             :                 start_cfs_bandwidth(cfs_b);
    4631             : 
    4632             :                 if (cfs_b->runtime > 0) {
    4633             :                         amount = min(cfs_b->runtime, min_amount);
    4634             :                         cfs_b->runtime -= amount;
    4635             :                         cfs_b->idle = 0;
    4636             :                 }
    4637             :         }
    4638             : 
    4639             :         cfs_rq->runtime_remaining += amount;
    4640             : 
    4641             :         return cfs_rq->runtime_remaining > 0;
    4642             : }
    4643             : 
    4644             : /* returns 0 on failure to allocate runtime */
    4645             : static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    4646             : {
    4647             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    4648             :         int ret;
    4649             : 
    4650             :         raw_spin_lock(&cfs_b->lock);
    4651             :         ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
    4652             :         raw_spin_unlock(&cfs_b->lock);
    4653             : 
    4654             :         return ret;
    4655             : }
    4656             : 
    4657             : static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
    4658             : {
    4659             :         /* dock delta_exec before expiring quota (as it could span periods) */
    4660             :         cfs_rq->runtime_remaining -= delta_exec;
    4661             : 
    4662             :         if (likely(cfs_rq->runtime_remaining > 0))
    4663             :                 return;
    4664             : 
    4665             :         if (cfs_rq->throttled)
    4666             :                 return;
    4667             :         /*
    4668             :          * if we're unable to extend our runtime we resched so that the active
    4669             :          * hierarchy can be throttled
    4670             :          */
    4671             :         if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
    4672             :                 resched_curr(rq_of(cfs_rq));
    4673             : }
    4674             : 
    4675             : static __always_inline
    4676             : void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
    4677             : {
    4678             :         if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
    4679             :                 return;
    4680             : 
    4681             :         __account_cfs_rq_runtime(cfs_rq, delta_exec);
    4682             : }
    4683             : 
    4684             : static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
    4685             : {
    4686             :         return cfs_bandwidth_used() && cfs_rq->throttled;
    4687             : }
    4688             : 
    4689             : /* check whether cfs_rq, or any parent, is throttled */
    4690             : static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
    4691             : {
    4692             :         return cfs_bandwidth_used() && cfs_rq->throttle_count;
    4693             : }
    4694             : 
    4695             : /*
    4696             :  * Ensure that neither of the group entities corresponding to src_cpu or
    4697             :  * dest_cpu are members of a throttled hierarchy when performing group
    4698             :  * load-balance operations.
    4699             :  */
    4700             : static inline int throttled_lb_pair(struct task_group *tg,
    4701             :                                     int src_cpu, int dest_cpu)
    4702             : {
    4703             :         struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
    4704             : 
    4705             :         src_cfs_rq = tg->cfs_rq[src_cpu];
    4706             :         dest_cfs_rq = tg->cfs_rq[dest_cpu];
    4707             : 
    4708             :         return throttled_hierarchy(src_cfs_rq) ||
    4709             :                throttled_hierarchy(dest_cfs_rq);
    4710             : }
    4711             : 
    4712             : static int tg_unthrottle_up(struct task_group *tg, void *data)
    4713             : {
    4714             :         struct rq *rq = data;
    4715             :         struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    4716             : 
    4717             :         cfs_rq->throttle_count--;
    4718             :         if (!cfs_rq->throttle_count) {
    4719             :                 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
    4720             :                                              cfs_rq->throttled_clock_task;
    4721             : 
    4722             :                 /* Add cfs_rq with already running entity in the list */
    4723             :                 if (cfs_rq->nr_running >= 1)
    4724             :                         list_add_leaf_cfs_rq(cfs_rq);
    4725             :         }
    4726             : 
    4727             :         return 0;
    4728             : }
    4729             : 
    4730             : static int tg_throttle_down(struct task_group *tg, void *data)
    4731             : {
    4732             :         struct rq *rq = data;
    4733             :         struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    4734             : 
    4735             :         /* group is entering throttled state, stop time */
    4736             :         if (!cfs_rq->throttle_count) {
    4737             :                 cfs_rq->throttled_clock_task = rq_clock_task(rq);
    4738             :                 list_del_leaf_cfs_rq(cfs_rq);
    4739             :         }
    4740             :         cfs_rq->throttle_count++;
    4741             : 
    4742             :         return 0;
    4743             : }
    4744             : 
    4745             : static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
    4746             : {
    4747             :         struct rq *rq = rq_of(cfs_rq);
    4748             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    4749             :         struct sched_entity *se;
    4750             :         long task_delta, idle_task_delta, dequeue = 1;
    4751             : 
    4752             :         raw_spin_lock(&cfs_b->lock);
    4753             :         /* This will start the period timer if necessary */
    4754             :         if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
    4755             :                 /*
    4756             :                  * We have raced with bandwidth becoming available, and if we
    4757             :                  * actually throttled the timer might not unthrottle us for an
    4758             :                  * entire period. We additionally needed to make sure that any
    4759             :                  * subsequent check_cfs_rq_runtime calls agree not to throttle
    4760             :                  * us, as we may commit to do cfs put_prev+pick_next, so we ask
    4761             :                  * for 1ns of runtime rather than just check cfs_b.
    4762             :                  */
    4763             :                 dequeue = 0;
    4764             :         } else {
    4765             :                 list_add_tail_rcu(&cfs_rq->throttled_list,
    4766             :                                   &cfs_b->throttled_cfs_rq);
    4767             :         }
    4768             :         raw_spin_unlock(&cfs_b->lock);
    4769             : 
    4770             :         if (!dequeue)
    4771             :                 return false;  /* Throttle no longer required. */
    4772             : 
    4773             :         se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
    4774             : 
    4775             :         /* freeze hierarchy runnable averages while throttled */
    4776             :         rcu_read_lock();
    4777             :         walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
    4778             :         rcu_read_unlock();
    4779             : 
    4780             :         task_delta = cfs_rq->h_nr_running;
    4781             :         idle_task_delta = cfs_rq->idle_h_nr_running;
    4782             :         for_each_sched_entity(se) {
    4783             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    4784             :                 /* throttled entity or throttle-on-deactivate */
    4785             :                 if (!se->on_rq)
    4786             :                         goto done;
    4787             : 
    4788             :                 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
    4789             : 
    4790             :                 qcfs_rq->h_nr_running -= task_delta;
    4791             :                 qcfs_rq->idle_h_nr_running -= idle_task_delta;
    4792             : 
    4793             :                 if (qcfs_rq->load.weight) {
    4794             :                         /* Avoid re-evaluating load for this entity: */
    4795             :                         se = parent_entity(se);
    4796             :                         break;
    4797             :                 }
    4798             :         }
    4799             : 
    4800             :         for_each_sched_entity(se) {
    4801             :                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
    4802             :                 /* throttled entity or throttle-on-deactivate */
    4803             :                 if (!se->on_rq)
    4804             :                         goto done;
    4805             : 
    4806             :                 update_load_avg(qcfs_rq, se, 0);
    4807             :                 se_update_runnable(se);
    4808             : 
    4809             :                 qcfs_rq->h_nr_running -= task_delta;
    4810             :                 qcfs_rq->idle_h_nr_running -= idle_task_delta;
    4811             :         }
    4812             : 
    4813             :         /* At this point se is NULL and we are at root level*/
    4814             :         sub_nr_running(rq, task_delta);
    4815             : 
    4816             : done:
    4817             :         /*
    4818             :          * Note: distribution will already see us throttled via the
    4819             :          * throttled-list.  rq->lock protects completion.
    4820             :          */
    4821             :         cfs_rq->throttled = 1;
    4822             :         cfs_rq->throttled_clock = rq_clock(rq);
    4823             :         return true;
    4824             : }
    4825             : 
    4826             : void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
    4827             : {
    4828             :         struct rq *rq = rq_of(cfs_rq);
    4829             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    4830             :         struct sched_entity *se;
    4831             :         long task_delta, idle_task_delta;
    4832             : 
    4833             :         se = cfs_rq->tg->se[cpu_of(rq)];
    4834             : 
    4835             :         cfs_rq->throttled = 0;
    4836             : 
    4837             :         update_rq_clock(rq);
    4838             : 
    4839             :         raw_spin_lock(&cfs_b->lock);
    4840             :         cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
    4841             :         list_del_rcu(&cfs_rq->throttled_list);
    4842             :         raw_spin_unlock(&cfs_b->lock);
    4843             : 
    4844             :         /* update hierarchical throttle state */
    4845             :         walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
    4846             : 
    4847             :         if (!cfs_rq->load.weight)
    4848             :                 return;
    4849             : 
    4850             :         task_delta = cfs_rq->h_nr_running;
    4851             :         idle_task_delta = cfs_rq->idle_h_nr_running;
    4852             :         for_each_sched_entity(se) {
    4853             :                 if (se->on_rq)
    4854             :                         break;
    4855             :                 cfs_rq = cfs_rq_of(se);
    4856             :                 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
    4857             : 
    4858             :                 cfs_rq->h_nr_running += task_delta;
    4859             :                 cfs_rq->idle_h_nr_running += idle_task_delta;
    4860             : 
    4861             :                 /* end evaluation on encountering a throttled cfs_rq */
    4862             :                 if (cfs_rq_throttled(cfs_rq))
    4863             :                         goto unthrottle_throttle;
    4864             :         }
    4865             : 
    4866             :         for_each_sched_entity(se) {
    4867             :                 cfs_rq = cfs_rq_of(se);
    4868             : 
    4869             :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    4870             :                 se_update_runnable(se);
    4871             : 
    4872             :                 cfs_rq->h_nr_running += task_delta;
    4873             :                 cfs_rq->idle_h_nr_running += idle_task_delta;
    4874             : 
    4875             : 
    4876             :                 /* end evaluation on encountering a throttled cfs_rq */
    4877             :                 if (cfs_rq_throttled(cfs_rq))
    4878             :                         goto unthrottle_throttle;
    4879             : 
    4880             :                 /*
    4881             :                  * One parent has been throttled and cfs_rq removed from the
    4882             :                  * list. Add it back to not break the leaf list.
    4883             :                  */
    4884             :                 if (throttled_hierarchy(cfs_rq))
    4885             :                         list_add_leaf_cfs_rq(cfs_rq);
    4886             :         }
    4887             : 
    4888             :         /* At this point se is NULL and we are at root level*/
    4889             :         add_nr_running(rq, task_delta);
    4890             : 
    4891             : unthrottle_throttle:
    4892             :         /*
    4893             :          * The cfs_rq_throttled() breaks in the above iteration can result in
    4894             :          * incomplete leaf list maintenance, resulting in triggering the
    4895             :          * assertion below.
    4896             :          */
    4897             :         for_each_sched_entity(se) {
    4898             :                 cfs_rq = cfs_rq_of(se);
    4899             : 
    4900             :                 if (list_add_leaf_cfs_rq(cfs_rq))
    4901             :                         break;
    4902             :         }
    4903             : 
    4904             :         assert_list_leaf_cfs_rq(rq);
    4905             : 
    4906             :         /* Determine whether we need to wake up potentially idle CPU: */
    4907             :         if (rq->curr == rq->idle && rq->cfs.nr_running)
    4908             :                 resched_curr(rq);
    4909             : }
    4910             : 
    4911             : static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
    4912             : {
    4913             :         struct cfs_rq *cfs_rq;
    4914             :         u64 runtime, remaining = 1;
    4915             : 
    4916             :         rcu_read_lock();
    4917             :         list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
    4918             :                                 throttled_list) {
    4919             :                 struct rq *rq = rq_of(cfs_rq);
    4920             :                 struct rq_flags rf;
    4921             : 
    4922             :                 rq_lock_irqsave(rq, &rf);
    4923             :                 if (!cfs_rq_throttled(cfs_rq))
    4924             :                         goto next;
    4925             : 
    4926             :                 /* By the above check, this should never be true */
    4927             :                 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
    4928             : 
    4929             :                 raw_spin_lock(&cfs_b->lock);
    4930             :                 runtime = -cfs_rq->runtime_remaining + 1;
    4931             :                 if (runtime > cfs_b->runtime)
    4932             :                         runtime = cfs_b->runtime;
    4933             :                 cfs_b->runtime -= runtime;
    4934             :                 remaining = cfs_b->runtime;
    4935             :                 raw_spin_unlock(&cfs_b->lock);
    4936             : 
    4937             :                 cfs_rq->runtime_remaining += runtime;
    4938             : 
    4939             :                 /* we check whether we're throttled above */
    4940             :                 if (cfs_rq->runtime_remaining > 0)
    4941             :                         unthrottle_cfs_rq(cfs_rq);
    4942             : 
    4943             : next:
    4944             :                 rq_unlock_irqrestore(rq, &rf);
    4945             : 
    4946             :                 if (!remaining)
    4947             :                         break;
    4948             :         }
    4949             :         rcu_read_unlock();
    4950             : }
    4951             : 
    4952             : /*
    4953             :  * Responsible for refilling a task_group's bandwidth and unthrottling its
    4954             :  * cfs_rqs as appropriate. If there has been no activity within the last
    4955             :  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
    4956             :  * used to track this state.
    4957             :  */
    4958             : static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
    4959             : {
    4960             :         int throttled;
    4961             : 
    4962             :         /* no need to continue the timer with no bandwidth constraint */
    4963             :         if (cfs_b->quota == RUNTIME_INF)
    4964             :                 goto out_deactivate;
    4965             : 
    4966             :         throttled = !list_empty(&cfs_b->throttled_cfs_rq);
    4967             :         cfs_b->nr_periods += overrun;
    4968             : 
    4969             :         /*
    4970             :          * idle depends on !throttled (for the case of a large deficit), and if
    4971             :          * we're going inactive then everything else can be deferred
    4972             :          */
    4973             :         if (cfs_b->idle && !throttled)
    4974             :                 goto out_deactivate;
    4975             : 
    4976             :         __refill_cfs_bandwidth_runtime(cfs_b);
    4977             : 
    4978             :         if (!throttled) {
    4979             :                 /* mark as potentially idle for the upcoming period */
    4980             :                 cfs_b->idle = 1;
    4981             :                 return 0;
    4982             :         }
    4983             : 
    4984             :         /* account preceding periods in which throttling occurred */
    4985             :         cfs_b->nr_throttled += overrun;
    4986             : 
    4987             :         /*
    4988             :          * This check is repeated as we release cfs_b->lock while we unthrottle.
    4989             :          */
    4990             :         while (throttled && cfs_b->runtime > 0) {
    4991             :                 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    4992             :                 /* we can't nest cfs_b->lock while distributing bandwidth */
    4993             :                 distribute_cfs_runtime(cfs_b);
    4994             :                 raw_spin_lock_irqsave(&cfs_b->lock, flags);
    4995             : 
    4996             :                 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
    4997             :         }
    4998             : 
    4999             :         /*
    5000             :          * While we are ensured activity in the period following an
    5001             :          * unthrottle, this also covers the case in which the new bandwidth is
    5002             :          * insufficient to cover the existing bandwidth deficit.  (Forcing the
    5003             :          * timer to remain active while there are any throttled entities.)
    5004             :          */
    5005             :         cfs_b->idle = 0;
    5006             : 
    5007             :         return 0;
    5008             : 
    5009             : out_deactivate:
    5010             :         return 1;
    5011             : }
    5012             : 
    5013             : /* a cfs_rq won't donate quota below this amount */
    5014             : static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
    5015             : /* minimum remaining period time to redistribute slack quota */
    5016             : static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
    5017             : /* how long we wait to gather additional slack before distributing */
    5018             : static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
    5019             : 
    5020             : /*
    5021             :  * Are we near the end of the current quota period?
    5022             :  *
    5023             :  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
    5024             :  * hrtimer base being cleared by hrtimer_start. In the case of
    5025             :  * migrate_hrtimers, base is never cleared, so we are fine.
    5026             :  */
    5027             : static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
    5028             : {
    5029             :         struct hrtimer *refresh_timer = &cfs_b->period_timer;
    5030             :         u64 remaining;
    5031             : 
    5032             :         /* if the call-back is running a quota refresh is already occurring */
    5033             :         if (hrtimer_callback_running(refresh_timer))
    5034             :                 return 1;
    5035             : 
    5036             :         /* is a quota refresh about to occur? */
    5037             :         remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
    5038             :         if (remaining < min_expire)
    5039             :                 return 1;
    5040             : 
    5041             :         return 0;
    5042             : }
    5043             : 
    5044             : static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
    5045             : {
    5046             :         u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
    5047             : 
    5048             :         /* if there's a quota refresh soon don't bother with slack */
    5049             :         if (runtime_refresh_within(cfs_b, min_left))
    5050             :                 return;
    5051             : 
    5052             :         /* don't push forwards an existing deferred unthrottle */
    5053             :         if (cfs_b->slack_started)
    5054             :                 return;
    5055             :         cfs_b->slack_started = true;
    5056             : 
    5057             :         hrtimer_start(&cfs_b->slack_timer,
    5058             :                         ns_to_ktime(cfs_bandwidth_slack_period),
    5059             :                         HRTIMER_MODE_REL);
    5060             : }
    5061             : 
    5062             : /* we know any runtime found here is valid as update_curr() precedes return */
    5063             : static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5064             : {
    5065             :         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
    5066             :         s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
    5067             : 
    5068             :         if (slack_runtime <= 0)
    5069             :                 return;
    5070             : 
    5071             :         raw_spin_lock(&cfs_b->lock);
    5072             :         if (cfs_b->quota != RUNTIME_INF) {
    5073             :                 cfs_b->runtime += slack_runtime;
    5074             : 
    5075             :                 /* we are under rq->lock, defer unthrottling using a timer */
    5076             :                 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
    5077             :                     !list_empty(&cfs_b->throttled_cfs_rq))
    5078             :                         start_cfs_slack_bandwidth(cfs_b);
    5079             :         }
    5080             :         raw_spin_unlock(&cfs_b->lock);
    5081             : 
    5082             :         /* even if it's not valid for return we don't want to try again */
    5083             :         cfs_rq->runtime_remaining -= slack_runtime;
    5084             : }
    5085             : 
    5086             : static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5087             : {
    5088             :         if (!cfs_bandwidth_used())
    5089             :                 return;
    5090             : 
    5091             :         if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
    5092             :                 return;
    5093             : 
    5094             :         __return_cfs_rq_runtime(cfs_rq);
    5095             : }
    5096             : 
    5097             : /*
    5098             :  * This is done with a timer (instead of inline with bandwidth return) since
    5099             :  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
    5100             :  */
    5101             : static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
    5102             : {
    5103             :         u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
    5104             :         unsigned long flags;
    5105             : 
    5106             :         /* confirm we're still not at a refresh boundary */
    5107             :         raw_spin_lock_irqsave(&cfs_b->lock, flags);
    5108             :         cfs_b->slack_started = false;
    5109             : 
    5110             :         if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
    5111             :                 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5112             :                 return;
    5113             :         }
    5114             : 
    5115             :         if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
    5116             :                 runtime = cfs_b->runtime;
    5117             : 
    5118             :         raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5119             : 
    5120             :         if (!runtime)
    5121             :                 return;
    5122             : 
    5123             :         distribute_cfs_runtime(cfs_b);
    5124             : }
    5125             : 
    5126             : /*
    5127             :  * When a group wakes up we want to make sure that its quota is not already
    5128             :  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
    5129             :  * runtime as update_curr() throttling can not trigger until it's on-rq.
    5130             :  */
    5131             : static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
    5132             : {
    5133             :         if (!cfs_bandwidth_used())
    5134             :                 return;
    5135             : 
    5136             :         /* an active group must be handled by the update_curr()->put() path */
    5137             :         if (!cfs_rq->runtime_enabled || cfs_rq->curr)
    5138             :                 return;
    5139             : 
    5140             :         /* ensure the group is not already throttled */
    5141             :         if (cfs_rq_throttled(cfs_rq))
    5142             :                 return;
    5143             : 
    5144             :         /* update runtime allocation */
    5145             :         account_cfs_rq_runtime(cfs_rq, 0);
    5146             :         if (cfs_rq->runtime_remaining <= 0)
    5147             :                 throttle_cfs_rq(cfs_rq);
    5148             : }
    5149             : 
    5150             : static void sync_throttle(struct task_group *tg, int cpu)
    5151             : {
    5152             :         struct cfs_rq *pcfs_rq, *cfs_rq;
    5153             : 
    5154             :         if (!cfs_bandwidth_used())
    5155             :                 return;
    5156             : 
    5157             :         if (!tg->parent)
    5158             :                 return;
    5159             : 
    5160             :         cfs_rq = tg->cfs_rq[cpu];
    5161             :         pcfs_rq = tg->parent->cfs_rq[cpu];
    5162             : 
    5163             :         cfs_rq->throttle_count = pcfs_rq->throttle_count;
    5164             :         cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
    5165             : }
    5166             : 
    5167             : /* conditionally throttle active cfs_rq's from put_prev_entity() */
    5168             : static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5169             : {
    5170             :         if (!cfs_bandwidth_used())
    5171             :                 return false;
    5172             : 
    5173             :         if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
    5174             :                 return false;
    5175             : 
    5176             :         /*
    5177             :          * it's possible for a throttled entity to be forced into a running
    5178             :          * state (e.g. set_curr_task), in this case we're finished.
    5179             :          */
    5180             :         if (cfs_rq_throttled(cfs_rq))
    5181             :                 return true;
    5182             : 
    5183             :         return throttle_cfs_rq(cfs_rq);
    5184             : }
    5185             : 
    5186             : static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
    5187             : {
    5188             :         struct cfs_bandwidth *cfs_b =
    5189             :                 container_of(timer, struct cfs_bandwidth, slack_timer);
    5190             : 
    5191             :         do_sched_cfs_slack_timer(cfs_b);
    5192             : 
    5193             :         return HRTIMER_NORESTART;
    5194             : }
    5195             : 
    5196             : extern const u64 max_cfs_quota_period;
    5197             : 
    5198             : static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
    5199             : {
    5200             :         struct cfs_bandwidth *cfs_b =
    5201             :                 container_of(timer, struct cfs_bandwidth, period_timer);
    5202             :         unsigned long flags;
    5203             :         int overrun;
    5204             :         int idle = 0;
    5205             :         int count = 0;
    5206             : 
    5207             :         raw_spin_lock_irqsave(&cfs_b->lock, flags);
    5208             :         for (;;) {
    5209             :                 overrun = hrtimer_forward_now(timer, cfs_b->period);
    5210             :                 if (!overrun)
    5211             :                         break;
    5212             : 
    5213             :                 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
    5214             : 
    5215             :                 if (++count > 3) {
    5216             :                         u64 new, old = ktime_to_ns(cfs_b->period);
    5217             : 
    5218             :                         /*
    5219             :                          * Grow period by a factor of 2 to avoid losing precision.
    5220             :                          * Precision loss in the quota/period ratio can cause __cfs_schedulable
    5221             :                          * to fail.
    5222             :                          */
    5223             :                         new = old * 2;
    5224             :                         if (new < max_cfs_quota_period) {
    5225             :                                 cfs_b->period = ns_to_ktime(new);
    5226             :                                 cfs_b->quota *= 2;
    5227             : 
    5228             :                                 pr_warn_ratelimited(
    5229             :         "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
    5230             :                                         smp_processor_id(),
    5231             :                                         div_u64(new, NSEC_PER_USEC),
    5232             :                                         div_u64(cfs_b->quota, NSEC_PER_USEC));
    5233             :                         } else {
    5234             :                                 pr_warn_ratelimited(
    5235             :         "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
    5236             :                                         smp_processor_id(),
    5237             :                                         div_u64(old, NSEC_PER_USEC),
    5238             :                                         div_u64(cfs_b->quota, NSEC_PER_USEC));
    5239             :                         }
    5240             : 
    5241             :                         /* reset count so we don't come right back in here */
    5242             :                         count = 0;
    5243             :                 }
    5244             :         }
    5245             :         if (idle)
    5246             :                 cfs_b->period_active = 0;
    5247             :         raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
    5248             : 
    5249             :         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
    5250             : }
    5251             : 
    5252             : void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
    5253             : {
    5254             :         raw_spin_lock_init(&cfs_b->lock);
    5255             :         cfs_b->runtime = 0;
    5256             :         cfs_b->quota = RUNTIME_INF;
    5257             :         cfs_b->period = ns_to_ktime(default_cfs_period());
    5258             : 
    5259             :         INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
    5260             :         hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
    5261             :         cfs_b->period_timer.function = sched_cfs_period_timer;
    5262             :         hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
    5263             :         cfs_b->slack_timer.function = sched_cfs_slack_timer;
    5264             :         cfs_b->slack_started = false;
    5265             : }
    5266             : 
    5267             : static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
    5268             : {
    5269             :         cfs_rq->runtime_enabled = 0;
    5270             :         INIT_LIST_HEAD(&cfs_rq->throttled_list);
    5271             : }
    5272             : 
    5273             : void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
    5274             : {
    5275             :         lockdep_assert_held(&cfs_b->lock);
    5276             : 
    5277             :         if (cfs_b->period_active)
    5278             :                 return;
    5279             : 
    5280             :         cfs_b->period_active = 1;
    5281             :         hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
    5282             :         hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
    5283             : }
    5284             : 
    5285             : static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
    5286             : {
    5287             :         /* init_cfs_bandwidth() was not called */
    5288             :         if (!cfs_b->throttled_cfs_rq.next)
    5289             :                 return;
    5290             : 
    5291             :         hrtimer_cancel(&cfs_b->period_timer);
    5292             :         hrtimer_cancel(&cfs_b->slack_timer);
    5293             : }
    5294             : 
    5295             : /*
    5296             :  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
    5297             :  *
    5298             :  * The race is harmless, since modifying bandwidth settings of unhooked group
    5299             :  * bits doesn't do much.
    5300             :  */
    5301             : 
    5302             : /* cpu online calback */
    5303             : static void __maybe_unused update_runtime_enabled(struct rq *rq)
    5304             : {
    5305             :         struct task_group *tg;
    5306             : 
    5307             :         lockdep_assert_held(&rq->lock);
    5308             : 
    5309             :         rcu_read_lock();
    5310             :         list_for_each_entry_rcu(tg, &task_groups, list) {
    5311             :                 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
    5312             :                 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    5313             : 
    5314             :                 raw_spin_lock(&cfs_b->lock);
    5315             :                 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
    5316             :                 raw_spin_unlock(&cfs_b->lock);
    5317             :         }
    5318             :         rcu_read_unlock();
    5319             : }
    5320             : 
    5321             : /* cpu offline callback */
    5322             : static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
    5323             : {
    5324             :         struct task_group *tg;
    5325             : 
    5326             :         lockdep_assert_held(&rq->lock);
    5327             : 
    5328             :         rcu_read_lock();
    5329             :         list_for_each_entry_rcu(tg, &task_groups, list) {
    5330             :                 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
    5331             : 
    5332             :                 if (!cfs_rq->runtime_enabled)
    5333             :                         continue;
    5334             : 
    5335             :                 /*
    5336             :                  * clock_task is not advancing so we just need to make sure
    5337             :                  * there's some valid quota amount
    5338             :                  */
    5339             :                 cfs_rq->runtime_remaining = 1;
    5340             :                 /*
    5341             :                  * Offline rq is schedulable till CPU is completely disabled
    5342             :                  * in take_cpu_down(), so we prevent new cfs throttling here.
    5343             :                  */
    5344             :                 cfs_rq->runtime_enabled = 0;
    5345             : 
    5346             :                 if (cfs_rq_throttled(cfs_rq))
    5347             :                         unthrottle_cfs_rq(cfs_rq);
    5348             :         }
    5349             :         rcu_read_unlock();
    5350             : }
    5351             : 
    5352             : #else /* CONFIG_CFS_BANDWIDTH */
    5353             : 
    5354       15764 : static inline bool cfs_bandwidth_used(void)
    5355             : {
    5356       15764 :         return false;
    5357             : }
    5358             : 
    5359       41013 : static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
    5360       21087 : static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
    5361             : static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
    5362             : static inline void sync_throttle(struct task_group *tg, int cpu) {}
    5363       15767 : static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
    5364             : 
    5365       31526 : static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
    5366             : {
    5367       31526 :         return 0;
    5368             : }
    5369             : 
    5370        8210 : static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
    5371             : {
    5372        8210 :         return 0;
    5373             : }
    5374             : 
    5375        5145 : static inline int throttled_lb_pair(struct task_group *tg,
    5376             :                                     int src_cpu, int dest_cpu)
    5377             : {
    5378        5145 :         return 0;
    5379             : }
    5380             : 
    5381           0 : void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
    5382             : 
    5383             : #ifdef CONFIG_FAIR_GROUP_SCHED
    5384             : static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
    5385             : #endif
    5386             : 
    5387             : static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
    5388             : {
    5389             :         return NULL;
    5390             : }
    5391             : static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
    5392           8 : static inline void update_runtime_enabled(struct rq *rq) {}
    5393           4 : static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
    5394             : 
    5395             : #endif /* CONFIG_CFS_BANDWIDTH */
    5396             : 
    5397             : /**************************************************
    5398             :  * CFS operations on tasks:
    5399             :  */
    5400             : 
    5401             : #ifdef CONFIG_SCHED_HRTICK
    5402             : static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
    5403             : {
    5404             :         struct sched_entity *se = &p->se;
    5405             :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
    5406             : 
    5407             :         SCHED_WARN_ON(task_rq(p) != rq);
    5408             : 
    5409             :         if (rq->cfs.h_nr_running > 1) {
    5410             :                 u64 slice = sched_slice(cfs_rq, se);
    5411             :                 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
    5412             :                 s64 delta = slice - ran;
    5413             : 
    5414             :                 if (delta < 0) {
    5415             :                         if (task_current(rq, p))
    5416             :                                 resched_curr(rq);
    5417             :                         return;
    5418             :                 }
    5419             :                 hrtick_start(rq, delta);
    5420             :         }
    5421             : }
    5422             : 
    5423             : /*
    5424             :  * called from enqueue/dequeue and updates the hrtick when the
    5425             :  * current task is from our class and nr_running is low enough
    5426             :  * to matter.
    5427             :  */
    5428             : static void hrtick_update(struct rq *rq)
    5429             : {
    5430             :         struct task_struct *curr = rq->curr;
    5431             : 
    5432             :         if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
    5433             :                 return;
    5434             : 
    5435             :         if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
    5436             :                 hrtick_start_fair(rq, curr);
    5437             : }
    5438             : #else /* !CONFIG_SCHED_HRTICK */
    5439             : static inline void
    5440             : hrtick_start_fair(struct rq *rq, struct task_struct *p)
    5441             : {
    5442             : }
    5443             : 
    5444       31528 : static inline void hrtick_update(struct rq *rq)
    5445             : {
    5446       31528 : }
    5447             : #endif
    5448             : 
    5449             : #ifdef CONFIG_SMP
    5450             : static inline unsigned long cpu_util(int cpu);
    5451             : 
    5452       44200 : static inline bool cpu_overutilized(int cpu)
    5453             : {
    5454       44200 :         return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
    5455             : }
    5456             : 
    5457       28605 : static inline void update_overutilized_status(struct rq *rq)
    5458             : {
    5459       28605 :         if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
    5460         168 :                 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
    5461         168 :                 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
    5462             :         }
    5463       28608 : }
    5464             : #else
    5465             : static inline void update_overutilized_status(struct rq *rq) { }
    5466             : #endif
    5467             : 
    5468             : /* Runqueue only has SCHED_IDLE tasks enqueued */
    5469       41440 : static int sched_idle_rq(struct rq *rq)
    5470             : {
    5471       17721 :         return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
    5472             :                         rq->nr_running);
    5473             : }
    5474             : 
    5475             : #ifdef CONFIG_SMP
    5476        9908 : static int sched_idle_cpu(int cpu)
    5477             : {
    5478        9908 :         return sched_idle_rq(cpu_rq(cpu));
    5479             : }
    5480             : #endif
    5481             : 
    5482             : /*
    5483             :  * The enqueue_task method is called before nr_running is
    5484             :  * increased. Here we update the fair scheduling stats and
    5485             :  * then put the task into the rbtree:
    5486             :  */
    5487             : static void
    5488       15759 : enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
    5489             : {
    5490       15759 :         struct cfs_rq *cfs_rq;
    5491       15759 :         struct sched_entity *se = &p->se;
    5492       15759 :         int idle_h_nr_running = task_has_idle_policy(p);
    5493       15759 :         int task_new = !(flags & ENQUEUE_WAKEUP);
    5494             : 
    5495             :         /*
    5496             :          * The code below (indirectly) updates schedutil which looks at
    5497             :          * the cfs_rq utilization to select a frequency.
    5498             :          * Let's add the task's estimated utilization to the cfs_rq's
    5499             :          * estimated utilization, before we update schedutil.
    5500             :          */
    5501       15759 :         util_est_enqueue(&rq->cfs, p);
    5502             : 
    5503             :         /*
    5504             :          * If in_iowait is set, the code below may not trigger any cpufreq
    5505             :          * utilization updates, so do it here explicitly with the IOWAIT flag
    5506             :          * passed.
    5507             :          */
    5508       15762 :         if (p->in_iowait)
    5509       15762 :                 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
    5510             : 
    5511       15762 :         for_each_sched_entity(se) {
    5512       15762 :                 if (se->on_rq)
    5513             :                         break;
    5514       15765 :                 cfs_rq = cfs_rq_of(se);
    5515       15765 :                 enqueue_entity(cfs_rq, se, flags);
    5516             : 
    5517       15760 :                 cfs_rq->h_nr_running++;
    5518       15760 :                 cfs_rq->idle_h_nr_running += idle_h_nr_running;
    5519             : 
    5520             :                 /* end evaluation on encountering a throttled cfs_rq */
    5521       15760 :                 if (cfs_rq_throttled(cfs_rq))
    5522             :                         goto enqueue_throttle;
    5523             : 
    5524       15760 :                 flags = ENQUEUE_WAKEUP;
    5525             :         }
    5526             : 
    5527       15757 :         for_each_sched_entity(se) {
    5528           0 :                 cfs_rq = cfs_rq_of(se);
    5529             : 
    5530           0 :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    5531           0 :                 se_update_runnable(se);
    5532           0 :                 update_cfs_group(se);
    5533             : 
    5534           0 :                 cfs_rq->h_nr_running++;
    5535           0 :                 cfs_rq->idle_h_nr_running += idle_h_nr_running;
    5536             : 
    5537             :                 /* end evaluation on encountering a throttled cfs_rq */
    5538           0 :                 if (cfs_rq_throttled(cfs_rq))
    5539             :                         goto enqueue_throttle;
    5540             : 
    5541             :                /*
    5542             :                 * One parent has been throttled and cfs_rq removed from the
    5543             :                 * list. Add it back to not break the leaf list.
    5544             :                 */
    5545           0 :                if (throttled_hierarchy(cfs_rq))
    5546           0 :                        list_add_leaf_cfs_rq(cfs_rq);
    5547             :         }
    5548             : 
    5549             :         /* At this point se is NULL and we are at root level*/
    5550       15757 :         add_nr_running(rq, 1);
    5551             : 
    5552             :         /*
    5553             :          * Since new tasks are assigned an initial util_avg equal to
    5554             :          * half of the spare capacity of their CPU, tiny tasks have the
    5555             :          * ability to cross the overutilized threshold, which will
    5556             :          * result in the load balancer ruining all the task placement
    5557             :          * done by EAS. As a way to mitigate that effect, do not account
    5558             :          * for the first enqueue operation of new tasks during the
    5559             :          * overutilized flag detection.
    5560             :          *
    5561             :          * A better way of solving this problem would be to wait for
    5562             :          * the PELT signals of tasks to converge before taking them
    5563             :          * into account, but that is not straightforward to implement,
    5564             :          * and the following generally works well enough in practice.
    5565             :          */
    5566       15765 :         if (!task_new)
    5567       13877 :                 update_overutilized_status(rq);
    5568             : 
    5569        1888 : enqueue_throttle:
    5570       15764 :         if (cfs_bandwidth_used()) {
    5571             :                 /*
    5572             :                  * When bandwidth control is enabled; the cfs_rq_throttled()
    5573             :                  * breaks in the above iteration can result in incomplete
    5574             :                  * leaf list maintenance, resulting in triggering the assertion
    5575             :                  * below.
    5576             :                  */
    5577             :                 for_each_sched_entity(se) {
    5578             :                         cfs_rq = cfs_rq_of(se);
    5579             : 
    5580             :                         if (list_add_leaf_cfs_rq(cfs_rq))
    5581             :                                 break;
    5582             :                 }
    5583             :         }
    5584             : 
    5585       15764 :         assert_list_leaf_cfs_rq(rq);
    5586             : 
    5587       15764 :         hrtick_update(rq);
    5588       15764 : }
    5589             : 
    5590             : static void set_next_buddy(struct sched_entity *se);
    5591             : 
    5592             : /*
    5593             :  * The dequeue_task method is called before nr_running is
    5594             :  * decreased. We remove the task from the rbtree and
    5595             :  * update the fair scheduling stats:
    5596             :  */
    5597       15766 : static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
    5598             : {
    5599       15766 :         struct cfs_rq *cfs_rq;
    5600       15766 :         struct sched_entity *se = &p->se;
    5601       15766 :         int task_sleep = flags & DEQUEUE_SLEEP;
    5602       15766 :         int idle_h_nr_running = task_has_idle_policy(p);
    5603       15766 :         bool was_sched_idle = sched_idle_rq(rq);
    5604             : 
    5605       15766 :         util_est_dequeue(&rq->cfs, p);
    5606             : 
    5607       15766 :         for_each_sched_entity(se) {
    5608       15766 :                 cfs_rq = cfs_rq_of(se);
    5609       15766 :                 dequeue_entity(cfs_rq, se, flags);
    5610             : 
    5611       15766 :                 cfs_rq->h_nr_running--;
    5612       15766 :                 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
    5613             : 
    5614             :                 /* end evaluation on encountering a throttled cfs_rq */
    5615       15766 :                 if (cfs_rq_throttled(cfs_rq))
    5616             :                         goto dequeue_throttle;
    5617             : 
    5618             :                 /* Don't dequeue parent if it has other entities besides us */
    5619       15766 :                 if (cfs_rq->load.weight) {
    5620             :                         /* Avoid re-evaluating load for this entity: */
    5621       15766 :                         se = parent_entity(se);
    5622             :                         /*
    5623             :                          * Bias pick_next to pick a task from this cfs_rq, as
    5624             :                          * p is sleeping when it is within its sched_slice.
    5625             :                          */
    5626             :                         if (task_sleep && se && !throttled_hierarchy(cfs_rq))
    5627             :                                 set_next_buddy(se);
    5628             :                         break;
    5629             :                 }
    5630       15766 :                 flags |= DEQUEUE_SLEEP;
    5631             :         }
    5632             : 
    5633       15766 :         for_each_sched_entity(se) {
    5634           0 :                 cfs_rq = cfs_rq_of(se);
    5635             : 
    5636           0 :                 update_load_avg(cfs_rq, se, UPDATE_TG);
    5637           0 :                 se_update_runnable(se);
    5638           0 :                 update_cfs_group(se);
    5639             : 
    5640           0 :                 cfs_rq->h_nr_running--;
    5641           0 :                 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
    5642             : 
    5643             :                 /* end evaluation on encountering a throttled cfs_rq */
    5644           0 :                 if (cfs_rq_throttled(cfs_rq))
    5645             :                         goto dequeue_throttle;
    5646             : 
    5647             :         }
    5648             : 
    5649             :         /* At this point se is NULL and we are at root level*/
    5650       15766 :         sub_nr_running(rq, 1);
    5651             : 
    5652             :         /* balance early to pull high priority tasks */
    5653       31532 :         if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
    5654           0 :                 rq->next_balance = jiffies;
    5655             : 
    5656       15766 : dequeue_throttle:
    5657       15766 :         util_est_update(&rq->cfs, p, task_sleep);
    5658       15764 :         hrtick_update(rq);
    5659       15764 : }
    5660             : 
    5661             : #ifdef CONFIG_SMP
    5662             : 
    5663             : /* Working cpumask for: load_balance, load_balance_newidle. */
    5664             : DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
    5665             : DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
    5666             : 
    5667             : #ifdef CONFIG_NO_HZ_COMMON
    5668             : 
    5669             : static struct {
    5670             :         cpumask_var_t idle_cpus_mask;
    5671             :         atomic_t nr_cpus;
    5672             :         int has_blocked;                /* Idle CPUS has blocked load */
    5673             :         unsigned long next_balance;     /* in jiffy units */
    5674             :         unsigned long next_blocked;     /* Next update of blocked load in jiffies */
    5675             : } nohz ____cacheline_aligned;
    5676             : 
    5677             : #endif /* CONFIG_NO_HZ_COMMON */
    5678             : 
    5679       43863 : static unsigned long cpu_load(struct rq *rq)
    5680             : {
    5681       43863 :         return cfs_rq_load_avg(&rq->cfs);
    5682             : }
    5683             : 
    5684             : /*
    5685             :  * cpu_load_without - compute CPU load without any contributions from *p
    5686             :  * @cpu: the CPU which load is requested
    5687             :  * @p: the task which load should be discounted
    5688             :  *
    5689             :  * The load of a CPU is defined by the load of tasks currently enqueued on that
    5690             :  * CPU as well as tasks which are currently sleeping after an execution on that
    5691             :  * CPU.
    5692             :  *
    5693             :  * This method returns the load of the specified CPU by discounting the load of
    5694             :  * the specified task, whenever the task is currently contributing to the CPU
    5695             :  * load.
    5696             :  */
    5697        6336 : static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
    5698             : {
    5699        6336 :         struct cfs_rq *cfs_rq;
    5700        6336 :         unsigned int load;
    5701             : 
    5702             :         /* Task has no contribution or is new */
    5703        1584 :         if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    5704        5711 :                 return cpu_load(rq);
    5705             : 
    5706         625 :         cfs_rq = &rq->cfs;
    5707         625 :         load = READ_ONCE(cfs_rq->avg.load_avg);
    5708             : 
    5709             :         /* Discount task's util from CPU's util */
    5710         625 :         lsub_positive(&load, task_h_load(p));
    5711             : 
    5712         625 :         return load;
    5713             : }
    5714             : 
    5715       43262 : static unsigned long cpu_runnable(struct rq *rq)
    5716             : {
    5717       43262 :         return cfs_rq_runnable_avg(&rq->cfs);
    5718             : }
    5719             : 
    5720        6336 : static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
    5721             : {
    5722        6336 :         struct cfs_rq *cfs_rq;
    5723        6336 :         unsigned int runnable;
    5724             : 
    5725             :         /* Task has no contribution or is new */
    5726        1584 :         if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    5727        5711 :                 return cpu_runnable(rq);
    5728             : 
    5729         625 :         cfs_rq = &rq->cfs;
    5730         625 :         runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
    5731             : 
    5732             :         /* Discount task's runnable from CPU's runnable */
    5733         625 :         lsub_positive(&runnable, p->se.avg.runnable_avg);
    5734             : 
    5735         625 :         return runnable;
    5736             : }
    5737             : 
    5738       47079 : static unsigned long capacity_of(int cpu)
    5739             : {
    5740           0 :         return cpu_rq(cpu)->cpu_capacity;
    5741             : }
    5742             : 
    5743       10113 : static void record_wakee(struct task_struct *p)
    5744             : {
    5745             :         /*
    5746             :          * Only decay a single time; tasks that have less then 1 wakeup per
    5747             :          * jiffy will not have built up many flips.
    5748             :          */
    5749       10113 :         if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
    5750         643 :                 current->wakee_flips >>= 1;
    5751         643 :                 current->wakee_flip_decay_ts = jiffies;
    5752             :         }
    5753             : 
    5754       10113 :         if (current->last_wakee != p) {
    5755        3732 :                 current->last_wakee = p;
    5756        3732 :                 current->wakee_flips++;
    5757             :         }
    5758       10113 : }
    5759             : 
    5760             : /*
    5761             :  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
    5762             :  *
    5763             :  * A waker of many should wake a different task than the one last awakened
    5764             :  * at a frequency roughly N times higher than one of its wakees.
    5765             :  *
    5766             :  * In order to determine whether we should let the load spread vs consolidating
    5767             :  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
    5768             :  * partner, and a factor of lls_size higher frequency in the other.
    5769             :  *
    5770             :  * With both conditions met, we can be relatively sure that the relationship is
    5771             :  * non-monogamous, with partner count exceeding socket size.
    5772             :  *
    5773             :  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
    5774             :  * whatever is irrelevant, spread criteria is apparent partner count exceeds
    5775             :  * socket size.
    5776             :  */
    5777       10111 : static int wake_wide(struct task_struct *p)
    5778             : {
    5779       10111 :         unsigned int master = current->wakee_flips;
    5780       10111 :         unsigned int slave = p->wakee_flips;
    5781       10111 :         int factor = __this_cpu_read(sd_llc_size);
    5782             : 
    5783       10111 :         if (master < slave)
    5784        3740 :                 swap(master, slave);
    5785       10111 :         if (slave < factor || master < slave * factor)
    5786         937 :                 return 0;
    5787             :         return 1;
    5788             : }
    5789             : 
    5790             : /*
    5791             :  * The purpose of wake_affine() is to quickly determine on which CPU we can run
    5792             :  * soonest. For the purpose of speed we only consider the waking and previous
    5793             :  * CPU.
    5794             :  *
    5795             :  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
    5796             :  *                      cache-affine and is (or will be) idle.
    5797             :  *
    5798             :  * wake_affine_weight() - considers the weight to reflect the average
    5799             :  *                        scheduling latency of the CPUs. This seems to work
    5800             :  *                        for the overloaded case.
    5801             :  */
    5802             : static int
    5803         272 : wake_affine_idle(int this_cpu, int prev_cpu, int sync)
    5804             : {
    5805             :         /*
    5806             :          * If this_cpu is idle, it implies the wakeup is from interrupt
    5807             :          * context. Only allow the move if cache is shared. Otherwise an
    5808             :          * interrupt intensive workload could force all tasks onto one
    5809             :          * node depending on the IO topology or IRQ affinity settings.
    5810             :          *
    5811             :          * If the prev_cpu is idle and cache affine then avoid a migration.
    5812             :          * There is no guarantee that the cache hot data from an interrupt
    5813             :          * is more important than cache hot data on the prev_cpu and from
    5814             :          * a cpufreq perspective, it's better to have higher utilisation
    5815             :          * on one CPU.
    5816             :          */
    5817         272 :         if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
    5818           0 :                 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
    5819             : 
    5820         272 :         if (sync && cpu_rq(this_cpu)->nr_running == 1)
    5821             :                 return this_cpu;
    5822             : 
    5823         264 :         if (available_idle_cpu(prev_cpu))
    5824          15 :                 return prev_cpu;
    5825             : 
    5826             :         return nr_cpumask_bits;
    5827             : }
    5828             : 
    5829             : static int
    5830         249 : wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
    5831             :                    int this_cpu, int prev_cpu, int sync)
    5832             : {
    5833         249 :         s64 this_eff_load, prev_eff_load;
    5834         249 :         unsigned long task_load;
    5835             : 
    5836         249 :         this_eff_load = cpu_load(cpu_rq(this_cpu));
    5837             : 
    5838         249 :         if (sync) {
    5839           7 :                 unsigned long current_load = task_h_load(current);
    5840             : 
    5841           7 :                 if (current_load > this_eff_load)
    5842             :                         return this_cpu;
    5843             : 
    5844           7 :                 this_eff_load -= current_load;
    5845             :         }
    5846             : 
    5847         249 :         task_load = task_h_load(p);
    5848             : 
    5849         249 :         this_eff_load += task_load;
    5850         249 :         if (sched_feat(WA_BIAS))
    5851         249 :                 this_eff_load *= 100;
    5852         249 :         this_eff_load *= capacity_of(prev_cpu);
    5853             : 
    5854         249 :         prev_eff_load = cpu_load(cpu_rq(prev_cpu));
    5855         249 :         prev_eff_load -= task_load;
    5856         249 :         if (sched_feat(WA_BIAS))
    5857         249 :                 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
    5858         249 :         prev_eff_load *= capacity_of(this_cpu);
    5859             : 
    5860             :         /*
    5861             :          * If sync, adjust the weight of prev_eff_load such that if
    5862             :          * prev_eff == this_eff that select_idle_sibling() will consider
    5863             :          * stacking the wakee on top of the waker if no other CPU is
    5864             :          * idle.
    5865             :          */
    5866         249 :         if (sync)
    5867           7 :                 prev_eff_load += 1;
    5868             : 
    5869         249 :         return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
    5870             : }
    5871             : 
    5872         272 : static int wake_affine(struct sched_domain *sd, struct task_struct *p,
    5873             :                        int this_cpu, int prev_cpu, int sync)
    5874             : {
    5875         272 :         int target = nr_cpumask_bits;
    5876             : 
    5877         272 :         if (sched_feat(WA_IDLE))
    5878         272 :                 target = wake_affine_idle(this_cpu, prev_cpu, sync);
    5879             : 
    5880         272 :         if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
    5881         249 :                 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
    5882             : 
    5883         272 :         schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
    5884         272 :         if (target == nr_cpumask_bits)
    5885         170 :                 return prev_cpu;
    5886             : 
    5887             :         schedstat_inc(sd->ttwu_move_affine);
    5888             :         schedstat_inc(p->se.statistics.nr_wakeups_affine);
    5889             :         return target;
    5890             : }
    5891             : 
    5892             : static struct sched_group *
    5893             : find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
    5894             : 
    5895             : /*
    5896             :  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
    5897             :  */
    5898             : static int
    5899         831 : find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
    5900             : {
    5901         831 :         unsigned long load, min_load = ULONG_MAX;
    5902         831 :         unsigned int min_exit_latency = UINT_MAX;
    5903         831 :         u64 latest_idle_timestamp = 0;
    5904         831 :         int least_loaded_cpu = this_cpu;
    5905         831 :         int shallowest_idle_cpu = -1;
    5906         831 :         int i;
    5907             : 
    5908             :         /* Check if we have any choice: */
    5909         831 :         if (group->group_weight == 1)
    5910         831 :                 return cpumask_first(sched_group_span(group));
    5911             : 
    5912             :         /* Traverse only the allowed CPUs */
    5913           0 :         for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
    5914           0 :                 if (sched_idle_cpu(i))
    5915           0 :                         return i;
    5916             : 
    5917           0 :                 if (available_idle_cpu(i)) {
    5918           0 :                         struct rq *rq = cpu_rq(i);
    5919           0 :                         struct cpuidle_state *idle = idle_get_state(rq);
    5920           0 :                         if (idle && idle->exit_latency < min_exit_latency) {
    5921             :                                 /*
    5922             :                                  * We give priority to a CPU whose idle state
    5923             :                                  * has the smallest exit latency irrespective
    5924             :                                  * of any idle timestamp.
    5925             :                                  */
    5926             :                                 min_exit_latency = idle->exit_latency;
    5927             :                                 latest_idle_timestamp = rq->idle_stamp;
    5928             :                                 shallowest_idle_cpu = i;
    5929           0 :                         } else if ((!idle || idle->exit_latency == min_exit_latency) &&
    5930           0 :                                    rq->idle_stamp > latest_idle_timestamp) {
    5931             :                                 /*
    5932             :                                  * If equal or no active idle state, then
    5933             :                                  * the most recently idled CPU might have
    5934             :                                  * a warmer cache.
    5935             :                                  */
    5936           0 :                                 latest_idle_timestamp = rq->idle_stamp;
    5937           0 :                                 shallowest_idle_cpu = i;
    5938             :                         }
    5939           0 :                 } else if (shallowest_idle_cpu == -1) {
    5940           0 :                         load = cpu_load(cpu_rq(i));
    5941           0 :                         if (load < min_load) {
    5942           0 :                                 min_load = load;
    5943           0 :                                 least_loaded_cpu = i;
    5944             :                         }
    5945             :                 }
    5946             :         }
    5947             : 
    5948           0 :         return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
    5949             : }
    5950             : 
    5951        1584 : static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
    5952             :                                   int cpu, int prev_cpu, int sd_flag)
    5953             : {
    5954        1584 :         int new_cpu = cpu;
    5955             : 
    5956        1584 :         if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
    5957             :                 return prev_cpu;
    5958             : 
    5959             :         /*
    5960             :          * We need task's util for cpu_util_without, sync it up to
    5961             :          * prev_cpu's last_update_time.
    5962             :          */
    5963        1584 :         if (!(sd_flag & SD_BALANCE_FORK))
    5964         625 :                 sync_entity_load_avg(&p->se);
    5965             : 
    5966        3168 :         while (sd) {
    5967        1584 :                 struct sched_group *group;
    5968        1584 :                 struct sched_domain *tmp;
    5969        1584 :                 int weight;
    5970             : 
    5971        1584 :                 if (!(sd->flags & sd_flag)) {
    5972           0 :                         sd = sd->child;
    5973           0 :                         continue;
    5974             :                 }
    5975             : 
    5976        1584 :                 group = find_idlest_group(sd, p, cpu);
    5977        1584 :                 if (!group) {
    5978         753 :                         sd = sd->child;
    5979         753 :                         continue;
    5980             :                 }
    5981             : 
    5982         831 :                 new_cpu = find_idlest_group_cpu(group, p, cpu);
    5983         831 :                 if (new_cpu == cpu) {
    5984             :                         /* Now try balancing at a lower domain level of 'cpu': */
    5985           0 :                         sd = sd->child;
    5986           0 :                         continue;
    5987             :                 }
    5988             : 
    5989             :                 /* Now try balancing at a lower domain level of 'new_cpu': */
    5990         831 :                 cpu = new_cpu;
    5991         831 :                 weight = sd->span_weight;
    5992         831 :                 sd = NULL;
    5993        1662 :                 for_each_domain(cpu, tmp) {
    5994         831 :                         if (weight <= tmp->span_weight)
    5995             :                                 break;
    5996           0 :                         if (tmp->flags & sd_flag)
    5997           0 :                                 sd = tmp;
    5998             :                 }
    5999             :         }
    6000             : 
    6001             :         return new_cpu;
    6002             : }
    6003             : 
    6004           0 : static inline int __select_idle_cpu(int cpu)
    6005             : {
    6006           0 :         if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
    6007           0 :                 return cpu;
    6008             : 
    6009             :         return -1;
    6010             : }
    6011             : 
    6012             : #ifdef CONFIG_SCHED_SMT
    6013             : DEFINE_STATIC_KEY_FALSE(sched_smt_present);
    6014             : EXPORT_SYMBOL_GPL(sched_smt_present);
    6015             : 
    6016           0 : static inline void set_idle_cores(int cpu, int val)
    6017             : {
    6018           0 :         struct sched_domain_shared *sds;
    6019             : 
    6020           0 :         sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
    6021           0 :         if (sds)
    6022           0 :                 WRITE_ONCE(sds->has_idle_cores, val);
    6023           0 : }
    6024             : 
    6025           0 : static inline bool test_idle_cores(int cpu, bool def)
    6026             : {
    6027           0 :         struct sched_domain_shared *sds;
    6028             : 
    6029           0 :         sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
    6030           0 :         if (sds)
    6031           0 :                 return READ_ONCE(sds->has_idle_cores);
    6032             : 
    6033             :         return def;
    6034             : }
    6035             : 
    6036             : /*
    6037             :  * Scans the local SMT mask to see if the entire core is idle, and records this
    6038             :  * information in sd_llc_shared->has_idle_cores.
    6039             :  *
    6040             :  * Since SMT siblings share all cache levels, inspecting this limited remote
    6041             :  * state should be fairly cheap.
    6042             :  */
    6043           0 : void __update_idle_core(struct rq *rq)
    6044             : {
    6045           0 :         int core = cpu_of(rq);
    6046           0 :         int cpu;
    6047             : 
    6048           0 :         rcu_read_lock();
    6049           0 :         if (test_idle_cores(core, true))
    6050           0 :                 goto unlock;
    6051             : 
    6052           0 :         for_each_cpu(cpu, cpu_smt_mask(core)) {
    6053           0 :                 if (cpu == core)
    6054           0 :                         continue;
    6055             : 
    6056           0 :                 if (!available_idle_cpu(cpu))
    6057           0 :                         goto unlock;
    6058             :         }
    6059             : 
    6060           0 :         set_idle_cores(core, 1);
    6061           0 : unlock:
    6062           0 :         rcu_read_unlock();
    6063           0 : }
    6064             : 
    6065             : /*
    6066             :  * Scan the entire LLC domain for idle cores; this dynamically switches off if
    6067             :  * there are no idle cores left in the system; tracked through
    6068             :  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
    6069             :  */
    6070           0 : static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
    6071             : {
    6072           0 :         bool idle = true;
    6073           0 :         int cpu;
    6074             : 
    6075           0 :         if (!static_branch_likely(&sched_smt_present))
    6076           0 :                 return __select_idle_cpu(core);
    6077             : 
    6078           0 :         for_each_cpu(cpu, cpu_smt_mask(core)) {
    6079           0 :                 if (!available_idle_cpu(cpu)) {
    6080           0 :                         idle = false;
    6081           0 :                         if (*idle_cpu == -1) {
    6082           0 :                                 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
    6083           0 :                                         *idle_cpu = cpu;
    6084           0 :                                         break;
    6085             :                                 }
    6086           0 :                                 continue;
    6087             :                         }
    6088             :                         break;
    6089             :                 }
    6090           0 :                 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
    6091           0 :                         *idle_cpu = cpu;
    6092             :         }
    6093             : 
    6094           0 :         if (idle)
    6095             :                 return core;
    6096             : 
    6097           0 :         cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
    6098           0 :         return -1;
    6099             : }
    6100             : 
    6101             : #else /* CONFIG_SCHED_SMT */
    6102             : 
    6103             : static inline void set_idle_cores(int cpu, int val)
    6104             : {
    6105             : }
    6106             : 
    6107             : static inline bool test_idle_cores(int cpu, bool def)
    6108             : {
    6109             :         return def;
    6110             : }
    6111             : 
    6112             : static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
    6113             : {
    6114             :         return __select_idle_cpu(core);
    6115             : }
    6116             : 
    6117             : #endif /* CONFIG_SCHED_SMT */
    6118             : 
    6119             : /*
    6120             :  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
    6121             :  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
    6122             :  * average idle time for this rq (as found in rq->avg_idle).
    6123             :  */
    6124           0 : static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
    6125             : {
    6126           0 :         struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
    6127           0 :         int i, cpu, idle_cpu = -1, nr = INT_MAX;
    6128           0 :         bool smt = test_idle_cores(target, false);
    6129           0 :         int this = smp_processor_id();
    6130           0 :         struct sched_domain *this_sd;
    6131           0 :         u64 time;
    6132             : 
    6133           0 :         this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
    6134           0 :         if (!this_sd)
    6135             :                 return -1;
    6136             : 
    6137           0 :         cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
    6138             : 
    6139           0 :         if (sched_feat(SIS_PROP) && !smt) {
    6140           0 :                 u64 avg_cost, avg_idle, span_avg;
    6141             : 
    6142             :                 /*
    6143             :                  * Due to large variance we need a large fuzz factor;
    6144             :                  * hackbench in particularly is sensitive here.
    6145             :                  */
    6146           0 :                 avg_idle = this_rq()->avg_idle / 512;
    6147           0 :                 avg_cost = this_sd->avg_scan_cost + 1;
    6148             : 
    6149           0 :                 span_avg = sd->span_weight * avg_idle;
    6150           0 :                 if (span_avg > 4*avg_cost)
    6151           0 :                         nr = div_u64(span_avg, avg_cost);
    6152             :                 else
    6153             :                         nr = 4;
    6154             : 
    6155           0 :                 time = cpu_clock(this);
    6156             :         }
    6157             : 
    6158           0 :         for_each_cpu_wrap(cpu, cpus, target) {
    6159           0 :                 if (smt) {
    6160           0 :                         i = select_idle_core(p, cpu, cpus, &idle_cpu);
    6161           0 :                         if ((unsigned int)i < nr_cpumask_bits)
    6162           0 :                                 return i;
    6163             : 
    6164             :                 } else {
    6165           0 :                         if (!--nr)
    6166             :                                 return -1;
    6167           0 :                         idle_cpu = __select_idle_cpu(cpu);
    6168           0 :                         if ((unsigned int)idle_cpu < nr_cpumask_bits)
    6169             :                                 break;
    6170             :                 }
    6171             :         }
    6172             : 
    6173           0 :         if (smt)
    6174           0 :                 set_idle_cores(this, false);
    6175             : 
    6176           0 :         if (sched_feat(SIS_PROP) && !smt) {
    6177           0 :                 time = cpu_clock(this) - time;
    6178           0 :                 update_avg(&this_sd->avg_scan_cost, time);
    6179             :         }
    6180             : 
    6181           0 :         return idle_cpu;
    6182             : }
    6183             : 
    6184             : /*
    6185             :  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
    6186             :  * the task fits. If no CPU is big enough, but there are idle ones, try to
    6187             :  * maximize capacity.
    6188             :  */
    6189             : static int
    6190           0 : select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
    6191             : {
    6192           0 :         unsigned long task_util, best_cap = 0;
    6193           0 :         int cpu, best_cpu = -1;
    6194           0 :         struct cpumask *cpus;
    6195             : 
    6196           0 :         cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
    6197           0 :         cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
    6198             : 
    6199           0 :         task_util = uclamp_task_util(p);
    6200             : 
    6201           0 :         for_each_cpu_wrap(cpu, cpus, target) {
    6202           0 :                 unsigned long cpu_cap = capacity_of(cpu);
    6203             : 
    6204           0 :                 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
    6205           0 :                         continue;
    6206           0 :                 if (fits_capacity(task_util, cpu_cap))
    6207           0 :                         return cpu;
    6208             : 
    6209           0 :                 if (cpu_cap > best_cap) {
    6210           0 :                         best_cap = cpu_cap;
    6211           0 :                         best_cpu = cpu;
    6212             :                 }
    6213             :         }
    6214             : 
    6215             :         return best_cpu;
    6216             : }
    6217             : 
    6218        3321 : static inline bool asym_fits_capacity(int task_util, int cpu)
    6219             : {
    6220        3321 :         if (static_branch_unlikely(&sched_asym_cpucapacity))
    6221           0 :                 return fits_capacity(task_util, capacity_of(cpu));
    6222             : 
    6223             :         return true;
    6224             : }
    6225             : 
    6226             : /*
    6227             :  * Try and locate an idle core/thread in the LLC cache domain.
    6228             :  */
    6229       10108 : static int select_idle_sibling(struct task_struct *p, int prev, int target)
    6230             : {
    6231       10108 :         struct sched_domain *sd;
    6232       10108 :         unsigned long task_util;
    6233       10108 :         int i, recent_used_cpu;
    6234             : 
    6235             :         /*
    6236             :          * On asymmetric system, update task utilization because we will check
    6237             :          * that the task fits with cpu's capacity.
    6238             :          */
    6239       10108 :         if (static_branch_unlikely(&sched_asym_cpucapacity)) {
    6240           0 :                 sync_entity_load_avg(&p->se);
    6241           0 :                 task_util = uclamp_task_util(p);
    6242             :         }
    6243             : 
    6244       13436 :         if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
    6245        3324 :             asym_fits_capacity(task_util, target))
    6246             :                 return target;
    6247             : 
    6248             :         /*
    6249             :          * If the previous CPU is cache affine and idle, don't be stupid:
    6250             :          */
    6251        6787 :         if (prev != target && cpus_share_cache(prev, target) &&
    6252           0 :             (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
    6253           0 :             asym_fits_capacity(task_util, prev))
    6254             :                 return prev;
    6255             : 
    6256             :         /*
    6257             :          * Allow a per-cpu kthread to stack with the wakee if the
    6258             :          * kworker thread and the tasks previous CPUs are the same.
    6259             :          * The assumption is that the wakee queued work for the
    6260             :          * per-cpu kthread that is now complete and the wakeup is
    6261             :          * essentially a sync wakeup. An obvious example of this
    6262             :          * pattern is IO completions.
    6263             :          */
    6264        6787 :         if (is_per_cpu_kthread(current) &&
    6265        1392 :             prev == smp_processor_id() &&
    6266         657 :             this_rq()->nr_running <= 1) {
    6267             :                 return prev;
    6268             :         }
    6269             : 
    6270             :         /* Check a recently used CPU as a potential idle candidate: */
    6271        6408 :         recent_used_cpu = p->recent_used_cpu;
    6272        6408 :         if (recent_used_cpu != prev &&
    6273       10985 :             recent_used_cpu != target &&
    6274        4577 :             cpus_share_cache(recent_used_cpu, target) &&
    6275           0 :             (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
    6276           0 :             cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
    6277           0 :             asym_fits_capacity(task_util, recent_used_cpu)) {
    6278             :                 /*
    6279             :                  * Replace recent_used_cpu with prev as it is a potential
    6280             :                  * candidate for the next wake:
    6281             :                  */
    6282           0 :                 p->recent_used_cpu = prev;
    6283           0 :                 return recent_used_cpu;
    6284             :         }
    6285             : 
    6286             :         /*
    6287             :          * For asymmetric CPU capacity systems, our domain of interest is
    6288             :          * sd_asym_cpucapacity rather than sd_llc.
    6289             :          */
    6290        6408 :         if (static_branch_unlikely(&sched_asym_cpucapacity)) {
    6291           0 :                 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
    6292             :                 /*
    6293             :                  * On an asymmetric CPU capacity system where an exclusive
    6294             :                  * cpuset defines a symmetric island (i.e. one unique
    6295             :                  * capacity_orig value through the cpuset), the key will be set
    6296             :                  * but the CPUs within that cpuset will not have a domain with
    6297             :                  * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
    6298             :                  * capacity path.
    6299             :                  */
    6300           0 :                 if (sd) {
    6301           0 :                         i = select_idle_capacity(p, sd, target);
    6302           0 :                         return ((unsigned)i < nr_cpumask_bits) ? i : target;
    6303             :                 }
    6304             :         }
    6305             : 
    6306        6408 :         sd = rcu_dereference(per_cpu(sd_llc, target));
    6307        6408 :         if (!sd)
    6308             :                 return target;
    6309             : 
    6310           0 :         i = select_idle_cpu(p, sd, target);
    6311           0 :         if ((unsigned)i < nr_cpumask_bits)
    6312           0 :                 return i;
    6313             : 
    6314             :         return target;
    6315             : }
    6316             : 
    6317             : /**
    6318             :  * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
    6319             :  * @cpu: the CPU to get the utilization of
    6320             :  *
    6321             :  * The unit of the return value must be the one of capacity so we can compare
    6322             :  * the utilization with the capacity of the CPU that is available for CFS task
    6323             :  * (ie cpu_capacity).
    6324             :  *
    6325             :  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
    6326             :  * recent utilization of currently non-runnable tasks on a CPU. It represents
    6327             :  * the amount of utilization of a CPU in the range [0..capacity_orig] where
    6328             :  * capacity_orig is the cpu_capacity available at the highest frequency
    6329             :  * (arch_scale_freq_capacity()).
    6330             :  * The utilization of a CPU converges towards a sum equal to or less than the
    6331             :  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
    6332             :  * the running time on this CPU scaled by capacity_curr.
    6333             :  *
    6334             :  * The estimated utilization of a CPU is defined to be the maximum between its
    6335             :  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
    6336             :  * currently RUNNABLE on that CPU.
    6337             :  * This allows to properly represent the expected utilization of a CPU which
    6338             :  * has just got a big task running since a long sleep period. At the same time
    6339             :  * however it preserves the benefits of the "blocked utilization" in
    6340             :  * describing the potential for other tasks waking up on the same CPU.
    6341             :  *
    6342             :  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
    6343             :  * higher than capacity_orig because of unfortunate rounding in
    6344             :  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
    6345             :  * the average stabilizes with the new running time. We need to check that the
    6346             :  * utilization stays within the range of [0..capacity_orig] and cap it if
    6347             :  * necessary. Without utilization capping, a group could be seen as overloaded
    6348             :  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
    6349             :  * available capacity. We allow utilization to overshoot capacity_curr (but not
    6350             :  * capacity_orig) as it useful for predicting the capacity required after task
    6351             :  * migrations (scheduler-driven DVFS).
    6352             :  *
    6353             :  * Return: the (estimated) utilization for the specified CPU
    6354             :  */
    6355       89113 : static inline unsigned long cpu_util(int cpu)
    6356             : {
    6357       89113 :         struct cfs_rq *cfs_rq;
    6358       89113 :         unsigned int util;
    6359             : 
    6360       89113 :         cfs_rq = &cpu_rq(cpu)->cfs;
    6361       89113 :         util = READ_ONCE(cfs_rq->avg.util_avg);
    6362             : 
    6363       89113 :         if (sched_feat(UTIL_EST))
    6364       89113 :                 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
    6365             : 
    6366       89113 :         return min_t(unsigned long, util, capacity_orig_of(cpu));
    6367             : }
    6368             : 
    6369             : /*
    6370             :  * cpu_util_without: compute cpu utilization without any contributions from *p
    6371             :  * @cpu: the CPU which utilization is requested
    6372             :  * @p: the task which utilization should be discounted
    6373             :  *
    6374             :  * The utilization of a CPU is defined by the utilization of tasks currently
    6375             :  * enqueued on that CPU as well as tasks which are currently sleeping after an
    6376             :  * execution on that CPU.
    6377             :  *
    6378             :  * This method returns the utilization of the specified CPU by discounting the
    6379             :  * utilization of the specified task, whenever the task is currently
    6380             :  * contributing to the CPU utilization.
    6381             :  */
    6382        6336 : static unsigned long cpu_util_without(int cpu, struct task_struct *p)
    6383             : {
    6384        6336 :         struct cfs_rq *cfs_rq;
    6385        6336 :         unsigned int util;
    6386             : 
    6387             :         /* Task has no contribution or is new */
    6388        6336 :         if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    6389        5711 :                 return cpu_util(cpu);
    6390             : 
    6391         625 :         cfs_rq = &cpu_rq(cpu)->cfs;
    6392         625 :         util = READ_ONCE(cfs_rq->avg.util_avg);
    6393             : 
    6394             :         /* Discount task's util from CPU's util */
    6395         625 :         lsub_positive(&util, task_util(p));
    6396             : 
    6397             :         /*
    6398             :          * Covered cases:
    6399             :          *
    6400             :          * a) if *p is the only task sleeping on this CPU, then:
    6401             :          *      cpu_util (== task_util) > util_est (== 0)
    6402             :          *    and thus we return:
    6403             :          *      cpu_util_without = (cpu_util - task_util) = 0
    6404             :          *
    6405             :          * b) if other tasks are SLEEPING on this CPU, which is now exiting
    6406             :          *    IDLE, then:
    6407             :          *      cpu_util >= task_util
    6408             :          *      cpu_util > util_est (== 0)
    6409             :          *    and thus we discount *p's blocked utilization to return:
    6410             :          *      cpu_util_without = (cpu_util - task_util) >= 0
    6411             :          *
    6412             :          * c) if other tasks are RUNNABLE on that CPU and
    6413             :          *      util_est > cpu_util
    6414             :          *    then we use util_est since it returns a more restrictive
    6415             :          *    estimation of the spare capacity on that CPU, by just
    6416             :          *    considering the expected utilization of tasks already
    6417             :          *    runnable on that CPU.
    6418             :          *
    6419             :          * Cases a) and b) are covered by the above code, while case c) is
    6420             :          * covered by the following code when estimated utilization is
    6421             :          * enabled.
    6422             :          */
    6423         625 :         if (sched_feat(UTIL_EST)) {
    6424         625 :                 unsigned int estimated =
    6425         625 :                         READ_ONCE(cfs_rq->avg.util_est.enqueued);
    6426             : 
    6427             :                 /*
    6428             :                  * Despite the following checks we still have a small window
    6429             :                  * for a possible race, when an execl's select_task_rq_fair()
    6430             :                  * races with LB's detach_task():
    6431             :                  *
    6432             :                  *   detach_task()
    6433             :                  *     p->on_rq = TASK_ON_RQ_MIGRATING;
    6434             :                  *     ---------------------------------- A
    6435             :                  *     deactivate_task()                   \
    6436             :                  *       dequeue_task()                     + RaceTime
    6437             :                  *         util_est_dequeue()              /
    6438             :                  *     ---------------------------------- B
    6439             :                  *
    6440             :                  * The additional check on "current == p" it's required to
    6441             :                  * properly fix the execl regression and it helps in further
    6442             :                  * reducing the chances for the above race.
    6443             :                  */
    6444         625 :                 if (unlikely(task_on_rq_queued(p) || current == p))
    6445         625 :                         lsub_positive(&estimated, _task_util_est(p));
    6446             : 
    6447         625 :                 util = max(util, estimated);
    6448             :         }
    6449             : 
    6450             :         /*
    6451             :          * Utilization (estimated) can exceed the CPU capacity, thus let's
    6452             :          * clamp to the maximum CPU capacity to ensure consistency with
    6453             :          * the cpu_util call.
    6454             :          */
    6455         625 :         return min_t(unsigned long, util, capacity_orig_of(cpu));
    6456             : }
    6457             : 
    6458             : /*
    6459             :  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
    6460             :  * to @dst_cpu.
    6461             :  */
    6462             : static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
    6463             : {
    6464             :         struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
    6465             :         unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
    6466             : 
    6467             :         /*
    6468             :          * If @p migrates from @cpu to another, remove its contribution. Or,
    6469             :          * if @p migrates from another CPU to @cpu, add its contribution. In
    6470             :          * the other cases, @cpu is not impacted by the migration, so the
    6471             :          * util_avg should already be correct.
    6472             :          */
    6473             :         if (task_cpu(p) == cpu && dst_cpu != cpu)
    6474             :                 sub_positive(&util, task_util(p));
    6475             :         else if (task_cpu(p) != cpu && dst_cpu == cpu)
    6476             :                 util += task_util(p);
    6477             : 
    6478             :         if (sched_feat(UTIL_EST)) {
    6479             :                 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
    6480             : 
    6481             :                 /*
    6482             :                  * During wake-up, the task isn't enqueued yet and doesn't
    6483             :                  * appear in the cfs_rq->avg.util_est.enqueued of any rq,
    6484             :                  * so just add it (if needed) to "simulate" what will be
    6485             :                  * cpu_util() after the task has been enqueued.
    6486             :                  */
    6487             :                 if (dst_cpu == cpu)
    6488             :                         util_est += _task_util_est(p);
    6489             : 
    6490             :                 util = max(util, util_est);
    6491             :         }
    6492             : 
    6493             :         return min(util, capacity_orig_of(cpu));
    6494             : }
    6495             : 
    6496             : /*
    6497             :  * compute_energy(): Estimates the energy that @pd would consume if @p was
    6498             :  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
    6499             :  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
    6500             :  * to compute what would be the energy if we decided to actually migrate that
    6501             :  * task.
    6502             :  */
    6503             : static long
    6504             : compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
    6505             : {
    6506             :         struct cpumask *pd_mask = perf_domain_span(pd);
    6507             :         unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
    6508             :         unsigned long max_util = 0, sum_util = 0;
    6509             :         int cpu;
    6510             : 
    6511             :         /*
    6512             :          * The capacity state of CPUs of the current rd can be driven by CPUs
    6513             :          * of another rd if they belong to the same pd. So, account for the
    6514             :          * utilization of these CPUs too by masking pd with cpu_online_mask
    6515             :          * instead of the rd span.
    6516             :          *
    6517             :          * If an entire pd is outside of the current rd, it will not appear in
    6518             :          * its pd list and will not be accounted by compute_energy().
    6519             :          */
    6520             :         for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
    6521             :                 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
    6522             :                 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
    6523             : 
    6524             :                 /*
    6525             :                  * Busy time computation: utilization clamping is not
    6526             :                  * required since the ratio (sum_util / cpu_capacity)
    6527             :                  * is already enough to scale the EM reported power
    6528             :                  * consumption at the (eventually clamped) cpu_capacity.
    6529             :                  */
    6530             :                 sum_util += effective_cpu_util(cpu, util_cfs, cpu_cap,
    6531             :                                                ENERGY_UTIL, NULL);
    6532             : 
    6533             :                 /*
    6534             :                  * Performance domain frequency: utilization clamping
    6535             :                  * must be considered since it affects the selection
    6536             :                  * of the performance domain frequency.
    6537             :                  * NOTE: in case RT tasks are running, by default the
    6538             :                  * FREQUENCY_UTIL's utilization can be max OPP.
    6539             :                  */
    6540             :                 cpu_util = effective_cpu_util(cpu, util_cfs, cpu_cap,
    6541             :                                               FREQUENCY_UTIL, tsk);
    6542             :                 max_util = max(max_util, cpu_util);
    6543             :         }
    6544             : 
    6545             :         return em_cpu_energy(pd->em_pd, max_util, sum_util);
    6546             : }
    6547             : 
    6548             : /*
    6549             :  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
    6550             :  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
    6551             :  * spare capacity in each performance domain and uses it as a potential
    6552             :  * candidate to execute the task. Then, it uses the Energy Model to figure
    6553             :  * out which of the CPU candidates is the most energy-efficient.
    6554             :  *
    6555             :  * The rationale for this heuristic is as follows. In a performance domain,
    6556             :  * all the most energy efficient CPU candidates (according to the Energy
    6557             :  * Model) are those for which we'll request a low frequency. When there are
    6558             :  * several CPUs for which the frequency request will be the same, we don't
    6559             :  * have enough data to break the tie between them, because the Energy Model
    6560             :  * only includes active power costs. With this model, if we assume that
    6561             :  * frequency requests follow utilization (e.g. using schedutil), the CPU with
    6562             :  * the maximum spare capacity in a performance domain is guaranteed to be among
    6563             :  * the best candidates of the performance domain.
    6564             :  *
    6565             :  * In practice, it could be preferable from an energy standpoint to pack
    6566             :  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
    6567             :  * but that could also hurt our chances to go cluster idle, and we have no
    6568             :  * ways to tell with the current Energy Model if this is actually a good
    6569             :  * idea or not. So, find_energy_efficient_cpu() basically favors
    6570             :  * cluster-packing, and spreading inside a cluster. That should at least be
    6571             :  * a good thing for latency, and this is consistent with the idea that most
    6572             :  * of the energy savings of EAS come from the asymmetry of the system, and
    6573             :  * not so much from breaking the tie between identical CPUs. That's also the
    6574             :  * reason why EAS is enabled in the topology code only for systems where
    6575             :  * SD_ASYM_CPUCAPACITY is set.
    6576             :  *
    6577             :  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
    6578             :  * they don't have any useful utilization data yet and it's not possible to
    6579             :  * forecast their impact on energy consumption. Consequently, they will be
    6580             :  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
    6581             :  * to be energy-inefficient in some use-cases. The alternative would be to
    6582             :  * bias new tasks towards specific types of CPUs first, or to try to infer
    6583             :  * their util_avg from the parent task, but those heuristics could hurt
    6584             :  * other use-cases too. So, until someone finds a better way to solve this,
    6585             :  * let's keep things simple by re-using the existing slow path.
    6586             :  */
    6587             : static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
    6588             : {
    6589             :         unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
    6590             :         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
    6591             :         unsigned long cpu_cap, util, base_energy = 0;
    6592             :         int cpu, best_energy_cpu = prev_cpu;
    6593             :         struct sched_domain *sd;
    6594             :         struct perf_domain *pd;
    6595             : 
    6596             :         rcu_read_lock();
    6597             :         pd = rcu_dereference(rd->pd);
    6598             :         if (!pd || READ_ONCE(rd->overutilized))
    6599             :                 goto fail;
    6600             : 
    6601             :         /*
    6602             :          * Energy-aware wake-up happens on the lowest sched_domain starting
    6603             :          * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
    6604             :          */
    6605             :         sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
    6606             :         while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
    6607             :                 sd = sd->parent;
    6608             :         if (!sd)
    6609             :                 goto fail;
    6610             : 
    6611             :         sync_entity_load_avg(&p->se);
    6612             :         if (!task_util_est(p))
    6613             :                 goto unlock;
    6614             : 
    6615             :         for (; pd; pd = pd->next) {
    6616             :                 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
    6617             :                 unsigned long base_energy_pd;
    6618             :                 int max_spare_cap_cpu = -1;
    6619             : 
    6620             :                 /* Compute the 'base' energy of the pd, without @p */
    6621             :                 base_energy_pd = compute_energy(p, -1, pd);
    6622             :                 base_energy += base_energy_pd;
    6623             : 
    6624             :                 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
    6625             :                         if (!cpumask_test_cpu(cpu, p->cpus_ptr))
    6626             :                                 continue;
    6627             : 
    6628             :                         util = cpu_util_next(cpu, p, cpu);
    6629             :                         cpu_cap = capacity_of(cpu);
    6630             :                         spare_cap = cpu_cap;
    6631             :                         lsub_positive(&spare_cap, util);
    6632             : 
    6633             :                         /*
    6634             :                          * Skip CPUs that cannot satisfy the capacity request.
    6635             :                          * IOW, placing the task there would make the CPU
    6636             :                          * overutilized. Take uclamp into account to see how
    6637             :                          * much capacity we can get out of the CPU; this is
    6638             :                          * aligned with sched_cpu_util().
    6639             :                          */
    6640             :                         util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
    6641             :                         if (!fits_capacity(util, cpu_cap))
    6642             :                                 continue;
    6643             : 
    6644             :                         /* Always use prev_cpu as a candidate. */
    6645             :                         if (cpu == prev_cpu) {
    6646             :                                 prev_delta = compute_energy(p, prev_cpu, pd);
    6647             :                                 prev_delta -= base_energy_pd;
    6648             :                                 best_delta = min(best_delta, prev_delta);
    6649             :                         }
    6650             : 
    6651             :                         /*
    6652             :                          * Find the CPU with the maximum spare capacity in
    6653             :                          * the performance domain
    6654             :                          */
    6655             :                         if (spare_cap > max_spare_cap) {
    6656             :                                 max_spare_cap = spare_cap;
    6657             :                                 max_spare_cap_cpu = cpu;
    6658             :                         }
    6659             :                 }
    6660             : 
    6661             :                 /* Evaluate the energy impact of using this CPU. */
    6662             :                 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
    6663             :                         cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
    6664             :                         cur_delta -= base_energy_pd;
    6665             :                         if (cur_delta < best_delta) {
    6666             :                                 best_delta = cur_delta;
    6667             :                                 best_energy_cpu = max_spare_cap_cpu;
    6668             :                         }
    6669             :                 }
    6670             :         }
    6671             : unlock:
    6672             :         rcu_read_unlock();
    6673             : 
    6674             :         /*
    6675             :          * Pick the best CPU if prev_cpu cannot be used, or if it saves at
    6676             :          * least 6% of the energy used by prev_cpu.
    6677             :          */
    6678             :         if (prev_delta == ULONG_MAX)
    6679             :                 return best_energy_cpu;
    6680             : 
    6681             :         if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
    6682             :                 return best_energy_cpu;
    6683             : 
    6684             :         return prev_cpu;
    6685             : 
    6686             : fail:
    6687             :         rcu_read_unlock();
    6688             : 
    6689             :         return -1;
    6690             : }
    6691             : 
    6692             : /*
    6693             :  * select_task_rq_fair: Select target runqueue for the waking task in domains
    6694             :  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
    6695             :  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
    6696             :  *
    6697             :  * Balances load by selecting the idlest CPU in the idlest group, or under
    6698             :  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
    6699             :  *
    6700             :  * Returns the target CPU number.
    6701             :  *
    6702             :  * preempt must be disabled.
    6703             :  */
    6704             : static int
    6705       11719 : select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
    6706             : {
    6707       11719 :         int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
    6708       11719 :         struct sched_domain *tmp, *sd = NULL;
    6709       11719 :         int cpu = smp_processor_id();
    6710       11719 :         int new_cpu = prev_cpu;
    6711       11719 :         int want_affine = 0;
    6712             :         /* SD_flags and WF_flags share the first nibble */
    6713       11719 :         int sd_flag = wake_flags & 0xF;
    6714             : 
    6715       11719 :         if (wake_flags & WF_TTWU) {
    6716       10109 :                 record_wakee(p);
    6717             : 
    6718       10110 :                 if (sched_energy_enabled()) {
    6719             :                         new_cpu = find_energy_efficient_cpu(p, prev_cpu);
    6720             :                         if (new_cpu >= 0)
    6721             :                                 return new_cpu;
    6722             :                         new_cpu = prev_cpu;
    6723             :                 }
    6724             : 
    6725       10110 :                 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
    6726             :         }
    6727             : 
    6728       11720 :         rcu_read_lock();
    6729       36754 :         for_each_domain(cpu, tmp) {
    6730             :                 /*
    6731             :                  * If both 'cpu' and 'prev_cpu' are part of this domain,
    6732             :                  * cpu is a valid SD_WAKE_AFFINE target.
    6733             :                  */
    6734       11662 :                 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
    6735         937 :                     cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
    6736         937 :                         if (cpu != prev_cpu)
    6737         272 :                                 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
    6738             : 
    6739             :                         sd = NULL; /* Prefer wake_affine over balance flags */
    6740             :                         break;
    6741             :                 }
    6742             : 
    6743       10722 :                 if (tmp->flags & sd_flag)
    6744             :                         sd = tmp;
    6745        9138 :                 else if (!want_affine)
    6746             :                         break;
    6747             :         }
    6748             : 
    6749       11720 :         if (unlikely(sd)) {
    6750             :                 /* Slow path */
    6751        1584 :                 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
    6752       10136 :         } else if (wake_flags & WF_TTWU) { /* XXX always ? */
    6753             :                 /* Fast path */
    6754       10111 :                 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
    6755             : 
    6756       10112 :                 if (want_affine)
    6757         937 :                         current->recent_used_cpu = cpu;
    6758             :         }
    6759       11721 :         rcu_read_unlock();
    6760             : 
    6761       11723 :         return new_cpu;
    6762             : }
    6763             : 
    6764             : static void detach_entity_cfs_rq(struct sched_entity *se);
    6765             : 
    6766             : /*
    6767             :  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
    6768             :  * cfs_rq_of(p) references at time of call are still valid and identify the
    6769             :  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
    6770             :  */
    6771         993 : static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
    6772             : {
    6773             :         /*
    6774             :          * As blocked tasks retain absolute vruntime the migration needs to
    6775             :          * deal with this by subtracting the old and adding the new
    6776             :          * min_vruntime -- the latter is done by enqueue_entity() when placing
    6777             :          * the task on the new runqueue.
    6778             :          */
    6779         993 :         if (p->state == TASK_WAKING) {
    6780         107 :                 struct sched_entity *se = &p->se;
    6781         107 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
    6782         107 :                 u64 min_vruntime;
    6783             : 
    6784             : #ifndef CONFIG_64BIT
    6785             :                 u64 min_vruntime_copy;
    6786             : 
    6787             :                 do {
    6788             :                         min_vruntime_copy = cfs_rq->min_vruntime_copy;
    6789             :                         smp_rmb();
    6790             :                         min_vruntime = cfs_rq->min_vruntime;
    6791             :                 } while (min_vruntime != min_vruntime_copy);
    6792             : #else
    6793         107 :                 min_vruntime = cfs_rq->min_vruntime;
    6794             : #endif
    6795             : 
    6796         107 :                 se->vruntime -= min_vruntime;
    6797             :         }
    6798             : 
    6799         993 :         if (p->on_rq == TASK_ON_RQ_MIGRATING) {
    6800             :                 /*
    6801             :                  * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
    6802             :                  * rq->lock and can modify state directly.
    6803             :                  */
    6804        1773 :                 lockdep_assert_held(&task_rq(p)->lock);
    6805         886 :                 detach_entity_cfs_rq(&p->se);
    6806             : 
    6807             :         } else {
    6808             :                 /*
    6809             :                  * We are supposed to update the task to "current" time, then
    6810             :                  * its up to date and ready to go to new CPU/cfs_rq. But we
    6811             :                  * have difficulty in getting what current time is, so simply
    6812             :                  * throw away the out-of-date time. This will result in the
    6813             :                  * wakee task is less decayed, but giving the wakee more load
    6814             :                  * sounds not bad.
    6815             :                  */
    6816         107 :                 remove_entity_load_avg(&p->se);
    6817             :         }
    6818             : 
    6819             :         /* Tell new CPU we are migrated */
    6820         994 :         p->se.avg.last_update_time = 0;
    6821             : 
    6822             :         /* We have migrated, no longer consider this task hot */
    6823         994 :         p->se.exec_start = 0;
    6824             : 
    6825         994 :         update_scan_period(p, new_cpu);
    6826         994 : }
    6827             : 
    6828         910 : static void task_dead_fair(struct task_struct *p)
    6829             : {
    6830         910 :         remove_entity_load_avg(&p->se);
    6831         910 : }
    6832             : 
    6833             : static int
    6834          73 : balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    6835             : {
    6836          73 :         if (rq->nr_running)
    6837             :                 return 1;
    6838             : 
    6839           7 :         return newidle_balance(rq, rf) != 0;
    6840             : }
    6841             : #endif /* CONFIG_SMP */
    6842             : 
    6843        6402 : static unsigned long wakeup_gran(struct sched_entity *se)
    6844             : {
    6845        6402 :         unsigned long gran = sysctl_sched_wakeup_granularity;
    6846             : 
    6847             :         /*
    6848             :          * Since its curr running now, convert the gran from real-time
    6849             :          * to virtual-time in his units.
    6850             :          *
    6851             :          * By using 'se' instead of 'curr' we penalize light tasks, so
    6852             :          * they get preempted easier. That is, if 'se' < 'curr' then
    6853             :          * the resulting gran will be larger, therefore penalizing the
    6854             :          * lighter, if otoh 'se' > 'curr' then the resulting gran will
    6855             :          * be smaller, again penalizing the lighter task.
    6856             :          *
    6857             :          * This is especially important for buddies when the leftmost
    6858             :          * task is higher priority than the buddy.
    6859             :          */
    6860        6402 :         return calc_delta_fair(gran, se);
    6861             : }
    6862             : 
    6863             : /*
    6864             :  * Should 'se' preempt 'curr'.
    6865             :  *
    6866             :  *             |s1
    6867             :  *        |s2
    6868             :  *   |s3
    6869             :  *         g
    6870             :  *      |<--->|c
    6871             :  *
    6872             :  *  w(c, s1) = -1
    6873             :  *  w(c, s2) =  0
    6874             :  *  w(c, s3) =  1
    6875             :  *
    6876             :  */
    6877             : static int
    6878       12654 : wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
    6879             : {
    6880       12654 :         s64 gran, vdiff = curr->vruntime - se->vruntime;
    6881             : 
    6882       12654 :         if (vdiff <= 0)
    6883             :                 return -1;
    6884             : 
    6885        6402 :         gran = wakeup_gran(se);
    6886        6402 :         if (vdiff > gran)
    6887        5103 :                 return 1;
    6888             : 
    6889             :         return 0;
    6890             : }
    6891             : 
    6892           0 : static void set_last_buddy(struct sched_entity *se)
    6893             : {
    6894           0 :         if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
    6895             :                 return;
    6896             : 
    6897           0 :         for_each_sched_entity(se) {
    6898           0 :                 if (SCHED_WARN_ON(!se->on_rq))
    6899             :                         return;
    6900           0 :                 cfs_rq_of(se)->last = se;
    6901             :         }
    6902             : }
    6903             : 
    6904        5097 : static void set_next_buddy(struct sched_entity *se)
    6905             : {
    6906        5097 :         if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
    6907             :                 return;
    6908             : 
    6909        5097 :         for_each_sched_entity(se) {
    6910        5097 :                 if (SCHED_WARN_ON(!se->on_rq))
    6911             :                         return;
    6912        5097 :                 cfs_rq_of(se)->next = se;
    6913             :         }
    6914             : }
    6915             : 
    6916           0 : static void set_skip_buddy(struct sched_entity *se)
    6917             : {
    6918           0 :         for_each_sched_entity(se)
    6919           0 :                 cfs_rq_of(se)->skip = se;
    6920             : }
    6921             : 
    6922             : /*
    6923             :  * Preempt the current task with a newly woken task if needed:
    6924             :  */
    6925        8372 : static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
    6926             : {
    6927        8372 :         struct task_struct *curr = rq->curr;
    6928        8372 :         struct sched_entity *se = &curr->se, *pse = &p->se;
    6929        8372 :         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
    6930        8372 :         int scale = cfs_rq->nr_running >= sched_nr_latency;
    6931        8372 :         int next_buddy_marked = 0;
    6932             : 
    6933        8372 :         if (unlikely(se == pse))
    6934        8373 :                 return;
    6935             : 
    6936             :         /*
    6937             :          * This is possible from callers such as attach_tasks(), in which we
    6938             :          * unconditionally check_prempt_curr() after an enqueue (which may have
    6939             :          * lead to a throttle).  This both saves work and prevents false
    6940             :          * next-buddy nomination below.
    6941             :          */
    6942        8210 :         if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
    6943             :                 return;
    6944             : 
    6945        8210 :         if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
    6946             :                 set_next_buddy(pse);
    6947             :                 next_buddy_marked = 1;
    6948             :         }
    6949             : 
    6950             :         /*
    6951             :          * We can come here with TIF_NEED_RESCHED already set from new task
    6952             :          * wake up path.
    6953             :          *
    6954             :          * Note: this also catches the edge-case of curr being in a throttled
    6955             :          * group (e.g. via set_curr_task), since update_curr() (in the
    6956             :          * enqueue of curr) will have resulted in resched being set.  This
    6957             :          * prevents us from potentially nominating it as a false LAST_BUDDY
    6958             :          * below.
    6959             :          */
    6960        8210 :         if (test_tsk_need_resched(curr))
    6961             :                 return;
    6962             : 
    6963             :         /* Idle tasks are by definition preempted by non-idle tasks. */
    6964        7714 :         if (unlikely(task_has_idle_policy(curr)) &&
    6965           0 :             likely(!task_has_idle_policy(p)))
    6966           0 :                 goto preempt;
    6967             : 
    6968             :         /*
    6969             :          * Batch and idle tasks do not preempt non-idle tasks (their preemption
    6970             :          * is driven by the tick):
    6971             :          */
    6972        7714 :         if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
    6973             :                 return;
    6974             : 
    6975        7714 :         find_matching_se(&se, &pse);
    6976        7714 :         update_curr(cfs_rq_of(se));
    6977        7714 :         BUG_ON(!pse);
    6978        7714 :         if (wakeup_preempt_entity(se, pse) == 1) {
    6979             :                 /*
    6980             :                  * Bias pick_next to pick the sched entity that is
    6981             :                  * triggering this preemption.
    6982             :                  */
    6983        5097 :                 if (!next_buddy_marked)
    6984        5097 :                         set_next_buddy(pse);
    6985        5097 :                 goto preempt;
    6986             :         }
    6987             : 
    6988             :         return;
    6989             : 
    6990        5097 : preempt:
    6991        5097 :         resched_curr(rq);
    6992             :         /*
    6993             :          * Only set the backward buddy when the current task is still
    6994             :          * on the rq. This can happen when a wakeup gets interleaved
    6995             :          * with schedule on the ->pre_schedule() or idle_balance()
    6996             :          * point, either of which can * drop the rq lock.
    6997             :          *
    6998             :          * Also, during early boot the idle thread is in the fair class,
    6999             :          * for obvious reasons its a bad idea to schedule back to it.
    7000             :          */
    7001        5097 :         if (unlikely(!se->on_rq || curr == rq->idle))
    7002             :                 return;
    7003             : 
    7004        4986 :         if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
    7005           0 :                 set_last_buddy(se);
    7006             : }
    7007             : 
    7008             : struct task_struct *
    7009       28048 : pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    7010             : {
    7011       28048 :         struct cfs_rq *cfs_rq = &rq->cfs;
    7012       28495 :         struct sched_entity *se;
    7013       28495 :         struct task_struct *p;
    7014       28495 :         int new_tasks;
    7015             : 
    7016       28495 : again:
    7017       28495 :         if (!sched_fair_runnable(rq))
    7018        7420 :                 goto idle;
    7019             : 
    7020             : #ifdef CONFIG_FAIR_GROUP_SCHED
    7021             :         if (!prev || prev->sched_class != &fair_sched_class)
    7022             :                 goto simple;
    7023             : 
    7024             :         /*
    7025             :          * Because of the set_next_buddy() in dequeue_task_fair() it is rather
    7026             :          * likely that a next task is from the same cgroup as the current.
    7027             :          *
    7028             :          * Therefore attempt to avoid putting and setting the entire cgroup
    7029             :          * hierarchy, only change the part that actually changes.
    7030             :          */
    7031             : 
    7032             :         do {
    7033             :                 struct sched_entity *curr = cfs_rq->curr;
    7034             : 
    7035             :                 /*
    7036             :                  * Since we got here without doing put_prev_entity() we also
    7037             :                  * have to consider cfs_rq->curr. If it is still a runnable
    7038             :                  * entity, update_curr() will update its vruntime, otherwise
    7039             :                  * forget we've ever seen it.
    7040             :                  */
    7041             :                 if (curr) {
    7042             :                         if (curr->on_rq)
    7043             :                                 update_curr(cfs_rq);
    7044             :                         else
    7045             :                                 curr = NULL;
    7046             : 
    7047             :                         /*
    7048             :                          * This call to check_cfs_rq_runtime() will do the
    7049             :                          * throttle and dequeue its entity in the parent(s).
    7050             :                          * Therefore the nr_running test will indeed
    7051             :                          * be correct.
    7052             :                          */
    7053             :                         if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
    7054             :                                 cfs_rq = &rq->cfs;
    7055             : 
    7056             :                                 if (!cfs_rq->nr_running)
    7057             :                                         goto idle;
    7058             : 
    7059             :                                 goto simple;
    7060             :                         }
    7061             :                 }
    7062             : 
    7063             :                 se = pick_next_entity(cfs_rq, curr);
    7064             :                 cfs_rq = group_cfs_rq(se);
    7065             :         } while (cfs_rq);
    7066             : 
    7067             :         p = task_of(se);
    7068             : 
    7069             :         /*
    7070             :          * Since we haven't yet done put_prev_entity and if the selected task
    7071             :          * is a different task than we started out with, try and touch the
    7072             :          * least amount of cfs_rqs.
    7073             :          */
    7074             :         if (prev != p) {
    7075             :                 struct sched_entity *pse = &prev->se;
    7076             : 
    7077             :                 while (!(cfs_rq = is_same_group(se, pse))) {
    7078             :                         int se_depth = se->depth;
    7079             :                         int pse_depth = pse->depth;
    7080             : 
    7081             :                         if (se_depth <= pse_depth) {
    7082             :                                 put_prev_entity(cfs_rq_of(pse), pse);
    7083             :                                 pse = parent_entity(pse);
    7084             :                         }
    7085             :                         if (se_depth >= pse_depth) {
    7086             :                                 set_next_entity(cfs_rq_of(se), se);
    7087             :                                 se = parent_entity(se);
    7088             :                         }
    7089             :                 }
    7090             : 
    7091             :                 put_prev_entity(cfs_rq, pse);
    7092             :                 set_next_entity(cfs_rq, se);
    7093             :         }
    7094             : 
    7095             :         goto done;
    7096             : simple:
    7097             : #endif
    7098       21075 :         if (prev)
    7099       21042 :                 put_prev_task(rq, prev);
    7100             : 
    7101       21074 :         do {
    7102       21074 :                 se = pick_next_entity(cfs_rq, NULL);
    7103       21075 :                 set_next_entity(cfs_rq, se);
    7104       21076 :                 cfs_rq = group_cfs_rq(se);
    7105       21076 :         } while (cfs_rq);
    7106             : 
    7107       21076 :         p = task_of(se);
    7108             : 
    7109       21076 : done: __maybe_unused;
    7110             : #ifdef CONFIG_SMP
    7111             :         /*
    7112             :          * Move the next running task to the front of
    7113             :          * the list, so our cfs_tasks list becomes MRU
    7114             :          * one.
    7115             :          */
    7116       21076 :         list_move(&p->se.group_node, &rq->cfs_tasks);
    7117             : #endif
    7118             : 
    7119       21076 :         if (hrtick_enabled_fair(rq))
    7120       21076 :                 hrtick_start_fair(rq, p);
    7121             : 
    7122       21076 :         update_misfit_status(p, rq);
    7123             : 
    7124       21076 :         return p;
    7125             : 
    7126        7420 : idle:
    7127        7420 :         if (!rf)
    7128             :                 return NULL;
    7129             : 
    7130        7413 :         new_tasks = newidle_balance(rq, rf);
    7131             : 
    7132             :         /*
    7133             :          * Because newidle_balance() releases (and re-acquires) rq->lock, it is
    7134             :          * possible for any higher priority task to appear. In that case we
    7135             :          * must re-start the pick_next_entity() loop.
    7136             :          */
    7137        7417 :         if (new_tasks < 0)
    7138             :                 return RETRY_TASK;
    7139             : 
    7140        7417 :         if (new_tasks > 0)
    7141         447 :                 goto again;
    7142             : 
    7143             :         /*
    7144             :          * rq is about to be idle, check if we need to update the
    7145             :          * lost_idle_time of clock_pelt
    7146             :          */
    7147        6970 :         update_idle_rq_clock_pelt(rq);
    7148             : 
    7149        6970 :         return NULL;
    7150             : }
    7151             : 
    7152          39 : static struct task_struct *__pick_next_task_fair(struct rq *rq)
    7153             : {
    7154          39 :         return pick_next_task_fair(rq, NULL, NULL);
    7155             : }
    7156             : 
    7157             : /*
    7158             :  * Account for a descheduled task:
    7159             :  */
    7160       21087 : static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
    7161             : {
    7162       21087 :         struct sched_entity *se = &prev->se;
    7163       21087 :         struct cfs_rq *cfs_rq;
    7164             : 
    7165       21087 :         for_each_sched_entity(se) {
    7166       21087 :                 cfs_rq = cfs_rq_of(se);
    7167       21087 :                 put_prev_entity(cfs_rq, se);
    7168             :         }
    7169       21088 : }
    7170             : 
    7171             : /*
    7172             :  * sched_yield() is very simple
    7173             :  *
    7174             :  * The magic of dealing with the ->skip buddy is in pick_next_entity.
    7175             :  */
    7176           0 : static void yield_task_fair(struct rq *rq)
    7177             : {
    7178           0 :         struct task_struct *curr = rq->curr;
    7179           0 :         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
    7180           0 :         struct sched_entity *se = &curr->se;
    7181             : 
    7182             :         /*
    7183             :          * Are we the only task in the tree?
    7184             :          */
    7185           0 :         if (unlikely(rq->nr_running == 1))
    7186             :                 return;
    7187             : 
    7188           0 :         clear_buddies(cfs_rq, se);
    7189             : 
    7190           0 :         if (curr->policy != SCHED_BATCH) {
    7191           0 :                 update_rq_clock(rq);
    7192             :                 /*
    7193             :                  * Update run-time statistics of the 'current'.
    7194             :                  */
    7195           0 :                 update_curr(cfs_rq);
    7196             :                 /*
    7197             :                  * Tell update_rq_clock() that we've just updated,
    7198             :                  * so we don't do microscopic update in schedule()
    7199             :                  * and double the fastpath cost.
    7200             :                  */
    7201           0 :                 rq_clock_skip_update(rq);
    7202             :         }
    7203             : 
    7204           0 :         set_skip_buddy(se);
    7205             : }
    7206             : 
    7207           0 : static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
    7208             : {
    7209           0 :         struct sched_entity *se = &p->se;
    7210             : 
    7211             :         /* throttled hierarchies are not runnable */
    7212           0 :         if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
    7213             :                 return false;
    7214             : 
    7215             :         /* Tell the scheduler that we'd really like pse to run next. */
    7216           0 :         set_next_buddy(se);
    7217             : 
    7218           0 :         yield_task_fair(rq);
    7219             : 
    7220           0 :         return true;
    7221             : }
    7222             : 
    7223             : #ifdef CONFIG_SMP
    7224             : /**************************************************
    7225             :  * Fair scheduling class load-balancing methods.
    7226             :  *
    7227             :  * BASICS
    7228             :  *
    7229             :  * The purpose of load-balancing is to achieve the same basic fairness the
    7230             :  * per-CPU scheduler provides, namely provide a proportional amount of compute
    7231             :  * time to each task. This is expressed in the following equation:
    7232             :  *
    7233             :  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
    7234             :  *
    7235             :  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
    7236             :  * W_i,0 is defined as:
    7237             :  *
    7238             :  *   W_i,0 = \Sum_j w_i,j                                             (2)
    7239             :  *
    7240             :  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
    7241             :  * is derived from the nice value as per sched_prio_to_weight[].
    7242             :  *
    7243             :  * The weight average is an exponential decay average of the instantaneous
    7244             :  * weight:
    7245             :  *
    7246             :  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
    7247             :  *
    7248             :  * C_i is the compute capacity of CPU i, typically it is the
    7249             :  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
    7250             :  * can also include other factors [XXX].
    7251             :  *
    7252             :  * To achieve this balance we define a measure of imbalance which follows
    7253             :  * directly from (1):
    7254             :  *
    7255             :  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
    7256             :  *
    7257             :  * We them move tasks around to minimize the imbalance. In the continuous
    7258             :  * function space it is obvious this converges, in the discrete case we get
    7259             :  * a few fun cases generally called infeasible weight scenarios.
    7260             :  *
    7261             :  * [XXX expand on:
    7262             :  *     - infeasible weights;
    7263             :  *     - local vs global optima in the discrete case. ]
    7264             :  *
    7265             :  *
    7266             :  * SCHED DOMAINS
    7267             :  *
    7268             :  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
    7269             :  * for all i,j solution, we create a tree of CPUs that follows the hardware
    7270             :  * topology where each level pairs two lower groups (or better). This results
    7271             :  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
    7272             :  * tree to only the first of the previous level and we decrease the frequency
    7273             :  * of load-balance at each level inv. proportional to the number of CPUs in
    7274             :  * the groups.
    7275             :  *
    7276             :  * This yields:
    7277             :  *
    7278             :  *     log_2 n     1     n
    7279             :  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
    7280             :  *     i = 0      2^i   2^i
    7281             :  *                               `- size of each group
    7282             :  *         |         |     `- number of CPUs doing load-balance
    7283             :  *         |         `- freq
    7284             :  *         `- sum over all levels
    7285             :  *
    7286             :  * Coupled with a limit on how many tasks we can migrate every balance pass,
    7287             :  * this makes (5) the runtime complexity of the balancer.
    7288             :  *
    7289             :  * An important property here is that each CPU is still (indirectly) connected
    7290             :  * to every other CPU in at most O(log n) steps:
    7291             :  *
    7292             :  * The adjacency matrix of the resulting graph is given by:
    7293             :  *
    7294             :  *             log_2 n
    7295             :  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
    7296             :  *             k = 0
    7297             :  *
    7298             :  * And you'll find that:
    7299             :  *
    7300             :  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
    7301             :  *
    7302             :  * Showing there's indeed a path between every CPU in at most O(log n) steps.
    7303             :  * The task movement gives a factor of O(m), giving a convergence complexity
    7304             :  * of:
    7305             :  *
    7306             :  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
    7307             :  *
    7308             :  *
    7309             :  * WORK CONSERVING
    7310             :  *
    7311             :  * In order to avoid CPUs going idle while there's still work to do, new idle
    7312             :  * balancing is more aggressive and has the newly idle CPU iterate up the domain
    7313             :  * tree itself instead of relying on other CPUs to bring it work.
    7314             :  *
    7315             :  * This adds some complexity to both (5) and (8) but it reduces the total idle
    7316             :  * time.
    7317             :  *
    7318             :  * [XXX more?]
    7319             :  *
    7320             :  *
    7321             :  * CGROUPS
    7322             :  *
    7323             :  * Cgroups make a horror show out of (2), instead of a simple sum we get:
    7324             :  *
    7325             :  *                                s_k,i
    7326             :  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
    7327             :  *                                 S_k
    7328             :  *
    7329             :  * Where
    7330             :  *
    7331             :  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
    7332             :  *
    7333             :  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
    7334             :  *
    7335             :  * The big problem is S_k, its a global sum needed to compute a local (W_i)
    7336             :  * property.
    7337             :  *
    7338             :  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
    7339             :  *      rewrite all of this once again.]
    7340             :  */
    7341             : 
    7342             : static unsigned long __read_mostly max_load_balance_interval = HZ/10;
    7343             : 
    7344             : enum fbq_type { regular, remote, all };
    7345             : 
    7346             : /*
    7347             :  * 'group_type' describes the group of CPUs at the moment of load balancing.
    7348             :  *
    7349             :  * The enum is ordered by pulling priority, with the group with lowest priority
    7350             :  * first so the group_type can simply be compared when selecting the busiest
    7351             :  * group. See update_sd_pick_busiest().
    7352             :  */
    7353             : enum group_type {
    7354             :         /* The group has spare capacity that can be used to run more tasks.  */
    7355             :         group_has_spare = 0,
    7356             :         /*
    7357             :          * The group is fully used and the tasks don't compete for more CPU
    7358             :          * cycles. Nevertheless, some tasks might wait before running.
    7359             :          */
    7360             :         group_fully_busy,
    7361             :         /*
    7362             :          * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
    7363             :          * and must be migrated to a more powerful CPU.
    7364             :          */
    7365             :         group_misfit_task,
    7366             :         /*
    7367             :          * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
    7368             :          * and the task should be migrated to it instead of running on the
    7369             :          * current CPU.
    7370             :          */
    7371             :         group_asym_packing,
    7372             :         /*
    7373             :          * The tasks' affinity constraints previously prevented the scheduler
    7374             :          * from balancing the load across the system.
    7375             :          */
    7376             :         group_imbalanced,
    7377             :         /*
    7378             :          * The CPU is overloaded and can't provide expected CPU cycles to all
    7379             :          * tasks.
    7380             :          */
    7381             :         group_overloaded
    7382             : };
    7383             : 
    7384             : enum migration_type {
    7385             :         migrate_load = 0,
    7386             :         migrate_util,
    7387             :         migrate_task,
    7388             :         migrate_misfit
    7389             : };
    7390             : 
    7391             : #define LBF_ALL_PINNED  0x01
    7392             : #define LBF_NEED_BREAK  0x02
    7393             : #define LBF_DST_PINNED  0x04
    7394             : #define LBF_SOME_PINNED 0x08
    7395             : #define LBF_NOHZ_STATS  0x10
    7396             : #define LBF_NOHZ_AGAIN  0x20
    7397             : 
    7398             : struct lb_env {
    7399             :         struct sched_domain     *sd;
    7400             : 
    7401             :         struct rq               *src_rq;
    7402             :         int                     src_cpu;
    7403             : 
    7404             :         int                     dst_cpu;
    7405             :         struct rq               *dst_rq;
    7406             : 
    7407             :         struct cpumask          *dst_grpmask;
    7408             :         int                     new_dst_cpu;
    7409             :         enum cpu_idle_type      idle;
    7410             :         long                    imbalance;
    7411             :         /* The set of CPUs under consideration for load-balancing */
    7412             :         struct cpumask          *cpus;
    7413             : 
    7414             :         unsigned int            flags;
    7415             : 
    7416             :         unsigned int            loop;
    7417             :         unsigned int            loop_break;
    7418             :         unsigned int            loop_max;
    7419             : 
    7420             :         enum fbq_type           fbq_type;
    7421             :         enum migration_type     migration_type;
    7422             :         struct list_head        tasks;
    7423             : };
    7424             : 
    7425             : /*
    7426             :  * Is this task likely cache-hot:
    7427             :  */
    7428        2300 : static int task_hot(struct task_struct *p, struct lb_env *env)
    7429             : {
    7430        2300 :         s64 delta;
    7431             : 
    7432        4600 :         lockdep_assert_held(&env->src_rq->lock);
    7433             : 
    7434        2300 :         if (p->sched_class != &fair_sched_class)
    7435             :                 return 0;
    7436             : 
    7437        2300 :         if (unlikely(task_has_idle_policy(p)))
    7438             :                 return 0;
    7439             : 
    7440             :         /* SMT siblings share cache */
    7441        2300 :         if (env->sd->flags & SD_SHARE_CPUCAPACITY)
    7442             :                 return 0;
    7443             : 
    7444             :         /*
    7445             :          * Buddy candidates are cache hot:
    7446             :          */
    7447        2300 :         if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
    7448         287 :                         (&p->se == cfs_rq_of(&p->se)->next ||
    7449         274 :                          &p->se == cfs_rq_of(&p->se)->last))
    7450             :                 return 1;
    7451             : 
    7452        2287 :         if (sysctl_sched_migration_cost == -1)
    7453             :                 return 1;
    7454        2287 :         if (sysctl_sched_migration_cost == 0)
    7455             :                 return 0;
    7456             : 
    7457        2287 :         delta = rq_clock_task(env->src_rq) - p->se.exec_start;
    7458             : 
    7459        2287 :         return delta < (s64)sysctl_sched_migration_cost;
    7460             : }
    7461             : 
    7462             : #ifdef CONFIG_NUMA_BALANCING
    7463             : /*
    7464             :  * Returns 1, if task migration degrades locality
    7465             :  * Returns 0, if task migration improves locality i.e migration preferred.
    7466             :  * Returns -1, if task migration is not affected by locality.
    7467             :  */
    7468             : static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
    7469             : {
    7470             :         struct numa_group *numa_group = rcu_dereference(p->numa_group);
    7471             :         unsigned long src_weight, dst_weight;
    7472             :         int src_nid, dst_nid, dist;
    7473             : 
    7474             :         if (!static_branch_likely(&sched_numa_balancing))
    7475             :                 return -1;
    7476             : 
    7477             :         if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
    7478             :                 return -1;
    7479             : 
    7480             :         src_nid = cpu_to_node(env->src_cpu);
    7481             :         dst_nid = cpu_to_node(env->dst_cpu);
    7482             : 
    7483             :         if (src_nid == dst_nid)
    7484             :                 return -1;
    7485             : 
    7486             :         /* Migrating away from the preferred node is always bad. */
    7487             :         if (src_nid == p->numa_preferred_nid) {
    7488             :                 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
    7489             :                         return 1;
    7490             :                 else
    7491             :                         return -1;
    7492             :         }
    7493             : 
    7494             :         /* Encourage migration to the preferred node. */
    7495             :         if (dst_nid == p->numa_preferred_nid)
    7496             :                 return 0;
    7497             : 
    7498             :         /* Leaving a core idle is often worse than degrading locality. */
    7499             :         if (env->idle == CPU_IDLE)
    7500             :                 return -1;
    7501             : 
    7502             :         dist = node_distance(src_nid, dst_nid);
    7503             :         if (numa_group) {
    7504             :                 src_weight = group_weight(p, src_nid, dist);
    7505             :                 dst_weight = group_weight(p, dst_nid, dist);
    7506             :         } else {
    7507             :                 src_weight = task_weight(p, src_nid, dist);
    7508             :                 dst_weight = task_weight(p, dst_nid, dist);
    7509             :         }
    7510             : 
    7511             :         return dst_weight < src_weight;
    7512             : }
    7513             : 
    7514             : #else
    7515        2300 : static inline int migrate_degrades_locality(struct task_struct *p,
    7516             :                                              struct lb_env *env)
    7517             : {
    7518        2300 :         return -1;
    7519             : }
    7520             : #endif
    7521             : 
    7522             : /*
    7523             :  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
    7524             :  */
    7525             : static
    7526        5144 : int can_migrate_task(struct task_struct *p, struct lb_env *env)
    7527             : {
    7528        5144 :         int tsk_cache_hot;
    7529             : 
    7530       10289 :         lockdep_assert_held(&env->src_rq->lock);
    7531             : 
    7532             :         /*
    7533             :          * We do not migrate tasks that are:
    7534             :          * 1) throttled_lb_pair, or
    7535             :          * 2) cannot be migrated to this CPU due to cpus_ptr, or
    7536             :          * 3) running (obviously), or
    7537             :          * 4) are cache-hot on their current CPU.
    7538             :          */
    7539        5145 :         if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
    7540             :                 return 0;
    7541             : 
    7542        5145 :         if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
    7543        1341 :                 int cpu;
    7544             : 
    7545        1341 :                 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
    7546             : 
    7547        1341 :                 env->flags |= LBF_SOME_PINNED;
    7548             : 
    7549             :                 /*
    7550             :                  * Remember if this task can be migrated to any other CPU in
    7551             :                  * our sched_group. We may want to revisit it if we couldn't
    7552             :                  * meet load balance goals by pulling other tasks on src_cpu.
    7553             :                  *
    7554             :                  * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
    7555             :                  * already computed one in current iteration.
    7556             :                  */
    7557        1341 :                 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
    7558             :                         return 0;
    7559             : 
    7560             :                 /* Prevent to re-select dst_cpu via env's CPUs: */
    7561        1382 :                 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
    7562         691 :                         if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
    7563           0 :                                 env->flags |= LBF_DST_PINNED;
    7564           0 :                                 env->new_dst_cpu = cpu;
    7565           0 :                                 break;
    7566             :                         }
    7567             :                 }
    7568             : 
    7569         691 :                 return 0;
    7570             :         }
    7571             : 
    7572             :         /* Record that we found atleast one task that could run on dst_cpu */
    7573        3804 :         env->flags &= ~LBF_ALL_PINNED;
    7574             : 
    7575        3804 :         if (task_running(env->src_rq, p)) {
    7576             :                 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
    7577             :                 return 0;
    7578             :         }
    7579             : 
    7580             :         /*
    7581             :          * Aggressive migration if:
    7582             :          * 1) destination numa is preferred
    7583             :          * 2) task is cache cold, or
    7584             :          * 3) too many balance attempts have failed.
    7585             :          */
    7586        2300 :         tsk_cache_hot = migrate_degrades_locality(p, env);
    7587        2300 :         if (tsk_cache_hot == -1)
    7588        2300 :                 tsk_cache_hot = task_hot(p, env);
    7589             : 
    7590        2300 :         if (tsk_cache_hot <= 0 ||
    7591         316 :             env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
    7592        2015 :                 if (tsk_cache_hot == 1) {
    7593        2015 :                         schedstat_inc(env->sd->lb_hot_gained[env->idle]);
    7594        2015 :                         schedstat_inc(p->se.statistics.nr_forced_migrations);
    7595             :                 }
    7596        2015 :                 return 1;
    7597             :         }
    7598             : 
    7599             :         schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
    7600             :         return 0;
    7601             : }
    7602             : 
    7603             : /*
    7604             :  * detach_task() -- detach the task for the migration specified in env
    7605             :  */
    7606         855 : static void detach_task(struct task_struct *p, struct lb_env *env)
    7607             : {
    7608        1711 :         lockdep_assert_held(&env->src_rq->lock);
    7609             : 
    7610         856 :         deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
    7611         856 :         set_task_cpu(p, env->dst_cpu);
    7612         856 : }
    7613             : 
    7614             : /*
    7615             :  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
    7616             :  * part of active balancing operations within "domain".
    7617             :  *
    7618             :  * Returns a task if successful and NULL otherwise.
    7619             :  */
    7620           1 : static struct task_struct *detach_one_task(struct lb_env *env)
    7621             : {
    7622           1 :         struct task_struct *p;
    7623             : 
    7624           2 :         lockdep_assert_held(&env->src_rq->lock);
    7625             : 
    7626           1 :         list_for_each_entry_reverse(p,
    7627             :                         &env->src_rq->cfs_tasks, se.group_node) {
    7628           1 :                 if (!can_migrate_task(p, env))
    7629           0 :                         continue;
    7630             : 
    7631           1 :                 detach_task(p, env);
    7632             : 
    7633             :                 /*
    7634             :                  * Right now, this is only the second place where
    7635             :                  * lb_gained[env->idle] is updated (other is detach_tasks)
    7636             :                  * so we can safely collect stats here rather than
    7637             :                  * inside detach_tasks().
    7638             :                  */
    7639           1 :                 schedstat_inc(env->sd->lb_gained[env->idle]);
    7640           1 :                 return p;
    7641             :         }
    7642             :         return NULL;
    7643             : }
    7644             : 
    7645             : static const unsigned int sched_nr_migrate_break = 32;
    7646             : 
    7647             : /*
    7648             :  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
    7649             :  * busiest_rq, as part of a balancing operation within domain "sd".
    7650             :  *
    7651             :  * Returns number of detached tasks if successful and 0 otherwise.
    7652             :  */
    7653        2607 : static int detach_tasks(struct lb_env *env)
    7654             : {
    7655        2607 :         struct list_head *tasks = &env->src_rq->cfs_tasks;
    7656        2607 :         unsigned long util, load;
    7657        2607 :         struct task_struct *p;
    7658        2607 :         int detached = 0;
    7659             : 
    7660        5215 :         lockdep_assert_held(&env->src_rq->lock);
    7661             : 
    7662        2607 :         if (env->imbalance <= 0)
    7663             :                 return 0;
    7664             : 
    7665        7332 :         while (!list_empty(tasks)) {
    7666             :                 /*
    7667             :                  * We don't want to steal all, otherwise we may be treated likewise,
    7668             :                  * which could at worst lead to a livelock crash.
    7669             :                  */
    7670        7332 :                 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
    7671             :                         break;
    7672             : 
    7673        7006 :                 p = list_last_entry(tasks, struct task_struct, se.group_node);
    7674             : 
    7675        7006 :                 env->loop++;
    7676             :                 /* We've more or less seen every task there is, call it quits */
    7677        7006 :                 if (env->loop > env->loop_max)
    7678             :                         break;
    7679             : 
    7680             :                 /* take a breather every nr_migrate tasks */
    7681        5141 :                 if (env->loop > env->loop_break) {
    7682           0 :                         env->loop_break += sched_nr_migrate_break;
    7683           0 :                         env->flags |= LBF_NEED_BREAK;
    7684           0 :                         break;
    7685             :                 }
    7686             : 
    7687        5141 :                 if (!can_migrate_task(p, env))
    7688        3129 :                         goto next;
    7689             : 
    7690        2013 :                 switch (env->migration_type) {
    7691             :                 case migrate_load:
    7692             :                         /*
    7693             :                          * Depending of the number of CPUs and tasks and the
    7694             :                          * cgroup hierarchy, task_h_load() can return a null
    7695             :                          * value. Make sure that env->imbalance decreases
    7696             :                          * otherwise detach_tasks() will stop only after
    7697             :                          * detaching up to loop_max tasks.
    7698             :                          */
    7699         144 :                         load = max_t(unsigned long, task_h_load(p), 1);
    7700             : 
    7701         144 :                         if (sched_feat(LB_MIN) &&
    7702             :                             load < 16 && !env->sd->nr_balance_failed)
    7703             :                                 goto next;
    7704             : 
    7705             :                         /*
    7706             :                          * Make sure that we don't migrate too much load.
    7707             :                          * Nevertheless, let relax the constraint if
    7708             :                          * scheduler fails to find a good waiting task to
    7709             :                          * migrate.
    7710             :                          */
    7711             : 
    7712         144 :                         if ((load >> env->sd->nr_balance_failed) > env->imbalance)
    7713         100 :                                 goto next;
    7714             : 
    7715          44 :                         env->imbalance -= load;
    7716          44 :                         break;
    7717             : 
    7718             :                 case migrate_util:
    7719        1465 :                         util = task_util_est(p);
    7720             : 
    7721        1465 :                         if (util > env->imbalance)
    7722        1059 :                                 goto next;
    7723             : 
    7724         406 :                         env->imbalance -= util;
    7725         406 :                         break;
    7726             : 
    7727         404 :                 case migrate_task:
    7728         404 :                         env->imbalance--;
    7729         404 :                         break;
    7730             : 
    7731           0 :                 case migrate_misfit:
    7732             :                         /* This is not a misfit task */
    7733           0 :                         if (task_fits_capacity(p, capacity_of(env->src_cpu)))
    7734           0 :                                 goto next;
    7735             : 
    7736           0 :                         env->imbalance = 0;
    7737           0 :                         break;
    7738             :                 }
    7739             : 
    7740         854 :                 detach_task(p, env);
    7741         853 :                 list_add(&p->se.group_node, &env->tasks);
    7742             : 
    7743         853 :                 detached++;
    7744             : 
    7745             : #ifdef CONFIG_PREEMPTION
    7746             :                 /*
    7747             :                  * NEWIDLE balancing is a source of latency, so preemptible
    7748             :                  * kernels will stop after the first task is detached to minimize
    7749             :                  * the critical section.
    7750             :                  */
    7751             :                 if (env->idle == CPU_NEWLY_IDLE)
    7752             :                         break;
    7753             : #endif
    7754             : 
    7755             :                 /*
    7756             :                  * We only want to steal up to the prescribed amount of
    7757             :                  * load/util/tasks.
    7758             :                  */
    7759         853 :                 if (env->imbalance <= 0)
    7760             :                         break;
    7761             : 
    7762         437 :                 continue;
    7763        4288 : next:
    7764       11620 :                 list_move(&p->se.group_node, tasks);
    7765             :         }
    7766             : 
    7767             :         /*
    7768             :          * Right now, this is one of only two places we collect this stat
    7769             :          * so we can safely collect detach_one_task() stats here rather
    7770             :          * than inside detach_one_task().
    7771             :          */
    7772             :         schedstat_add(env->sd->lb_gained[env->idle], detached);
    7773             : 
    7774             :         return detached;
    7775             : }
    7776             : 
    7777             : /*
    7778             :  * attach_task() -- attach the task detached by detach_task() to its new rq.
    7779             :  */
    7780         855 : static void attach_task(struct rq *rq, struct task_struct *p)
    7781             : {
    7782        1710 :         lockdep_assert_held(&rq->lock);
    7783             : 
    7784         855 :         BUG_ON(task_rq(p) != rq);
    7785         855 :         activate_task(rq, p, ENQUEUE_NOCLOCK);
    7786         854 :         check_preempt_curr(rq, p, 0);
    7787         855 : }
    7788             : 
    7789             : /*
    7790             :  * attach_one_task() -- attaches the task returned from detach_one_task() to
    7791             :  * its new rq.
    7792             :  */
    7793           1 : static void attach_one_task(struct rq *rq, struct task_struct *p)
    7794             : {
    7795           1 :         struct rq_flags rf;
    7796             : 
    7797           1 :         rq_lock(rq, &rf);
    7798           1 :         update_rq_clock(rq);
    7799           1 :         attach_task(rq, p);
    7800           1 :         rq_unlock(rq, &rf);
    7801           1 : }
    7802             : 
    7803             : /*
    7804             :  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
    7805             :  * new rq.
    7806             :  */
    7807         826 : static void attach_tasks(struct lb_env *env)
    7808             : {
    7809         826 :         struct list_head *tasks = &env->tasks;
    7810         826 :         struct task_struct *p;
    7811         826 :         struct rq_flags rf;
    7812             : 
    7813         826 :         rq_lock(env->dst_rq, &rf);
    7814         826 :         update_rq_clock(env->dst_rq);
    7815             : 
    7816        1680 :         while (!list_empty(tasks)) {
    7817         854 :                 p = list_first_entry(tasks, struct task_struct, se.group_node);
    7818         854 :                 list_del_init(&p->se.group_node);
    7819             : 
    7820         854 :                 attach_task(env->dst_rq, p);
    7821             :         }
    7822             : 
    7823         826 :         rq_unlock(env->dst_rq, &rf);
    7824         826 : }
    7825             : 
    7826             : #ifdef CONFIG_NO_HZ_COMMON
    7827       12202 : static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
    7828             : {
    7829       12202 :         if (cfs_rq->avg.load_avg)
    7830             :                 return true;
    7831             : 
    7832          39 :         if (cfs_rq->avg.util_avg)
    7833             :                 return true;
    7834             : 
    7835             :         return false;
    7836             : }
    7837             : 
    7838       12211 : static inline bool others_have_blocked(struct rq *rq)
    7839             : {
    7840       12211 :         if (READ_ONCE(rq->avg_rt.util_avg))
    7841             :                 return true;
    7842             : 
    7843       12211 :         if (READ_ONCE(rq->avg_dl.util_avg))
    7844             :                 return true;
    7845             : 
    7846       12211 :         if (thermal_load_avg(rq))
    7847             :                 return true;
    7848             : 
    7849             : #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
    7850       12211 :         if (READ_ONCE(rq->avg_irq.util_avg))
    7851             :                 return true;
    7852             : #endif
    7853             : 
    7854             :         return false;
    7855             : }
    7856             : 
    7857       12193 : static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
    7858             : {
    7859       12193 :         rq->last_blocked_load_update_tick = jiffies;
    7860             : 
    7861       12193 :         if (!has_blocked)
    7862          38 :                 rq->has_blocked_load = 0;
    7863             : }
    7864             : #else
    7865             : static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
    7866             : static inline bool others_have_blocked(struct rq *rq) { return false; }
    7867             : static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
    7868             : #endif
    7869             : 
    7870       12179 : static bool __update_blocked_others(struct rq *rq, bool *done)
    7871             : {
    7872       12179 :         const struct sched_class *curr_class;
    7873       12179 :         u64 now = rq_clock_pelt(rq);
    7874       12247 :         unsigned long thermal_pressure;
    7875       12247 :         bool decayed;
    7876             : 
    7877             :         /*
    7878             :          * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
    7879             :          * DL and IRQ signals have been updated before updating CFS.
    7880             :          */
    7881       12247 :         curr_class = rq->curr->sched_class;
    7882             : 
    7883       12247 :         thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
    7884             : 
    7885       24460 :         decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
    7886       12163 :                   update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
    7887       12222 :                   update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
    7888       12222 :                   update_irq_load_avg(rq, 0);
    7889             : 
    7890       12211 :         if (others_have_blocked(rq))
    7891        8229 :                 *done = false;
    7892             : 
    7893       12211 :         return decayed;
    7894             : }
    7895             : 
    7896             : #ifdef CONFIG_FAIR_GROUP_SCHED
    7897             : 
    7898             : static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
    7899             : {
    7900             :         if (cfs_rq->load.weight)
    7901             :                 return false;
    7902             : 
    7903             :         if (cfs_rq->avg.load_sum)
    7904             :                 return false;
    7905             : 
    7906             :         if (cfs_rq->avg.util_sum)
    7907             :                 return false;
    7908             : 
    7909             :         if (cfs_rq->avg.runnable_sum)
    7910             :                 return false;
    7911             : 
    7912             :         return true;
    7913             : }
    7914             : 
    7915             : static bool __update_blocked_fair(struct rq *rq, bool *done)
    7916             : {
    7917             :         struct cfs_rq *cfs_rq, *pos;
    7918             :         bool decayed = false;
    7919             :         int cpu = cpu_of(rq);
    7920             : 
    7921             :         /*
    7922             :          * Iterates the task_group tree in a bottom up fashion, see
    7923             :          * list_add_leaf_cfs_rq() for details.
    7924             :          */
    7925             :         for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
    7926             :                 struct sched_entity *se;
    7927             : 
    7928             :                 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
    7929             :                         update_tg_load_avg(cfs_rq);
    7930             : 
    7931             :                         if (cfs_rq == &rq->cfs)
    7932             :                                 decayed = true;
    7933             :                 }
    7934             : 
    7935             :                 /* Propagate pending load changes to the parent, if any: */
    7936             :                 se = cfs_rq->tg->se[cpu];
    7937             :                 if (se && !skip_blocked_update(se))
    7938             :                         update_load_avg(cfs_rq_of(se), se, 0);
    7939             : 
    7940             :                 /*
    7941             :                  * There can be a lot of idle CPU cgroups.  Don't let fully
    7942             :                  * decayed cfs_rqs linger on the list.
    7943             :                  */
    7944             :                 if (cfs_rq_is_decayed(cfs_rq))
    7945             :                         list_del_leaf_cfs_rq(cfs_rq);
    7946             : 
    7947             :                 /* Don't need periodic decay once load/util_avg are null */
    7948             :                 if (cfs_rq_has_blocked(cfs_rq))
    7949             :                         *done = false;
    7950             :         }
    7951             : 
    7952             :         return decayed;
    7953             : }
    7954             : 
    7955             : /*
    7956             :  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
    7957             :  * This needs to be done in a top-down fashion because the load of a child
    7958             :  * group is a fraction of its parents load.
    7959             :  */
    7960             : static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
    7961             : {
    7962             :         struct rq *rq = rq_of(cfs_rq);
    7963             :         struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
    7964             :         unsigned long now = jiffies;
    7965             :         unsigned long load;
    7966             : 
    7967             :         if (cfs_rq->last_h_load_update == now)
    7968             :                 return;
    7969             : 
    7970             :         WRITE_ONCE(cfs_rq->h_load_next, NULL);
    7971             :         for_each_sched_entity(se) {
    7972             :                 cfs_rq = cfs_rq_of(se);
    7973             :                 WRITE_ONCE(cfs_rq->h_load_next, se);
    7974             :                 if (cfs_rq->last_h_load_update == now)
    7975             :                         break;
    7976             :         }
    7977             : 
    7978             :         if (!se) {
    7979             :                 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
    7980             :                 cfs_rq->last_h_load_update = now;
    7981             :         }
    7982             : 
    7983             :         while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
    7984             :                 load = cfs_rq->h_load;
    7985             :                 load = div64_ul(load * se->avg.load_avg,
    7986             :                         cfs_rq_load_avg(cfs_rq) + 1);
    7987             :                 cfs_rq = group_cfs_rq(se);
    7988             :                 cfs_rq->h_load = load;
    7989             :                 cfs_rq->last_h_load_update = now;
    7990             :         }
    7991             : }
    7992             : 
    7993             : static unsigned long task_h_load(struct task_struct *p)
    7994             : {
    7995             :         struct cfs_rq *cfs_rq = task_cfs_rq(p);
    7996             : 
    7997             :         update_cfs_rq_h_load(cfs_rq);
    7998             :         return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
    7999             :                         cfs_rq_load_avg(cfs_rq) + 1);
    8000             : }
    8001             : #else
    8002       12171 : static bool __update_blocked_fair(struct rq *rq, bool *done)
    8003             : {
    8004       12171 :         struct cfs_rq *cfs_rq = &rq->cfs;
    8005       12171 :         bool decayed;
    8006             : 
    8007       12171 :         decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
    8008       12202 :         if (cfs_rq_has_blocked(cfs_rq))
    8009       12163 :                 *done = false;
    8010             : 
    8011       12202 :         return decayed;
    8012             : }
    8013             : 
    8014        1025 : static unsigned long task_h_load(struct task_struct *p)
    8015             : {
    8016        1025 :         return p->se.avg.load_avg;
    8017             : }
    8018             : #endif
    8019             : 
    8020       12154 : static void update_blocked_averages(int cpu)
    8021             : {
    8022       12154 :         bool decayed = false, done = true;
    8023       12154 :         struct rq *rq = cpu_rq(cpu);
    8024       12154 :         struct rq_flags rf;
    8025             : 
    8026       12154 :         rq_lock_irqsave(rq, &rf);
    8027       12223 :         update_rq_clock(rq);
    8028             : 
    8029       12223 :         decayed |= __update_blocked_others(rq, &done);
    8030       12209 :         decayed |= __update_blocked_fair(rq, &done);
    8031             : 
    8032       12193 :         update_blocked_load_status(rq, !done);
    8033       12193 :         if (decayed)
    8034       12193 :                 cpufreq_update_util(rq, 0);
    8035       12193 :         rq_unlock_irqrestore(rq, &rf);
    8036       12217 : }
    8037             : 
    8038             : /********** Helpers for find_busiest_group ************************/
    8039             : 
    8040             : /*
    8041             :  * sg_lb_stats - stats of a sched_group required for load_balancing
    8042             :  */
    8043             : struct sg_lb_stats {
    8044             :         unsigned long avg_load; /*Avg load across the CPUs of the group */
    8045             :         unsigned long group_load; /* Total load over the CPUs of the group */
    8046             :         unsigned long group_capacity;
    8047             :         unsigned long group_util; /* Total utilization over the CPUs of the group */
    8048             :         unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
    8049             :         unsigned int sum_nr_running; /* Nr of tasks running in the group */
    8050             :         unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
    8051             :         unsigned int idle_cpus;
    8052             :         unsigned int group_weight;
    8053             :         enum group_type group_type;
    8054             :         unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
    8055             :         unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
    8056             : #ifdef CONFIG_NUMA_BALANCING
    8057             :         unsigned int nr_numa_running;
    8058             :         unsigned int nr_preferred_running;
    8059             : #endif
    8060             : };
    8061             : 
    8062             : /*
    8063             :  * sd_lb_stats - Structure to store the statistics of a sched_domain
    8064             :  *               during load balancing.
    8065             :  */
    8066             : struct sd_lb_stats {
    8067             :         struct sched_group *busiest;    /* Busiest group in this sd */
    8068             :         struct sched_group *local;      /* Local group in this sd */
    8069             :         unsigned long total_load;       /* Total load of all groups in sd */
    8070             :         unsigned long total_capacity;   /* Total capacity of all groups in sd */
    8071             :         unsigned long avg_load; /* Average load across all groups in sd */
    8072             :         unsigned int prefer_sibling; /* tasks should go to sibling first */
    8073             : 
    8074             :         struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
    8075             :         struct sg_lb_stats local_stat;  /* Statistics of the local group */
    8076             : };
    8077             : 
    8078        9304 : static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
    8079             : {
    8080             :         /*
    8081             :          * Skimp on the clearing to avoid duplicate work. We can avoid clearing
    8082             :          * local_stat because update_sg_lb_stats() does a full clear/assignment.
    8083             :          * We must however set busiest_stat::group_type and
    8084             :          * busiest_stat::idle_cpus to the worst busiest group because
    8085             :          * update_sd_pick_busiest() reads these before assignment.
    8086             :          */
    8087        9304 :         *sds = (struct sd_lb_stats){
    8088             :                 .busiest = NULL,
    8089             :                 .local = NULL,
    8090             :                 .total_load = 0UL,
    8091             :                 .total_capacity = 0UL,
    8092             :                 .busiest_stat = {
    8093             :                         .idle_cpus = UINT_MAX,
    8094             :                         .group_type = group_has_spare,
    8095             :                 },
    8096             :         };
    8097             : }
    8098             : 
    8099        7892 : static unsigned long scale_rt_capacity(int cpu)
    8100             : {
    8101        7892 :         struct rq *rq = cpu_rq(cpu);
    8102        7892 :         unsigned long max = arch_scale_cpu_capacity(cpu);
    8103        7892 :         unsigned long used, free;
    8104        7892 :         unsigned long irq;
    8105             : 
    8106        7892 :         irq = cpu_util_irq(rq);
    8107             : 
    8108        7892 :         if (unlikely(irq >= max))
    8109             :                 return 1;
    8110             : 
    8111             :         /*
    8112             :          * avg_rt.util_avg and avg_dl.util_avg track binary signals
    8113             :          * (running and not running) with weights 0 and 1024 respectively.
    8114             :          * avg_thermal.load_avg tracks thermal pressure and the weighted
    8115             :          * average uses the actual delta max capacity(load).
    8116             :          */
    8117        7892 :         used = READ_ONCE(rq->avg_rt.util_avg);
    8118        7892 :         used += READ_ONCE(rq->avg_dl.util_avg);
    8119        7892 :         used += thermal_load_avg(rq);
    8120             : 
    8121        7892 :         if (unlikely(used >= max))
    8122             :                 return 1;
    8123             : 
    8124        7892 :         free = max - used;
    8125             : 
    8126        7892 :         return scale_irq_capacity(free, irq, max);
    8127             : }
    8128             : 
    8129        7877 : static void update_cpu_capacity(struct sched_domain *sd, int cpu)
    8130             : {
    8131        7877 :         unsigned long capacity = scale_rt_capacity(cpu);
    8132        7904 :         struct sched_group *sdg = sd->groups;
    8133             : 
    8134        7904 :         cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
    8135             : 
    8136        7904 :         if (!capacity)
    8137             :                 capacity = 1;
    8138             : 
    8139        7904 :         cpu_rq(cpu)->cpu_capacity = capacity;
    8140        7904 :         trace_sched_cpu_capacity_tp(cpu_rq(cpu));
    8141             : 
    8142        7920 :         sdg->sgc->capacity = capacity;
    8143        7920 :         sdg->sgc->min_capacity = capacity;
    8144        7920 :         sdg->sgc->max_capacity = capacity;
    8145        7920 : }
    8146             : 
    8147        7911 : void update_group_capacity(struct sched_domain *sd, int cpu)
    8148             : {
    8149        7911 :         struct sched_domain *child = sd->child;
    8150        7911 :         struct sched_group *group, *sdg = sd->groups;
    8151        7911 :         unsigned long capacity, min_capacity, max_capacity;
    8152        7911 :         unsigned long interval;
    8153             : 
    8154        7911 :         interval = msecs_to_jiffies(sd->balance_interval);
    8155        7926 :         interval = clamp(interval, 1UL, max_load_balance_interval);
    8156        7926 :         sdg->sgc->next_update = jiffies + interval;
    8157             : 
    8158        7926 :         if (!child) {
    8159        7882 :                 update_cpu_capacity(sd, cpu);
    8160        7882 :                 return;
    8161             :         }
    8162             : 
    8163          44 :         capacity = 0;
    8164          44 :         min_capacity = ULONG_MAX;
    8165          44 :         max_capacity = 0;
    8166             : 
    8167          44 :         if (child->flags & SD_OVERLAP) {
    8168             :                 /*
    8169             :                  * SD_OVERLAP domains cannot assume that child groups
    8170             :                  * span the current group.
    8171             :                  */
    8172             : 
    8173          36 :                 for_each_cpu(cpu, sched_group_span(sdg)) {
    8174           0 :                         unsigned long cpu_cap = capacity_of(cpu);
    8175             : 
    8176           0 :                         capacity += cpu_cap;
    8177           0 :                         min_capacity = min(cpu_cap, min_capacity);
    8178           0 :                         max_capacity = max(cpu_cap, max_capacity);
    8179             :                 }
    8180             :         } else  {
    8181             :                 /*
    8182             :                  * !SD_OVERLAP domains can assume that child groups
    8183             :                  * span the current group.
    8184             :                  */
    8185             : 
    8186           8 :                 group = child->groups;
    8187           8 :                 do {
    8188           8 :                         struct sched_group_capacity *sgc = group->sgc;
    8189             : 
    8190           8 :                         capacity += sgc->capacity;
    8191           8 :                         min_capacity = min(sgc->min_capacity, min_capacity);
    8192           8 :                         max_capacity = max(sgc->max_capacity, max_capacity);
    8193           8 :                         group = group->next;
    8194           8 :                 } while (group != child->groups);
    8195             :         }
    8196             : 
    8197           8 :         sdg->sgc->capacity = capacity;
    8198           8 :         sdg->sgc->min_capacity = min_capacity;
    8199           8 :         sdg->sgc->max_capacity = max_capacity;
    8200             : }
    8201             : 
    8202             : /*
    8203             :  * Check whether the capacity of the rq has been noticeably reduced by side
    8204             :  * activity. The imbalance_pct is used for the threshold.
    8205             :  * Return true is the capacity is reduced
    8206             :  */
    8207             : static inline int
    8208        2223 : check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
    8209             : {
    8210        2223 :         return ((rq->cpu_capacity * sd->imbalance_pct) <
    8211        2223 :                                 (rq->cpu_capacity_orig * 100));
    8212             : }
    8213             : 
    8214             : /*
    8215             :  * Check whether a rq has a misfit task and if it looks like we can actually
    8216             :  * help that task: we can migrate the task to a CPU of higher capacity, or
    8217             :  * the task's current CPU is heavily pressured.
    8218             :  */
    8219           0 : static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
    8220             : {
    8221           0 :         return rq->misfit_task_load &&
    8222           0 :                 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
    8223           0 :                  check_cpu_capacity(rq, sd));
    8224             : }
    8225             : 
    8226             : /*
    8227             :  * Group imbalance indicates (and tries to solve) the problem where balancing
    8228             :  * groups is inadequate due to ->cpus_ptr constraints.
    8229             :  *
    8230             :  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
    8231             :  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
    8232             :  * Something like:
    8233             :  *
    8234             :  *      { 0 1 2 3 } { 4 5 6 7 }
    8235             :  *              *     * * *
    8236             :  *
    8237             :  * If we were to balance group-wise we'd place two tasks in the first group and
    8238             :  * two tasks in the second group. Clearly this is undesired as it will overload
    8239             :  * cpu 3 and leave one of the CPUs in the second group unused.
    8240             :  *
    8241             :  * The current solution to this issue is detecting the skew in the first group
    8242             :  * by noticing the lower domain failed to reach balance and had difficulty
    8243             :  * moving tasks due to affinity constraints.
    8244             :  *
    8245             :  * When this is so detected; this group becomes a candidate for busiest; see
    8246             :  * update_sd_pick_busiest(). And calculate_imbalance() and
    8247             :  * find_busiest_group() avoid some of the usual balance conditions to allow it
    8248             :  * to create an effective group imbalance.
    8249             :  *
    8250             :  * This is a somewhat tricky proposition since the next run might not find the
    8251             :  * group imbalance and decide the groups need to be balanced again. A most
    8252             :  * subtle and fragile situation.
    8253             :  */
    8254             : 
    8255       40406 : static inline int sg_imbalanced(struct sched_group *group)
    8256             : {
    8257       40406 :         return group->sgc->imbalance;
    8258             : }
    8259             : 
    8260             : /*
    8261             :  * group_has_capacity returns true if the group has spare capacity that could
    8262             :  * be used by some tasks.
    8263             :  * We consider that a group has spare capacity if the  * number of task is
    8264             :  * smaller than the number of CPUs or if the utilization is lower than the
    8265             :  * available capacity for CFS tasks.
    8266             :  * For the latter, we use a threshold to stabilize the state, to take into
    8267             :  * account the variance of the tasks' load and to return true if the available
    8268             :  * capacity in meaningful for the load balancer.
    8269             :  * As an example, an available capacity of 1% can appear but it doesn't make
    8270             :  * any benefit for the load balance.
    8271             :  */
    8272             : static inline bool
    8273       40407 : group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
    8274             : {
    8275       40407 :         if (sgs->sum_nr_running < sgs->group_weight)
    8276             :                 return true;
    8277             : 
    8278       17899 :         if ((sgs->group_capacity * imbalance_pct) <
    8279       17899 :                         (sgs->group_runnable * 100))
    8280             :                 return false;
    8281             : 
    8282       15403 :         if ((sgs->group_capacity * 100) >
    8283       15403 :                         (sgs->group_util * imbalance_pct))
    8284       12289 :                 return true;
    8285             : 
    8286             :         return false;
    8287             : }
    8288             : 
    8289             : /*
    8290             :  *  group_is_overloaded returns true if the group has more tasks than it can
    8291             :  *  handle.
    8292             :  *  group_is_overloaded is not equals to !group_has_capacity because a group
    8293             :  *  with the exact right number of tasks, has no more spare capacity but is not
    8294             :  *  overloaded so both group_has_capacity and group_is_overloaded return
    8295             :  *  false.
    8296             :  */
    8297             : static inline bool
    8298       43869 : group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
    8299             : {
    8300       43869 :         if (sgs->sum_nr_running <= sgs->group_weight)
    8301             :                 return false;
    8302             : 
    8303        5368 :         if ((sgs->group_capacity * 100) <
    8304        5368 :                         (sgs->group_util * imbalance_pct))
    8305             :                 return true;
    8306             : 
    8307        2165 :         if ((sgs->group_capacity * imbalance_pct) <
    8308        2165 :                         (sgs->group_runnable * 100))
    8309         284 :                 return true;
    8310             : 
    8311             :         return false;
    8312             : }
    8313             : 
    8314             : /*
    8315             :  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
    8316             :  * per-CPU capacity than sched_group ref.
    8317             :  */
    8318             : static inline bool
    8319           0 : group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
    8320             : {
    8321           0 :         return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
    8322             : }
    8323             : 
    8324             : /*
    8325             :  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
    8326             :  * per-CPU capacity_orig than sched_group ref.
    8327             :  */
    8328             : static inline bool
    8329           0 : group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
    8330             : {
    8331           0 :         return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
    8332             : }
    8333             : 
    8334             : static inline enum
    8335       43892 : group_type group_classify(unsigned int imbalance_pct,
    8336             :                           struct sched_group *group,
    8337             :                           struct sg_lb_stats *sgs)
    8338             : {
    8339       43892 :         if (group_is_overloaded(imbalance_pct, sgs))
    8340             :                 return group_overloaded;
    8341             : 
    8342       40406 :         if (sg_imbalanced(group))
    8343             :                 return group_imbalanced;
    8344             : 
    8345       40406 :         if (sgs->group_asym_packing)
    8346             :                 return group_asym_packing;
    8347             : 
    8348       40406 :         if (sgs->group_misfit_task_load)
    8349             :                 return group_misfit_task;
    8350             : 
    8351       40406 :         if (!group_has_capacity(imbalance_pct, sgs))
    8352        5613 :                 return group_fully_busy;
    8353             : 
    8354             :         return group_has_spare;
    8355             : }
    8356             : 
    8357        3039 : static bool update_nohz_stats(struct rq *rq, bool force)
    8358             : {
    8359             : #ifdef CONFIG_NO_HZ_COMMON
    8360        3039 :         unsigned int cpu = rq->cpu;
    8361             : 
    8362        3039 :         if (!rq->has_blocked_load)
    8363             :                 return false;
    8364             : 
    8365        2821 :         if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
    8366             :                 return false;
    8367             : 
    8368         764 :         if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
    8369             :                 return true;
    8370             : 
    8371         463 :         update_blocked_averages(cpu);
    8372             : 
    8373         463 :         return rq->has_blocked_load;
    8374             : #else
    8375             :         return false;
    8376             : #endif
    8377             : }
    8378             : 
    8379             : /**
    8380             :  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
    8381             :  * @env: The load balancing environment.
    8382             :  * @group: sched_group whose statistics are to be updated.
    8383             :  * @sgs: variable to hold the statistics for this group.
    8384             :  * @sg_status: Holds flag indicating the status of the sched_group
    8385             :  */
    8386       37514 : static inline void update_sg_lb_stats(struct lb_env *env,
    8387             :                                       struct sched_group *group,
    8388             :                                       struct sg_lb_stats *sgs,
    8389             :                                       int *sg_status)
    8390             : {
    8391       37514 :         int i, nr_running, local_group;
    8392             : 
    8393       37514 :         memset(sgs, 0, sizeof(*sgs));
    8394             : 
    8395       37514 :         local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
    8396             : 
    8397      112772 :         for_each_cpu_and(i, sched_group_span(group), env->cpus) {
    8398       37533 :                 struct rq *rq = cpu_rq(i);
    8399             : 
    8400       37533 :                 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
    8401         580 :                         env->flags |= LBF_NOHZ_AGAIN;
    8402             : 
    8403       37532 :                 sgs->group_load += cpu_load(rq);
    8404       37532 :                 sgs->group_util += cpu_util(i);
    8405       37551 :                 sgs->group_runnable += cpu_runnable(rq);
    8406       37551 :                 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
    8407             : 
    8408       37551 :                 nr_running = rq->nr_running;
    8409       37551 :                 sgs->sum_nr_running += nr_running;
    8410             : 
    8411       37551 :                 if (nr_running > 1)
    8412        4621 :                         *sg_status |= SG_OVERLOAD;
    8413             : 
    8414       37551 :                 if (cpu_overutilized(i))
    8415        9703 :                         *sg_status |= SG_OVERUTILIZED;
    8416             : 
    8417             : #ifdef CONFIG_NUMA_BALANCING
    8418             :                 sgs->nr_numa_running += rq->nr_numa_running;
    8419             :                 sgs->nr_preferred_running += rq->nr_preferred_running;
    8420             : #endif
    8421             :                 /*
    8422             :                  * No need to call idle_cpu() if nr_running is not 0
    8423             :                  */
    8424       37578 :                 if (!nr_running && idle_cpu(i)) {
    8425       16356 :                         sgs->idle_cpus++;
    8426             :                         /* Idle cpu can't have misfit task */
    8427       16356 :                         continue;
    8428             :                 }
    8429             : 
    8430       21257 :                 if (local_group)
    8431        4559 :                         continue;
    8432             : 
    8433             :                 /* Check for a misfit task on the cpu */
    8434       16698 :                 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
    8435           0 :                     sgs->group_misfit_task_load < rq->misfit_task_load) {
    8436           0 :                         sgs->group_misfit_task_load = rq->misfit_task_load;
    8437           0 :                         *sg_status |= SG_OVERLOAD;
    8438             :                 }
    8439             :         }
    8440             : 
    8441             :         /* Check if dst CPU is idle and preferred to this group */
    8442       37683 :         if (env->sd->flags & SD_ASYM_PACKING &&
    8443           0 :             env->idle != CPU_NOT_IDLE &&
    8444           0 :             sgs->sum_h_nr_running &&
    8445           0 :             sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
    8446           0 :                 sgs->group_asym_packing = 1;
    8447             :         }
    8448             : 
    8449       37683 :         sgs->group_capacity = group->sgc->capacity;
    8450             : 
    8451       37683 :         sgs->group_weight = group->group_weight;
    8452             : 
    8453       37683 :         sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
    8454             : 
    8455             :         /* Computing avg_load makes sense only when group is overloaded */
    8456       37683 :         if (sgs->group_type == group_overloaded)
    8457        2959 :                 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
    8458             :                                 sgs->group_capacity;
    8459       37683 : }
    8460             : 
    8461             : /**
    8462             :  * update_sd_pick_busiest - return 1 on busiest group
    8463             :  * @env: The load balancing environment.
    8464             :  * @sds: sched_domain statistics
    8465             :  * @sg: sched_group candidate to be checked for being the busiest
    8466             :  * @sgs: sched_group statistics
    8467             :  *
    8468             :  * Determine if @sg is a busier group than the previously selected
    8469             :  * busiest group.
    8470             :  *
    8471             :  * Return: %true if @sg is a busier group than the previously selected
    8472             :  * busiest group. %false otherwise.
    8473             :  */
    8474       28257 : static bool update_sd_pick_busiest(struct lb_env *env,
    8475             :                                    struct sd_lb_stats *sds,
    8476             :                                    struct sched_group *sg,
    8477             :                                    struct sg_lb_stats *sgs)
    8478             : {
    8479       28257 :         struct sg_lb_stats *busiest = &sds->busiest_stat;
    8480             : 
    8481             :         /* Make sure that there is at least one task to pull */
    8482       28257 :         if (!sgs->sum_h_nr_running)
    8483             :                 return false;
    8484             : 
    8485             :         /*
    8486             :          * Don't try to pull misfit tasks we can't help.
    8487             :          * We can use max_capacity here as reduction in capacity on some
    8488             :          * CPUs in the group should either be possible to resolve
    8489             :          * internally or be covered by avg_load imbalance (eventually).
    8490             :          */
    8491       16554 :         if (sgs->group_type == group_misfit_task &&
    8492           0 :             (!group_smaller_max_cpu_capacity(sg, sds->local) ||
    8493           0 :              sds->local_stat.group_type != group_has_spare))
    8494             :                 return false;
    8495             : 
    8496       16554 :         if (sgs->group_type > busiest->group_type)
    8497             :                 return true;
    8498             : 
    8499       11657 :         if (sgs->group_type < busiest->group_type)
    8500             :                 return false;
    8501             : 
    8502             :         /*
    8503             :          * The candidate and the current busiest group are the same type of
    8504             :          * group. Let check which one is the busiest according to the type.
    8505             :          */
    8506             : 
    8507        9184 :         switch (sgs->group_type) {
    8508         666 :         case group_overloaded:
    8509             :                 /* Select the overloaded group with highest avg_load. */
    8510         666 :                 if (sgs->avg_load <= busiest->avg_load)
    8511             :                         return false;
    8512             :                 break;
    8513             : 
    8514             :         case group_imbalanced:
    8515             :                 /*
    8516             :                  * Select the 1st imbalanced group as we don't have any way to
    8517             :                  * choose one more than another.
    8518             :                  */
    8519             :                 return false;
    8520             : 
    8521           0 :         case group_asym_packing:
    8522             :                 /* Prefer to move from lowest priority CPU's work */
    8523           0 :                 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
    8524             :                         return false;
    8525             :                 break;
    8526             : 
    8527           0 :         case group_misfit_task:
    8528             :                 /*
    8529             :                  * If we have more than one misfit sg go with the biggest
    8530             :                  * misfit.
    8531             :                  */
    8532           0 :                 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
    8533             :                         return false;
    8534             :                 break;
    8535             : 
    8536         909 :         case group_fully_busy:
    8537             :                 /*
    8538             :                  * Select the fully busy group with highest avg_load. In
    8539             :                  * theory, there is no need to pull task from such kind of
    8540             :                  * group because tasks have all compute capacity that they need
    8541             :                  * but we can still improve the overall throughput by reducing
    8542             :                  * contention when accessing shared HW resources.
    8543             :                  *
    8544             :                  * XXX for now avg_load is not computed and always 0 so we
    8545             :                  * select the 1st one.
    8546             :                  */
    8547         909 :                 if (sgs->avg_load <= busiest->avg_load)
    8548             :                         return false;
    8549             :                 break;
    8550             : 
    8551        7609 :         case group_has_spare:
    8552             :                 /*
    8553             :                  * Select not overloaded group with lowest number of idle cpus
    8554             :                  * and highest number of running tasks. We could also compare
    8555             :                  * the spare capacity which is more stable but it can end up
    8556             :                  * that the group has less spare capacity but finally more idle
    8557             :                  * CPUs which means less opportunity to pull tasks.
    8558             :                  */
    8559        7609 :                 if (sgs->idle_cpus > busiest->idle_cpus)
    8560             :                         return false;
    8561        7609 :                 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
    8562        1630 :                          (sgs->sum_nr_running <= busiest->sum_nr_running))
    8563             :                         return false;
    8564             : 
    8565             :                 break;
    8566             :         }
    8567             : 
    8568             :         /*
    8569             :          * Candidate sg has no more than one task per CPU and has higher
    8570             :          * per-CPU capacity. Migrating tasks to less capable CPUs may harm
    8571             :          * throughput. Maximize throughput, power/energy consequences are not
    8572             :          * considered.
    8573             :          */
    8574        6535 :         if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
    8575           0 :             (sgs->group_type <= group_fully_busy) &&
    8576           0 :             (group_smaller_min_cpu_capacity(sds->local, sg)))
    8577           0 :                 return false;
    8578             : 
    8579             :         return true;
    8580             : }
    8581             : 
    8582             : #ifdef CONFIG_NUMA_BALANCING
    8583             : static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
    8584             : {
    8585             :         if (sgs->sum_h_nr_running > sgs->nr_numa_running)
    8586             :                 return regular;
    8587             :         if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
    8588             :                 return remote;
    8589             :         return all;
    8590             : }
    8591             : 
    8592             : static inline enum fbq_type fbq_classify_rq(struct rq *rq)
    8593             : {
    8594             :         if (rq->nr_running > rq->nr_numa_running)
    8595             :                 return regular;
    8596             :         if (rq->nr_running > rq->nr_preferred_running)
    8597             :                 return remote;
    8598             :         return all;
    8599             : }
    8600             : #else
    8601           0 : static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
    8602             : {
    8603           0 :         return all;
    8604             : }
    8605             : 
    8606        2601 : static inline enum fbq_type fbq_classify_rq(struct rq *rq)
    8607             : {
    8608        2601 :         return regular;
    8609             : }
    8610             : #endif /* CONFIG_NUMA_BALANCING */
    8611             : 
    8612             : 
    8613             : struct sg_lb_stats;
    8614             : 
    8615             : /*
    8616             :  * task_running_on_cpu - return 1 if @p is running on @cpu.
    8617             :  */
    8618             : 
    8619        6336 : static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
    8620             : {
    8621             :         /* Task has no contribution or is new */
    8622        1584 :         if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
    8623             :                 return 0;
    8624             : 
    8625         625 :         if (task_on_rq_queued(p))
    8626         625 :                 return 1;
    8627             : 
    8628             :         return 0;
    8629             : }
    8630             : 
    8631             : /**
    8632             :  * idle_cpu_without - would a given CPU be idle without p ?
    8633             :  * @cpu: the processor on which idleness is tested.
    8634             :  * @p: task which should be ignored.
    8635             :  *
    8636             :  * Return: 1 if the CPU would be idle. 0 otherwise.
    8637             :  */
    8638        3165 : static int idle_cpu_without(int cpu, struct task_struct *p)
    8639             : {
    8640        3165 :         struct rq *rq = cpu_rq(cpu);
    8641             : 
    8642        3165 :         if (rq->curr != rq->idle && rq->curr != p)
    8643             :                 return 0;
    8644             : 
    8645             :         /*
    8646             :          * rq->nr_running can't be used but an updated version without the
    8647             :          * impact of p on cpu must be used instead. The updated nr_running
    8648             :          * be computed and tested before calling idle_cpu_without().
    8649             :          */
    8650             : 
    8651             : #ifdef CONFIG_SMP
    8652        3165 :         if (rq->ttwu_pending)
    8653           5 :                 return 0;
    8654             : #endif
    8655             : 
    8656             :         return 1;
    8657             : }
    8658             : 
    8659             : /*
    8660             :  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
    8661             :  * @sd: The sched_domain level to look for idlest group.
    8662             :  * @group: sched_group whose statistics are to be updated.
    8663             :  * @sgs: variable to hold the statistics for this group.
    8664             :  * @p: The task for which we look for the idlest group/CPU.
    8665             :  */
    8666        6336 : static inline void update_sg_wakeup_stats(struct sched_domain *sd,
    8667             :                                           struct sched_group *group,
    8668             :                                           struct sg_lb_stats *sgs,
    8669             :                                           struct task_struct *p)
    8670             : {
    8671        6336 :         int i, nr_running;
    8672             : 
    8673        6336 :         memset(sgs, 0, sizeof(*sgs));
    8674             : 
    8675       12672 :         for_each_cpu(i, sched_group_span(group)) {
    8676        6336 :                 struct rq *rq = cpu_rq(i);
    8677        6336 :                 unsigned int local;
    8678             : 
    8679        6336 :                 sgs->group_load += cpu_load_without(rq, p);
    8680        6336 :                 sgs->group_util += cpu_util_without(i, p);
    8681        6336 :                 sgs->group_runnable += cpu_runnable_without(rq, p);
    8682        6336 :                 local = task_running_on_cpu(i, p);
    8683        6336 :                 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
    8684             : 
    8685        6336 :                 nr_running = rq->nr_running - local;
    8686        6336 :                 sgs->sum_nr_running += nr_running;
    8687             : 
    8688             :                 /*
    8689             :                  * No need to call idle_cpu_without() if nr_running is not 0
    8690             :                  */
    8691        6336 :                 if (!nr_running && idle_cpu_without(i, p))
    8692        3160 :                         sgs->idle_cpus++;
    8693             : 
    8694             :         }
    8695             : 
    8696             :         /* Check if task fits in the group */
    8697        6336 :         if (sd->flags & SD_ASYM_CPUCAPACITY &&
    8698           0 :             !task_fits_capacity(p, group->sgc->max_capacity)) {
    8699           0 :                 sgs->group_misfit_task_load = 1;
    8700             :         }
    8701             : 
    8702        6336 :         sgs->group_capacity = group->sgc->capacity;
    8703             : 
    8704        6336 :         sgs->group_weight = group->group_weight;
    8705             : 
    8706        6336 :         sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
    8707             : 
    8708             :         /*
    8709             :          * Computing avg_load makes sense only when group is fully busy or
    8710             :          * overloaded
    8711             :          */
    8712        6336 :         if (sgs->group_type == group_fully_busy ||
    8713             :                 sgs->group_type == group_overloaded)
    8714        1622 :                 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
    8715             :                                 sgs->group_capacity;
    8716        6336 : }
    8717             : 
    8718        4752 : static bool update_pick_idlest(struct sched_group *idlest,
    8719             :                                struct sg_lb_stats *idlest_sgs,
    8720             :                                struct sched_group *group,
    8721             :                                struct sg_lb_stats *sgs)
    8722             : {
    8723        4752 :         if (sgs->group_type < idlest_sgs->group_type)
    8724             :                 return true;
    8725             : 
    8726        2970 :         if (sgs->group_type > idlest_sgs->group_type)
    8727             :                 return false;
    8728             : 
    8729             :         /*
    8730             :          * The candidate and the current idlest group are the same type of
    8731             :          * group. Let check which one is the idlest according to the type.
    8732             :          */
    8733             : 
    8734        2316 :         switch (sgs->group_type) {
    8735         348 :         case group_overloaded:
    8736             :         case group_fully_busy:
    8737             :                 /* Select the group with lowest avg_load. */
    8738         348 :                 if (idlest_sgs->avg_load <= sgs->avg_load)
    8739             :                         return false;
    8740             :                 break;
    8741             : 
    8742             :         case group_imbalanced:
    8743             :         case group_asym_packing:
    8744             :                 /* Those types are not used in the slow wakeup path */
    8745             :                 return false;
    8746             : 
    8747           0 :         case group_misfit_task:
    8748             :                 /* Select group with the highest max capacity */
    8749           0 :                 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
    8750             :                         return false;
    8751             :                 break;
    8752             : 
    8753        1968 :         case group_has_spare:
    8754             :                 /* Select group with most idle CPUs */
    8755        1968 :                 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
    8756             :                         return false;
    8757             : 
    8758             :                 /* Select group with lowest group_util */
    8759        1726 :                 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
    8760        1562 :                         idlest_sgs->group_util <= sgs->group_util)
    8761             :                         return false;
    8762             : 
    8763             :                 break;
    8764             :         }
    8765             : 
    8766        1035 :         return true;
    8767             : }
    8768             : 
    8769             : /*
    8770             :  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
    8771             :  * This is an approximation as the number of running tasks may not be
    8772             :  * related to the number of busy CPUs due to sched_setaffinity.
    8773             :  */
    8774           0 : static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
    8775             : {
    8776           0 :         return (dst_running < (dst_weight >> 2));
    8777             : }
    8778             : 
    8779             : /*
    8780             :  * find_idlest_group() finds and returns the least busy CPU group within the
    8781             :  * domain.
    8782             :  *
    8783             :  * Assumes p is allowed on at least one CPU in sd.
    8784             :  */
    8785             : static struct sched_group *
    8786        1584 : find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
    8787             : {
    8788        1584 :         struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
    8789        1584 :         struct sg_lb_stats local_sgs, tmp_sgs;
    8790        1584 :         struct sg_lb_stats *sgs;
    8791        1584 :         unsigned long imbalance;
    8792        1584 :         struct sg_lb_stats idlest_sgs = {
    8793             :                         .avg_load = UINT_MAX,
    8794             :                         .group_type = group_overloaded,
    8795             :         };
    8796             : 
    8797        6336 :         do {
    8798        6336 :                 int local_group;
    8799             : 
    8800             :                 /* Skip over this group if it has no CPUs allowed */
    8801        6336 :                 if (!cpumask_intersects(sched_group_span(group),
    8802        6336 :                                         p->cpus_ptr))
    8803           0 :                         continue;
    8804             : 
    8805        6336 :                 local_group = cpumask_test_cpu(this_cpu,
    8806        6336 :                                                sched_group_span(group));
    8807             : 
    8808        6336 :                 if (local_group) {
    8809        1584 :                         sgs = &local_sgs;
    8810        1584 :                         local = group;
    8811             :                 } else {
    8812             :                         sgs = &tmp_sgs;
    8813             :                 }
    8814             : 
    8815        6336 :                 update_sg_wakeup_stats(sd, group, sgs, p);
    8816             : 
    8817        6336 :                 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
    8818        2817 :                         idlest = group;
    8819        2817 :                         idlest_sgs = *sgs;
    8820             :                 }
    8821             : 
    8822        6336 :         } while (group = group->next, group != sd->groups);
    8823             : 
    8824             : 
    8825             :         /* There is no idlest group to push tasks to */
    8826        1584 :         if (!idlest)
    8827             :                 return NULL;
    8828             : 
    8829             :         /* The local group has been skipped because of CPU affinity */
    8830        1584 :         if (!local)
    8831             :                 return idlest;
    8832             : 
    8833             :         /*
    8834             :          * If the local group is idler than the selected idlest group
    8835             :          * don't try and push the task.
    8836             :          */
    8837        1584 :         if (local_sgs.group_type < idlest_sgs.group_type)
    8838             :                 return NULL;
    8839             : 
    8840             :         /*
    8841             :          * If the local group is busier than the selected idlest group
    8842             :          * try and push the task.
    8843             :          */
    8844        1506 :         if (local_sgs.group_type > idlest_sgs.group_type)
    8845             :                 return idlest;
    8846             : 
    8847        1302 :         switch (local_sgs.group_type) {
    8848             :         case group_overloaded:
    8849             :         case group_fully_busy:
    8850             : 
    8851             :                 /* Calculate allowed imbalance based on load */
    8852          54 :                 imbalance = scale_load_down(NICE_0_LOAD) *
    8853          54 :                                 (sd->imbalance_pct-100) / 100;
    8854             : 
    8855             :                 /*
    8856             :                  * When comparing groups across NUMA domains, it's possible for
    8857             :                  * the local domain to be very lightly loaded relative to the
    8858             :                  * remote domains but "imbalance" skews the comparison making
    8859             :                  * remote CPUs look much more favourable. When considering
    8860             :                  * cross-domain, add imbalance to the load on the remote node
    8861             :                  * and consider staying local.
    8862             :                  */
    8863             : 
    8864          54 :                 if ((sd->flags & SD_NUMA) &&
    8865           0 :                     ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
    8866             :                         return NULL;
    8867             : 
    8868             :                 /*
    8869             :                  * If the local group is less loaded than the selected
    8870             :                  * idlest group don't try and push any tasks.
    8871             :                  */
    8872          54 :                 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
    8873             :                         return NULL;
    8874             : 
    8875          29 :                 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
    8876          13 :                         return NULL;
    8877             :                 break;
    8878             : 
    8879             :         case group_imbalanced:
    8880             :         case group_asym_packing:
    8881             :                 /* Those type are not used in the slow wakeup path */
    8882             :                 return NULL;
    8883             : 
    8884           0 :         case group_misfit_task:
    8885             :                 /* Select group with the highest max capacity */
    8886           0 :                 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
    8887           0 :                         return NULL;
    8888             :                 break;
    8889             : 
    8890        1248 :         case group_has_spare:
    8891        1248 :                 if (sd->flags & SD_NUMA) {
    8892             : #ifdef CONFIG_NUMA_BALANCING
    8893             :                         int idlest_cpu;
    8894             :                         /*
    8895             :                          * If there is spare capacity at NUMA, try to select
    8896             :                          * the preferred node
    8897             :                          */
    8898             :                         if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
    8899             :                                 return NULL;
    8900             : 
    8901             :                         idlest_cpu = cpumask_first(sched_group_span(idlest));
    8902             :                         if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
    8903             :                                 return idlest;
    8904             : #endif
    8905             :                         /*
    8906             :                          * Otherwise, keep the task on this node to stay close
    8907             :                          * its wakeup source and improve locality. If there is
    8908             :                          * a real need of migration, periodic load balance will
    8909             :                          * take care of it.
    8910             :                          */
    8911           0 :                         if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
    8912             :                                 return NULL;
    8913             :                 }
    8914             : 
    8915             :                 /*
    8916             :                  * Select group with highest number of idle CPUs. We could also
    8917             :                  * compare the utilization which is more stable but it can end
    8918             :                  * up that the group has less spare capacity but finally more
    8919             :                  * idle CPUs which means more opportunity to run task.
    8920             :                  */
    8921        1248 :                 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
    8922         637 :                         return NULL;
    8923             :                 break;
    8924             :         }
    8925             : 
    8926             :         return idlest;
    8927             : }
    8928             : 
    8929             : /**
    8930             :  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
    8931             :  * @env: The load balancing environment.
    8932             :  * @sds: variable to hold the statistics for this sched_domain.
    8933             :  */
    8934             : 
    8935        9297 : static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
    8936             : {
    8937        9297 :         struct sched_domain *child = env->sd->child;
    8938        9297 :         struct sched_group *sg = env->sd->groups;
    8939        9297 :         struct sg_lb_stats *local = &sds->local_stat;
    8940        9297 :         struct sg_lb_stats tmp_sgs;
    8941        9297 :         int sg_status = 0;
    8942             : 
    8943             : #ifdef CONFIG_NO_HZ_COMMON
    8944        9297 :         if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
    8945         711 :                 env->flags |= LBF_NOHZ_STATS;
    8946             : #endif
    8947             : 
    8948       37410 :         do {
    8949       37410 :                 struct sg_lb_stats *sgs = &tmp_sgs;
    8950       37410 :                 int local_group;
    8951             : 
    8952       37410 :                 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
    8953       37536 :                 if (local_group) {
    8954        9346 :                         sds->local = sg;
    8955        9346 :                         sgs = local;
    8956             : 
    8957        9346 :                         if (env->idle != CPU_NEWLY_IDLE ||
    8958        2901 :                             time_after_eq(jiffies, sg->sgc->next_update))
    8959        7913 :                                 update_group_capacity(env->sd, env->dst_cpu);
    8960             :                 }
    8961             : 
    8962       37527 :                 update_sg_lb_stats(env, sg, sgs, &sg_status);
    8963             : 
    8964       37554 :                 if (local_group)
    8965        9286 :                         goto next_group;
    8966             : 
    8967             : 
    8968       28268 :                 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
    8969       11432 :                         sds->busiest = sg;
    8970       11432 :                         sds->busiest_stat = *sgs;
    8971             :                 }
    8972             : 
    8973       16826 : next_group:
    8974             :                 /* Now, start updating sd_lb_stats */
    8975       37544 :                 sds->total_load += sgs->group_load;
    8976       37544 :                 sds->total_capacity += sgs->group_capacity;
    8977             : 
    8978       37544 :                 sg = sg->next;
    8979       37544 :         } while (sg != env->sd->groups);
    8980             : 
    8981             :         /* Tag domain that child domain prefers tasks go to siblings first */
    8982        9431 :         sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
    8983             : 
    8984             : #ifdef CONFIG_NO_HZ_COMMON
    8985        9431 :         if ((env->flags & LBF_NOHZ_AGAIN) &&
    8986         425 :             cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
    8987             : 
    8988         425 :                 WRITE_ONCE(nohz.next_blocked,
    8989             :                            jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
    8990             :         }
    8991             : #endif
    8992             : 
    8993        9431 :         if (env->sd->flags & SD_NUMA)
    8994           0 :                 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
    8995             : 
    8996        9431 :         if (!env->sd->parent) {
    8997        9418 :                 struct root_domain *rd = env->dst_rq->rd;
    8998             : 
    8999             :                 /* update overload indicator if we are at root domain */
    9000        9418 :                 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
    9001             : 
    9002             :                 /* Update over-utilization (tipping point, U >= 0) indicator */
    9003        9418 :                 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
    9004        9418 :                 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
    9005          13 :         } else if (sg_status & SG_OVERUTILIZED) {
    9006           0 :                 struct root_domain *rd = env->dst_rq->rd;
    9007             : 
    9008           0 :                 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
    9009           0 :                 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
    9010             :         }
    9011        9421 : }
    9012             : 
    9013             : #define NUMA_IMBALANCE_MIN 2
    9014             : 
    9015           0 : static inline long adjust_numa_imbalance(int imbalance,
    9016             :                                 int dst_running, int dst_weight)
    9017             : {
    9018           0 :         if (!allow_numa_imbalance(dst_running, dst_weight))
    9019           0 :                 return imbalance;
    9020             : 
    9021             :         /*
    9022             :          * Allow a small imbalance based on a simple pair of communicating
    9023             :          * tasks that remain local when the destination is lightly loaded.
    9024             :          */
    9025           0 :         if (imbalance <= NUMA_IMBALANCE_MIN)
    9026             :                 return 0;
    9027             : 
    9028           0 :         return imbalance;
    9029             : }
    9030             : 
    9031             : /**
    9032             :  * calculate_imbalance - Calculate the amount of imbalance present within the
    9033             :  *                       groups of a given sched_domain during load balance.
    9034             :  * @env: load balance environment
    9035             :  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
    9036             :  */
    9037        2670 : static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
    9038             : {
    9039        2670 :         struct sg_lb_stats *local, *busiest;
    9040             : 
    9041        2670 :         local = &sds->local_stat;
    9042        2670 :         busiest = &sds->busiest_stat;
    9043             : 
    9044        2670 :         if (busiest->group_type == group_misfit_task) {
    9045             :                 /* Set imbalance to allow misfit tasks to be balanced. */
    9046           0 :                 env->migration_type = migrate_misfit;
    9047           0 :                 env->imbalance = 1;
    9048           0 :                 return;
    9049             :         }
    9050             : 
    9051        2670 :         if (busiest->group_type == group_asym_packing) {
    9052             :                 /*
    9053             :                  * In case of asym capacity, we will try to migrate all load to
    9054             :                  * the preferred CPU.
    9055             :                  */
    9056           0 :                 env->migration_type = migrate_task;
    9057           0 :                 env->imbalance = busiest->sum_h_nr_running;
    9058           0 :                 return;
    9059             :         }
    9060             : 
    9061        2670 :         if (busiest->group_type == group_imbalanced) {
    9062             :                 /*
    9063             :                  * In the group_imb case we cannot rely on group-wide averages
    9064             :                  * to ensure CPU-load equilibrium, try to move any task to fix
    9065             :                  * the imbalance. The next load balance will take care of
    9066             :                  * balancing back the system.
    9067             :                  */
    9068           0 :                 env->migration_type = migrate_task;
    9069           0 :                 env->imbalance = 1;
    9070           0 :                 return;
    9071             :         }
    9072             : 
    9073             :         /*
    9074             :          * Try to use spare capacity of local group without overloading it or
    9075             :          * emptying busiest.
    9076             :          */
    9077        2670 :         if (local->group_type == group_has_spare) {
    9078        2535 :                 if ((busiest->group_type > group_fully_busy) &&
    9079        1903 :                     !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
    9080             :                         /*
    9081             :                          * If busiest is overloaded, try to fill spare
    9082             :                          * capacity. This might end up creating spare capacity
    9083             :                          * in busiest or busiest still being overloaded but
    9084             :                          * there is no simple way to directly compute the
    9085             :                          * amount of load to migrate in order to balance the
    9086             :                          * system.
    9087             :                          */
    9088        1903 :                         env->migration_type = migrate_util;
    9089        1903 :                         env->imbalance = max(local->group_capacity, local->group_util) -
    9090             :                                          local->group_util;
    9091             : 
    9092             :                         /*
    9093             :                          * In some cases, the group's utilization is max or even
    9094             :                          * higher than capacity because of migrations but the
    9095             :                          * local CPU is (newly) idle. There is at least one
    9096             :                          * waiting task in this overloaded busiest group. Let's
    9097             :                          * try to pull it.
    9098             :                          */
    9099        1903 :                         if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
    9100          70 :                                 env->migration_type = migrate_task;
    9101          70 :                                 env->imbalance = 1;
    9102             :                         }
    9103             : 
    9104        1903 :                         return;
    9105             :                 }
    9106             : 
    9107         632 :                 if (busiest->group_weight == 1 || sds->prefer_sibling) {
    9108         632 :                         unsigned int nr_diff = busiest->sum_nr_running;
    9109             :                         /*
    9110             :                          * When prefer sibling, evenly spread running tasks on
    9111             :                          * groups.
    9112             :                          */
    9113         632 :                         env->migration_type = migrate_task;
    9114         632 :                         lsub_positive(&nr_diff, local->sum_nr_running);
    9115         632 :                         env->imbalance = nr_diff >> 1;
    9116             :                 } else {
    9117             : 
    9118             :                         /*
    9119             :                          * If there is no overload, we just want to even the number of
    9120             :                          * idle cpus.
    9121             :                          */
    9122           0 :                         env->migration_type = migrate_task;
    9123           0 :                         env->imbalance = max_t(long, 0, (local->idle_cpus -
    9124             :                                                  busiest->idle_cpus) >> 1);
    9125             :                 }
    9126             : 
    9127             :                 /* Consider allowing a small imbalance between NUMA groups */
    9128         632 :                 if (env->sd->flags & SD_NUMA) {
    9129           0 :                         env->imbalance = adjust_numa_imbalance(env->imbalance,
    9130           0 :                                 busiest->sum_nr_running, busiest->group_weight);
    9131             :                 }
    9132             : 
    9133         632 :                 return;
    9134             :         }
    9135             : 
    9136             :         /*
    9137             :          * Local is fully busy but has to take more load to relieve the
    9138             :          * busiest group
    9139             :          */
    9140         135 :         if (local->group_type < group_overloaded) {
    9141             :                 /*
    9142             :                  * Local will become overloaded so the avg_load metrics are
    9143             :                  * finally needed.
    9144             :                  */
    9145             : 
    9146          88 :                 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
    9147          88 :                                   local->group_capacity;
    9148             : 
    9149          88 :                 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
    9150          88 :                                 sds->total_capacity;
    9151             :                 /*
    9152             :                  * If the local group is more loaded than the selected
    9153             :                  * busiest group don't try to pull any tasks.
    9154             :                  */
    9155          88 :                 if (local->avg_load >= busiest->avg_load) {
    9156          13 :                         env->imbalance = 0;
    9157          13 :                         return;
    9158             :                 }
    9159             :         }
    9160             : 
    9161             :         /*
    9162             :          * Both group are or will become overloaded and we're trying to get all
    9163             :          * the CPUs to the average_load, so we don't want to push ourselves
    9164             :          * above the average load, nor do we wish to reduce the max loaded CPU
    9165             :          * below the average load. At the same time, we also don't want to
    9166             :          * reduce the group load below the group capacity. Thus we look for
    9167             :          * the minimum possible imbalance.
    9168             :          */
    9169         122 :         env->migration_type = migrate_load;
    9170         122 :         env->imbalance = min(
    9171             :                 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
    9172             :                 (sds->avg_load - local->avg_load) * local->group_capacity
    9173         122 :         ) / SCHED_CAPACITY_SCALE;
    9174             : }
    9175             : 
    9176             : /******* find_busiest_group() helpers end here *********************/
    9177             : 
    9178             : /*
    9179             :  * Decision matrix according to the local and busiest group type:
    9180             :  *
    9181             :  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
    9182             :  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
    9183             :  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
    9184             :  * misfit_task      force     N/A        N/A    N/A  force      force
    9185             :  * asym_packing     force     force      N/A    N/A  force      force
    9186             :  * imbalanced       force     force      N/A    N/A  force      force
    9187             :  * overloaded       force     force      N/A    N/A  force      avg_load
    9188             :  *
    9189             :  * N/A :      Not Applicable because already filtered while updating
    9190             :  *            statistics.
    9191             :  * balanced : The system is balanced for these 2 groups.
    9192             :  * force :    Calculate the imbalance as load migration is probably needed.
    9193             :  * avg_load : Only if imbalance is significant enough.
    9194             :  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
    9195             :  *            different in groups.
    9196             :  */
    9197             : 
    9198             : /**
    9199             :  * find_busiest_group - Returns the busiest group within the sched_domain
    9200             :  * if there is an imbalance.
    9201             :  *
    9202             :  * Also calculates the amount of runnable load which should be moved
    9203             :  * to restore balance.
    9204             :  *
    9205             :  * @env: The load balancing environment.
    9206             :  *
    9207             :  * Return:      - The busiest group if imbalance exists.
    9208             :  */
    9209        9304 : static struct sched_group *find_busiest_group(struct lb_env *env)
    9210             : {
    9211        9304 :         struct sg_lb_stats *local, *busiest;
    9212        9304 :         struct sd_lb_stats sds;
    9213             : 
    9214        9304 :         init_sd_lb_stats(&sds);
    9215             : 
    9216             :         /*
    9217             :          * Compute the various statistics relevant for load balancing at
    9218             :          * this level.
    9219             :          */
    9220        9304 :         update_sd_lb_stats(env, &sds);
    9221             : 
    9222        9399 :         if (sched_energy_enabled()) {
    9223             :                 struct root_domain *rd = env->dst_rq->rd;
    9224             : 
    9225             :                 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
    9226             :                         goto out_balanced;
    9227             :         }
    9228             : 
    9229        9399 :         local = &sds.local_stat;
    9230        9399 :         busiest = &sds.busiest_stat;
    9231             : 
    9232             :         /* There is no busy sibling group to pull tasks from */
    9233        9399 :         if (!sds.busiest)
    9234         282 :                 goto out_balanced;
    9235             : 
    9236             :         /* Misfit tasks should be dealt with regardless of the avg load */
    9237        9117 :         if (busiest->group_type == group_misfit_task)
    9238           0 :                 goto force_balance;
    9239             : 
    9240             :         /* ASYM feature bypasses nice load balance check */
    9241        9117 :         if (busiest->group_type == group_asym_packing)
    9242           0 :                 goto force_balance;
    9243             : 
    9244             :         /*
    9245             :          * If the busiest group is imbalanced the below checks don't
    9246             :          * work because they assume all things are equal, which typically
    9247             :          * isn't true due to cpus_ptr constraints and the like.
    9248             :          */
    9249        9117 :         if (busiest->group_type == group_imbalanced)
    9250           0 :                 goto force_balance;
    9251             : 
    9252             :         /*
    9253             :          * If the local group is busier than the selected busiest group
    9254             :          * don't try and pull any tasks.
    9255             :          */
    9256        9117 :         if (local->group_type > busiest->group_type)
    9257          74 :                 goto out_balanced;
    9258             : 
    9259             :         /*
    9260             :          * When groups are overloaded, use the avg_load to ensure fairness
    9261             :          * between tasks.
    9262             :          */
    9263        9043 :         if (local->group_type == group_overloaded) {
    9264             :                 /*
    9265             :                  * If the local group is more loaded than the selected
    9266             :                  * busiest group don't try to pull any tasks.
    9267             :                  */
    9268         122 :                 if (local->avg_load >= busiest->avg_load)
    9269          41 :                         goto out_balanced;
    9270             : 
    9271             :                 /* XXX broken for overlapping NUMA groups */
    9272          81 :                 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
    9273          81 :                                 sds.total_capacity;
    9274             : 
    9275             :                 /*
    9276             :                  * Don't pull any tasks if this group is already above the
    9277             :                  * domain average load.
    9278             :                  */
    9279          81 :                 if (local->avg_load >= sds.avg_load)
    9280          28 :                         goto out_balanced;
    9281             : 
    9282             :                 /*
    9283             :                  * If the busiest group is more loaded, use imbalance_pct to be
    9284             :                  * conservative.
    9285             :                  */
    9286          53 :                 if (100 * busiest->avg_load <=
    9287          53 :                                 env->sd->imbalance_pct * local->avg_load)
    9288           6 :                         goto out_balanced;
    9289             :         }
    9290             : 
    9291             :         /* Try to move all excess tasks to child's sibling domain */
    9292        8968 :         if (sds.prefer_sibling && local->group_type == group_has_spare &&
    9293           0 :             busiest->sum_nr_running > local->sum_nr_running + 1)
    9294           0 :                 goto force_balance;
    9295             : 
    9296        8968 :         if (busiest->group_type != group_overloaded) {
    9297        6928 :                 if (env->idle == CPU_NOT_IDLE)
    9298             :                         /*
    9299             :                          * If the busiest group is not overloaded (and as a
    9300             :                          * result the local one too) but this CPU is already
    9301             :                          * busy, let another idle CPU try to pull task.
    9302             :                          */
    9303          78 :                         goto out_balanced;
    9304             : 
    9305        6850 :                 if (busiest->group_weight > 1 &&
    9306           0 :                     local->idle_cpus <= (busiest->idle_cpus + 1))
    9307             :                         /*
    9308             :                          * If the busiest group is not overloaded
    9309             :                          * and there is no imbalance between this and busiest
    9310             :                          * group wrt idle CPUs, it is balanced. The imbalance
    9311             :                          * becomes significant if the diff is greater than 1
    9312             :                          * otherwise we might end up to just move the imbalance
    9313             :                          * on another group. Of course this applies only if
    9314             :                          * there is more than 1 CPU per group.
    9315             :                          */
    9316           0 :                         goto out_balanced;
    9317             : 
    9318        6850 :                 if (busiest->sum_h_nr_running == 1)
    9319             :                         /*
    9320             :                          * busiest doesn't have any tasks waiting to run
    9321             :                          */
    9322        6214 :                         goto out_balanced;
    9323             :         }
    9324             : 
    9325        2676 : force_balance:
    9326             :         /* Looks like there is an imbalance. Compute it */
    9327        2676 :         calculate_imbalance(env, &sds);
    9328        2672 :         return env->imbalance ? sds.busiest : NULL;
    9329             : 
    9330        6723 : out_balanced:
    9331        6723 :         env->imbalance = 0;
    9332        6723 :         return NULL;
    9333             : }
    9334             : 
    9335             : /*
    9336             :  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
    9337             :  */
    9338        2606 : static struct rq *find_busiest_queue(struct lb_env *env,
    9339             :                                      struct sched_group *group)
    9340             : {
    9341        2606 :         struct rq *busiest = NULL, *rq;
    9342        2606 :         unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
    9343        2606 :         unsigned int busiest_nr = 0;
    9344        2606 :         int i;
    9345             : 
    9346        5207 :         for_each_cpu_and(i, sched_group_span(group), env->cpus) {
    9347        2601 :                 unsigned long capacity, load, util;
    9348        2601 :                 unsigned int nr_running;
    9349        2601 :                 enum fbq_type rt;
    9350             : 
    9351        2601 :                 rq = cpu_rq(i);
    9352        2601 :                 rt = fbq_classify_rq(rq);
    9353             : 
    9354             :                 /*
    9355             :                  * We classify groups/runqueues into three groups:
    9356             :                  *  - regular: there are !numa tasks
    9357             :                  *  - remote:  there are numa tasks that run on the 'wrong' node
    9358             :                  *  - all:     there is no distinction
    9359             :                  *
    9360             :                  * In order to avoid migrating ideally placed numa tasks,
    9361             :                  * ignore those when there's better options.
    9362             :                  *
    9363             :                  * If we ignore the actual busiest queue to migrate another
    9364             :                  * task, the next balance pass can still reduce the busiest
    9365             :                  * queue by moving tasks around inside the node.
    9366             :                  *
    9367             :                  * If we cannot move enough load due to this classification
    9368             :                  * the next pass will adjust the group classification and
    9369             :                  * allow migration of more tasks.
    9370             :                  *
    9371             :                  * Both cases only affect the total convergence complexity.
    9372             :                  */
    9373        2601 :                 if (rt > env->fbq_type)
    9374             :                         continue;
    9375             : 
    9376        2601 :                 nr_running = rq->cfs.h_nr_running;
    9377        2601 :                 if (!nr_running)
    9378           0 :                         continue;
    9379             : 
    9380        2601 :                 capacity = capacity_of(i);
    9381             : 
    9382             :                 /*
    9383             :                  * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
    9384             :                  * eventually lead to active_balancing high->low capacity.
    9385             :                  * Higher per-CPU capacity is considered better than balancing
    9386             :                  * average load.
    9387             :                  */
    9388        2601 :                 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
    9389           0 :                     capacity_of(env->dst_cpu) < capacity &&
    9390             :                     nr_running == 1)
    9391           0 :                         continue;
    9392             : 
    9393        2601 :                 switch (env->migration_type) {
    9394             :                 case migrate_load:
    9395             :                         /*
    9396             :                          * When comparing with load imbalance, use cpu_load()
    9397             :                          * which is not scaled with the CPU capacity.
    9398             :                          */
    9399         122 :                         load = cpu_load(rq);
    9400             : 
    9401         122 :                         if (nr_running == 1 && load > env->imbalance &&
    9402           0 :                             !check_cpu_capacity(rq, env->sd))
    9403             :                                 break;
    9404             : 
    9405             :                         /*
    9406             :                          * For the load comparisons with the other CPUs,
    9407             :                          * consider the cpu_load() scaled with the CPU
    9408             :                          * capacity, so that the load can be moved away
    9409             :                          * from the CPU that is potentially running at a
    9410             :                          * lower capacity.
    9411             :                          *
    9412             :                          * Thus we're looking for max(load_i / capacity_i),
    9413             :                          * crosswise multiplication to rid ourselves of the
    9414             :                          * division works out to:
    9415             :                          * load_i * capacity_j > load_j * capacity_i;
    9416             :                          * where j is our previous maximum.
    9417             :                          */
    9418         122 :                         if (load * busiest_capacity > busiest_load * capacity) {
    9419         122 :                                 busiest_load = load;
    9420         122 :                                 busiest_capacity = capacity;
    9421         122 :                                 busiest = rq;
    9422             :                         }
    9423             :                         break;
    9424             : 
    9425             :                 case migrate_util:
    9426        1832 :                         util = cpu_util(cpu_of(rq));
    9427             : 
    9428             :                         /*
    9429             :                          * Don't try to pull utilization from a CPU with one
    9430             :                          * running task. Whatever its utilization, we will fail
    9431             :                          * detach the task.
    9432             :                          */
    9433        1832 :                         if (nr_running <= 1)
    9434           5 :                                 continue;
    9435             : 
    9436        1827 :                         if (busiest_util < util) {
    9437        1829 :                                 busiest_util = util;
    9438        1829 :                                 busiest = rq;
    9439             :                         }
    9440             :                         break;
    9441             : 
    9442         647 :                 case migrate_task:
    9443         647 :                         if (busiest_nr < nr_running) {
    9444         648 :                                 busiest_nr = nr_running;
    9445         648 :                                 busiest = rq;
    9446             :                         }
    9447             :                         break;
    9448             : 
    9449           0 :                 case migrate_misfit:
    9450             :                         /*
    9451             :                          * For ASYM_CPUCAPACITY domains with misfit tasks we
    9452             :                          * simply seek the "biggest" misfit task.
    9453             :                          */
    9454           0 :                         if (rq->misfit_task_load > busiest_load) {
    9455           0 :                                 busiest_load = rq->misfit_task_load;
    9456           0 :                                 busiest = rq;
    9457             :                         }
    9458             : 
    9459             :                         break;
    9460             : 
    9461             :                 }
    9462           0 :         }
    9463             : 
    9464        2613 :         return busiest;
    9465             : }
    9466             : 
    9467             : /*
    9468             :  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
    9469             :  * so long as it is large enough.
    9470             :  */
    9471             : #define MAX_PINNED_INTERVAL     512
    9472             : 
    9473             : static inline bool
    9474        1713 : asym_active_balance(struct lb_env *env)
    9475             : {
    9476             :         /*
    9477             :          * ASYM_PACKING needs to force migrate tasks from busy but
    9478             :          * lower priority CPUs in order to pack all tasks in the
    9479             :          * highest priority CPUs.
    9480             :          */
    9481        1713 :         return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
    9482           0 :                sched_asym_prefer(env->dst_cpu, env->src_cpu);
    9483             : }
    9484             : 
    9485             : static inline bool
    9486        1713 : imbalanced_active_balance(struct lb_env *env)
    9487             : {
    9488        1713 :         struct sched_domain *sd = env->sd;
    9489             : 
    9490             :         /*
    9491             :          * The imbalanced case includes the case of pinned tasks preventing a fair
    9492             :          * distribution of the load on the system but also the even distribution of the
    9493             :          * threads on a system with spare capacity
    9494             :          */
    9495        1929 :         if ((env->migration_type == migrate_task) &&
    9496         216 :             (sd->nr_balance_failed > sd->cache_nice_tries+2))
    9497             :                 return 1;
    9498             : 
    9499             :         return 0;
    9500             : }
    9501             : 
    9502        1713 : static int need_active_balance(struct lb_env *env)
    9503             : {
    9504        1713 :         struct sched_domain *sd = env->sd;
    9505             : 
    9506        1713 :         if (asym_active_balance(env))
    9507             :                 return 1;
    9508             : 
    9509        1713 :         if (imbalanced_active_balance(env))
    9510             :                 return 1;
    9511             : 
    9512             :         /*
    9513             :          * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
    9514             :          * It's worth migrating the task if the src_cpu's capacity is reduced
    9515             :          * because of other sched_class or IRQs if more capacity stays
    9516             :          * available on dst_cpu.
    9517             :          */
    9518        1712 :         if ((env->idle != CPU_NOT_IDLE) &&
    9519        1620 :             (env->src_rq->cfs.h_nr_running == 1)) {
    9520           6 :                 if ((check_cpu_capacity(env->src_rq, sd)) &&
    9521           0 :                     (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
    9522             :                         return 1;
    9523             :         }
    9524             : 
    9525        1712 :         if (env->migration_type == migrate_misfit)
    9526           0 :                 return 1;
    9527             : 
    9528             :         return 0;
    9529             : }
    9530             : 
    9531             : static int active_load_balance_cpu_stop(void *data);
    9532             : 
    9533        9357 : static int should_we_balance(struct lb_env *env)
    9534             : {
    9535        9357 :         struct sched_group *sg = env->sd->groups;
    9536        9357 :         int cpu;
    9537             : 
    9538             :         /*
    9539             :          * Ensure the balancing environment is consistent; can happen
    9540             :          * when the softirq triggers 'during' hotplug.
    9541             :          */
    9542        9357 :         if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
    9543             :                 return 0;
    9544             : 
    9545             :         /*
    9546             :          * In the newly idle case, we will allow all the CPUs
    9547             :          * to do the newly idle load balance.
    9548             :          */
    9549        9359 :         if (env->idle == CPU_NEWLY_IDLE)
    9550             :                 return 1;
    9551             : 
    9552             :         /* Try to find first idle CPU */
    9553        8111 :         for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
    9554        6444 :                 if (!idle_cpu(cpu))
    9555        1654 :                         continue;
    9556             : 
    9557             :                 /* Are we the first idle CPU? */
    9558        4840 :                 return cpu == env->dst_cpu;
    9559             :         }
    9560             : 
    9561             :         /* Are we the first CPU of this group ? */
    9562        1654 :         return group_balance_cpu(sg) == env->dst_cpu;
    9563             : }
    9564             : 
    9565             : /*
    9566             :  * Check this_cpu to ensure it is balanced within domain. Attempt to move
    9567             :  * tasks if there is an imbalance.
    9568             :  */
    9569        9247 : static int load_balance(int this_cpu, struct rq *this_rq,
    9570             :                         struct sched_domain *sd, enum cpu_idle_type idle,
    9571             :                         int *continue_balancing)
    9572             : {
    9573        9247 :         int ld_moved, cur_ld_moved, active_balance = 0;
    9574        9247 :         struct sched_domain *sd_parent = sd->parent;
    9575        9247 :         struct sched_group *group;
    9576        9247 :         struct rq *busiest;
    9577        9247 :         struct rq_flags rf;
    9578        9247 :         struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
    9579             : 
    9580        9279 :         struct lb_env env = {
    9581             :                 .sd             = sd,
    9582             :                 .dst_cpu        = this_cpu,
    9583             :                 .dst_rq         = this_rq,
    9584        9279 :                 .dst_grpmask    = sched_group_span(sd->groups),
    9585             :                 .idle           = idle,
    9586             :                 .loop_break     = sched_nr_migrate_break,
    9587             :                 .cpus           = cpus,
    9588             :                 .fbq_type       = all,
    9589             :                 .tasks          = LIST_HEAD_INIT(env.tasks),
    9590             :         };
    9591             : 
    9592        9279 :         cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
    9593             : 
    9594        9355 :         schedstat_inc(sd->lb_count[idle]);
    9595             : 
    9596        9355 : redo:
    9597        9355 :         if (!should_we_balance(&env)) {
    9598           0 :                 *continue_balancing = 0;
    9599           0 :                 goto out_balanced;
    9600             :         }
    9601             : 
    9602        9404 :         group = find_busiest_group(&env);
    9603        9375 :         if (!group) {
    9604        6767 :                 schedstat_inc(sd->lb_nobusyg[idle]);
    9605        6767 :                 goto out_balanced;
    9606             :         }
    9607             : 
    9608        2608 :         busiest = find_busiest_queue(&env, group);
    9609        2607 :         if (!busiest) {
    9610           6 :                 schedstat_inc(sd->lb_nobusyq[idle]);
    9611           6 :                 goto out_balanced;
    9612             :         }
    9613             : 
    9614        2601 :         BUG_ON(busiest == env.dst_rq);
    9615             : 
    9616        2601 :         schedstat_add(sd->lb_imbalance[idle], env.imbalance);
    9617             : 
    9618        2601 :         env.src_cpu = busiest->cpu;
    9619        2601 :         env.src_rq = busiest;
    9620             : 
    9621        2601 :         ld_moved = 0;
    9622             :         /* Clear this flag as soon as we find a pullable task */
    9623        2601 :         env.flags |= LBF_ALL_PINNED;
    9624        2601 :         if (busiest->nr_running > 1) {
    9625             :                 /*
    9626             :                  * Attempt to move tasks. If find_busiest_group has found
    9627             :                  * an imbalance but busiest->nr_running <= 1, the group is
    9628             :                  * still unbalanced. ld_moved simply stays zero, so it is
    9629             :                  * correctly treated as an imbalance.
    9630             :                  */
    9631        2595 :                 env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
    9632             : 
    9633             : more_balance:
    9634        2595 :                 rq_lock_irqsave(busiest, &rf);
    9635        2608 :                 update_rq_clock(busiest);
    9636             : 
    9637             :                 /*
    9638             :                  * cur_ld_moved - load moved in current iteration
    9639             :                  * ld_moved     - cumulative load moved across iterations
    9640             :                  */
    9641        2608 :                 cur_ld_moved = detach_tasks(&env);
    9642             : 
    9643             :                 /*
    9644             :                  * We've detached some tasks from busiest_rq. Every
    9645             :                  * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
    9646             :                  * unlock busiest->lock, and we are able to be sure
    9647             :                  * that nobody can manipulate the tasks in parallel.
    9648             :                  * See task_rq_lock() family for the details.
    9649             :                  */
    9650             : 
    9651        2607 :                 rq_unlock(busiest, &rf);
    9652             : 
    9653        2608 :                 if (cur_ld_moved) {
    9654         826 :                         attach_tasks(&env);
    9655         826 :                         ld_moved += cur_ld_moved;
    9656             :                 }
    9657             : 
    9658        2608 :                 local_irq_restore(rf.flags);
    9659             : 
    9660        2608 :                 if (env.flags & LBF_NEED_BREAK) {
    9661           0 :                         env.flags &= ~LBF_NEED_BREAK;
    9662           0 :                         goto more_balance;
    9663             :                 }
    9664             : 
    9665             :                 /*
    9666             :                  * Revisit (affine) tasks on src_cpu that couldn't be moved to
    9667             :                  * us and move them to an alternate dst_cpu in our sched_group
    9668             :                  * where they can run. The upper limit on how many times we
    9669             :                  * iterate on same src_cpu is dependent on number of CPUs in our
    9670             :                  * sched_group.
    9671             :                  *
    9672             :                  * This changes load balance semantics a bit on who can move
    9673             :                  * load to a given_cpu. In addition to the given_cpu itself
    9674             :                  * (or a ilb_cpu acting on its behalf where given_cpu is
    9675             :                  * nohz-idle), we now have balance_cpu in a position to move
    9676             :                  * load to given_cpu. In rare situations, this may cause
    9677             :                  * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
    9678             :                  * _independently_ and at _same_ time to move some load to
    9679             :                  * given_cpu) causing exceess load to be moved to given_cpu.
    9680             :                  * This however should not happen so much in practice and
    9681             :                  * moreover subsequent load balance cycles should correct the
    9682             :                  * excess load moved.
    9683             :                  */
    9684        2608 :                 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
    9685             : 
    9686             :                         /* Prevent to re-select dst_cpu via env's CPUs */
    9687           0 :                         __cpumask_clear_cpu(env.dst_cpu, env.cpus);
    9688             : 
    9689           0 :                         env.dst_rq       = cpu_rq(env.new_dst_cpu);
    9690           0 :                         env.dst_cpu      = env.new_dst_cpu;
    9691           0 :                         env.flags       &= ~LBF_DST_PINNED;
    9692           0 :                         env.loop         = 0;
    9693           0 :                         env.loop_break   = sched_nr_migrate_break;
    9694             : 
    9695             :                         /*
    9696             :                          * Go back to "more_balance" rather than "redo" since we
    9697             :                          * need to continue with same src_cpu.
    9698             :                          */
    9699           0 :                         goto more_balance;
    9700             :                 }
    9701             : 
    9702             :                 /*
    9703             :                  * We failed to reach balance because of affinity.
    9704             :                  */
    9705        2608 :                 if (sd_parent) {
    9706           0 :                         int *group_imbalance = &sd_parent->groups->sgc->imbalance;
    9707             : 
    9708           0 :                         if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
    9709           0 :                                 *group_imbalance = 1;
    9710             :                 }
    9711             : 
    9712             :                 /* All tasks on this runqueue were pinned by CPU affinity */
    9713        2608 :                 if (unlikely(env.flags & LBF_ALL_PINNED)) {
    9714          76 :                         __cpumask_clear_cpu(cpu_of(busiest), cpus);
    9715             :                         /*
    9716             :                          * Attempting to continue load balancing at the current
    9717             :                          * sched_domain level only makes sense if there are
    9718             :                          * active CPUs remaining as possible busiest CPUs to
    9719             :                          * pull load from which are not contained within the
    9720             :                          * destination group that is receiving any migrated
    9721             :                          * load.
    9722             :                          */
    9723          76 :                         if (!cpumask_subset(cpus, env.dst_grpmask)) {
    9724          76 :                                 env.loop = 0;
    9725          76 :                                 env.loop_break = sched_nr_migrate_break;
    9726          76 :                                 goto redo;
    9727             :                         }
    9728           0 :                         goto out_all_pinned;
    9729             :                 }
    9730             :         }
    9731             : 
    9732        2538 :         if (!ld_moved) {
    9733        1712 :                 schedstat_inc(sd->lb_failed[idle]);
    9734             :                 /*
    9735             :                  * Increment the failure counter only on periodic balance.
    9736             :                  * We do not want newidle balance, which can be very
    9737             :                  * frequent, pollute the failure counter causing
    9738             :                  * excessive cache_hot migrations and active balances.
    9739             :                  */
    9740        1712 :                 if (idle != CPU_NEWLY_IDLE)
    9741         829 :                         sd->nr_balance_failed++;
    9742             : 
    9743        1712 :                 if (need_active_balance(&env)) {
    9744           1 :                         unsigned long flags;
    9745             : 
    9746           1 :                         raw_spin_lock_irqsave(&busiest->lock, flags);
    9747             : 
    9748             :                         /*
    9749             :                          * Don't kick the active_load_balance_cpu_stop,
    9750             :                          * if the curr task on busiest CPU can't be
    9751             :                          * moved to this_cpu:
    9752             :                          */
    9753           1 :                         if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
    9754           0 :                                 raw_spin_unlock_irqrestore(&busiest->lock,
    9755             :                                                             flags);
    9756           0 :                                 goto out_one_pinned;
    9757             :                         }
    9758             : 
    9759             :                         /* Record that we found at least one task that could run on this_cpu */
    9760           1 :                         env.flags &= ~LBF_ALL_PINNED;
    9761             : 
    9762             :                         /*
    9763             :                          * ->active_balance synchronizes accesses to
    9764             :                          * ->active_balance_work.  Once set, it's cleared
    9765             :                          * only after active load balance is finished.
    9766             :                          */
    9767           1 :                         if (!busiest->active_balance) {
    9768           1 :                                 busiest->active_balance = 1;
    9769           1 :                                 busiest->push_cpu = this_cpu;
    9770           1 :                                 active_balance = 1;
    9771             :                         }
    9772           1 :                         raw_spin_unlock_irqrestore(&busiest->lock, flags);
    9773             : 
    9774           1 :                         if (active_balance) {
    9775           1 :                                 stop_one_cpu_nowait(cpu_of(busiest),
    9776             :                                         active_load_balance_cpu_stop, busiest,
    9777             :                                         &busiest->active_balance_work);
    9778             :                         }
    9779             : 
    9780             :                         /* We've kicked active balancing, force task migration. */
    9781           1 :                         sd->nr_balance_failed = sd->cache_nice_tries+1;
    9782             :                 }
    9783             :         } else {
    9784         826 :                 sd->nr_balance_failed = 0;
    9785             :         }
    9786             : 
    9787        2538 :         if (likely(!active_balance) || need_active_balance(&env)) {
    9788             :                 /* We were unbalanced, so reset the balancing interval */
    9789        2537 :                 sd->balance_interval = sd->min_interval;
    9790             :         }
    9791             : 
    9792        2538 :         goto out;
    9793             : 
    9794        6773 : out_balanced:
    9795             :         /*
    9796             :          * We reach balance although we may have faced some affinity
    9797             :          * constraints. Clear the imbalance flag only if other tasks got
    9798             :          * a chance to move and fix the imbalance.
    9799             :          */
    9800        6773 :         if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
    9801           0 :                 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
    9802             : 
    9803           0 :                 if (*group_imbalance)
    9804           0 :                         *group_imbalance = 0;
    9805             :         }
    9806             : 
    9807        6773 : out_all_pinned:
    9808             :         /*
    9809             :          * We reach balance because all tasks are pinned at this level so
    9810             :          * we can't migrate them. Let the imbalance flag set so parent level
    9811             :          * can try to migrate them.
    9812             :          */
    9813        6773 :         schedstat_inc(sd->lb_balanced[idle]);
    9814             : 
    9815        6773 :         sd->nr_balance_failed = 0;
    9816             : 
    9817        6753 : out_one_pinned:
    9818        6753 :         ld_moved = 0;
    9819             : 
    9820             :         /*
    9821             :          * newidle_balance() disregards balance intervals, so we could
    9822             :          * repeatedly reach this code, which would lead to balance_interval
    9823             :          * skyrocketting in a short amount of time. Skip the balance_interval
    9824             :          * increase logic to avoid that.
    9825             :          */
    9826        6753 :         if (env.idle == CPU_NEWLY_IDLE)
    9827        1549 :                 goto out;
    9828             : 
    9829             :         /* tune up the balancing interval */
    9830        5204 :         if ((env.flags & LBF_ALL_PINNED &&
    9831          53 :              sd->balance_interval < MAX_PINNED_INTERVAL) ||
    9832        5151 :             sd->balance_interval < sd->max_interval)
    9833         972 :                 sd->balance_interval *= 2;
    9834        4232 : out:
    9835        9291 :         return ld_moved;
    9836             : }
    9837             : 
    9838             : static inline unsigned long
    9839       22589 : get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
    9840             : {
    9841       22589 :         unsigned long interval = sd->balance_interval;
    9842             : 
    9843       22589 :         if (cpu_busy)
    9844        3448 :                 interval *= sd->busy_factor;
    9845             : 
    9846             :         /* scale ms to jiffies */
    9847       22589 :         interval = msecs_to_jiffies(interval);
    9848             : 
    9849             :         /*
    9850             :          * Reduce likelihood of busy balancing at higher domains racing with
    9851             :          * balancing at lower domains by preventing their balancing periods
    9852             :          * from being multiples of each other.
    9853             :          */
    9854       22605 :         if (cpu_busy)
    9855        3456 :                 interval -= 1;
    9856             : 
    9857       22605 :         interval = clamp(interval, 1UL, max_load_balance_interval);
    9858             : 
    9859       22605 :         return interval;
    9860             : }
    9861             : 
    9862             : static inline void
    9863        7416 : update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
    9864             : {
    9865        7416 :         unsigned long interval, next;
    9866             : 
    9867             :         /* used by idle balance, so cpu_busy = 0 */
    9868        7416 :         interval = get_sd_balance_interval(sd, 0);
    9869        7416 :         next = sd->last_balance + interval;
    9870             : 
    9871        7416 :         if (time_after(*next_balance, next))
    9872        7416 :                 *next_balance = next;
    9873        7416 : }
    9874             : 
    9875             : /*
    9876             :  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
    9877             :  * running tasks off the busiest CPU onto idle CPUs. It requires at
    9878             :  * least 1 task to be running on each physical CPU where possible, and
    9879             :  * avoids physical / logical imbalances.
    9880             :  */
    9881           1 : static int active_load_balance_cpu_stop(void *data)
    9882             : {
    9883           1 :         struct rq *busiest_rq = data;
    9884           1 :         int busiest_cpu = cpu_of(busiest_rq);
    9885           1 :         int target_cpu = busiest_rq->push_cpu;
    9886           1 :         struct rq *target_rq = cpu_rq(target_cpu);
    9887           1 :         struct sched_domain *sd;
    9888           1 :         struct task_struct *p = NULL;
    9889           1 :         struct rq_flags rf;
    9890             : 
    9891           1 :         rq_lock_irq(busiest_rq, &rf);
    9892             :         /*
    9893             :          * Between queueing the stop-work and running it is a hole in which
    9894             :          * CPUs can become inactive. We should not move tasks from or to
    9895             :          * inactive CPUs.
    9896             :          */
    9897           2 :         if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
    9898           0 :                 goto out_unlock;
    9899             : 
    9900             :         /* Make sure the requested CPU hasn't gone down in the meantime: */
    9901           1 :         if (unlikely(busiest_cpu != smp_processor_id() ||
    9902             :                      !busiest_rq->active_balance))
    9903           0 :                 goto out_unlock;
    9904             : 
    9905             :         /* Is there any task to move? */
    9906           1 :         if (busiest_rq->nr_running <= 1)
    9907           0 :                 goto out_unlock;
    9908             : 
    9909             :         /*
    9910             :          * This condition is "impossible", if it occurs
    9911             :          * we need to fix it. Originally reported by
    9912             :          * Bjorn Helgaas on a 128-CPU setup.
    9913             :          */
    9914           1 :         BUG_ON(busiest_rq == target_rq);
    9915             : 
    9916             :         /* Search for an sd spanning us and the target CPU. */
    9917           1 :         rcu_read_lock();
    9918           3 :         for_each_domain(target_cpu, sd) {
    9919           1 :                 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
    9920             :                         break;
    9921             :         }
    9922             : 
    9923           1 :         if (likely(sd)) {
    9924           1 :                 struct lb_env env = {
    9925             :                         .sd             = sd,
    9926             :                         .dst_cpu        = target_cpu,
    9927             :                         .dst_rq         = target_rq,
    9928           1 :                         .src_cpu        = busiest_rq->cpu,
    9929             :                         .src_rq         = busiest_rq,
    9930             :                         .idle           = CPU_IDLE,
    9931             :                         /*
    9932             :                          * can_migrate_task() doesn't need to compute new_dst_cpu
    9933             :                          * for active balancing. Since we have CPU_IDLE, but no
    9934             :                          * @dst_grpmask we need to make that test go away with lying
    9935             :                          * about DST_PINNED.
    9936             :                          */
    9937             :                         .flags          = LBF_DST_PINNED,
    9938             :                 };
    9939             : 
    9940           1 :                 schedstat_inc(sd->alb_count);
    9941           1 :                 update_rq_clock(busiest_rq);
    9942             : 
    9943           1 :                 p = detach_one_task(&env);
    9944           1 :                 if (p) {
    9945           1 :                         schedstat_inc(sd->alb_pushed);
    9946             :                         /* Active balancing done, reset the failure counter. */
    9947           1 :                         sd->nr_balance_failed = 0;
    9948             :                 } else {
    9949           1 :                         schedstat_inc(sd->alb_failed);
    9950             :                 }
    9951             :         }
    9952           1 :         rcu_read_unlock();
    9953           1 : out_unlock:
    9954           1 :         busiest_rq->active_balance = 0;
    9955           1 :         rq_unlock(busiest_rq, &rf);
    9956             : 
    9957           1 :         if (p)
    9958           1 :                 attach_one_task(target_rq, p);
    9959             : 
    9960           1 :         local_irq_enable();
    9961             : 
    9962           1 :         return 0;
    9963             : }
    9964             : 
    9965             : static DEFINE_SPINLOCK(balancing);
    9966             : 
    9967             : /*
    9968             :  * Scale the max load_balance interval with the number of CPUs in the system.
    9969             :  * This trades load-balance latency on larger machines for less cross talk.
    9970             :  */
    9971           4 : void update_max_interval(void)
    9972             : {
    9973           4 :         max_load_balance_interval = HZ*num_online_cpus()/10;
    9974           4 : }
    9975             : 
    9976             : /*
    9977             :  * It checks each scheduling domain to see if it is due to be balanced,
    9978             :  * and initiates a balancing operation if so.
    9979             :  *
    9980             :  * Balancing parameters are set up in init_sched_domains.
    9981             :  */
    9982        8806 : static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
    9983             : {
    9984        8806 :         int continue_balancing = 1;
    9985        8806 :         int cpu = rq->cpu;
    9986        8806 :         int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
    9987        8806 :         unsigned long interval;
    9988        8806 :         struct sched_domain *sd;
    9989             :         /* Earliest time when we have to do rebalance again */
    9990        8806 :         unsigned long next_balance = jiffies + 60*HZ;
    9991        8806 :         int update_next_balance = 0;
    9992        8806 :         int need_serialize, need_decay = 0;
    9993        8806 :         u64 max_cost = 0;
    9994             : 
    9995        8806 :         rcu_read_lock();
    9996       35487 :         for_each_domain(cpu, sd) {
    9997             :                 /*
    9998             :                  * Decay the newidle max times here because this is a regular
    9999             :                  * visit to all the domains. Decay ~1% per second.
   10000             :                  */
   10001        8921 :                 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
   10002         121 :                         sd->max_newidle_lb_cost =
   10003         121 :                                 (sd->max_newidle_lb_cost * 253) / 256;
   10004         121 :                         sd->next_decay_max_lb_cost = jiffies + HZ;
   10005         121 :                         need_decay = 1;
   10006             :                 }
   10007        8921 :                 max_cost += sd->max_newidle_lb_cost;
   10008             : 
   10009             :                 /*
   10010             :                  * Stop the load balance at this level. There is another
   10011             :                  * CPU in our sched group which is doing load balancing more
   10012             :                  * actively.
   10013             :                  */
   10014        8921 :                 if (!continue_balancing) {
   10015          96 :                         if (need_decay)
   10016           0 :                                 continue;
   10017             :                         break;
   10018             :                 }
   10019             : 
   10020        8825 :                 interval = get_sd_balance_interval(sd, busy);
   10021             : 
   10022        8812 :                 need_serialize = sd->flags & SD_SERIALIZE;
   10023        8812 :                 if (need_serialize) {
   10024           0 :                         if (!spin_trylock(&balancing))
   10025           0 :                                 goto out;
   10026             :                 }
   10027             : 
   10028        8812 :                 if (time_after_eq(jiffies, sd->last_balance + interval)) {
   10029        6411 :                         if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
   10030             :                                 /*
   10031             :                                  * The LBF_DST_PINNED logic could have changed
   10032             :                                  * env->dst_cpu, so we can't know our idle
   10033             :                                  * state even if we migrated tasks. Update it.
   10034             :                                  */
   10035         379 :                                 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
   10036         379 :                                 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
   10037             :                         }
   10038        6405 :                         sd->last_balance = jiffies;
   10039        6405 :                         interval = get_sd_balance_interval(sd, busy);
   10040             :                 }
   10041        8812 :                 if (need_serialize)
   10042           0 :                         spin_unlock(&balancing);
   10043        8812 : out:
   10044        8812 :                 if (time_after(next_balance, sd->last_balance + interval)) {
   10045        8819 :                         next_balance = sd->last_balance + interval;
   10046        8819 :                         update_next_balance = 1;
   10047             :                 }
   10048             :         }
   10049        8893 :         if (need_decay) {
   10050             :                 /*
   10051             :                  * Ensure the rq-wide value also decays but keep it at a
   10052             :                  * reasonable floor to avoid funnies with rq->avg_idle.
   10053             :                  */
   10054         121 :                 rq->max_idle_balance_cost =
   10055         121 :                         max((u64)sysctl_sched_migration_cost, max_cost);
   10056             :         }
   10057        8893 :         rcu_read_unlock();
   10058             : 
   10059             :         /*
   10060             :          * next_balance will be updated only when there is a need.
   10061             :          * When the cpu is attached to null domain for ex, it will not be
   10062             :          * updated.
   10063             :          */
   10064        8830 :         if (likely(update_next_balance)) {
   10065        8830 :                 rq->next_balance = next_balance;
   10066             : 
   10067             : #ifdef CONFIG_NO_HZ_COMMON
   10068             :                 /*
   10069             :                  * If this CPU has been elected to perform the nohz idle
   10070             :                  * balance. Other idle CPUs have already rebalanced with
   10071             :                  * nohz_idle_balance() and nohz.next_balance has been
   10072             :                  * updated accordingly. This CPU is now running the idle load
   10073             :                  * balance for itself and we need to update the
   10074             :                  * nohz.next_balance accordingly.
   10075             :                  */
   10076        8830 :                 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
   10077           9 :                         nohz.next_balance = rq->next_balance;
   10078             : #endif
   10079             :         }
   10080        8830 : }
   10081             : 
   10082       24546 : static inline int on_null_domain(struct rq *rq)
   10083             : {
   10084       24546 :         return unlikely(!rcu_dereference_sched(rq->sd));
   10085             : }
   10086             : 
   10087             : #ifdef CONFIG_NO_HZ_COMMON
   10088             : /*
   10089             :  * idle load balancing details
   10090             :  * - When one of the busy CPUs notice that there may be an idle rebalancing
   10091             :  *   needed, they will kick the idle load balancer, which then does idle
   10092             :  *   load balancing for all the idle CPUs.
   10093             :  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
   10094             :  *   anywhere yet.
   10095             :  */
   10096             : 
   10097         236 : static inline int find_new_ilb(void)
   10098             : {
   10099         236 :         int ilb;
   10100             : 
   10101         241 :         for_each_cpu_and(ilb, nohz.idle_cpus_mask,
   10102             :                               housekeeping_cpumask(HK_FLAG_MISC)) {
   10103             : 
   10104         238 :                 if (ilb == smp_processor_id())
   10105           2 :                         continue;
   10106             : 
   10107         236 :                 if (idle_cpu(ilb))
   10108         233 :                         return ilb;
   10109             :         }
   10110             : 
   10111           3 :         return nr_cpu_ids;
   10112             : }
   10113             : 
   10114             : /*
   10115             :  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
   10116             :  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
   10117             :  */
   10118         236 : static void kick_ilb(unsigned int flags)
   10119             : {
   10120         236 :         int ilb_cpu;
   10121             : 
   10122             :         /*
   10123             :          * Increase nohz.next_balance only when if full ilb is triggered but
   10124             :          * not if we only update stats.
   10125             :          */
   10126         236 :         if (flags & NOHZ_BALANCE_KICK)
   10127         147 :                 nohz.next_balance = jiffies+1;
   10128             : 
   10129         236 :         ilb_cpu = find_new_ilb();
   10130             : 
   10131         236 :         if (ilb_cpu >= nr_cpu_ids)
   10132             :                 return;
   10133             : 
   10134             :         /*
   10135             :          * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
   10136             :          * the first flag owns it; cleared by nohz_csd_func().
   10137             :          */
   10138         234 :         flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
   10139         234 :         if (flags & NOHZ_KICK_MASK)
   10140             :                 return;
   10141             : 
   10142             :         /*
   10143             :          * This way we generate an IPI on the target CPU which
   10144             :          * is idle. And the softirq performing nohz idle load balance
   10145             :          * will be run before returning from the IPI.
   10146             :          */
   10147         221 :         smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
   10148             : }
   10149             : 
   10150             : /*
   10151             :  * Current decision point for kicking the idle load balancer in the presence
   10152             :  * of idle CPUs in the system.
   10153             :  */
   10154       25088 : static void nohz_balancer_kick(struct rq *rq)
   10155             : {
   10156       25088 :         unsigned long now = jiffies;
   10157       25088 :         struct sched_domain_shared *sds;
   10158       25088 :         struct sched_domain *sd;
   10159       25088 :         int nr_busy, i, cpu = rq->cpu;
   10160       25088 :         unsigned int flags = 0;
   10161             : 
   10162       25088 :         if (unlikely(rq->idle_balance))
   10163             :                 return;
   10164             : 
   10165             :         /*
   10166             :          * We may be recently in ticked or tickless idle mode. At the first
   10167             :          * busy tick after returning from idle, we will update the busy stats.
   10168             :          */
   10169       14885 :         nohz_balance_exit_idle(rq);
   10170             : 
   10171             :         /*
   10172             :          * None are in tickless mode and hence no need for NOHZ idle load
   10173             :          * balancing.
   10174             :          */
   10175       15071 :         if (likely(!atomic_read(&nohz.nr_cpus)))
   10176             :                 return;
   10177             : 
   10178        2435 :         if (READ_ONCE(nohz.has_blocked) &&
   10179        2411 :             time_after(now, READ_ONCE(nohz.next_blocked)))
   10180          96 :                 flags = NOHZ_STATS_KICK;
   10181             : 
   10182        2435 :         if (time_before(now, nohz.next_balance))
   10183          57 :                 goto out;
   10184             : 
   10185        2378 :         if (rq->nr_running >= 2) {
   10186         147 :                 flags = NOHZ_KICK_MASK;
   10187         147 :                 goto out;
   10188             :         }
   10189             : 
   10190        2231 :         rcu_read_lock();
   10191             : 
   10192        2233 :         sd = rcu_dereference(rq->sd);
   10193        2231 :         if (sd) {
   10194             :                 /*
   10195             :                  * If there's a CFS task and the current CPU has reduced
   10196             :                  * capacity; kick the ILB to see if there's a better CPU to run
   10197             :                  * on.
   10198             :                  */
   10199        2231 :                 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
   10200           0 :                         flags = NOHZ_KICK_MASK;
   10201           0 :                         goto unlock;
   10202             :                 }
   10203             :         }
   10204             : 
   10205        2231 :         sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
   10206        2232 :         if (sd) {
   10207             :                 /*
   10208             :                  * When ASYM_PACKING; see if there's a more preferred CPU
   10209             :                  * currently idle; in which case, kick the ILB to move tasks
   10210             :                  * around.
   10211             :                  */
   10212           1 :                 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
   10213           0 :                         if (sched_asym_prefer(i, cpu)) {
   10214           0 :                                 flags = NOHZ_KICK_MASK;
   10215           0 :                                 goto unlock;
   10216             :                         }
   10217             :                 }
   10218             :         }
   10219             : 
   10220        2231 :         sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
   10221        2229 :         if (sd) {
   10222             :                 /*
   10223             :                  * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
   10224             :                  * to run the misfit task on.
   10225             :                  */
   10226           0 :                 if (check_misfit_status(rq, sd)) {
   10227           0 :                         flags = NOHZ_KICK_MASK;
   10228           0 :                         goto unlock;
   10229             :                 }
   10230             : 
   10231             :                 /*
   10232             :                  * For asymmetric systems, we do not want to nicely balance
   10233             :                  * cache use, instead we want to embrace asymmetry and only
   10234             :                  * ensure tasks have enough CPU capacity.
   10235             :                  *
   10236             :                  * Skip the LLC logic because it's not relevant in that case.
   10237             :                  */
   10238           0 :                 goto unlock;
   10239             :         }
   10240             : 
   10241        2229 :         sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
   10242        2231 :         if (sds) {
   10243             :                 /*
   10244             :                  * If there is an imbalance between LLC domains (IOW we could
   10245             :                  * increase the overall cache use), we need some less-loaded LLC
   10246             :                  * domain to pull some load. Likewise, we may need to spread
   10247             :                  * load within the current LLC domain (e.g. packed SMT cores but
   10248             :                  * other CPUs are idle). We can't really know from here how busy
   10249             :                  * the others are - so just get a nohz balance going if it looks
   10250             :                  * like this LLC domain has tasks we could move.
   10251             :                  */
   10252           0 :                 nr_busy = atomic_read(&sds->nr_busy_cpus);
   10253           0 :                 if (nr_busy > 1) {
   10254           0 :                         flags = NOHZ_KICK_MASK;
   10255           0 :                         goto unlock;
   10256             :                 }
   10257             :         }
   10258        2231 : unlock:
   10259        2231 :         rcu_read_unlock();
   10260        2290 : out:
   10261        2437 :         if (flags)
   10262         233 :                 kick_ilb(flags);
   10263             : }
   10264             : 
   10265         207 : static void set_cpu_sd_state_busy(int cpu)
   10266             : {
   10267         207 :         struct sched_domain *sd;
   10268             : 
   10269         207 :         rcu_read_lock();
   10270         207 :         sd = rcu_dereference(per_cpu(sd_llc, cpu));
   10271             : 
   10272         207 :         if (!sd || !sd->nohz_idle)
   10273         207 :                 goto unlock;
   10274           0 :         sd->nohz_idle = 0;
   10275             : 
   10276           0 :         atomic_inc(&sd->shared->nr_busy_cpus);
   10277         207 : unlock:
   10278         207 :         rcu_read_unlock();
   10279         207 : }
   10280             : 
   10281       14825 : void nohz_balance_exit_idle(struct rq *rq)
   10282             : {
   10283       14825 :         SCHED_WARN_ON(rq != this_rq());
   10284             : 
   10285       14874 :         if (likely(!rq->nohz_tick_stopped))
   10286             :                 return;
   10287             : 
   10288         207 :         rq->nohz_tick_stopped = 0;
   10289         207 :         cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
   10290         207 :         atomic_dec(&nohz.nr_cpus);
   10291             : 
   10292         207 :         set_cpu_sd_state_busy(rq->cpu);
   10293             : }
   10294             : 
   10295         208 : static void set_cpu_sd_state_idle(int cpu)
   10296             : {
   10297         208 :         struct sched_domain *sd;
   10298             : 
   10299         208 :         rcu_read_lock();
   10300         208 :         sd = rcu_dereference(per_cpu(sd_llc, cpu));
   10301             : 
   10302         208 :         if (!sd || sd->nohz_idle)
   10303         208 :                 goto unlock;
   10304           0 :         sd->nohz_idle = 1;
   10305             : 
   10306           0 :         atomic_dec(&sd->shared->nr_busy_cpus);
   10307         208 : unlock:
   10308         208 :         rcu_read_unlock();
   10309         208 : }
   10310             : 
   10311             : /*
   10312             :  * This routine will record that the CPU is going idle with tick stopped.
   10313             :  * This info will be used in performing idle load balancing in the future.
   10314             :  */
   10315         753 : void nohz_balance_enter_idle(int cpu)
   10316             : {
   10317         753 :         struct rq *rq = cpu_rq(cpu);
   10318             : 
   10319         753 :         SCHED_WARN_ON(cpu != smp_processor_id());
   10320             : 
   10321             :         /* If this CPU is going down, then nothing needs to be done: */
   10322         753 :         if (!cpu_active(cpu))
   10323             :                 return;
   10324             : 
   10325             :         /* Spare idle load balancing on CPUs that don't want to be disturbed: */
   10326         753 :         if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
   10327             :                 return;
   10328             : 
   10329             :         /*
   10330             :          * Can be set safely without rq->lock held
   10331             :          * If a clear happens, it will have evaluated last additions because
   10332             :          * rq->lock is held during the check and the clear
   10333             :          */
   10334         753 :         rq->has_blocked_load = 1;
   10335             : 
   10336             :         /*
   10337             :          * The tick is still stopped but load could have been added in the
   10338             :          * meantime. We set the nohz.has_blocked flag to trig a check of the
   10339             :          * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
   10340             :          * of nohz.has_blocked can only happen after checking the new load
   10341             :          */
   10342         753 :         if (rq->nohz_tick_stopped)
   10343         545 :                 goto out;
   10344             : 
   10345             :         /* If we're a completely isolated CPU, we don't play: */
   10346         208 :         if (on_null_domain(rq))
   10347             :                 return;
   10348             : 
   10349         208 :         rq->nohz_tick_stopped = 1;
   10350             : 
   10351         208 :         cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
   10352         208 :         atomic_inc(&nohz.nr_cpus);
   10353             : 
   10354             :         /*
   10355             :          * Ensures that if nohz_idle_balance() fails to observe our
   10356             :          * @idle_cpus_mask store, it must observe the @has_blocked
   10357             :          * store.
   10358             :          */
   10359         208 :         smp_mb__after_atomic();
   10360             : 
   10361         208 :         set_cpu_sd_state_idle(cpu);
   10362             : 
   10363         753 : out:
   10364             :         /*
   10365             :          * Each time a cpu enter idle, we assume that it has blocked load and
   10366             :          * enable the periodic update of the load of idle cpus
   10367             :          */
   10368         753 :         WRITE_ONCE(nohz.has_blocked, 1);
   10369             : }
   10370             : 
   10371             : /*
   10372             :  * Internal function that runs load balance for all idle cpus. The load balance
   10373             :  * can be a simple update of blocked load or a complete load balance with
   10374             :  * tasks movement depending of flags.
   10375             :  * The function returns false if the loop has stopped before running
   10376             :  * through all idle CPUs.
   10377             :  */
   10378         395 : static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
   10379             :                                enum cpu_idle_type idle)
   10380             : {
   10381             :         /* Earliest time when we have to do rebalance again */
   10382         395 :         unsigned long now = jiffies;
   10383         395 :         unsigned long next_balance = now + 60*HZ;
   10384         395 :         bool has_blocked_load = false;
   10385         395 :         int update_next_balance = 0;
   10386         395 :         int this_cpu = this_rq->cpu;
   10387         395 :         int balance_cpu;
   10388         395 :         int ret = false;
   10389         395 :         struct rq *rq;
   10390             : 
   10391         395 :         SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
   10392             : 
   10393             :         /*
   10394             :          * We assume there will be no idle load after this update and clear
   10395             :          * the has_blocked flag. If a cpu enters idle in the mean time, it will
   10396             :          * set the has_blocked flag and trig another update of idle load.
   10397             :          * Because a cpu that becomes idle, is added to idle_cpus_mask before
   10398             :          * setting the flag, we are sure to not clear the state and not
   10399             :          * check the load of an idle cpu.
   10400             :          */
   10401         395 :         WRITE_ONCE(nohz.has_blocked, 0);
   10402             : 
   10403             :         /*
   10404             :          * Ensures that if we miss the CPU, we must see the has_blocked
   10405             :          * store from nohz_balance_enter_idle().
   10406             :          */
   10407         395 :         smp_mb();
   10408             : 
   10409        1272 :         for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
   10410         488 :                 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
   10411         275 :                         continue;
   10412             : 
   10413             :                 /*
   10414             :                  * If this CPU gets work to do, stop the load balancing
   10415             :                  * work being done for other CPUs. Next load
   10416             :                  * balancing owner will pick it up.
   10417             :                  */
   10418         213 :                 if (need_resched()) {
   10419           6 :                         has_blocked_load = true;
   10420           6 :                         goto abort;
   10421             :                 }
   10422             : 
   10423         207 :                 rq = cpu_rq(balance_cpu);
   10424             : 
   10425         207 :                 has_blocked_load |= update_nohz_stats(rq, true);
   10426             : 
   10427             :                 /*
   10428             :                  * If time for next balance is due,
   10429             :                  * do the balance.
   10430             :                  */
   10431         207 :                 if (time_after_eq(jiffies, rq->next_balance)) {
   10432         174 :                         struct rq_flags rf;
   10433             : 
   10434         174 :                         rq_lock_irqsave(rq, &rf);
   10435         174 :                         update_rq_clock(rq);
   10436         174 :                         rq_unlock_irqrestore(rq, &rf);
   10437             : 
   10438         174 :                         if (flags & NOHZ_BALANCE_KICK)
   10439          61 :                                 rebalance_domains(rq, CPU_IDLE);
   10440             :                 }
   10441             : 
   10442         207 :                 if (time_after(next_balance, rq->next_balance)) {
   10443         167 :                         next_balance = rq->next_balance;
   10444         167 :                         update_next_balance = 1;
   10445             :                 }
   10446             :         }
   10447             : 
   10448             :         /*
   10449             :          * next_balance will be updated only when there is a need.
   10450             :          * When the CPU is attached to null domain for ex, it will not be
   10451             :          * updated.
   10452             :          */
   10453         389 :         if (likely(update_next_balance))
   10454         156 :                 nohz.next_balance = next_balance;
   10455             : 
   10456             :         /* Newly idle CPU doesn't need an update */
   10457         389 :         if (idle != CPU_NEWLY_IDLE) {
   10458         208 :                 update_blocked_averages(this_cpu);
   10459         208 :                 has_blocked_load |= this_rq->has_blocked_load;
   10460             :         }
   10461             : 
   10462         389 :         if (flags & NOHZ_BALANCE_KICK)
   10463         135 :                 rebalance_domains(this_rq, CPU_IDLE);
   10464             : 
   10465         389 :         WRITE_ONCE(nohz.next_blocked,
   10466             :                 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
   10467             : 
   10468             :         /* The full idle balance loop has been done */
   10469         389 :         ret = true;
   10470             : 
   10471         389 : abort:
   10472             :         /* There is still blocked load, enable periodic update */
   10473         395 :         if (has_blocked_load)
   10474         278 :                 WRITE_ONCE(nohz.has_blocked, 1);
   10475             : 
   10476         395 :         return ret;
   10477             : }
   10478             : 
   10479             : /*
   10480             :  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
   10481             :  * rebalancing for all the cpus for whom scheduler ticks are stopped.
   10482             :  */
   10483        8793 : static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
   10484             : {
   10485        8793 :         unsigned int flags = this_rq->nohz_idle_balance;
   10486             : 
   10487        8793 :         if (!flags)
   10488             :                 return false;
   10489             : 
   10490         212 :         this_rq->nohz_idle_balance = 0;
   10491             : 
   10492         212 :         if (idle != CPU_IDLE)
   10493             :                 return false;
   10494             : 
   10495         211 :         _nohz_idle_balance(this_rq, flags, idle);
   10496             : 
   10497         211 :         return true;
   10498             : }
   10499             : 
   10500        4535 : static void nohz_newidle_balance(struct rq *this_rq)
   10501             : {
   10502        4535 :         int this_cpu = this_rq->cpu;
   10503             : 
   10504             :         /*
   10505             :          * This CPU doesn't want to be disturbed by scheduler
   10506             :          * housekeeping
   10507             :          */
   10508        4535 :         if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
   10509             :                 return;
   10510             : 
   10511             :         /* Will wake up very soon. No time for doing anything else*/
   10512        4535 :         if (this_rq->avg_idle < sysctl_sched_migration_cost)
   10513             :                 return;
   10514             : 
   10515             :         /* Don't need to update blocked load of idle CPUs*/
   10516        3503 :         if (!READ_ONCE(nohz.has_blocked) ||
   10517        1977 :             time_before(jiffies, READ_ONCE(nohz.next_blocked)))
   10518             :                 return;
   10519             : 
   10520         184 :         raw_spin_unlock(&this_rq->lock);
   10521             :         /*
   10522             :          * This CPU is going to be idle and blocked load of idle CPUs
   10523             :          * need to be updated. Run the ilb locally as it is a good
   10524             :          * candidate for ilb instead of waking up another idle CPU.
   10525             :          * Kick an normal ilb if we failed to do the update.
   10526             :          */
   10527         184 :         if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
   10528           3 :                 kick_ilb(NOHZ_STATS_KICK);
   10529         184 :         raw_spin_lock(&this_rq->lock);
   10530             : }
   10531             : 
   10532             : #else /* !CONFIG_NO_HZ_COMMON */
   10533             : static inline void nohz_balancer_kick(struct rq *rq) { }
   10534             : 
   10535             : static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
   10536             : {
   10537             :         return false;
   10538             : }
   10539             : 
   10540             : static inline void nohz_newidle_balance(struct rq *this_rq) { }
   10541             : #endif /* CONFIG_NO_HZ_COMMON */
   10542             : 
   10543             : /*
   10544             :  * newidle_balance is called by schedule() if this_cpu is about to become
   10545             :  * idle. Attempts to pull tasks from other CPUs.
   10546             :  *
   10547             :  * Returns:
   10548             :  *   < 0 - we released the lock and there are !fair tasks present
   10549             :  *     0 - failed, no new tasks
   10550             :  *   > 0 - success, new (fair) tasks present
   10551             :  */
   10552        7424 : static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
   10553             : {
   10554        7424 :         unsigned long next_balance = jiffies + HZ;
   10555        7424 :         int this_cpu = this_rq->cpu;
   10556        7424 :         struct sched_domain *sd;
   10557        7424 :         int pulled_task = 0;
   10558        7424 :         u64 curr_cost = 0;
   10559             : 
   10560        7424 :         update_misfit_status(NULL, this_rq);
   10561             :         /*
   10562             :          * We must set idle_stamp _before_ calling idle_balance(), such that we
   10563             :          * measure the duration of idle_balance() as idle time.
   10564             :          */
   10565        7425 :         this_rq->idle_stamp = rq_clock(this_rq);
   10566             : 
   10567             :         /*
   10568             :          * Do not pull tasks towards !active CPUs...
   10569             :          */
   10570        7425 :         if (!cpu_active(this_cpu))
   10571             :                 return 0;
   10572             : 
   10573             :         /*
   10574             :          * This is OK, because current is on_cpu, which avoids it being picked
   10575             :          * for load-balance and preemption/IRQs are still disabled avoiding
   10576             :          * further scheduler activity on it and we're being very careful to
   10577             :          * re-start the picking loop.
   10578             :          */
   10579        7422 :         rq_unpin_lock(this_rq, rf);
   10580             : 
   10581        7422 :         if (this_rq->avg_idle < sysctl_sched_migration_cost ||
   10582        6390 :             !READ_ONCE(this_rq->rd->overload)) {
   10583             : 
   10584        4535 :                 rcu_read_lock();
   10585        9070 :                 sd = rcu_dereference_check_sched_domain(this_rq->sd);
   10586        4535 :                 if (sd)
   10587        4535 :                         update_next_balance(sd, &next_balance);
   10588        4535 :                 rcu_read_unlock();
   10589             : 
   10590        4535 :                 nohz_newidle_balance(this_rq);
   10591             : 
   10592        4535 :                 goto out;
   10593             :         }
   10594             : 
   10595        2887 :         raw_spin_unlock(&this_rq->lock);
   10596             : 
   10597        2886 :         update_blocked_averages(this_cpu);
   10598        2887 :         rcu_read_lock();
   10599       11094 :         for_each_domain(this_cpu, sd) {
   10600        2882 :                 int continue_balancing = 1;
   10601        2882 :                 u64 t0, domain_cost;
   10602             : 
   10603        2882 :                 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
   10604           0 :                         update_next_balance(sd, &next_balance);
   10605         447 :                         break;
   10606             :                 }
   10607             : 
   10608        2882 :                 if (sd->flags & SD_BALANCE_NEWIDLE) {
   10609        2881 :                         t0 = sched_clock_cpu(this_cpu);
   10610             : 
   10611        2881 :                         pulled_task = load_balance(this_cpu, this_rq,
   10612             :                                                    sd, CPU_NEWLY_IDLE,
   10613             :                                                    &continue_balancing);
   10614             : 
   10615        2879 :                         domain_cost = sched_clock_cpu(this_cpu) - t0;
   10616        2881 :                         if (domain_cost > sd->max_newidle_lb_cost)
   10617          28 :                                 sd->max_newidle_lb_cost = domain_cost;
   10618             : 
   10619        2881 :                         curr_cost += domain_cost;
   10620             :                 }
   10621             : 
   10622        2882 :                 update_next_balance(sd, &next_balance);
   10623             : 
   10624             :                 /*
   10625             :                  * Stop searching for tasks to pull if there are
   10626             :                  * now runnable tasks on this rq.
   10627             :                  */
   10628        2881 :                 if (pulled_task || this_rq->nr_running > 0)
   10629             :                         break;
   10630             :         }
   10631        2887 :         rcu_read_unlock();
   10632             : 
   10633        2885 :         raw_spin_lock(&this_rq->lock);
   10634             : 
   10635        2886 :         if (curr_cost > this_rq->max_idle_balance_cost)
   10636           0 :                 this_rq->max_idle_balance_cost = curr_cost;
   10637             : 
   10638        2886 : out:
   10639             :         /*
   10640             :          * While browsing the domains, we released the rq lock, a task could
   10641             :          * have been enqueued in the meantime. Since we're not going idle,
   10642             :          * pretend we pulled a task.
   10643             :          */
   10644        7421 :         if (this_rq->cfs.h_nr_running && !pulled_task)
   10645           0 :                 pulled_task = 1;
   10646             : 
   10647             :         /* Move the next balance forward */
   10648        7421 :         if (time_after(this_rq->next_balance, next_balance))
   10649        3029 :                 this_rq->next_balance = next_balance;
   10650             : 
   10651             :         /* Is there a task of a high priority class? */
   10652        7421 :         if (this_rq->nr_running != this_rq->cfs.h_nr_running)
   10653             :                 pulled_task = -1;
   10654             : 
   10655        7420 :         if (pulled_task)
   10656         448 :                 this_rq->idle_stamp = 0;
   10657             : 
   10658        7421 :         rq_repin_lock(this_rq, rf);
   10659             : 
   10660        7421 :         return pulled_task;
   10661             : }
   10662             : 
   10663             : /*
   10664             :  * run_rebalance_domains is triggered when needed from the scheduler tick.
   10665             :  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
   10666             :  */
   10667        8796 : static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
   10668             : {
   10669        8796 :         struct rq *this_rq = this_rq();
   10670        8816 :         enum cpu_idle_type idle = this_rq->idle_balance ?
   10671        8816 :                                                 CPU_IDLE : CPU_NOT_IDLE;
   10672             : 
   10673             :         /*
   10674             :          * If this CPU has a pending nohz_balance_kick, then do the
   10675             :          * balancing on behalf of the other idle CPUs whose ticks are
   10676             :          * stopped. Do nohz_idle_balance *before* rebalance_domains to
   10677             :          * give the idle CPUs a chance to load balance. Else we may
   10678             :          * load balance only within the local sched_domain hierarchy
   10679             :          * and abort nohz_idle_balance altogether if we pull some load.
   10680             :          */
   10681        8816 :         if (nohz_idle_balance(this_rq, idle))
   10682             :                 return;
   10683             : 
   10684             :         /* normal load balance */
   10685        8617 :         update_blocked_averages(this_rq->cpu);
   10686        8659 :         rebalance_domains(this_rq, idle);
   10687             : }
   10688             : 
   10689             : /*
   10690             :  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
   10691             :  */
   10692       24332 : void trigger_load_balance(struct rq *rq)
   10693             : {
   10694             :         /*
   10695             :          * Don't need to rebalance while attached to NULL domain or
   10696             :          * runqueue CPU is not active
   10697             :          */
   10698       24332 :         if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
   10699          16 :                 return;
   10700             : 
   10701       24847 :         if (time_after_eq(jiffies, rq->next_balance))
   10702        8759 :                 raise_softirq(SCHED_SOFTIRQ);
   10703             : 
   10704       24969 :         nohz_balancer_kick(rq);
   10705             : }
   10706             : 
   10707           8 : static void rq_online_fair(struct rq *rq)
   10708             : {
   10709           8 :         update_sysctl();
   10710             : 
   10711           8 :         update_runtime_enabled(rq);
   10712           8 : }
   10713             : 
   10714           4 : static void rq_offline_fair(struct rq *rq)
   10715             : {
   10716           4 :         update_sysctl();
   10717             : 
   10718             :         /* Ensure any throttled groups are reachable by pick_next_task */
   10719           4 :         unthrottle_offline_cfs_rqs(rq);
   10720           4 : }
   10721             : 
   10722             : #endif /* CONFIG_SMP */
   10723             : 
   10724             : /*
   10725             :  * scheduler tick hitting a task of our scheduling class.
   10726             :  *
   10727             :  * NOTE: This function can be called remotely by the tick offload that
   10728             :  * goes along full dynticks. Therefore no local assumption can be made
   10729             :  * and everything must be accessed through the @rq and @curr passed in
   10730             :  * parameters.
   10731             :  */
   10732       14617 : static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
   10733             : {
   10734       14617 :         struct cfs_rq *cfs_rq;
   10735       14617 :         struct sched_entity *se = &curr->se;
   10736             : 
   10737       14617 :         for_each_sched_entity(se) {
   10738       14617 :                 cfs_rq = cfs_rq_of(se);
   10739       14617 :                 entity_tick(cfs_rq, se, queued);
   10740             :         }
   10741             : 
   10742       14786 :         if (static_branch_unlikely(&sched_numa_balancing))
   10743       14720 :                 task_tick_numa(rq, curr);
   10744             : 
   10745       14720 :         update_misfit_status(curr, rq);
   10746       14746 :         update_overutilized_status(task_rq(curr));
   10747       14794 : }
   10748             : 
   10749             : /*
   10750             :  * called on fork with the child task as argument from the parent's context
   10751             :  *  - child not yet on the tasklist
   10752             :  *  - preemption disabled
   10753             :  */
   10754         990 : static void task_fork_fair(struct task_struct *p)
   10755             : {
   10756         990 :         struct cfs_rq *cfs_rq;
   10757         990 :         struct sched_entity *se = &p->se, *curr;
   10758         990 :         struct rq *rq = this_rq();
   10759         990 :         struct rq_flags rf;
   10760             : 
   10761         990 :         rq_lock(rq, &rf);
   10762         990 :         update_rq_clock(rq);
   10763             : 
   10764         990 :         cfs_rq = task_cfs_rq(current);
   10765         990 :         curr = cfs_rq->curr;
   10766         990 :         if (curr) {
   10767         988 :                 update_curr(cfs_rq);
   10768         988 :                 se->vruntime = curr->vruntime;
   10769             :         }
   10770         990 :         place_entity(cfs_rq, se, 1);
   10771             : 
   10772         990 :         if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
   10773             :                 /*
   10774             :                  * Upon rescheduling, sched_class::put_prev_task() will place
   10775             :                  * 'current' within the tree based on its new key value.
   10776             :                  */
   10777           0 :                 swap(curr->vruntime, se->vruntime);
   10778           0 :                 resched_curr(rq);
   10779             :         }
   10780             : 
   10781         990 :         se->vruntime -= cfs_rq->min_vruntime;
   10782         990 :         rq_unlock(rq, &rf);
   10783         990 : }
   10784             : 
   10785             : /*
   10786             :  * Priority of the task has changed. Check to see if we preempt
   10787             :  * the current task.
   10788             :  */
   10789             : static void
   10790          21 : prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
   10791             : {
   10792          21 :         if (!task_on_rq_queued(p))
   10793             :                 return;
   10794             : 
   10795          13 :         if (rq->cfs.nr_running == 1)
   10796             :                 return;
   10797             : 
   10798             :         /*
   10799             :          * Reschedule if we are currently running on this runqueue and
   10800             :          * our priority decreased, or if we are not currently running on
   10801             :          * this runqueue and our priority is higher than the current's
   10802             :          */
   10803           4 :         if (task_current(rq, p)) {
   10804           4 :                 if (p->prio > oldprio)
   10805           1 :                         resched_curr(rq);
   10806             :         } else
   10807           0 :                 check_preempt_curr(rq, p, 0);
   10808             : }
   10809             : 
   10810           4 : static inline bool vruntime_normalized(struct task_struct *p)
   10811             : {
   10812           4 :         struct sched_entity *se = &p->se;
   10813             : 
   10814             :         /*
   10815             :          * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
   10816             :          * the dequeue_entity(.flags=0) will already have normalized the
   10817             :          * vruntime.
   10818             :          */
   10819           4 :         if (p->on_rq)
   10820             :                 return true;
   10821             : 
   10822             :         /*
   10823             :          * When !on_rq, vruntime of the task has usually NOT been normalized.
   10824             :          * But there are some cases where it has already been normalized:
   10825             :          *
   10826             :          * - A forked child which is waiting for being woken up by
   10827             :          *   wake_up_new_task().
   10828             :          * - A task which has been woken up by try_to_wake_up() and
   10829             :          *   waiting for actually being woken up by sched_ttwu_pending().
   10830             :          */
   10831           4 :         if (!se->sum_exec_runtime ||
   10832           2 :             (p->state == TASK_WAKING && p->sched_remote_wakeup))
   10833           2 :                 return true;
   10834             : 
   10835             :         return false;
   10836             : }
   10837             : 
   10838             : #ifdef CONFIG_FAIR_GROUP_SCHED
   10839             : /*
   10840             :  * Propagate the changes of the sched_entity across the tg tree to make it
   10841             :  * visible to the root
   10842             :  */
   10843             : static void propagate_entity_cfs_rq(struct sched_entity *se)
   10844             : {
   10845             :         struct cfs_rq *cfs_rq;
   10846             : 
   10847             :         /* Start to propagate at parent */
   10848             :         se = se->parent;
   10849             : 
   10850             :         for_each_sched_entity(se) {
   10851             :                 cfs_rq = cfs_rq_of(se);
   10852             : 
   10853             :                 if (cfs_rq_throttled(cfs_rq))
   10854             :                         break;
   10855             : 
   10856             :                 update_load_avg(cfs_rq, se, UPDATE_TG);
   10857             :         }
   10858             : }
   10859             : #else
   10860        1877 : static void propagate_entity_cfs_rq(struct sched_entity *se) { }
   10861             : #endif
   10862             : 
   10863         889 : static void detach_entity_cfs_rq(struct sched_entity *se)
   10864             : {
   10865         889 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   10866             : 
   10867             :         /* Catch up with the cfs_rq and remove our load when we leave */
   10868         889 :         update_load_avg(cfs_rq, se, 0);
   10869         890 :         detach_entity_load_avg(cfs_rq, se);
   10870         890 :         update_tg_load_avg(cfs_rq);
   10871         890 :         propagate_entity_cfs_rq(se);
   10872         890 : }
   10873             : 
   10874         987 : static void attach_entity_cfs_rq(struct sched_entity *se)
   10875             : {
   10876         987 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   10877             : 
   10878             : #ifdef CONFIG_FAIR_GROUP_SCHED
   10879             :         /*
   10880             :          * Since the real-depth could have been changed (only FAIR
   10881             :          * class maintain depth value), reset depth properly.
   10882             :          */
   10883             :         se->depth = se->parent ? se->parent->depth + 1 : 0;
   10884             : #endif
   10885             : 
   10886             :         /* Synchronize entity with its cfs_rq */
   10887         987 :         update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
   10888         987 :         attach_entity_load_avg(cfs_rq, se);
   10889         987 :         update_tg_load_avg(cfs_rq);
   10890         987 :         propagate_entity_cfs_rq(se);
   10891         987 : }
   10892             : 
   10893           4 : static void detach_task_cfs_rq(struct task_struct *p)
   10894             : {
   10895           4 :         struct sched_entity *se = &p->se;
   10896           4 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   10897             : 
   10898           4 :         if (!vruntime_normalized(p)) {
   10899             :                 /*
   10900             :                  * Fix up our vruntime so that the current sleep doesn't
   10901             :                  * cause 'unlimited' sleep bonus.
   10902             :                  */
   10903           2 :                 place_entity(cfs_rq, se, 0);
   10904           2 :                 se->vruntime -= cfs_rq->min_vruntime;
   10905             :         }
   10906             : 
   10907           4 :         detach_entity_cfs_rq(se);
   10908           4 : }
   10909             : 
   10910           0 : static void attach_task_cfs_rq(struct task_struct *p)
   10911             : {
   10912           0 :         struct sched_entity *se = &p->se;
   10913           0 :         struct cfs_rq *cfs_rq = cfs_rq_of(se);
   10914             : 
   10915           0 :         attach_entity_cfs_rq(se);
   10916             : 
   10917           0 :         if (!vruntime_normalized(p))
   10918           0 :                 se->vruntime += cfs_rq->min_vruntime;
   10919           0 : }
   10920             : 
   10921           4 : static void switched_from_fair(struct rq *rq, struct task_struct *p)
   10922             : {
   10923           4 :         detach_task_cfs_rq(p);
   10924           4 : }
   10925             : 
   10926           0 : static void switched_to_fair(struct rq *rq, struct task_struct *p)
   10927             : {
   10928           0 :         attach_task_cfs_rq(p);
   10929             : 
   10930           0 :         if (task_on_rq_queued(p)) {
   10931             :                 /*
   10932             :                  * We were most likely switched from sched_rt, so
   10933             :                  * kick off the schedule if running, otherwise just see
   10934             :                  * if we can still preempt the current task.
   10935             :                  */
   10936           0 :                 if (task_current(rq, p))
   10937           0 :                         resched_curr(rq);
   10938             :                 else
   10939           0 :                         check_preempt_curr(rq, p, 0);
   10940             :         }
   10941           0 : }
   10942             : 
   10943             : /* Account for a task changing its policy or group.
   10944             :  *
   10945             :  * This routine is mostly called to set cfs_rq->curr field when a task
   10946             :  * migrates between groups/classes.
   10947             :  */
   10948          15 : static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
   10949             : {
   10950          15 :         struct sched_entity *se = &p->se;
   10951             : 
   10952             : #ifdef CONFIG_SMP
   10953          15 :         if (task_on_rq_queued(p)) {
   10954             :                 /*
   10955             :                  * Move the next running task to the front of the list, so our
   10956             :                  * cfs_tasks list becomes MRU one.
   10957             :                  */
   10958          15 :                 list_move(&se->group_node, &rq->cfs_tasks);
   10959             :         }
   10960             : #endif
   10961             : 
   10962          15 :         for_each_sched_entity(se) {
   10963          15 :                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
   10964             : 
   10965          15 :                 set_next_entity(cfs_rq, se);
   10966             :                 /* ensure bandwidth has been allocated on our new cfs_rq */
   10967          15 :                 account_cfs_rq_runtime(cfs_rq, 0);
   10968             :         }
   10969          15 : }
   10970             : 
   10971           4 : void init_cfs_rq(struct cfs_rq *cfs_rq)
   10972             : {
   10973           4 :         cfs_rq->tasks_timeline = RB_ROOT_CACHED;
   10974           4 :         cfs_rq->min_vruntime = (u64)(-(1LL << 20));
   10975             : #ifndef CONFIG_64BIT
   10976             :         cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
   10977             : #endif
   10978             : #ifdef CONFIG_SMP
   10979           4 :         raw_spin_lock_init(&cfs_rq->removed.lock);
   10980             : #endif
   10981           4 : }
   10982             : 
   10983             : #ifdef CONFIG_FAIR_GROUP_SCHED
   10984             : static void task_set_group_fair(struct task_struct *p)
   10985             : {
   10986             :         struct sched_entity *se = &p->se;
   10987             : 
   10988             :         set_task_rq(p, task_cpu(p));
   10989             :         se->depth = se->parent ? se->parent->depth + 1 : 0;
   10990             : }
   10991             : 
   10992             : static void task_move_group_fair(struct task_struct *p)
   10993             : {
   10994             :         detach_task_cfs_rq(p);
   10995             :         set_task_rq(p, task_cpu(p));
   10996             : 
   10997             : #ifdef CONFIG_SMP
   10998             :         /* Tell se's cfs_rq has been changed -- migrated */
   10999             :         p->se.avg.last_update_time = 0;
   11000             : #endif
   11001             :         attach_task_cfs_rq(p);
   11002             : }
   11003             : 
   11004             : static void task_change_group_fair(struct task_struct *p, int type)
   11005             : {
   11006             :         switch (type) {
   11007             :         case TASK_SET_GROUP:
   11008             :                 task_set_group_fair(p);
   11009             :                 break;
   11010             : 
   11011             :         case TASK_MOVE_GROUP:
   11012             :                 task_move_group_fair(p);
   11013             :                 break;
   11014             :         }
   11015             : }
   11016             : 
   11017             : void free_fair_sched_group(struct task_group *tg)
   11018             : {
   11019             :         int i;
   11020             : 
   11021             :         destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
   11022             : 
   11023             :         for_each_possible_cpu(i) {
   11024             :                 if (tg->cfs_rq)
   11025             :                         kfree(tg->cfs_rq[i]);
   11026             :                 if (tg->se)
   11027             :                         kfree(tg->se[i]);
   11028             :         }
   11029             : 
   11030             :         kfree(tg->cfs_rq);
   11031             :         kfree(tg->se);
   11032             : }
   11033             : 
   11034             : int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
   11035             : {
   11036             :         struct sched_entity *se;
   11037             :         struct cfs_rq *cfs_rq;
   11038             :         int i;
   11039             : 
   11040             :         tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
   11041             :         if (!tg->cfs_rq)
   11042             :                 goto err;
   11043             :         tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
   11044             :         if (!tg->se)
   11045             :                 goto err;
   11046             : 
   11047             :         tg->shares = NICE_0_LOAD;
   11048             : 
   11049             :         init_cfs_bandwidth(tg_cfs_bandwidth(tg));
   11050             : 
   11051             :         for_each_possible_cpu(i) {
   11052             :                 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
   11053             :                                       GFP_KERNEL, cpu_to_node(i));
   11054             :                 if (!cfs_rq)
   11055             :                         goto err;
   11056             : 
   11057             :                 se = kzalloc_node(sizeof(struct sched_entity),
   11058             :                                   GFP_KERNEL, cpu_to_node(i));
   11059             :                 if (!se)
   11060             :                         goto err_free_rq;
   11061             : 
   11062             :                 init_cfs_rq(cfs_rq);
   11063             :                 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
   11064             :                 init_entity_runnable_average(se);
   11065             :         }
   11066             : 
   11067             :         return 1;
   11068             : 
   11069             : err_free_rq:
   11070             :         kfree(cfs_rq);
   11071             : err:
   11072             :         return 0;
   11073             : }
   11074             : 
   11075             : void online_fair_sched_group(struct task_group *tg)
   11076             : {
   11077             :         struct sched_entity *se;
   11078             :         struct rq_flags rf;
   11079             :         struct rq *rq;
   11080             :         int i;
   11081             : 
   11082             :         for_each_possible_cpu(i) {
   11083             :                 rq = cpu_rq(i);
   11084             :                 se = tg->se[i];
   11085             :                 rq_lock_irq(rq, &rf);
   11086             :                 update_rq_clock(rq);
   11087             :                 attach_entity_cfs_rq(se);
   11088             :                 sync_throttle(tg, i);
   11089             :                 rq_unlock_irq(rq, &rf);
   11090             :         }
   11091             : }
   11092             : 
   11093             : void unregister_fair_sched_group(struct task_group *tg)
   11094             : {
   11095             :         unsigned long flags;
   11096             :         struct rq *rq;
   11097             :         int cpu;
   11098             : 
   11099             :         for_each_possible_cpu(cpu) {
   11100             :                 if (tg->se[cpu])
   11101             :                         remove_entity_load_avg(tg->se[cpu]);
   11102             : 
   11103             :                 /*
   11104             :                  * Only empty task groups can be destroyed; so we can speculatively
   11105             :                  * check on_list without danger of it being re-added.
   11106             :                  */
   11107             :                 if (!tg->cfs_rq[cpu]->on_list)
   11108             :                         continue;
   11109             : 
   11110             :                 rq = cpu_rq(cpu);
   11111             : 
   11112             :                 raw_spin_lock_irqsave(&rq->lock, flags);
   11113             :                 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
   11114             :                 raw_spin_unlock_irqrestore(&rq->lock, flags);
   11115             :         }
   11116             : }
   11117             : 
   11118             : void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
   11119             :                         struct sched_entity *se, int cpu,
   11120             :                         struct sched_entity *parent)
   11121             : {
   11122             :         struct rq *rq = cpu_rq(cpu);
   11123             : 
   11124             :         cfs_rq->tg = tg;
   11125             :         cfs_rq->rq = rq;
   11126             :         init_cfs_rq_runtime(cfs_rq);
   11127             : 
   11128             :         tg->cfs_rq[cpu] = cfs_rq;
   11129             :         tg->se[cpu] = se;
   11130             : 
   11131             :         /* se could be NULL for root_task_group */
   11132             :         if (!se)
   11133             :                 return;
   11134             : 
   11135             :         if (!parent) {
   11136             :                 se->cfs_rq = &rq->cfs;
   11137             :                 se->depth = 0;
   11138             :         } else {
   11139             :                 se->cfs_rq = parent->my_q;
   11140             :                 se->depth = parent->depth + 1;
   11141             :         }
   11142             : 
   11143             :         se->my_q = cfs_rq;
   11144             :         /* guarantee group entities always have weight */
   11145             :         update_load_set(&se->load, NICE_0_LOAD);
   11146             :         se->parent = parent;
   11147             : }
   11148             : 
   11149             : static DEFINE_MUTEX(shares_mutex);
   11150             : 
   11151             : int sched_group_set_shares(struct task_group *tg, unsigned long shares)
   11152             : {
   11153             :         int i;
   11154             : 
   11155             :         /*
   11156             :          * We can't change the weight of the root cgroup.
   11157             :          */
   11158             :         if (!tg->se[0])
   11159             :                 return -EINVAL;
   11160             : 
   11161             :         shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
   11162             : 
   11163             :         mutex_lock(&shares_mutex);
   11164             :         if (tg->shares == shares)
   11165             :                 goto done;
   11166             : 
   11167             :         tg->shares = shares;
   11168             :         for_each_possible_cpu(i) {
   11169             :                 struct rq *rq = cpu_rq(i);
   11170             :                 struct sched_entity *se = tg->se[i];
   11171             :                 struct rq_flags rf;
   11172             : 
   11173             :                 /* Propagate contribution to hierarchy */
   11174             :                 rq_lock_irqsave(rq, &rf);
   11175             :                 update_rq_clock(rq);
   11176             :                 for_each_sched_entity(se) {
   11177             :                         update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
   11178             :                         update_cfs_group(se);
   11179             :                 }
   11180             :                 rq_unlock_irqrestore(rq, &rf);
   11181             :         }
   11182             : 
   11183             : done:
   11184             :         mutex_unlock(&shares_mutex);
   11185             :         return 0;
   11186             : }
   11187             : #else /* CONFIG_FAIR_GROUP_SCHED */
   11188             : 
   11189           0 : void free_fair_sched_group(struct task_group *tg) { }
   11190             : 
   11191           0 : int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
   11192             : {
   11193           0 :         return 1;
   11194             : }
   11195             : 
   11196           0 : void online_fair_sched_group(struct task_group *tg) { }
   11197             : 
   11198           0 : void unregister_fair_sched_group(struct task_group *tg) { }
   11199             : 
   11200             : #endif /* CONFIG_FAIR_GROUP_SCHED */
   11201             : 
   11202             : 
   11203           0 : static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
   11204             : {
   11205           0 :         struct sched_entity *se = &task->se;
   11206           0 :         unsigned int rr_interval = 0;
   11207             : 
   11208             :         /*
   11209             :          * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
   11210             :          * idle runqueue:
   11211             :          */
   11212           0 :         if (rq->cfs.load.weight)
   11213           0 :                 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
   11214             : 
   11215           0 :         return rr_interval;
   11216             : }
   11217             : 
   11218             : /*
   11219             :  * All the scheduling class methods:
   11220             :  */
   11221             : DEFINE_SCHED_CLASS(fair) = {
   11222             : 
   11223             :         .enqueue_task           = enqueue_task_fair,
   11224             :         .dequeue_task           = dequeue_task_fair,
   11225             :         .yield_task             = yield_task_fair,
   11226             :         .yield_to_task          = yield_to_task_fair,
   11227             : 
   11228             :         .check_preempt_curr     = check_preempt_wakeup,
   11229             : 
   11230             :         .pick_next_task         = __pick_next_task_fair,
   11231             :         .put_prev_task          = put_prev_task_fair,
   11232             :         .set_next_task          = set_next_task_fair,
   11233             : 
   11234             : #ifdef CONFIG_SMP
   11235             :         .balance                = balance_fair,
   11236             :         .select_task_rq         = select_task_rq_fair,
   11237             :         .migrate_task_rq        = migrate_task_rq_fair,
   11238             : 
   11239             :         .rq_online              = rq_online_fair,
   11240             :         .rq_offline             = rq_offline_fair,
   11241             : 
   11242             :         .task_dead              = task_dead_fair,
   11243             :         .set_cpus_allowed       = set_cpus_allowed_common,
   11244             : #endif
   11245             : 
   11246             :         .task_tick              = task_tick_fair,
   11247             :         .task_fork              = task_fork_fair,
   11248             : 
   11249             :         .prio_changed           = prio_changed_fair,
   11250             :         .switched_from          = switched_from_fair,
   11251             :         .switched_to            = switched_to_fair,
   11252             : 
   11253             :         .get_rr_interval        = get_rr_interval_fair,
   11254             : 
   11255             :         .update_curr            = update_curr_fair,
   11256             : 
   11257             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11258             :         .task_change_group      = task_change_group_fair,
   11259             : #endif
   11260             : 
   11261             : #ifdef CONFIG_UCLAMP_TASK
   11262             :         .uclamp_enabled         = 1,
   11263             : #endif
   11264             : };
   11265             : 
   11266             : #ifdef CONFIG_SCHED_DEBUG
   11267             : void print_cfs_stats(struct seq_file *m, int cpu)
   11268             : {
   11269             :         struct cfs_rq *cfs_rq, *pos;
   11270             : 
   11271             :         rcu_read_lock();
   11272             :         for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
   11273             :                 print_cfs_rq(m, cpu, cfs_rq);
   11274             :         rcu_read_unlock();
   11275             : }
   11276             : 
   11277             : #ifdef CONFIG_NUMA_BALANCING
   11278             : void show_numa_stats(struct task_struct *p, struct seq_file *m)
   11279             : {
   11280             :         int node;
   11281             :         unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
   11282             :         struct numa_group *ng;
   11283             : 
   11284             :         rcu_read_lock();
   11285             :         ng = rcu_dereference(p->numa_group);
   11286             :         for_each_online_node(node) {
   11287             :                 if (p->numa_faults) {
   11288             :                         tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
   11289             :                         tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
   11290             :                 }
   11291             :                 if (ng) {
   11292             :                         gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
   11293             :                         gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
   11294             :                 }
   11295             :                 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
   11296             :         }
   11297             :         rcu_read_unlock();
   11298             : }
   11299             : #endif /* CONFIG_NUMA_BALANCING */
   11300             : #endif /* CONFIG_SCHED_DEBUG */
   11301             : 
   11302           1 : __init void init_sched_fair_class(void)
   11303             : {
   11304             : #ifdef CONFIG_SMP
   11305           1 :         open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
   11306             : 
   11307             : #ifdef CONFIG_NO_HZ_COMMON
   11308           1 :         nohz.next_balance = jiffies;
   11309           1 :         nohz.next_blocked = jiffies;
   11310           1 :         zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
   11311             : #endif
   11312             : #endif /* SMP */
   11313             : 
   11314           1 : }
   11315             : 
   11316             : /*
   11317             :  * Helper functions to facilitate extracting info from tracepoints.
   11318             :  */
   11319             : 
   11320           0 : const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
   11321             : {
   11322             : #ifdef CONFIG_SMP
   11323           0 :         return cfs_rq ? &cfs_rq->avg : NULL;
   11324             : #else
   11325             :         return NULL;
   11326             : #endif
   11327             : }
   11328             : EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
   11329             : 
   11330           0 : char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
   11331             : {
   11332           0 :         if (!cfs_rq) {
   11333           0 :                 if (str)
   11334           0 :                         strlcpy(str, "(null)", len);
   11335             :                 else
   11336             :                         return NULL;
   11337             :         }
   11338             : 
   11339           0 :         cfs_rq_tg_path(cfs_rq, str, len);
   11340             :         return str;
   11341             : }
   11342             : EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
   11343             : 
   11344           0 : int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
   11345             : {
   11346           0 :         return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
   11347             : }
   11348             : EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
   11349             : 
   11350           0 : const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
   11351             : {
   11352             : #ifdef CONFIG_SMP
   11353           0 :         return rq ? &rq->avg_rt : NULL;
   11354             : #else
   11355             :         return NULL;
   11356             : #endif
   11357             : }
   11358             : EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
   11359             : 
   11360           0 : const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
   11361             : {
   11362             : #ifdef CONFIG_SMP
   11363           0 :         return rq ? &rq->avg_dl : NULL;
   11364             : #else
   11365             :         return NULL;
   11366             : #endif
   11367             : }
   11368             : EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
   11369             : 
   11370           0 : const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
   11371             : {
   11372             : #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
   11373           0 :         return rq ? &rq->avg_irq : NULL;
   11374             : #else
   11375             :         return NULL;
   11376             : #endif
   11377             : }
   11378             : EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
   11379             : 
   11380           0 : int sched_trace_rq_cpu(struct rq *rq)
   11381             : {
   11382           0 :         return rq ? cpu_of(rq) : -1;
   11383             : }
   11384             : EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
   11385             : 
   11386           0 : int sched_trace_rq_cpu_capacity(struct rq *rq)
   11387             : {
   11388           0 :         return rq ?
   11389             : #ifdef CONFIG_SMP
   11390           0 :                 rq->cpu_capacity
   11391             : #else
   11392             :                 SCHED_CAPACITY_SCALE
   11393             : #endif
   11394           0 :                 : -1;
   11395             : }
   11396             : EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
   11397             : 
   11398           0 : const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
   11399             : {
   11400             : #ifdef CONFIG_SMP
   11401           0 :         return rd ? rd->span : NULL;
   11402             : #else
   11403             :         return NULL;
   11404             : #endif
   11405             : }
   11406             : EXPORT_SYMBOL_GPL(sched_trace_rd_span);
   11407             : 
   11408           0 : int sched_trace_rq_nr_running(struct rq *rq)
   11409             : {
   11410           0 :         return rq ? rq->nr_running : -1;
   11411             : }
   11412             : EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);

Generated by: LCOV version 1.14