LCOV - code coverage report
Current view: top level - kernel/time - posix-cpu-timers.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 42 590 7.1 %
Date: 2021-04-22 12:43:58 Functions: 8 52 15.4 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Implement CPU time clocks for the POSIX clock interface.
       4             :  */
       5             : 
       6             : #include <linux/sched/signal.h>
       7             : #include <linux/sched/cputime.h>
       8             : #include <linux/posix-timers.h>
       9             : #include <linux/errno.h>
      10             : #include <linux/math64.h>
      11             : #include <linux/uaccess.h>
      12             : #include <linux/kernel_stat.h>
      13             : #include <trace/events/timer.h>
      14             : #include <linux/tick.h>
      15             : #include <linux/workqueue.h>
      16             : #include <linux/compat.h>
      17             : #include <linux/sched/deadline.h>
      18             : 
      19             : #include "posix-timers.h"
      20             : 
      21             : static void posix_cpu_timer_rearm(struct k_itimer *timer);
      22             : 
      23        1126 : void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
      24             : {
      25        1126 :         posix_cputimers_init(pct);
      26        1126 :         if (cpu_limit != RLIM_INFINITY) {
      27           0 :                 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
      28           0 :                 pct->timers_active = true;
      29             :         }
      30        1126 : }
      31             : 
      32             : /*
      33             :  * Called after updating RLIMIT_CPU to run cpu timer and update
      34             :  * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
      35             :  * necessary. Needs siglock protection since other code may update the
      36             :  * expiration cache as well.
      37             :  */
      38           0 : void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
      39             : {
      40           0 :         u64 nsecs = rlim_new * NSEC_PER_SEC;
      41             : 
      42           0 :         spin_lock_irq(&task->sighand->siglock);
      43           0 :         set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
      44           0 :         spin_unlock_irq(&task->sighand->siglock);
      45           0 : }
      46             : 
      47             : /*
      48             :  * Functions for validating access to tasks.
      49             :  */
      50           0 : static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
      51             : {
      52           0 :         const bool thread = !!CPUCLOCK_PERTHREAD(clock);
      53           0 :         const pid_t upid = CPUCLOCK_PID(clock);
      54           0 :         struct pid *pid;
      55             : 
      56           0 :         if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
      57             :                 return NULL;
      58             : 
      59             :         /*
      60             :          * If the encoded PID is 0, then the timer is targeted at current
      61             :          * or the process to which current belongs.
      62             :          */
      63           0 :         if (upid == 0)
      64           0 :                 return thread ? task_pid(current) : task_tgid(current);
      65             : 
      66           0 :         pid = find_vpid(upid);
      67           0 :         if (!pid)
      68             :                 return NULL;
      69             : 
      70           0 :         if (thread) {
      71           0 :                 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
      72           0 :                 return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
      73             :         }
      74             : 
      75             :         /*
      76             :          * For clock_gettime(PROCESS) allow finding the process by
      77             :          * with the pid of the current task.  The code needs the tgid
      78             :          * of the process so that pid_task(pid, PIDTYPE_TGID) can be
      79             :          * used to find the process.
      80             :          */
      81           0 :         if (gettime && (pid == task_pid(current)))
      82           0 :                 return task_tgid(current);
      83             : 
      84             :         /*
      85             :          * For processes require that pid identifies a process.
      86             :          */
      87           0 :         return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
      88             : }
      89             : 
      90           0 : static inline int validate_clock_permissions(const clockid_t clock)
      91             : {
      92           0 :         int ret;
      93             : 
      94           0 :         rcu_read_lock();
      95           0 :         ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
      96           0 :         rcu_read_unlock();
      97             : 
      98           0 :         return ret;
      99             : }
     100             : 
     101           0 : static inline enum pid_type clock_pid_type(const clockid_t clock)
     102             : {
     103           0 :         return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
     104             : }
     105             : 
     106           0 : static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
     107             : {
     108           0 :         return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
     109             : }
     110             : 
     111             : /*
     112             :  * Update expiry time from increment, and increase overrun count,
     113             :  * given the current clock sample.
     114             :  */
     115           0 : static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
     116             : {
     117           0 :         u64 delta, incr, expires = timer->it.cpu.node.expires;
     118           0 :         int i;
     119             : 
     120           0 :         if (!timer->it_interval)
     121             :                 return expires;
     122             : 
     123           0 :         if (now < expires)
     124             :                 return expires;
     125             : 
     126           0 :         incr = timer->it_interval;
     127           0 :         delta = now + incr - expires;
     128             : 
     129             :         /* Don't use (incr*2 < delta), incr*2 might overflow. */
     130           0 :         for (i = 0; incr < delta - incr; i++)
     131           0 :                 incr = incr << 1;
     132             : 
     133           0 :         for (; i >= 0; incr >>= 1, i--) {
     134           0 :                 if (delta < incr)
     135           0 :                         continue;
     136             : 
     137           0 :                 timer->it.cpu.node.expires += incr;
     138           0 :                 timer->it_overrun += 1LL << i;
     139           0 :                 delta -= incr;
     140             :         }
     141           0 :         return timer->it.cpu.node.expires;
     142             : }
     143             : 
     144             : /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
     145       29300 : static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
     146             : {
     147       29300 :         return !(~pct->bases[CPUCLOCK_PROF].nextevt |
     148       29300 :                  ~pct->bases[CPUCLOCK_VIRT].nextevt |
     149       29300 :                  ~pct->bases[CPUCLOCK_SCHED].nextevt);
     150             : }
     151             : 
     152             : static int
     153           0 : posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
     154             : {
     155           0 :         int error = validate_clock_permissions(which_clock);
     156             : 
     157           0 :         if (!error) {
     158           0 :                 tp->tv_sec = 0;
     159           0 :                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
     160           0 :                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
     161             :                         /*
     162             :                          * If sched_clock is using a cycle counter, we
     163             :                          * don't have any idea of its true resolution
     164             :                          * exported, but it is much more than 1s/HZ.
     165             :                          */
     166           0 :                         tp->tv_nsec = 1;
     167             :                 }
     168             :         }
     169           0 :         return error;
     170             : }
     171             : 
     172             : static int
     173           0 : posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
     174             : {
     175           0 :         int error = validate_clock_permissions(clock);
     176             : 
     177             :         /*
     178             :          * You can never reset a CPU clock, but we check for other errors
     179             :          * in the call before failing with EPERM.
     180             :          */
     181           0 :         return error ? : -EPERM;
     182             : }
     183             : 
     184             : /*
     185             :  * Sample a per-thread clock for the given task. clkid is validated.
     186             :  */
     187           0 : static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
     188             : {
     189           0 :         u64 utime, stime;
     190             : 
     191           0 :         if (clkid == CPUCLOCK_SCHED)
     192           0 :                 return task_sched_runtime(p);
     193             : 
     194           0 :         task_cputime(p, &utime, &stime);
     195             : 
     196           0 :         switch (clkid) {
     197           0 :         case CPUCLOCK_PROF:
     198           0 :                 return utime + stime;
     199             :         case CPUCLOCK_VIRT:
     200             :                 return utime;
     201             :         default:
     202           0 :                 WARN_ON_ONCE(1);
     203             :         }
     204           0 :         return 0;
     205             : }
     206             : 
     207           0 : static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
     208             : {
     209           0 :         samples[CPUCLOCK_PROF] = stime + utime;
     210           0 :         samples[CPUCLOCK_VIRT] = utime;
     211           0 :         samples[CPUCLOCK_SCHED] = rtime;
     212             : }
     213             : 
     214           0 : static void task_sample_cputime(struct task_struct *p, u64 *samples)
     215             : {
     216           0 :         u64 stime, utime;
     217             : 
     218           0 :         task_cputime(p, &utime, &stime);
     219           0 :         store_samples(samples, stime, utime, p->se.sum_exec_runtime);
     220           0 : }
     221             : 
     222           0 : static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
     223             :                                        u64 *samples)
     224             : {
     225           0 :         u64 stime, utime, rtime;
     226             : 
     227           0 :         utime = atomic64_read(&at->utime);
     228           0 :         stime = atomic64_read(&at->stime);
     229           0 :         rtime = atomic64_read(&at->sum_exec_runtime);
     230           0 :         store_samples(samples, stime, utime, rtime);
     231           0 : }
     232             : 
     233             : /*
     234             :  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
     235             :  * to avoid race conditions with concurrent updates to cputime.
     236             :  */
     237           0 : static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
     238             : {
     239           0 :         u64 curr_cputime;
     240           0 : retry:
     241           0 :         curr_cputime = atomic64_read(cputime);
     242           0 :         if (sum_cputime > curr_cputime) {
     243           0 :                 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
     244           0 :                         goto retry;
     245             :         }
     246           0 : }
     247             : 
     248           0 : static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
     249             :                               struct task_cputime *sum)
     250             : {
     251           0 :         __update_gt_cputime(&cputime_atomic->utime, sum->utime);
     252           0 :         __update_gt_cputime(&cputime_atomic->stime, sum->stime);
     253           0 :         __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
     254           0 : }
     255             : 
     256             : /**
     257             :  * thread_group_sample_cputime - Sample cputime for a given task
     258             :  * @tsk:        Task for which cputime needs to be started
     259             :  * @samples:    Storage for time samples
     260             :  *
     261             :  * Called from sys_getitimer() to calculate the expiry time of an active
     262             :  * timer. That means group cputime accounting is already active. Called
     263             :  * with task sighand lock held.
     264             :  *
     265             :  * Updates @times with an uptodate sample of the thread group cputimes.
     266             :  */
     267           0 : void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
     268             : {
     269           0 :         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
     270           0 :         struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
     271             : 
     272           0 :         WARN_ON_ONCE(!pct->timers_active);
     273             : 
     274           0 :         proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
     275           0 : }
     276             : 
     277             : /**
     278             :  * thread_group_start_cputime - Start cputime and return a sample
     279             :  * @tsk:        Task for which cputime needs to be started
     280             :  * @samples:    Storage for time samples
     281             :  *
     282             :  * The thread group cputime accouting is avoided when there are no posix
     283             :  * CPU timers armed. Before starting a timer it's required to check whether
     284             :  * the time accounting is active. If not, a full update of the atomic
     285             :  * accounting store needs to be done and the accounting enabled.
     286             :  *
     287             :  * Updates @times with an uptodate sample of the thread group cputimes.
     288             :  */
     289           0 : static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
     290             : {
     291           0 :         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
     292           0 :         struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
     293             : 
     294             :         /* Check if cputimer isn't running. This is accessed without locking. */
     295           0 :         if (!READ_ONCE(pct->timers_active)) {
     296           0 :                 struct task_cputime sum;
     297             : 
     298             :                 /*
     299             :                  * The POSIX timer interface allows for absolute time expiry
     300             :                  * values through the TIMER_ABSTIME flag, therefore we have
     301             :                  * to synchronize the timer to the clock every time we start it.
     302             :                  */
     303           0 :                 thread_group_cputime(tsk, &sum);
     304           0 :                 update_gt_cputime(&cputimer->cputime_atomic, &sum);
     305             : 
     306             :                 /*
     307             :                  * We're setting timers_active without a lock. Ensure this
     308             :                  * only gets written to in one operation. We set it after
     309             :                  * update_gt_cputime() as a small optimization, but
     310             :                  * barriers are not required because update_gt_cputime()
     311             :                  * can handle concurrent updates.
     312             :                  */
     313           0 :                 WRITE_ONCE(pct->timers_active, true);
     314             :         }
     315           0 :         proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
     316           0 : }
     317             : 
     318           0 : static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
     319             : {
     320           0 :         struct task_cputime ct;
     321             : 
     322           0 :         thread_group_cputime(tsk, &ct);
     323           0 :         store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
     324           0 : }
     325             : 
     326             : /*
     327             :  * Sample a process (thread group) clock for the given task clkid. If the
     328             :  * group's cputime accounting is already enabled, read the atomic
     329             :  * store. Otherwise a full update is required.  clkid is already validated.
     330             :  */
     331           0 : static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
     332             :                                   bool start)
     333             : {
     334           0 :         struct thread_group_cputimer *cputimer = &p->signal->cputimer;
     335           0 :         struct posix_cputimers *pct = &p->signal->posix_cputimers;
     336           0 :         u64 samples[CPUCLOCK_MAX];
     337             : 
     338           0 :         if (!READ_ONCE(pct->timers_active)) {
     339           0 :                 if (start)
     340           0 :                         thread_group_start_cputime(p, samples);
     341             :                 else
     342           0 :                         __thread_group_cputime(p, samples);
     343             :         } else {
     344           0 :                 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
     345             :         }
     346             : 
     347           0 :         return samples[clkid];
     348             : }
     349             : 
     350           0 : static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
     351             : {
     352           0 :         const clockid_t clkid = CPUCLOCK_WHICH(clock);
     353           0 :         struct task_struct *tsk;
     354           0 :         u64 t;
     355             : 
     356           0 :         rcu_read_lock();
     357           0 :         tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
     358           0 :         if (!tsk) {
     359           0 :                 rcu_read_unlock();
     360           0 :                 return -EINVAL;
     361             :         }
     362             : 
     363           0 :         if (CPUCLOCK_PERTHREAD(clock))
     364           0 :                 t = cpu_clock_sample(clkid, tsk);
     365             :         else
     366           0 :                 t = cpu_clock_sample_group(clkid, tsk, false);
     367           0 :         rcu_read_unlock();
     368             : 
     369           0 :         *tp = ns_to_timespec64(t);
     370           0 :         return 0;
     371             : }
     372             : 
     373             : /*
     374             :  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
     375             :  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
     376             :  * new timer already all-zeros initialized.
     377             :  */
     378           0 : static int posix_cpu_timer_create(struct k_itimer *new_timer)
     379             : {
     380           0 :         static struct lock_class_key posix_cpu_timers_key;
     381           0 :         struct pid *pid;
     382             : 
     383           0 :         rcu_read_lock();
     384           0 :         pid = pid_for_clock(new_timer->it_clock, false);
     385           0 :         if (!pid) {
     386           0 :                 rcu_read_unlock();
     387           0 :                 return -EINVAL;
     388             :         }
     389             : 
     390             :         /*
     391             :          * If posix timer expiry is handled in task work context then
     392             :          * timer::it_lock can be taken without disabling interrupts as all
     393             :          * other locking happens in task context. This requires a seperate
     394             :          * lock class key otherwise regular posix timer expiry would record
     395             :          * the lock class being taken in interrupt context and generate a
     396             :          * false positive warning.
     397             :          */
     398           0 :         if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
     399           0 :                 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
     400             : 
     401           0 :         new_timer->kclock = &clock_posix_cpu;
     402           0 :         timerqueue_init(&new_timer->it.cpu.node);
     403           0 :         new_timer->it.cpu.pid = get_pid(pid);
     404           0 :         rcu_read_unlock();
     405           0 :         return 0;
     406             : }
     407             : 
     408             : /*
     409             :  * Clean up a CPU-clock timer that is about to be destroyed.
     410             :  * This is called from timer deletion with the timer already locked.
     411             :  * If we return TIMER_RETRY, it's necessary to release the timer's lock
     412             :  * and try again.  (This happens when the timer is in the middle of firing.)
     413             :  */
     414           0 : static int posix_cpu_timer_del(struct k_itimer *timer)
     415             : {
     416           0 :         struct cpu_timer *ctmr = &timer->it.cpu;
     417           0 :         struct sighand_struct *sighand;
     418           0 :         struct task_struct *p;
     419           0 :         unsigned long flags;
     420           0 :         int ret = 0;
     421             : 
     422           0 :         rcu_read_lock();
     423           0 :         p = cpu_timer_task_rcu(timer);
     424           0 :         if (!p)
     425           0 :                 goto out;
     426             : 
     427             :         /*
     428             :          * Protect against sighand release/switch in exit/exec and process/
     429             :          * thread timer list entry concurrent read/writes.
     430             :          */
     431           0 :         sighand = lock_task_sighand(p, &flags);
     432           0 :         if (unlikely(sighand == NULL)) {
     433             :                 /*
     434             :                  * This raced with the reaping of the task. The exit cleanup
     435             :                  * should have removed this timer from the timer queue.
     436             :                  */
     437           0 :                 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
     438             :         } else {
     439           0 :                 if (timer->it.cpu.firing)
     440             :                         ret = TIMER_RETRY;
     441             :                 else
     442           0 :                         cpu_timer_dequeue(ctmr);
     443             : 
     444           0 :                 unlock_task_sighand(p, &flags);
     445             :         }
     446             : 
     447           0 : out:
     448           0 :         rcu_read_unlock();
     449           0 :         if (!ret)
     450           0 :                 put_pid(ctmr->pid);
     451             : 
     452           0 :         return ret;
     453             : }
     454             : 
     455        6312 : static void cleanup_timerqueue(struct timerqueue_head *head)
     456             : {
     457        6312 :         struct timerqueue_node *node;
     458        6312 :         struct cpu_timer *ctmr;
     459             : 
     460        6312 :         while ((node = timerqueue_getnext(head))) {
     461           0 :                 timerqueue_del(head, node);
     462           0 :                 ctmr = container_of(node, struct cpu_timer, node);
     463           0 :                 ctmr->head = NULL;
     464             :         }
     465        6312 : }
     466             : 
     467             : /*
     468             :  * Clean out CPU timers which are still armed when a thread exits. The
     469             :  * timers are only removed from the list. No other updates are done. The
     470             :  * corresponding posix timers are still accessible, but cannot be rearmed.
     471             :  *
     472             :  * This must be called with the siglock held.
     473             :  */
     474        2104 : static void cleanup_timers(struct posix_cputimers *pct)
     475             : {
     476        2104 :         cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
     477        2104 :         cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
     478        2104 :         cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
     479        2104 : }
     480             : 
     481             : /*
     482             :  * These are both called with the siglock held, when the current thread
     483             :  * is being reaped.  When the final (leader) thread in the group is reaped,
     484             :  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
     485             :  */
     486        1053 : void posix_cpu_timers_exit(struct task_struct *tsk)
     487             : {
     488        1053 :         cleanup_timers(&tsk->posix_cputimers);
     489        1053 : }
     490        1051 : void posix_cpu_timers_exit_group(struct task_struct *tsk)
     491             : {
     492        1051 :         cleanup_timers(&tsk->signal->posix_cputimers);
     493        1051 : }
     494             : 
     495             : /*
     496             :  * Insert the timer on the appropriate list before any timers that
     497             :  * expire later.  This must be called with the sighand lock held.
     498             :  */
     499           0 : static void arm_timer(struct k_itimer *timer, struct task_struct *p)
     500             : {
     501           0 :         int clkidx = CPUCLOCK_WHICH(timer->it_clock);
     502           0 :         struct cpu_timer *ctmr = &timer->it.cpu;
     503           0 :         u64 newexp = cpu_timer_getexpires(ctmr);
     504           0 :         struct posix_cputimer_base *base;
     505             : 
     506           0 :         if (CPUCLOCK_PERTHREAD(timer->it_clock))
     507           0 :                 base = p->posix_cputimers.bases + clkidx;
     508             :         else
     509           0 :                 base = p->signal->posix_cputimers.bases + clkidx;
     510             : 
     511           0 :         if (!cpu_timer_enqueue(&base->tqhead, ctmr))
     512             :                 return;
     513             : 
     514             :         /*
     515             :          * We are the new earliest-expiring POSIX 1.b timer, hence
     516             :          * need to update expiration cache. Take into account that
     517             :          * for process timers we share expiration cache with itimers
     518             :          * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
     519             :          */
     520           0 :         if (newexp < base->nextevt)
     521           0 :                 base->nextevt = newexp;
     522             : 
     523           0 :         if (CPUCLOCK_PERTHREAD(timer->it_clock))
     524           0 :                 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
     525             :         else
     526           0 :                 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
     527             : }
     528             : 
     529             : /*
     530             :  * The timer is locked, fire it and arrange for its reload.
     531             :  */
     532           0 : static void cpu_timer_fire(struct k_itimer *timer)
     533             : {
     534           0 :         struct cpu_timer *ctmr = &timer->it.cpu;
     535             : 
     536           0 :         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
     537             :                 /*
     538             :                  * User don't want any signal.
     539             :                  */
     540           0 :                 cpu_timer_setexpires(ctmr, 0);
     541           0 :         } else if (unlikely(timer->sigq == NULL)) {
     542             :                 /*
     543             :                  * This a special case for clock_nanosleep,
     544             :                  * not a normal timer from sys_timer_create.
     545             :                  */
     546           0 :                 wake_up_process(timer->it_process);
     547           0 :                 cpu_timer_setexpires(ctmr, 0);
     548           0 :         } else if (!timer->it_interval) {
     549             :                 /*
     550             :                  * One-shot timer.  Clear it as soon as it's fired.
     551             :                  */
     552           0 :                 posix_timer_event(timer, 0);
     553           0 :                 cpu_timer_setexpires(ctmr, 0);
     554           0 :         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
     555             :                 /*
     556             :                  * The signal did not get queued because the signal
     557             :                  * was ignored, so we won't get any callback to
     558             :                  * reload the timer.  But we need to keep it
     559             :                  * ticking in case the signal is deliverable next time.
     560             :                  */
     561           0 :                 posix_cpu_timer_rearm(timer);
     562           0 :                 ++timer->it_requeue_pending;
     563             :         }
     564           0 : }
     565             : 
     566             : /*
     567             :  * Guts of sys_timer_settime for CPU timers.
     568             :  * This is called with the timer locked and interrupts disabled.
     569             :  * If we return TIMER_RETRY, it's necessary to release the timer's lock
     570             :  * and try again.  (This happens when the timer is in the middle of firing.)
     571             :  */
     572           0 : static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
     573             :                                struct itimerspec64 *new, struct itimerspec64 *old)
     574             : {
     575           0 :         clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
     576           0 :         u64 old_expires, new_expires, old_incr, val;
     577           0 :         struct cpu_timer *ctmr = &timer->it.cpu;
     578           0 :         struct sighand_struct *sighand;
     579           0 :         struct task_struct *p;
     580           0 :         unsigned long flags;
     581           0 :         int ret = 0;
     582             : 
     583           0 :         rcu_read_lock();
     584           0 :         p = cpu_timer_task_rcu(timer);
     585           0 :         if (!p) {
     586             :                 /*
     587             :                  * If p has just been reaped, we can no
     588             :                  * longer get any information about it at all.
     589             :                  */
     590           0 :                 rcu_read_unlock();
     591           0 :                 return -ESRCH;
     592             :         }
     593             : 
     594             :         /*
     595             :          * Use the to_ktime conversion because that clamps the maximum
     596             :          * value to KTIME_MAX and avoid multiplication overflows.
     597             :          */
     598           0 :         new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
     599             : 
     600             :         /*
     601             :          * Protect against sighand release/switch in exit/exec and p->cpu_timers
     602             :          * and p->signal->cpu_timers read/write in arm_timer()
     603             :          */
     604           0 :         sighand = lock_task_sighand(p, &flags);
     605             :         /*
     606             :          * If p has just been reaped, we can no
     607             :          * longer get any information about it at all.
     608             :          */
     609           0 :         if (unlikely(sighand == NULL)) {
     610           0 :                 rcu_read_unlock();
     611           0 :                 return -ESRCH;
     612             :         }
     613             : 
     614             :         /*
     615             :          * Disarm any old timer after extracting its expiry time.
     616             :          */
     617           0 :         old_incr = timer->it_interval;
     618           0 :         old_expires = cpu_timer_getexpires(ctmr);
     619             : 
     620           0 :         if (unlikely(timer->it.cpu.firing)) {
     621           0 :                 timer->it.cpu.firing = -1;
     622           0 :                 ret = TIMER_RETRY;
     623             :         } else {
     624           0 :                 cpu_timer_dequeue(ctmr);
     625             :         }
     626             : 
     627             :         /*
     628             :          * We need to sample the current value to convert the new
     629             :          * value from to relative and absolute, and to convert the
     630             :          * old value from absolute to relative.  To set a process
     631             :          * timer, we need a sample to balance the thread expiry
     632             :          * times (in arm_timer).  With an absolute time, we must
     633             :          * check if it's already passed.  In short, we need a sample.
     634             :          */
     635           0 :         if (CPUCLOCK_PERTHREAD(timer->it_clock))
     636           0 :                 val = cpu_clock_sample(clkid, p);
     637             :         else
     638           0 :                 val = cpu_clock_sample_group(clkid, p, true);
     639             : 
     640           0 :         if (old) {
     641           0 :                 if (old_expires == 0) {
     642           0 :                         old->it_value.tv_sec = 0;
     643           0 :                         old->it_value.tv_nsec = 0;
     644             :                 } else {
     645             :                         /*
     646             :                          * Update the timer in case it has overrun already.
     647             :                          * If it has, we'll report it as having overrun and
     648             :                          * with the next reloaded timer already ticking,
     649             :                          * though we are swallowing that pending
     650             :                          * notification here to install the new setting.
     651             :                          */
     652           0 :                         u64 exp = bump_cpu_timer(timer, val);
     653             : 
     654           0 :                         if (val < exp) {
     655           0 :                                 old_expires = exp - val;
     656           0 :                                 old->it_value = ns_to_timespec64(old_expires);
     657             :                         } else {
     658           0 :                                 old->it_value.tv_nsec = 1;
     659           0 :                                 old->it_value.tv_sec = 0;
     660             :                         }
     661             :                 }
     662             :         }
     663             : 
     664           0 :         if (unlikely(ret)) {
     665             :                 /*
     666             :                  * We are colliding with the timer actually firing.
     667             :                  * Punt after filling in the timer's old value, and
     668             :                  * disable this firing since we are already reporting
     669             :                  * it as an overrun (thanks to bump_cpu_timer above).
     670             :                  */
     671           0 :                 unlock_task_sighand(p, &flags);
     672           0 :                 goto out;
     673             :         }
     674             : 
     675           0 :         if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
     676           0 :                 new_expires += val;
     677             :         }
     678             : 
     679             :         /*
     680             :          * Install the new expiry time (or zero).
     681             :          * For a timer with no notification action, we don't actually
     682             :          * arm the timer (we'll just fake it for timer_gettime).
     683             :          */
     684           0 :         cpu_timer_setexpires(ctmr, new_expires);
     685           0 :         if (new_expires != 0 && val < new_expires) {
     686           0 :                 arm_timer(timer, p);
     687             :         }
     688             : 
     689           0 :         unlock_task_sighand(p, &flags);
     690             :         /*
     691             :          * Install the new reload setting, and
     692             :          * set up the signal and overrun bookkeeping.
     693             :          */
     694           0 :         timer->it_interval = timespec64_to_ktime(new->it_interval);
     695             : 
     696             :         /*
     697             :          * This acts as a modification timestamp for the timer,
     698             :          * so any automatic reload attempt will punt on seeing
     699             :          * that we have reset the timer manually.
     700             :          */
     701           0 :         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
     702             :                 ~REQUEUE_PENDING;
     703           0 :         timer->it_overrun_last = 0;
     704           0 :         timer->it_overrun = -1;
     705             : 
     706           0 :         if (new_expires != 0 && !(val < new_expires)) {
     707             :                 /*
     708             :                  * The designated time already passed, so we notify
     709             :                  * immediately, even if the thread never runs to
     710             :                  * accumulate more time on this clock.
     711             :                  */
     712           0 :                 cpu_timer_fire(timer);
     713             :         }
     714             : 
     715             :         ret = 0;
     716           0 :  out:
     717           0 :         rcu_read_unlock();
     718           0 :         if (old)
     719           0 :                 old->it_interval = ns_to_timespec64(old_incr);
     720             : 
     721             :         return ret;
     722             : }
     723             : 
     724           0 : static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
     725             : {
     726           0 :         clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
     727           0 :         struct cpu_timer *ctmr = &timer->it.cpu;
     728           0 :         u64 now, expires = cpu_timer_getexpires(ctmr);
     729           0 :         struct task_struct *p;
     730             : 
     731           0 :         rcu_read_lock();
     732           0 :         p = cpu_timer_task_rcu(timer);
     733           0 :         if (!p)
     734           0 :                 goto out;
     735             : 
     736             :         /*
     737             :          * Easy part: convert the reload time.
     738             :          */
     739           0 :         itp->it_interval = ktime_to_timespec64(timer->it_interval);
     740             : 
     741           0 :         if (!expires)
     742           0 :                 goto out;
     743             : 
     744             :         /*
     745             :          * Sample the clock to take the difference with the expiry time.
     746             :          */
     747           0 :         if (CPUCLOCK_PERTHREAD(timer->it_clock))
     748           0 :                 now = cpu_clock_sample(clkid, p);
     749             :         else
     750           0 :                 now = cpu_clock_sample_group(clkid, p, false);
     751             : 
     752           0 :         if (now < expires) {
     753           0 :                 itp->it_value = ns_to_timespec64(expires - now);
     754             :         } else {
     755             :                 /*
     756             :                  * The timer should have expired already, but the firing
     757             :                  * hasn't taken place yet.  Say it's just about to expire.
     758             :                  */
     759           0 :                 itp->it_value.tv_nsec = 1;
     760           0 :                 itp->it_value.tv_sec = 0;
     761             :         }
     762           0 : out:
     763           0 :         rcu_read_unlock();
     764           0 : }
     765             : 
     766             : #define MAX_COLLECTED   20
     767             : 
     768           0 : static u64 collect_timerqueue(struct timerqueue_head *head,
     769             :                               struct list_head *firing, u64 now)
     770             : {
     771           0 :         struct timerqueue_node *next;
     772           0 :         int i = 0;
     773             : 
     774           0 :         while ((next = timerqueue_getnext(head))) {
     775           0 :                 struct cpu_timer *ctmr;
     776           0 :                 u64 expires;
     777             : 
     778           0 :                 ctmr = container_of(next, struct cpu_timer, node);
     779           0 :                 expires = cpu_timer_getexpires(ctmr);
     780             :                 /* Limit the number of timers to expire at once */
     781           0 :                 if (++i == MAX_COLLECTED || now < expires)
     782           0 :                         return expires;
     783             : 
     784           0 :                 ctmr->firing = 1;
     785           0 :                 cpu_timer_dequeue(ctmr);
     786           0 :                 list_add_tail(&ctmr->elist, firing);
     787             :         }
     788             : 
     789             :         return U64_MAX;
     790             : }
     791             : 
     792           0 : static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
     793             :                                     struct list_head *firing)
     794             : {
     795           0 :         struct posix_cputimer_base *base = pct->bases;
     796           0 :         int i;
     797             : 
     798           0 :         for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
     799           0 :                 base->nextevt = collect_timerqueue(&base->tqhead, firing,
     800           0 :                                                     samples[i]);
     801             :         }
     802           0 : }
     803             : 
     804           0 : static inline void check_dl_overrun(struct task_struct *tsk)
     805             : {
     806           0 :         if (tsk->dl.dl_overrun) {
     807           0 :                 tsk->dl.dl_overrun = 0;
     808           0 :                 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
     809             :         }
     810           0 : }
     811             : 
     812           0 : static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
     813             : {
     814           0 :         if (time < limit)
     815             :                 return false;
     816             : 
     817           0 :         if (print_fatal_signals) {
     818           0 :                 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
     819             :                         rt ? "RT" : "CPU", hard ? "hard" : "soft",
     820             :                         current->comm, task_pid_nr(current));
     821             :         }
     822           0 :         __group_send_sig_info(signo, SEND_SIG_PRIV, current);
     823           0 :         return true;
     824             : }
     825             : 
     826             : /*
     827             :  * Check for any per-thread CPU timers that have fired and move them off
     828             :  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
     829             :  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
     830             :  */
     831           0 : static void check_thread_timers(struct task_struct *tsk,
     832             :                                 struct list_head *firing)
     833             : {
     834           0 :         struct posix_cputimers *pct = &tsk->posix_cputimers;
     835           0 :         u64 samples[CPUCLOCK_MAX];
     836           0 :         unsigned long soft;
     837             : 
     838           0 :         if (dl_task(tsk))
     839           0 :                 check_dl_overrun(tsk);
     840             : 
     841           0 :         if (expiry_cache_is_inactive(pct))
     842           0 :                 return;
     843             : 
     844           0 :         task_sample_cputime(tsk, samples);
     845           0 :         collect_posix_cputimers(pct, samples, firing);
     846             : 
     847             :         /*
     848             :          * Check for the special case thread timers.
     849             :          */
     850           0 :         soft = task_rlimit(tsk, RLIMIT_RTTIME);
     851           0 :         if (soft != RLIM_INFINITY) {
     852             :                 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
     853           0 :                 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
     854           0 :                 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
     855             : 
     856             :                 /* At the hard limit, send SIGKILL. No further action. */
     857           0 :                 if (hard != RLIM_INFINITY &&
     858           0 :                     check_rlimit(rttime, hard, SIGKILL, true, true))
     859             :                         return;
     860             : 
     861             :                 /* At the soft limit, send a SIGXCPU every second */
     862           0 :                 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
     863           0 :                         soft += USEC_PER_SEC;
     864           0 :                         tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
     865             :                 }
     866             :         }
     867             : 
     868           0 :         if (expiry_cache_is_inactive(pct))
     869           0 :                 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
     870             : }
     871             : 
     872           0 : static inline void stop_process_timers(struct signal_struct *sig)
     873             : {
     874           0 :         struct posix_cputimers *pct = &sig->posix_cputimers;
     875             : 
     876             :         /* Turn off the active flag. This is done without locking. */
     877           0 :         WRITE_ONCE(pct->timers_active, false);
     878           0 :         tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
     879           0 : }
     880             : 
     881           0 : static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
     882             :                              u64 *expires, u64 cur_time, int signo)
     883             : {
     884           0 :         if (!it->expires)
     885             :                 return;
     886             : 
     887           0 :         if (cur_time >= it->expires) {
     888           0 :                 if (it->incr)
     889           0 :                         it->expires += it->incr;
     890             :                 else
     891           0 :                         it->expires = 0;
     892             : 
     893           0 :                 trace_itimer_expire(signo == SIGPROF ?
     894             :                                     ITIMER_PROF : ITIMER_VIRTUAL,
     895             :                                     task_tgid(tsk), cur_time);
     896           0 :                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
     897             :         }
     898             : 
     899           0 :         if (it->expires && it->expires < *expires)
     900           0 :                 *expires = it->expires;
     901             : }
     902             : 
     903             : /*
     904             :  * Check for any per-thread CPU timers that have fired and move them
     905             :  * off the tsk->*_timers list onto the firing list.  Per-thread timers
     906             :  * have already been taken off.
     907             :  */
     908           0 : static void check_process_timers(struct task_struct *tsk,
     909             :                                  struct list_head *firing)
     910             : {
     911           0 :         struct signal_struct *const sig = tsk->signal;
     912           0 :         struct posix_cputimers *pct = &sig->posix_cputimers;
     913           0 :         u64 samples[CPUCLOCK_MAX];
     914           0 :         unsigned long soft;
     915             : 
     916             :         /*
     917             :          * If there are no active process wide timers (POSIX 1.b, itimers,
     918             :          * RLIMIT_CPU) nothing to check. Also skip the process wide timer
     919             :          * processing when there is already another task handling them.
     920             :          */
     921           0 :         if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
     922           0 :                 return;
     923             : 
     924             :         /*
     925             :          * Signify that a thread is checking for process timers.
     926             :          * Write access to this field is protected by the sighand lock.
     927             :          */
     928           0 :         pct->expiry_active = true;
     929             : 
     930             :         /*
     931             :          * Collect the current process totals. Group accounting is active
     932             :          * so the sample can be taken directly.
     933             :          */
     934           0 :         proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
     935           0 :         collect_posix_cputimers(pct, samples, firing);
     936             : 
     937             :         /*
     938             :          * Check for the special case process timers.
     939             :          */
     940           0 :         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
     941             :                          &pct->bases[CPUCLOCK_PROF].nextevt,
     942             :                          samples[CPUCLOCK_PROF], SIGPROF);
     943           0 :         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
     944             :                          &pct->bases[CPUCLOCK_VIRT].nextevt,
     945             :                          samples[CPUCLOCK_VIRT], SIGVTALRM);
     946             : 
     947           0 :         soft = task_rlimit(tsk, RLIMIT_CPU);
     948           0 :         if (soft != RLIM_INFINITY) {
     949             :                 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
     950           0 :                 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
     951           0 :                 u64 ptime = samples[CPUCLOCK_PROF];
     952           0 :                 u64 softns = (u64)soft * NSEC_PER_SEC;
     953           0 :                 u64 hardns = (u64)hard * NSEC_PER_SEC;
     954             : 
     955             :                 /* At the hard limit, send SIGKILL. No further action. */
     956           0 :                 if (hard != RLIM_INFINITY &&
     957           0 :                     check_rlimit(ptime, hardns, SIGKILL, false, true))
     958             :                         return;
     959             : 
     960             :                 /* At the soft limit, send a SIGXCPU every second */
     961           0 :                 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
     962           0 :                         sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
     963           0 :                         softns += NSEC_PER_SEC;
     964             :                 }
     965             : 
     966             :                 /* Update the expiry cache */
     967           0 :                 if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
     968           0 :                         pct->bases[CPUCLOCK_PROF].nextevt = softns;
     969             :         }
     970             : 
     971           0 :         if (expiry_cache_is_inactive(pct))
     972           0 :                 stop_process_timers(sig);
     973             : 
     974           0 :         pct->expiry_active = false;
     975             : }
     976             : 
     977             : /*
     978             :  * This is called from the signal code (via posixtimer_rearm)
     979             :  * when the last timer signal was delivered and we have to reload the timer.
     980             :  */
     981           0 : static void posix_cpu_timer_rearm(struct k_itimer *timer)
     982             : {
     983           0 :         clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
     984           0 :         struct task_struct *p;
     985           0 :         struct sighand_struct *sighand;
     986           0 :         unsigned long flags;
     987           0 :         u64 now;
     988             : 
     989           0 :         rcu_read_lock();
     990           0 :         p = cpu_timer_task_rcu(timer);
     991           0 :         if (!p)
     992           0 :                 goto out;
     993             : 
     994             :         /*
     995             :          * Fetch the current sample and update the timer's expiry time.
     996             :          */
     997           0 :         if (CPUCLOCK_PERTHREAD(timer->it_clock))
     998           0 :                 now = cpu_clock_sample(clkid, p);
     999             :         else
    1000           0 :                 now = cpu_clock_sample_group(clkid, p, true);
    1001             : 
    1002           0 :         bump_cpu_timer(timer, now);
    1003             : 
    1004             :         /* Protect timer list r/w in arm_timer() */
    1005           0 :         sighand = lock_task_sighand(p, &flags);
    1006           0 :         if (unlikely(sighand == NULL))
    1007           0 :                 goto out;
    1008             : 
    1009             :         /*
    1010             :          * Now re-arm for the new expiry time.
    1011             :          */
    1012           0 :         arm_timer(timer, p);
    1013           0 :         unlock_task_sighand(p, &flags);
    1014           0 : out:
    1015           0 :         rcu_read_unlock();
    1016           0 : }
    1017             : 
    1018             : /**
    1019             :  * task_cputimers_expired - Check whether posix CPU timers are expired
    1020             :  *
    1021             :  * @samples:    Array of current samples for the CPUCLOCK clocks
    1022             :  * @pct:        Pointer to a posix_cputimers container
    1023             :  *
    1024             :  * Returns true if any member of @samples is greater than the corresponding
    1025             :  * member of @pct->bases[CLK].nextevt. False otherwise
    1026             :  */
    1027             : static inline bool
    1028           0 : task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
    1029             : {
    1030           0 :         int i;
    1031             : 
    1032           0 :         for (i = 0; i < CPUCLOCK_MAX; i++) {
    1033           0 :                 if (samples[i] >= pct->bases[i].nextevt)
    1034             :                         return true;
    1035             :         }
    1036             :         return false;
    1037             : }
    1038             : 
    1039             : /**
    1040             :  * fastpath_timer_check - POSIX CPU timers fast path.
    1041             :  *
    1042             :  * @tsk:        The task (thread) being checked.
    1043             :  *
    1044             :  * Check the task and thread group timers.  If both are zero (there are no
    1045             :  * timers set) return false.  Otherwise snapshot the task and thread group
    1046             :  * timers and compare them with the corresponding expiration times.  Return
    1047             :  * true if a timer has expired, else return false.
    1048             :  */
    1049       29300 : static inline bool fastpath_timer_check(struct task_struct *tsk)
    1050             : {
    1051       29300 :         struct posix_cputimers *pct = &tsk->posix_cputimers;
    1052       29300 :         struct signal_struct *sig;
    1053             : 
    1054       29300 :         if (!expiry_cache_is_inactive(pct)) {
    1055           0 :                 u64 samples[CPUCLOCK_MAX];
    1056             : 
    1057           0 :                 task_sample_cputime(tsk, samples);
    1058           0 :                 if (task_cputimers_expired(samples, pct))
    1059           0 :                         return true;
    1060             :         }
    1061             : 
    1062       29300 :         sig = tsk->signal;
    1063       29300 :         pct = &sig->posix_cputimers;
    1064             :         /*
    1065             :          * Check if thread group timers expired when timers are active and
    1066             :          * no other thread in the group is already handling expiry for
    1067             :          * thread group cputimers. These fields are read without the
    1068             :          * sighand lock. However, this is fine because this is meant to be
    1069             :          * a fastpath heuristic to determine whether we should try to
    1070             :          * acquire the sighand lock to handle timer expiry.
    1071             :          *
    1072             :          * In the worst case scenario, if concurrently timers_active is set
    1073             :          * or expiry_active is cleared, but the current thread doesn't see
    1074             :          * the change yet, the timer checks are delayed until the next
    1075             :          * thread in the group gets a scheduler interrupt to handle the
    1076             :          * timer. This isn't an issue in practice because these types of
    1077             :          * delays with signals actually getting sent are expected.
    1078             :          */
    1079       29300 :         if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
    1080           0 :                 u64 samples[CPUCLOCK_MAX];
    1081             : 
    1082           0 :                 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
    1083             :                                            samples);
    1084             : 
    1085           0 :                 if (task_cputimers_expired(samples, pct))
    1086           0 :                         return true;
    1087             :         }
    1088             : 
    1089       29300 :         if (dl_task(tsk) && tsk->dl.dl_overrun)
    1090           0 :                 return true;
    1091             : 
    1092             :         return false;
    1093             : }
    1094             : 
    1095             : static void handle_posix_cpu_timers(struct task_struct *tsk);
    1096             : 
    1097             : #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
    1098           0 : static void posix_cpu_timers_work(struct callback_head *work)
    1099             : {
    1100           0 :         handle_posix_cpu_timers(current);
    1101           0 : }
    1102             : 
    1103             : /*
    1104             :  * Initialize posix CPU timers task work in init task. Out of line to
    1105             :  * keep the callback static and to avoid header recursion hell.
    1106             :  */
    1107           1 : void __init posix_cputimers_init_work(void)
    1108             : {
    1109           1 :         init_task_work(&current->posix_cputimers_work.work,
    1110             :                        posix_cpu_timers_work);
    1111           1 : }
    1112             : 
    1113             : /*
    1114             :  * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
    1115             :  * in hard interrupt context or in task context with interrupts
    1116             :  * disabled. Aside of that the writer/reader interaction is always in the
    1117             :  * context of the current task, which means they are strict per CPU.
    1118             :  */
    1119       29168 : static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
    1120             : {
    1121       29168 :         return tsk->posix_cputimers_work.scheduled;
    1122             : }
    1123             : 
    1124           0 : static inline void __run_posix_cpu_timers(struct task_struct *tsk)
    1125             : {
    1126           0 :         if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
    1127             :                 return;
    1128             : 
    1129             :         /* Schedule task work to actually expire the timers */
    1130           0 :         tsk->posix_cputimers_work.scheduled = true;
    1131           0 :         task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
    1132             : }
    1133             : 
    1134           0 : static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
    1135             :                                                 unsigned long start)
    1136             : {
    1137           0 :         bool ret = true;
    1138             : 
    1139             :         /*
    1140             :          * On !RT kernels interrupts are disabled while collecting expired
    1141             :          * timers, so no tick can happen and the fast path check can be
    1142             :          * reenabled without further checks.
    1143             :          */
    1144           0 :         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
    1145           0 :                 tsk->posix_cputimers_work.scheduled = false;
    1146           0 :                 return true;
    1147             :         }
    1148             : 
    1149             :         /*
    1150             :          * On RT enabled kernels ticks can happen while the expired timers
    1151             :          * are collected under sighand lock. But any tick which observes
    1152             :          * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
    1153             :          * checks. So reenabling the tick work has do be done carefully:
    1154             :          *
    1155             :          * Disable interrupts and run the fast path check if jiffies have
    1156             :          * advanced since the collecting of expired timers started. If
    1157             :          * jiffies have not advanced or the fast path check did not find
    1158             :          * newly expired timers, reenable the fast path check in the timer
    1159             :          * interrupt. If there are newly expired timers, return false and
    1160             :          * let the collection loop repeat.
    1161             :          */
    1162             :         local_irq_disable();
    1163             :         if (start != jiffies && fastpath_timer_check(tsk))
    1164             :                 ret = false;
    1165             :         else
    1166             :                 tsk->posix_cputimers_work.scheduled = false;
    1167             :         local_irq_enable();
    1168             : 
    1169             :         return ret;
    1170             : }
    1171             : #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
    1172             : static inline void __run_posix_cpu_timers(struct task_struct *tsk)
    1173             : {
    1174             :         lockdep_posixtimer_enter();
    1175             :         handle_posix_cpu_timers(tsk);
    1176             :         lockdep_posixtimer_exit();
    1177             : }
    1178             : 
    1179             : static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
    1180             : {
    1181             :         return false;
    1182             : }
    1183             : 
    1184             : static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
    1185             :                                                 unsigned long start)
    1186             : {
    1187             :         return true;
    1188             : }
    1189             : #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
    1190             : 
    1191           0 : static void handle_posix_cpu_timers(struct task_struct *tsk)
    1192             : {
    1193           0 :         struct k_itimer *timer, *next;
    1194           0 :         unsigned long flags, start;
    1195           0 :         LIST_HEAD(firing);
    1196             : 
    1197           0 :         if (!lock_task_sighand(tsk, &flags))
    1198           0 :                 return;
    1199             : 
    1200           0 :         do {
    1201             :                 /*
    1202             :                  * On RT locking sighand lock does not disable interrupts,
    1203             :                  * so this needs to be careful vs. ticks. Store the current
    1204             :                  * jiffies value.
    1205             :                  */
    1206           0 :                 start = READ_ONCE(jiffies);
    1207           0 :                 barrier();
    1208             : 
    1209             :                 /*
    1210             :                  * Here we take off tsk->signal->cpu_timers[N] and
    1211             :                  * tsk->cpu_timers[N] all the timers that are firing, and
    1212             :                  * put them on the firing list.
    1213             :                  */
    1214           0 :                 check_thread_timers(tsk, &firing);
    1215             : 
    1216           0 :                 check_process_timers(tsk, &firing);
    1217             : 
    1218             :                 /*
    1219             :                  * The above timer checks have updated the exipry cache and
    1220             :                  * because nothing can have queued or modified timers after
    1221             :                  * sighand lock was taken above it is guaranteed to be
    1222             :                  * consistent. So the next timer interrupt fastpath check
    1223             :                  * will find valid data.
    1224             :                  *
    1225             :                  * If timer expiry runs in the timer interrupt context then
    1226             :                  * the loop is not relevant as timers will be directly
    1227             :                  * expired in interrupt context. The stub function below
    1228             :                  * returns always true which allows the compiler to
    1229             :                  * optimize the loop out.
    1230             :                  *
    1231             :                  * If timer expiry is deferred to task work context then
    1232             :                  * the following rules apply:
    1233             :                  *
    1234             :                  * - On !RT kernels no tick can have happened on this CPU
    1235             :                  *   after sighand lock was acquired because interrupts are
    1236             :                  *   disabled. So reenabling task work before dropping
    1237             :                  *   sighand lock and reenabling interrupts is race free.
    1238             :                  *
    1239             :                  * - On RT kernels ticks might have happened but the tick
    1240             :                  *   work ignored posix CPU timer handling because the
    1241             :                  *   CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
    1242             :                  *   must be done very carefully including a check whether
    1243             :                  *   ticks have happened since the start of the timer
    1244             :                  *   expiry checks. posix_cpu_timers_enable_work() takes
    1245             :                  *   care of that and eventually lets the expiry checks
    1246             :                  *   run again.
    1247             :                  */
    1248           0 :         } while (!posix_cpu_timers_enable_work(tsk, start));
    1249             : 
    1250             :         /*
    1251             :          * We must release sighand lock before taking any timer's lock.
    1252             :          * There is a potential race with timer deletion here, as the
    1253             :          * siglock now protects our private firing list.  We have set
    1254             :          * the firing flag in each timer, so that a deletion attempt
    1255             :          * that gets the timer lock before we do will give it up and
    1256             :          * spin until we've taken care of that timer below.
    1257             :          */
    1258           0 :         unlock_task_sighand(tsk, &flags);
    1259             : 
    1260             :         /*
    1261             :          * Now that all the timers on our list have the firing flag,
    1262             :          * no one will touch their list entries but us.  We'll take
    1263             :          * each timer's lock before clearing its firing flag, so no
    1264             :          * timer call will interfere.
    1265             :          */
    1266           0 :         list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
    1267           0 :                 int cpu_firing;
    1268             : 
    1269             :                 /*
    1270             :                  * spin_lock() is sufficient here even independent of the
    1271             :                  * expiry context. If expiry happens in hard interrupt
    1272             :                  * context it's obvious. For task work context it's safe
    1273             :                  * because all other operations on timer::it_lock happen in
    1274             :                  * task context (syscall or exit).
    1275             :                  */
    1276           0 :                 spin_lock(&timer->it_lock);
    1277           0 :                 list_del_init(&timer->it.cpu.elist);
    1278           0 :                 cpu_firing = timer->it.cpu.firing;
    1279           0 :                 timer->it.cpu.firing = 0;
    1280             :                 /*
    1281             :                  * The firing flag is -1 if we collided with a reset
    1282             :                  * of the timer, which already reported this
    1283             :                  * almost-firing as an overrun.  So don't generate an event.
    1284             :                  */
    1285           0 :                 if (likely(cpu_firing >= 0))
    1286           0 :                         cpu_timer_fire(timer);
    1287           0 :                 spin_unlock(&timer->it_lock);
    1288             :         }
    1289             : }
    1290             : 
    1291             : /*
    1292             :  * This is called from the timer interrupt handler.  The irq handler has
    1293             :  * already updated our counts.  We need to check if any timers fire now.
    1294             :  * Interrupts are disabled.
    1295             :  */
    1296       28925 : void run_posix_cpu_timers(void)
    1297             : {
    1298       28925 :         struct task_struct *tsk = current;
    1299             : 
    1300       57924 :         lockdep_assert_irqs_disabled();
    1301             : 
    1302             :         /*
    1303             :          * If the actual expiry is deferred to task work context and the
    1304             :          * work is already scheduled there is no point to do anything here.
    1305             :          */
    1306       29168 :         if (posix_cpu_timers_work_scheduled(tsk))
    1307             :                 return;
    1308             : 
    1309             :         /*
    1310             :          * The fast path checks that there are no expired thread or thread
    1311             :          * group timers.  If that's so, just return.
    1312             :          */
    1313       29366 :         if (!fastpath_timer_check(tsk))
    1314             :                 return;
    1315             : 
    1316           0 :         __run_posix_cpu_timers(tsk);
    1317             : }
    1318             : 
    1319             : /*
    1320             :  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
    1321             :  * The tsk->sighand->siglock must be held by the caller.
    1322             :  */
    1323           0 : void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
    1324             :                            u64 *newval, u64 *oldval)
    1325             : {
    1326           0 :         u64 now, *nextevt;
    1327             : 
    1328           0 :         if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
    1329             :                 return;
    1330             : 
    1331           0 :         nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
    1332           0 :         now = cpu_clock_sample_group(clkid, tsk, true);
    1333             : 
    1334           0 :         if (oldval) {
    1335             :                 /*
    1336             :                  * We are setting itimer. The *oldval is absolute and we update
    1337             :                  * it to be relative, *newval argument is relative and we update
    1338             :                  * it to be absolute.
    1339             :                  */
    1340           0 :                 if (*oldval) {
    1341           0 :                         if (*oldval <= now) {
    1342             :                                 /* Just about to fire. */
    1343           0 :                                 *oldval = TICK_NSEC;
    1344             :                         } else {
    1345           0 :                                 *oldval -= now;
    1346             :                         }
    1347             :                 }
    1348             : 
    1349           0 :                 if (!*newval)
    1350             :                         return;
    1351           0 :                 *newval += now;
    1352             :         }
    1353             : 
    1354             :         /*
    1355             :          * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
    1356             :          * expiry cache is also used by RLIMIT_CPU!.
    1357             :          */
    1358           0 :         if (*newval < *nextevt)
    1359           0 :                 *nextevt = *newval;
    1360             : 
    1361           0 :         tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
    1362             : }
    1363             : 
    1364           0 : static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
    1365             :                             const struct timespec64 *rqtp)
    1366             : {
    1367           0 :         struct itimerspec64 it;
    1368           0 :         struct k_itimer timer;
    1369           0 :         u64 expires;
    1370           0 :         int error;
    1371             : 
    1372             :         /*
    1373             :          * Set up a temporary timer and then wait for it to go off.
    1374             :          */
    1375           0 :         memset(&timer, 0, sizeof timer);
    1376           0 :         spin_lock_init(&timer.it_lock);
    1377           0 :         timer.it_clock = which_clock;
    1378           0 :         timer.it_overrun = -1;
    1379           0 :         error = posix_cpu_timer_create(&timer);
    1380           0 :         timer.it_process = current;
    1381             : 
    1382           0 :         if (!error) {
    1383           0 :                 static struct itimerspec64 zero_it;
    1384           0 :                 struct restart_block *restart;
    1385             : 
    1386           0 :                 memset(&it, 0, sizeof(it));
    1387           0 :                 it.it_value = *rqtp;
    1388             : 
    1389           0 :                 spin_lock_irq(&timer.it_lock);
    1390           0 :                 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
    1391           0 :                 if (error) {
    1392           0 :                         spin_unlock_irq(&timer.it_lock);
    1393           0 :                         return error;
    1394             :                 }
    1395             : 
    1396           0 :                 while (!signal_pending(current)) {
    1397           0 :                         if (!cpu_timer_getexpires(&timer.it.cpu)) {
    1398             :                                 /*
    1399             :                                  * Our timer fired and was reset, below
    1400             :                                  * deletion can not fail.
    1401             :                                  */
    1402           0 :                                 posix_cpu_timer_del(&timer);
    1403           0 :                                 spin_unlock_irq(&timer.it_lock);
    1404           0 :                                 return 0;
    1405             :                         }
    1406             : 
    1407             :                         /*
    1408             :                          * Block until cpu_timer_fire (or a signal) wakes us.
    1409             :                          */
    1410           0 :                         __set_current_state(TASK_INTERRUPTIBLE);
    1411           0 :                         spin_unlock_irq(&timer.it_lock);
    1412           0 :                         schedule();
    1413           0 :                         spin_lock_irq(&timer.it_lock);
    1414             :                 }
    1415             : 
    1416             :                 /*
    1417             :                  * We were interrupted by a signal.
    1418             :                  */
    1419           0 :                 expires = cpu_timer_getexpires(&timer.it.cpu);
    1420           0 :                 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
    1421           0 :                 if (!error) {
    1422             :                         /*
    1423             :                          * Timer is now unarmed, deletion can not fail.
    1424             :                          */
    1425           0 :                         posix_cpu_timer_del(&timer);
    1426             :                 }
    1427           0 :                 spin_unlock_irq(&timer.it_lock);
    1428             : 
    1429           0 :                 while (error == TIMER_RETRY) {
    1430             :                         /*
    1431             :                          * We need to handle case when timer was or is in the
    1432             :                          * middle of firing. In other cases we already freed
    1433             :                          * resources.
    1434             :                          */
    1435           0 :                         spin_lock_irq(&timer.it_lock);
    1436           0 :                         error = posix_cpu_timer_del(&timer);
    1437           0 :                         spin_unlock_irq(&timer.it_lock);
    1438             :                 }
    1439             : 
    1440           0 :                 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
    1441             :                         /*
    1442             :                          * It actually did fire already.
    1443             :                          */
    1444             :                         return 0;
    1445             :                 }
    1446             : 
    1447           0 :                 error = -ERESTART_RESTARTBLOCK;
    1448             :                 /*
    1449             :                  * Report back to the user the time still remaining.
    1450             :                  */
    1451           0 :                 restart = &current->restart_block;
    1452           0 :                 restart->nanosleep.expires = expires;
    1453           0 :                 if (restart->nanosleep.type != TT_NONE)
    1454           0 :                         error = nanosleep_copyout(restart, &it.it_value);
    1455             :         }
    1456             : 
    1457             :         return error;
    1458             : }
    1459             : 
    1460             : static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
    1461             : 
    1462           0 : static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
    1463             :                             const struct timespec64 *rqtp)
    1464             : {
    1465           0 :         struct restart_block *restart_block = &current->restart_block;
    1466           0 :         int error;
    1467             : 
    1468             :         /*
    1469             :          * Diagnose required errors first.
    1470             :          */
    1471           0 :         if (CPUCLOCK_PERTHREAD(which_clock) &&
    1472           0 :             (CPUCLOCK_PID(which_clock) == 0 ||
    1473           0 :              CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
    1474           0 :                 return -EINVAL;
    1475             : 
    1476           0 :         error = do_cpu_nanosleep(which_clock, flags, rqtp);
    1477             : 
    1478           0 :         if (error == -ERESTART_RESTARTBLOCK) {
    1479             : 
    1480           0 :                 if (flags & TIMER_ABSTIME)
    1481             :                         return -ERESTARTNOHAND;
    1482             : 
    1483           0 :                 restart_block->fn = posix_cpu_nsleep_restart;
    1484           0 :                 restart_block->nanosleep.clockid = which_clock;
    1485             :         }
    1486             :         return error;
    1487             : }
    1488             : 
    1489           0 : static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
    1490             : {
    1491           0 :         clockid_t which_clock = restart_block->nanosleep.clockid;
    1492           0 :         struct timespec64 t;
    1493             : 
    1494           0 :         t = ns_to_timespec64(restart_block->nanosleep.expires);
    1495             : 
    1496           0 :         return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
    1497             : }
    1498             : 
    1499             : #define PROCESS_CLOCK   make_process_cpuclock(0, CPUCLOCK_SCHED)
    1500             : #define THREAD_CLOCK    make_thread_cpuclock(0, CPUCLOCK_SCHED)
    1501             : 
    1502           0 : static int process_cpu_clock_getres(const clockid_t which_clock,
    1503             :                                     struct timespec64 *tp)
    1504             : {
    1505           0 :         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
    1506             : }
    1507           0 : static int process_cpu_clock_get(const clockid_t which_clock,
    1508             :                                  struct timespec64 *tp)
    1509             : {
    1510           0 :         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
    1511             : }
    1512           0 : static int process_cpu_timer_create(struct k_itimer *timer)
    1513             : {
    1514           0 :         timer->it_clock = PROCESS_CLOCK;
    1515           0 :         return posix_cpu_timer_create(timer);
    1516             : }
    1517           0 : static int process_cpu_nsleep(const clockid_t which_clock, int flags,
    1518             :                               const struct timespec64 *rqtp)
    1519             : {
    1520           0 :         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
    1521             : }
    1522           0 : static int thread_cpu_clock_getres(const clockid_t which_clock,
    1523             :                                    struct timespec64 *tp)
    1524             : {
    1525           0 :         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
    1526             : }
    1527           0 : static int thread_cpu_clock_get(const clockid_t which_clock,
    1528             :                                 struct timespec64 *tp)
    1529             : {
    1530           0 :         return posix_cpu_clock_get(THREAD_CLOCK, tp);
    1531             : }
    1532           0 : static int thread_cpu_timer_create(struct k_itimer *timer)
    1533             : {
    1534           0 :         timer->it_clock = THREAD_CLOCK;
    1535           0 :         return posix_cpu_timer_create(timer);
    1536             : }
    1537             : 
    1538             : const struct k_clock clock_posix_cpu = {
    1539             :         .clock_getres           = posix_cpu_clock_getres,
    1540             :         .clock_set              = posix_cpu_clock_set,
    1541             :         .clock_get_timespec     = posix_cpu_clock_get,
    1542             :         .timer_create           = posix_cpu_timer_create,
    1543             :         .nsleep                 = posix_cpu_nsleep,
    1544             :         .timer_set              = posix_cpu_timer_set,
    1545             :         .timer_del              = posix_cpu_timer_del,
    1546             :         .timer_get              = posix_cpu_timer_get,
    1547             :         .timer_rearm            = posix_cpu_timer_rearm,
    1548             : };
    1549             : 
    1550             : const struct k_clock clock_process = {
    1551             :         .clock_getres           = process_cpu_clock_getres,
    1552             :         .clock_get_timespec     = process_cpu_clock_get,
    1553             :         .timer_create           = process_cpu_timer_create,
    1554             :         .nsleep                 = process_cpu_nsleep,
    1555             : };
    1556             : 
    1557             : const struct k_clock clock_thread = {
    1558             :         .clock_getres           = thread_cpu_clock_getres,
    1559             :         .clock_get_timespec     = thread_cpu_clock_get,
    1560             :         .timer_create           = thread_cpu_timer_create,
    1561             : };

Generated by: LCOV version 1.14