LCOV - code coverage report
Current view: top level - kernel - smpboot.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 105 200 52.5 %
Date: 2021-04-22 12:43:58 Functions: 12 19 63.2 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * Common SMP CPU bringup/teardown functions
       4             :  */
       5             : #include <linux/cpu.h>
       6             : #include <linux/err.h>
       7             : #include <linux/smp.h>
       8             : #include <linux/delay.h>
       9             : #include <linux/init.h>
      10             : #include <linux/list.h>
      11             : #include <linux/slab.h>
      12             : #include <linux/sched.h>
      13             : #include <linux/sched/task.h>
      14             : #include <linux/export.h>
      15             : #include <linux/percpu.h>
      16             : #include <linux/kthread.h>
      17             : #include <linux/smpboot.h>
      18             : 
      19             : #include "smpboot.h"
      20             : 
      21             : #ifdef CONFIG_SMP
      22             : 
      23             : #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
      24             : /*
      25             :  * For the hotplug case we keep the task structs around and reuse
      26             :  * them.
      27             :  */
      28             : static DEFINE_PER_CPU(struct task_struct *, idle_threads);
      29             : 
      30           6 : struct task_struct *idle_thread_get(unsigned int cpu)
      31             : {
      32           6 :         struct task_struct *tsk = per_cpu(idle_threads, cpu);
      33             : 
      34           6 :         if (!tsk)
      35           6 :                 return ERR_PTR(-ENOMEM);
      36           6 :         init_idle(tsk, cpu);
      37           6 :         return tsk;
      38             : }
      39             : 
      40           1 : void __init idle_thread_set_boot_cpu(void)
      41             : {
      42           1 :         per_cpu(idle_threads, smp_processor_id()) = current;
      43           1 : }
      44             : 
      45             : /**
      46             :  * idle_init - Initialize the idle thread for a cpu
      47             :  * @cpu:        The cpu for which the idle thread should be initialized
      48             :  *
      49             :  * Creates the thread if it does not exist.
      50             :  */
      51           3 : static inline void idle_init(unsigned int cpu)
      52             : {
      53           3 :         struct task_struct *tsk = per_cpu(idle_threads, cpu);
      54             : 
      55           3 :         if (!tsk) {
      56           3 :                 tsk = fork_idle(cpu);
      57           3 :                 if (IS_ERR(tsk))
      58           0 :                         pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
      59             :                 else
      60           3 :                         per_cpu(idle_threads, cpu) = tsk;
      61             :         }
      62           3 : }
      63             : 
      64             : /**
      65             :  * idle_threads_init - Initialize idle threads for all cpus
      66             :  */
      67           1 : void __init idle_threads_init(void)
      68             : {
      69           1 :         unsigned int cpu, boot_cpu;
      70             : 
      71           1 :         boot_cpu = smp_processor_id();
      72             : 
      73           5 :         for_each_possible_cpu(cpu) {
      74           4 :                 if (cpu != boot_cpu)
      75           3 :                         idle_init(cpu);
      76             :         }
      77           1 : }
      78             : #endif
      79             : 
      80             : #endif /* #ifdef CONFIG_SMP */
      81             : 
      82             : static LIST_HEAD(hotplug_threads);
      83             : static DEFINE_MUTEX(smpboot_threads_lock);
      84             : 
      85             : struct smpboot_thread_data {
      86             :         unsigned int                    cpu;
      87             :         unsigned int                    status;
      88             :         struct smp_hotplug_thread       *ht;
      89             : };
      90             : 
      91             : enum {
      92             :         HP_THREAD_NONE = 0,
      93             :         HP_THREAD_ACTIVE,
      94             :         HP_THREAD_PARKED,
      95             : };
      96             : 
      97             : /**
      98             :  * smpboot_thread_fn - percpu hotplug thread loop function
      99             :  * @data:       thread data pointer
     100             :  *
     101             :  * Checks for thread stop and park conditions. Calls the necessary
     102             :  * setup, cleanup, park and unpark functions for the registered
     103             :  * thread.
     104             :  *
     105             :  * Returns 1 when the thread should exit, 0 otherwise.
     106             :  */
     107          12 : static int smpboot_thread_fn(void *data)
     108             : {
     109          12 :         struct smpboot_thread_data *td = data;
     110          12 :         struct smp_hotplug_thread *ht = td->ht;
     111             : 
     112        7834 :         while (1) {
     113        7834 :                 set_current_state(TASK_INTERRUPTIBLE);
     114        7836 :                 preempt_disable();
     115        7836 :                 if (kthread_should_stop()) {
     116           0 :                         __set_current_state(TASK_RUNNING);
     117           0 :                         preempt_enable();
     118             :                         /* cleanup must mirror setup */
     119           0 :                         if (ht->cleanup && td->status != HP_THREAD_NONE)
     120           0 :                                 ht->cleanup(td->cpu, cpu_online(td->cpu));
     121           0 :                         kfree(td);
     122           0 :                         return 0;
     123             :                 }
     124             : 
     125        7835 :                 if (kthread_should_park()) {
     126           0 :                         __set_current_state(TASK_RUNNING);
     127           0 :                         preempt_enable();
     128           0 :                         if (ht->park && td->status == HP_THREAD_ACTIVE) {
     129           0 :                                 BUG_ON(td->cpu != smp_processor_id());
     130           0 :                                 ht->park(td->cpu);
     131           0 :                                 td->status = HP_THREAD_PARKED;
     132             :                         }
     133           0 :                         kthread_parkme();
     134             :                         /* We might have been woken for stop */
     135           0 :                         continue;
     136             :                 }
     137             : 
     138        7836 :                 BUG_ON(td->cpu != smp_processor_id());
     139             : 
     140             :                 /* Check for state change setup */
     141        7836 :                 switch (td->status) {
     142             :                 case HP_THREAD_NONE:
     143          12 :                         __set_current_state(TASK_RUNNING);
     144          12 :                         preempt_enable();
     145          12 :                         if (ht->setup)
     146           0 :                                 ht->setup(td->cpu);
     147          12 :                         td->status = HP_THREAD_ACTIVE;
     148          12 :                         continue;
     149             : 
     150             :                 case HP_THREAD_PARKED:
     151           0 :                         __set_current_state(TASK_RUNNING);
     152           0 :                         preempt_enable();
     153           0 :                         if (ht->unpark)
     154           0 :                                 ht->unpark(td->cpu);
     155           0 :                         td->status = HP_THREAD_ACTIVE;
     156           0 :                         continue;
     157             :                 }
     158             : 
     159        7824 :                 if (!ht->thread_should_run(td->cpu)) {
     160        1987 :                         preempt_enable_no_resched();
     161        1987 :                         schedule();
     162             :                 } else {
     163        5836 :                         __set_current_state(TASK_RUNNING);
     164        5836 :                         preempt_enable();
     165        5836 :                         ht->thread_fn(td->cpu);
     166             :                 }
     167             :         }
     168             : }
     169             : 
     170             : static int
     171          12 : __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
     172             : {
     173          12 :         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
     174          12 :         struct smpboot_thread_data *td;
     175             : 
     176          12 :         if (tsk)
     177             :                 return 0;
     178             : 
     179          12 :         td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
     180          12 :         if (!td)
     181             :                 return -ENOMEM;
     182          12 :         td->cpu = cpu;
     183          12 :         td->ht = ht;
     184             : 
     185          12 :         tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
     186             :                                     ht->thread_comm);
     187          12 :         if (IS_ERR(tsk)) {
     188           0 :                 kfree(td);
     189           0 :                 return PTR_ERR(tsk);
     190             :         }
     191          12 :         kthread_set_per_cpu(tsk, cpu);
     192             :         /*
     193             :          * Park the thread so that it could start right on the CPU
     194             :          * when it is available.
     195             :          */
     196          12 :         kthread_park(tsk);
     197          12 :         get_task_struct(tsk);
     198          12 :         *per_cpu_ptr(ht->store, cpu) = tsk;
     199          12 :         if (ht->create) {
     200             :                 /*
     201             :                  * Make sure that the task has actually scheduled out
     202             :                  * into park position, before calling the create
     203             :                  * callback. At least the migration thread callback
     204             :                  * requires that the task is off the runqueue.
     205             :                  */
     206           8 :                 if (!wait_task_inactive(tsk, TASK_PARKED))
     207           0 :                         WARN_ON(1);
     208             :                 else
     209           8 :                         ht->create(cpu);
     210             :         }
     211             :         return 0;
     212             : }
     213             : 
     214           3 : int smpboot_create_threads(unsigned int cpu)
     215             : {
     216           3 :         struct smp_hotplug_thread *cur;
     217           3 :         int ret = 0;
     218             : 
     219           3 :         mutex_lock(&smpboot_threads_lock);
     220          12 :         list_for_each_entry(cur, &hotplug_threads, list) {
     221           9 :                 ret = __smpboot_create_thread(cur, cpu);
     222           9 :                 if (ret)
     223             :                         break;
     224             :         }
     225           3 :         mutex_unlock(&smpboot_threads_lock);
     226           3 :         return ret;
     227             : }
     228             : 
     229          12 : static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
     230             : {
     231          12 :         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
     232             : 
     233          12 :         if (!ht->selfparking)
     234           4 :                 kthread_unpark(tsk);
     235          12 : }
     236             : 
     237           3 : int smpboot_unpark_threads(unsigned int cpu)
     238             : {
     239           3 :         struct smp_hotplug_thread *cur;
     240             : 
     241           3 :         mutex_lock(&smpboot_threads_lock);
     242          12 :         list_for_each_entry(cur, &hotplug_threads, list)
     243           9 :                 smpboot_unpark_thread(cur, cpu);
     244           3 :         mutex_unlock(&smpboot_threads_lock);
     245           3 :         return 0;
     246             : }
     247             : 
     248           0 : static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
     249             : {
     250           0 :         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
     251             : 
     252           0 :         if (tsk && !ht->selfparking)
     253           0 :                 kthread_park(tsk);
     254           0 : }
     255             : 
     256           0 : int smpboot_park_threads(unsigned int cpu)
     257             : {
     258           0 :         struct smp_hotplug_thread *cur;
     259             : 
     260           0 :         mutex_lock(&smpboot_threads_lock);
     261           0 :         list_for_each_entry_reverse(cur, &hotplug_threads, list)
     262           0 :                 smpboot_park_thread(cur, cpu);
     263           0 :         mutex_unlock(&smpboot_threads_lock);
     264           0 :         return 0;
     265             : }
     266             : 
     267           0 : static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
     268             : {
     269           0 :         unsigned int cpu;
     270             : 
     271             :         /* We need to destroy also the parked threads of offline cpus */
     272           0 :         for_each_possible_cpu(cpu) {
     273           0 :                 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
     274             : 
     275           0 :                 if (tsk) {
     276           0 :                         kthread_stop(tsk);
     277           0 :                         put_task_struct(tsk);
     278           0 :                         *per_cpu_ptr(ht->store, cpu) = NULL;
     279             :                 }
     280             :         }
     281           0 : }
     282             : 
     283             : /**
     284             :  * smpboot_register_percpu_thread - Register a per_cpu thread related
     285             :  *                                          to hotplug
     286             :  * @plug_thread:        Hotplug thread descriptor
     287             :  *
     288             :  * Creates and starts the threads on all online cpus.
     289             :  */
     290           3 : int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
     291             : {
     292           3 :         unsigned int cpu;
     293           3 :         int ret = 0;
     294             : 
     295           3 :         get_online_cpus();
     296           3 :         mutex_lock(&smpboot_threads_lock);
     297           9 :         for_each_online_cpu(cpu) {
     298           3 :                 ret = __smpboot_create_thread(plug_thread, cpu);
     299           3 :                 if (ret) {
     300           0 :                         smpboot_destroy_threads(plug_thread);
     301           0 :                         goto out;
     302             :                 }
     303           3 :                 smpboot_unpark_thread(plug_thread, cpu);
     304             :         }
     305           3 :         list_add(&plug_thread->list, &hotplug_threads);
     306           3 : out:
     307           3 :         mutex_unlock(&smpboot_threads_lock);
     308           3 :         put_online_cpus();
     309           3 :         return ret;
     310             : }
     311             : EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
     312             : 
     313             : /**
     314             :  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
     315             :  * @plug_thread:        Hotplug thread descriptor
     316             :  *
     317             :  * Stops all threads on all possible cpus.
     318             :  */
     319           0 : void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
     320             : {
     321           0 :         get_online_cpus();
     322           0 :         mutex_lock(&smpboot_threads_lock);
     323           0 :         list_del(&plug_thread->list);
     324           0 :         smpboot_destroy_threads(plug_thread);
     325           0 :         mutex_unlock(&smpboot_threads_lock);
     326           0 :         put_online_cpus();
     327           0 : }
     328             : EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
     329             : 
     330             : static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
     331             : 
     332             : /*
     333             :  * Called to poll specified CPU's state, for example, when waiting for
     334             :  * a CPU to come online.
     335             :  */
     336           0 : int cpu_report_state(int cpu)
     337             : {
     338           0 :         return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
     339             : }
     340             : 
     341             : /*
     342             :  * If CPU has died properly, set its state to CPU_UP_PREPARE and
     343             :  * return success.  Otherwise, return -EBUSY if the CPU died after
     344             :  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
     345             :  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
     346             :  * to dying.  In the latter two cases, the CPU might not be set up
     347             :  * properly, but it is up to the arch-specific code to decide.
     348             :  * Finally, -EIO indicates an unanticipated problem.
     349             :  *
     350             :  * Note that it is permissible to omit this call entirely, as is
     351             :  * done in architectures that do no CPU-hotplug error checking.
     352             :  */
     353           3 : int cpu_check_up_prepare(int cpu)
     354             : {
     355           3 :         if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
     356             :                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
     357             :                 return 0;
     358             :         }
     359             : 
     360           3 :         switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
     361             : 
     362           3 :         case CPU_POST_DEAD:
     363             : 
     364             :                 /* The CPU died properly, so just start it up again. */
     365           3 :                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
     366           3 :                 return 0;
     367             : 
     368             :         case CPU_DEAD_FROZEN:
     369             : 
     370             :                 /*
     371             :                  * Timeout during CPU death, so let caller know.
     372             :                  * The outgoing CPU completed its processing, but after
     373             :                  * cpu_wait_death() timed out and reported the error. The
     374             :                  * caller is free to proceed, in which case the state
     375             :                  * will be reset properly by cpu_set_state_online().
     376             :                  * Proceeding despite this -EBUSY return makes sense
     377             :                  * for systems where the outgoing CPUs take themselves
     378             :                  * offline, with no post-death manipulation required from
     379             :                  * a surviving CPU.
     380             :                  */
     381             :                 return -EBUSY;
     382             : 
     383           0 :         case CPU_BROKEN:
     384             : 
     385             :                 /*
     386             :                  * The most likely reason we got here is that there was
     387             :                  * a timeout during CPU death, and the outgoing CPU never
     388             :                  * did complete its processing.  This could happen on
     389             :                  * a virtualized system if the outgoing VCPU gets preempted
     390             :                  * for more than five seconds, and the user attempts to
     391             :                  * immediately online that same CPU.  Trying again later
     392             :                  * might return -EBUSY above, hence -EAGAIN.
     393             :                  */
     394           0 :                 return -EAGAIN;
     395             : 
     396           0 :         default:
     397             : 
     398             :                 /* Should not happen.  Famous last words. */
     399           0 :                 return -EIO;
     400             :         }
     401             : }
     402             : 
     403             : /*
     404             :  * Mark the specified CPU online.
     405             :  *
     406             :  * Note that it is permissible to omit this call entirely, as is
     407             :  * done in architectures that do no CPU-hotplug error checking.
     408             :  */
     409           4 : void cpu_set_state_online(int cpu)
     410             : {
     411           4 :         (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
     412           4 : }
     413             : 
     414             : #ifdef CONFIG_HOTPLUG_CPU
     415             : 
     416             : /*
     417             :  * Wait for the specified CPU to exit the idle loop and die.
     418             :  */
     419           0 : bool cpu_wait_death(unsigned int cpu, int seconds)
     420             : {
     421           0 :         int jf_left = seconds * HZ;
     422           0 :         int oldstate;
     423           0 :         bool ret = true;
     424           0 :         int sleep_jf = 1;
     425             : 
     426           0 :         might_sleep();
     427             : 
     428             :         /* The outgoing CPU will normally get done quite quickly. */
     429           0 :         if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
     430           0 :                 goto update_state;
     431           0 :         udelay(5);
     432             : 
     433             :         /* But if the outgoing CPU dawdles, wait increasingly long times. */
     434           0 :         while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
     435           0 :                 schedule_timeout_uninterruptible(sleep_jf);
     436           0 :                 jf_left -= sleep_jf;
     437           0 :                 if (jf_left <= 0)
     438             :                         break;
     439           0 :                 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
     440             :         }
     441           0 : update_state:
     442           0 :         oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
     443           0 :         if (oldstate == CPU_DEAD) {
     444             :                 /* Outgoing CPU died normally, update state. */
     445           0 :                 smp_mb(); /* atomic_read() before update. */
     446           0 :                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
     447             :         } else {
     448             :                 /* Outgoing CPU still hasn't died, set state accordingly. */
     449           0 :                 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
     450             :                                    oldstate, CPU_BROKEN) != oldstate)
     451           0 :                         goto update_state;
     452             :                 ret = false;
     453             :         }
     454           0 :         return ret;
     455             : }
     456             : 
     457             : /*
     458             :  * Called by the outgoing CPU to report its successful death.  Return
     459             :  * false if this report follows the surviving CPU's timing out.
     460             :  *
     461             :  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
     462             :  * timed out.  This approach allows architectures to omit calls to
     463             :  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
     464             :  * the next cpu_wait_death()'s polling loop.
     465             :  */
     466           0 : bool cpu_report_death(void)
     467             : {
     468           0 :         int oldstate;
     469           0 :         int newstate;
     470           0 :         int cpu = smp_processor_id();
     471             : 
     472           0 :         do {
     473           0 :                 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
     474           0 :                 if (oldstate != CPU_BROKEN)
     475             :                         newstate = CPU_DEAD;
     476             :                 else
     477           0 :                         newstate = CPU_DEAD_FROZEN;
     478           0 :         } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
     479           0 :                                 oldstate, newstate) != oldstate);
     480           0 :         return newstate == CPU_DEAD;
     481             : }
     482             : 
     483             : #endif /* #ifdef CONFIG_HOTPLUG_CPU */

Generated by: LCOV version 1.14