LCOV - code coverage report
Current view: top level - kernel/time - time.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 87 225 38.7 %
Date: 2021-04-22 12:43:58 Functions: 15 49 30.6 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  *  Copyright (C) 1991, 1992  Linus Torvalds
       4             :  *
       5             :  *  This file contains the interface functions for the various time related
       6             :  *  system calls: time, stime, gettimeofday, settimeofday, adjtime
       7             :  *
       8             :  * Modification history:
       9             :  *
      10             :  * 1993-09-02    Philip Gladstone
      11             :  *      Created file with time related functions from sched/core.c and adjtimex()
      12             :  * 1993-10-08    Torsten Duwe
      13             :  *      adjtime interface update and CMOS clock write code
      14             :  * 1995-08-13    Torsten Duwe
      15             :  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
      16             :  * 1999-01-16    Ulrich Windl
      17             :  *      Introduced error checking for many cases in adjtimex().
      18             :  *      Updated NTP code according to technical memorandum Jan '96
      19             :  *      "A Kernel Model for Precision Timekeeping" by Dave Mills
      20             :  *      Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
      21             :  *      (Even though the technical memorandum forbids it)
      22             :  * 2004-07-14    Christoph Lameter
      23             :  *      Added getnstimeofday to allow the posix timer functions to return
      24             :  *      with nanosecond accuracy
      25             :  */
      26             : 
      27             : #include <linux/export.h>
      28             : #include <linux/kernel.h>
      29             : #include <linux/timex.h>
      30             : #include <linux/capability.h>
      31             : #include <linux/timekeeper_internal.h>
      32             : #include <linux/errno.h>
      33             : #include <linux/syscalls.h>
      34             : #include <linux/security.h>
      35             : #include <linux/fs.h>
      36             : #include <linux/math64.h>
      37             : #include <linux/ptrace.h>
      38             : 
      39             : #include <linux/uaccess.h>
      40             : #include <linux/compat.h>
      41             : #include <asm/unistd.h>
      42             : 
      43             : #include <generated/timeconst.h>
      44             : #include "timekeeping.h"
      45             : 
      46             : /*
      47             :  * The timezone where the local system is located.  Used as a default by some
      48             :  * programs who obtain this value by using gettimeofday.
      49             :  */
      50             : struct timezone sys_tz;
      51             : 
      52             : EXPORT_SYMBOL(sys_tz);
      53             : 
      54             : #ifdef __ARCH_WANT_SYS_TIME
      55             : 
      56             : /*
      57             :  * sys_time() can be implemented in user-level using
      58             :  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
      59             :  * why not move it into the appropriate arch directory (for those
      60             :  * architectures that need it).
      61             :  */
      62           0 : SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
      63             : {
      64           0 :         __kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
      65             : 
      66           0 :         if (tloc) {
      67           0 :                 if (put_user(i,tloc))
      68           0 :                         return -EFAULT;
      69             :         }
      70             :         force_successful_syscall_return();
      71             :         return i;
      72             : }
      73             : 
      74             : /*
      75             :  * sys_stime() can be implemented in user-level using
      76             :  * sys_settimeofday().  Is this for backwards compatibility?  If so,
      77             :  * why not move it into the appropriate arch directory (for those
      78             :  * architectures that need it).
      79             :  */
      80             : 
      81           0 : SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
      82             : {
      83           0 :         struct timespec64 tv;
      84           0 :         int err;
      85             : 
      86           0 :         if (get_user(tv.tv_sec, tptr))
      87             :                 return -EFAULT;
      88             : 
      89           0 :         tv.tv_nsec = 0;
      90             : 
      91           0 :         err = security_settime64(&tv, NULL);
      92           0 :         if (err)
      93           0 :                 return err;
      94             : 
      95           0 :         do_settimeofday64(&tv);
      96           0 :         return 0;
      97             : }
      98             : 
      99             : #endif /* __ARCH_WANT_SYS_TIME */
     100             : 
     101             : #ifdef CONFIG_COMPAT_32BIT_TIME
     102             : #ifdef __ARCH_WANT_SYS_TIME32
     103             : 
     104             : /* old_time32_t is a 32 bit "long" and needs to get converted. */
     105             : SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
     106             : {
     107             :         old_time32_t i;
     108             : 
     109             :         i = (old_time32_t)ktime_get_real_seconds();
     110             : 
     111             :         if (tloc) {
     112             :                 if (put_user(i,tloc))
     113             :                         return -EFAULT;
     114             :         }
     115             :         force_successful_syscall_return();
     116             :         return i;
     117             : }
     118             : 
     119             : SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
     120             : {
     121             :         struct timespec64 tv;
     122             :         int err;
     123             : 
     124             :         if (get_user(tv.tv_sec, tptr))
     125             :                 return -EFAULT;
     126             : 
     127             :         tv.tv_nsec = 0;
     128             : 
     129             :         err = security_settime64(&tv, NULL);
     130             :         if (err)
     131             :                 return err;
     132             : 
     133             :         do_settimeofday64(&tv);
     134             :         return 0;
     135             : }
     136             : 
     137             : #endif /* __ARCH_WANT_SYS_TIME32 */
     138             : #endif
     139             : 
     140           0 : SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
     141             :                 struct timezone __user *, tz)
     142             : {
     143           0 :         if (likely(tv != NULL)) {
     144           0 :                 struct timespec64 ts;
     145             : 
     146           0 :                 ktime_get_real_ts64(&ts);
     147           0 :                 if (put_user(ts.tv_sec, &tv->tv_sec) ||
     148           0 :                     put_user(ts.tv_nsec / 1000, &tv->tv_usec))
     149           0 :                         return -EFAULT;
     150             :         }
     151           0 :         if (unlikely(tz != NULL)) {
     152           0 :                 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
     153           0 :                         return -EFAULT;
     154             :         }
     155             :         return 0;
     156             : }
     157             : 
     158             : /*
     159             :  * In case for some reason the CMOS clock has not already been running
     160             :  * in UTC, but in some local time: The first time we set the timezone,
     161             :  * we will warp the clock so that it is ticking UTC time instead of
     162             :  * local time. Presumably, if someone is setting the timezone then we
     163             :  * are running in an environment where the programs understand about
     164             :  * timezones. This should be done at boot time in the /etc/rc script,
     165             :  * as soon as possible, so that the clock can be set right. Otherwise,
     166             :  * various programs will get confused when the clock gets warped.
     167             :  */
     168             : 
     169           1 : int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
     170             : {
     171           1 :         static int firsttime = 1;
     172           1 :         int error = 0;
     173             : 
     174           1 :         if (tv && !timespec64_valid_settod(tv))
     175             :                 return -EINVAL;
     176             : 
     177           1 :         error = security_settime64(tv, tz);
     178           1 :         if (error)
     179             :                 return error;
     180             : 
     181           1 :         if (tz) {
     182             :                 /* Verify we're within the +-15 hrs range */
     183           1 :                 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
     184             :                         return -EINVAL;
     185             : 
     186           1 :                 sys_tz = *tz;
     187           1 :                 update_vsyscall_tz();
     188           1 :                 if (firsttime) {
     189           1 :                         firsttime = 0;
     190           1 :                         if (!tv)
     191           1 :                                 timekeeping_warp_clock();
     192             :                 }
     193             :         }
     194           1 :         if (tv)
     195           0 :                 return do_settimeofday64(tv);
     196             :         return 0;
     197             : }
     198             : 
     199           2 : SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
     200             :                 struct timezone __user *, tz)
     201             : {
     202           1 :         struct timespec64 new_ts;
     203           1 :         struct timezone new_tz;
     204             : 
     205           1 :         if (tv) {
     206           0 :                 if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
     207           0 :                     get_user(new_ts.tv_nsec, &tv->tv_usec))
     208           0 :                         return -EFAULT;
     209             : 
     210           0 :                 if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
     211             :                         return -EINVAL;
     212             : 
     213           0 :                 new_ts.tv_nsec *= NSEC_PER_USEC;
     214             :         }
     215           1 :         if (tz) {
     216           1 :                 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
     217             :                         return -EFAULT;
     218             :         }
     219             : 
     220           2 :         return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
     221             : }
     222             : 
     223             : #ifdef CONFIG_COMPAT
     224           0 : COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
     225             :                        struct timezone __user *, tz)
     226             : {
     227           0 :         if (tv) {
     228           0 :                 struct timespec64 ts;
     229             : 
     230           0 :                 ktime_get_real_ts64(&ts);
     231           0 :                 if (put_user(ts.tv_sec, &tv->tv_sec) ||
     232           0 :                     put_user(ts.tv_nsec / 1000, &tv->tv_usec))
     233           0 :                         return -EFAULT;
     234             :         }
     235           0 :         if (tz) {
     236           0 :                 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
     237           0 :                         return -EFAULT;
     238             :         }
     239             : 
     240             :         return 0;
     241             : }
     242             : 
     243           0 : COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
     244             :                        struct timezone __user *, tz)
     245             : {
     246           0 :         struct timespec64 new_ts;
     247           0 :         struct timezone new_tz;
     248             : 
     249           0 :         if (tv) {
     250           0 :                 if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
     251           0 :                     get_user(new_ts.tv_nsec, &tv->tv_usec))
     252           0 :                         return -EFAULT;
     253             : 
     254           0 :                 if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
     255             :                         return -EINVAL;
     256             : 
     257           0 :                 new_ts.tv_nsec *= NSEC_PER_USEC;
     258             :         }
     259           0 :         if (tz) {
     260           0 :                 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
     261             :                         return -EFAULT;
     262             :         }
     263             : 
     264           0 :         return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
     265             : }
     266             : #endif
     267             : 
     268             : #ifdef CONFIG_64BIT
     269           0 : SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
     270             : {
     271           0 :         struct __kernel_timex txc;              /* Local copy of parameter */
     272           0 :         int ret;
     273             : 
     274             :         /* Copy the user data space into the kernel copy
     275             :          * structure. But bear in mind that the structures
     276             :          * may change
     277             :          */
     278           0 :         if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
     279             :                 return -EFAULT;
     280           0 :         ret = do_adjtimex(&txc);
     281           0 :         return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
     282             : }
     283             : #endif
     284             : 
     285             : #ifdef CONFIG_COMPAT_32BIT_TIME
     286             : int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
     287             : {
     288             :         struct old_timex32 tx32;
     289             : 
     290             :         memset(txc, 0, sizeof(struct __kernel_timex));
     291             :         if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
     292             :                 return -EFAULT;
     293             : 
     294             :         txc->modes = tx32.modes;
     295             :         txc->offset = tx32.offset;
     296             :         txc->freq = tx32.freq;
     297             :         txc->maxerror = tx32.maxerror;
     298             :         txc->esterror = tx32.esterror;
     299             :         txc->status = tx32.status;
     300             :         txc->constant = tx32.constant;
     301             :         txc->precision = tx32.precision;
     302             :         txc->tolerance = tx32.tolerance;
     303             :         txc->time.tv_sec = tx32.time.tv_sec;
     304             :         txc->time.tv_usec = tx32.time.tv_usec;
     305             :         txc->tick = tx32.tick;
     306             :         txc->ppsfreq = tx32.ppsfreq;
     307             :         txc->jitter = tx32.jitter;
     308             :         txc->shift = tx32.shift;
     309             :         txc->stabil = tx32.stabil;
     310             :         txc->jitcnt = tx32.jitcnt;
     311             :         txc->calcnt = tx32.calcnt;
     312             :         txc->errcnt = tx32.errcnt;
     313             :         txc->stbcnt = tx32.stbcnt;
     314             : 
     315             :         return 0;
     316             : }
     317             : 
     318             : int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
     319             : {
     320             :         struct old_timex32 tx32;
     321             : 
     322             :         memset(&tx32, 0, sizeof(struct old_timex32));
     323             :         tx32.modes = txc->modes;
     324             :         tx32.offset = txc->offset;
     325             :         tx32.freq = txc->freq;
     326             :         tx32.maxerror = txc->maxerror;
     327             :         tx32.esterror = txc->esterror;
     328             :         tx32.status = txc->status;
     329             :         tx32.constant = txc->constant;
     330             :         tx32.precision = txc->precision;
     331             :         tx32.tolerance = txc->tolerance;
     332             :         tx32.time.tv_sec = txc->time.tv_sec;
     333             :         tx32.time.tv_usec = txc->time.tv_usec;
     334             :         tx32.tick = txc->tick;
     335             :         tx32.ppsfreq = txc->ppsfreq;
     336             :         tx32.jitter = txc->jitter;
     337             :         tx32.shift = txc->shift;
     338             :         tx32.stabil = txc->stabil;
     339             :         tx32.jitcnt = txc->jitcnt;
     340             :         tx32.calcnt = txc->calcnt;
     341             :         tx32.errcnt = txc->errcnt;
     342             :         tx32.stbcnt = txc->stbcnt;
     343             :         tx32.tai = txc->tai;
     344             :         if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
     345             :                 return -EFAULT;
     346             :         return 0;
     347             : }
     348             : 
     349             : SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
     350             : {
     351             :         struct __kernel_timex txc;
     352             :         int err, ret;
     353             : 
     354             :         err = get_old_timex32(&txc, utp);
     355             :         if (err)
     356             :                 return err;
     357             : 
     358             :         ret = do_adjtimex(&txc);
     359             : 
     360             :         err = put_old_timex32(utp, &txc);
     361             :         if (err)
     362             :                 return err;
     363             : 
     364             :         return ret;
     365             : }
     366             : #endif
     367             : 
     368             : /*
     369             :  * Convert jiffies to milliseconds and back.
     370             :  *
     371             :  * Avoid unnecessary multiplications/divisions in the
     372             :  * two most common HZ cases:
     373             :  */
     374           0 : unsigned int jiffies_to_msecs(const unsigned long j)
     375             : {
     376             : #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
     377           0 :         return (MSEC_PER_SEC / HZ) * j;
     378             : #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
     379             :         return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
     380             : #else
     381             : # if BITS_PER_LONG == 32
     382             :         return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
     383             :                HZ_TO_MSEC_SHR32;
     384             : # else
     385             :         return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
     386             : # endif
     387             : #endif
     388             : }
     389             : EXPORT_SYMBOL(jiffies_to_msecs);
     390             : 
     391        1085 : unsigned int jiffies_to_usecs(const unsigned long j)
     392             : {
     393             :         /*
     394             :          * Hz usually doesn't go much further MSEC_PER_SEC.
     395             :          * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
     396             :          */
     397        1085 :         BUILD_BUG_ON(HZ > USEC_PER_SEC);
     398             : 
     399             : #if !(USEC_PER_SEC % HZ)
     400        1085 :         return (USEC_PER_SEC / HZ) * j;
     401             : #else
     402             : # if BITS_PER_LONG == 32
     403             :         return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
     404             : # else
     405             :         return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
     406             : # endif
     407             : #endif
     408             : }
     409             : EXPORT_SYMBOL(jiffies_to_usecs);
     410             : 
     411             : /*
     412             :  * mktime64 - Converts date to seconds.
     413             :  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
     414             :  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
     415             :  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
     416             :  *
     417             :  * [For the Julian calendar (which was used in Russia before 1917,
     418             :  * Britain & colonies before 1752, anywhere else before 1582,
     419             :  * and is still in use by some communities) leave out the
     420             :  * -year/100+year/400 terms, and add 10.]
     421             :  *
     422             :  * This algorithm was first published by Gauss (I think).
     423             :  *
     424             :  * A leap second can be indicated by calling this function with sec as
     425             :  * 60 (allowable under ISO 8601).  The leap second is treated the same
     426             :  * as the following second since they don't exist in UNIX time.
     427             :  *
     428             :  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
     429             :  * tomorrow - (allowable under ISO 8601) is supported.
     430             :  */
     431           0 : time64_t mktime64(const unsigned int year0, const unsigned int mon0,
     432             :                 const unsigned int day, const unsigned int hour,
     433             :                 const unsigned int min, const unsigned int sec)
     434             : {
     435           0 :         unsigned int mon = mon0, year = year0;
     436             : 
     437             :         /* 1..12 -> 11,12,1..10 */
     438           0 :         if (0 >= (int) (mon -= 2)) {
     439           0 :                 mon += 12;      /* Puts Feb last since it has leap day */
     440           0 :                 year -= 1;
     441             :         }
     442             : 
     443           0 :         return ((((time64_t)
     444           0 :                   (year/4 - year/100 + year/400 + 367*mon/12 + day) +
     445           0 :                   year*365 - 719499
     446           0 :             )*24 + hour /* now have hours - midnight tomorrow handled here */
     447           0 :           )*60 + min /* now have minutes */
     448           0 :         )*60 + sec; /* finally seconds */
     449             : }
     450             : EXPORT_SYMBOL(mktime64);
     451             : 
     452         499 : struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
     453             : {
     454         499 :         struct timespec64 ts = ns_to_timespec64(nsec);
     455         499 :         struct __kernel_old_timeval tv;
     456             : 
     457         499 :         tv.tv_sec = ts.tv_sec;
     458         499 :         tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
     459             : 
     460         499 :         return tv;
     461             : }
     462             : EXPORT_SYMBOL(ns_to_kernel_old_timeval);
     463             : 
     464             : /**
     465             :  * set_normalized_timespec - set timespec sec and nsec parts and normalize
     466             :  *
     467             :  * @ts:         pointer to timespec variable to be set
     468             :  * @sec:        seconds to set
     469             :  * @nsec:       nanoseconds to set
     470             :  *
     471             :  * Set seconds and nanoseconds field of a timespec variable and
     472             :  * normalize to the timespec storage format
     473             :  *
     474             :  * Note: The tv_nsec part is always in the range of
     475             :  *      0 <= tv_nsec < NSEC_PER_SEC
     476             :  * For negative values only the tv_sec field is negative !
     477             :  */
     478         806 : void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
     479             : {
     480        1077 :         while (nsec >= NSEC_PER_SEC) {
     481             :                 /*
     482             :                  * The following asm() prevents the compiler from
     483             :                  * optimising this loop into a modulo operation. See
     484             :                  * also __iter_div_u64_rem() in include/linux/time.h
     485             :                  */
     486         271 :                 asm("" : "+rm"(nsec));
     487         271 :                 nsec -= NSEC_PER_SEC;
     488         271 :                 ++sec;
     489             :         }
     490        1300 :         while (nsec < 0) {
     491         494 :                 asm("" : "+rm"(nsec));
     492         494 :                 nsec += NSEC_PER_SEC;
     493         494 :                 --sec;
     494             :         }
     495         806 :         ts->tv_sec = sec;
     496         806 :         ts->tv_nsec = nsec;
     497         806 : }
     498             : EXPORT_SYMBOL(set_normalized_timespec64);
     499             : 
     500             : /**
     501             :  * ns_to_timespec64 - Convert nanoseconds to timespec64
     502             :  * @nsec:       the nanoseconds value to be converted
     503             :  *
     504             :  * Returns the timespec64 representation of the nsec parameter.
     505             :  */
     506        1443 : struct timespec64 ns_to_timespec64(const s64 nsec)
     507             : {
     508        1443 :         struct timespec64 ts = { 0, 0 };
     509        1443 :         s32 rem;
     510             : 
     511        1443 :         if (likely(nsec > 0)) {
     512         738 :                 ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
     513         738 :                 ts.tv_nsec = rem;
     514         705 :         } else if (nsec < 0) {
     515             :                 /*
     516             :                  * With negative times, tv_sec points to the earlier
     517             :                  * second, and tv_nsec counts the nanoseconds since
     518             :                  * then, so tv_nsec is always a positive number.
     519             :                  */
     520           0 :                 ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
     521           0 :                 ts.tv_nsec = NSEC_PER_SEC - rem - 1;
     522             :         }
     523             : 
     524        1443 :         return ts;
     525             : }
     526             : EXPORT_SYMBOL(ns_to_timespec64);
     527             : 
     528             : /**
     529             :  * msecs_to_jiffies: - convert milliseconds to jiffies
     530             :  * @m:  time in milliseconds
     531             :  *
     532             :  * conversion is done as follows:
     533             :  *
     534             :  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
     535             :  *
     536             :  * - 'too large' values [that would result in larger than
     537             :  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
     538             :  *
     539             :  * - all other values are converted to jiffies by either multiplying
     540             :  *   the input value by a factor or dividing it with a factor and
     541             :  *   handling any 32-bit overflows.
     542             :  *   for the details see __msecs_to_jiffies()
     543             :  *
     544             :  * msecs_to_jiffies() checks for the passed in value being a constant
     545             :  * via __builtin_constant_p() allowing gcc to eliminate most of the
     546             :  * code, __msecs_to_jiffies() is called if the value passed does not
     547             :  * allow constant folding and the actual conversion must be done at
     548             :  * runtime.
     549             :  * the _msecs_to_jiffies helpers are the HZ dependent conversion
     550             :  * routines found in include/linux/jiffies.h
     551             :  */
     552       34762 : unsigned long __msecs_to_jiffies(const unsigned int m)
     553             : {
     554             :         /*
     555             :          * Negative value, means infinite timeout:
     556             :          */
     557       34762 :         if ((int)m < 0)
     558             :                 return MAX_JIFFY_OFFSET;
     559       34762 :         return _msecs_to_jiffies(m);
     560             : }
     561             : EXPORT_SYMBOL(__msecs_to_jiffies);
     562             : 
     563         825 : unsigned long __usecs_to_jiffies(const unsigned int u)
     564             : {
     565         825 :         if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
     566             :                 return MAX_JIFFY_OFFSET;
     567         825 :         return _usecs_to_jiffies(u);
     568             : }
     569             : EXPORT_SYMBOL(__usecs_to_jiffies);
     570             : 
     571             : /*
     572             :  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
     573             :  * that a remainder subtract here would not do the right thing as the
     574             :  * resolution values don't fall on second boundries.  I.e. the line:
     575             :  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
     576             :  * Note that due to the small error in the multiplier here, this
     577             :  * rounding is incorrect for sufficiently large values of tv_nsec, but
     578             :  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
     579             :  * OK.
     580             :  *
     581             :  * Rather, we just shift the bits off the right.
     582             :  *
     583             :  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
     584             :  * value to a scaled second value.
     585             :  */
     586             : 
     587             : unsigned long
     588           0 : timespec64_to_jiffies(const struct timespec64 *value)
     589             : {
     590           0 :         u64 sec = value->tv_sec;
     591           0 :         long nsec = value->tv_nsec + TICK_NSEC - 1;
     592             : 
     593           0 :         if (sec >= MAX_SEC_IN_JIFFIES){
     594           0 :                 sec = MAX_SEC_IN_JIFFIES;
     595           0 :                 nsec = 0;
     596             :         }
     597           0 :         return ((sec * SEC_CONVERSION) +
     598           0 :                 (((u64)nsec * NSEC_CONVERSION) >>
     599           0 :                  (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
     600             : 
     601             : }
     602             : EXPORT_SYMBOL(timespec64_to_jiffies);
     603             : 
     604             : void
     605           0 : jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
     606             : {
     607             :         /*
     608             :          * Convert jiffies to nanoseconds and separate with
     609             :          * one divide.
     610             :          */
     611           0 :         u32 rem;
     612           0 :         value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
     613             :                                     NSEC_PER_SEC, &rem);
     614           0 :         value->tv_nsec = rem;
     615           0 : }
     616             : EXPORT_SYMBOL(jiffies_to_timespec64);
     617             : 
     618             : /*
     619             :  * Convert jiffies/jiffies_64 to clock_t and back.
     620             :  */
     621           9 : clock_t jiffies_to_clock_t(unsigned long x)
     622             : {
     623             : #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
     624             : # if HZ < USER_HZ
     625             :         return x * (USER_HZ / HZ);
     626             : # else
     627             :         return x / (HZ / USER_HZ);
     628             : # endif
     629             : #else
     630           9 :         return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
     631             : #endif
     632             : }
     633             : EXPORT_SYMBOL(jiffies_to_clock_t);
     634             : 
     635           0 : unsigned long clock_t_to_jiffies(unsigned long x)
     636             : {
     637             : #if (HZ % USER_HZ)==0
     638             :         if (x >= ~0UL / (HZ / USER_HZ))
     639             :                 return ~0UL;
     640             :         return x * (HZ / USER_HZ);
     641             : #else
     642             :         /* Don't worry about loss of precision here .. */
     643           0 :         if (x >= ~0UL / HZ * USER_HZ)
     644             :                 return ~0UL;
     645             : 
     646             :         /* .. but do try to contain it here */
     647           0 :         return div_u64((u64)x * HZ, USER_HZ);
     648             : #endif
     649             : }
     650             : EXPORT_SYMBOL(clock_t_to_jiffies);
     651             : 
     652           0 : u64 jiffies_64_to_clock_t(u64 x)
     653             : {
     654             : #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
     655             : # if HZ < USER_HZ
     656             :         x = div_u64(x * USER_HZ, HZ);
     657             : # elif HZ > USER_HZ
     658             :         x = div_u64(x, HZ / USER_HZ);
     659             : # else
     660             :         /* Nothing to do */
     661             : # endif
     662             : #else
     663             :         /*
     664             :          * There are better ways that don't overflow early,
     665             :          * but even this doesn't overflow in hundreds of years
     666             :          * in 64 bits, so..
     667             :          */
     668           0 :         x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
     669             : #endif
     670           0 :         return x;
     671             : }
     672             : EXPORT_SYMBOL(jiffies_64_to_clock_t);
     673             : 
     674        3190 : u64 nsec_to_clock_t(u64 x)
     675             : {
     676             : #if (NSEC_PER_SEC % USER_HZ) == 0
     677        3190 :         return div_u64(x, NSEC_PER_SEC / USER_HZ);
     678             : #elif (USER_HZ % 512) == 0
     679             :         return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
     680             : #else
     681             :         /*
     682             :          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
     683             :          * overflow after 64.99 years.
     684             :          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
     685             :          */
     686             :         return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
     687             : #endif
     688             : }
     689             : 
     690           0 : u64 jiffies64_to_nsecs(u64 j)
     691             : {
     692             : #if !(NSEC_PER_SEC % HZ)
     693           0 :         return (NSEC_PER_SEC / HZ) * j;
     694             : # else
     695             :         return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
     696             : #endif
     697             : }
     698             : EXPORT_SYMBOL(jiffies64_to_nsecs);
     699             : 
     700           0 : u64 jiffies64_to_msecs(const u64 j)
     701             : {
     702             : #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
     703           0 :         return (MSEC_PER_SEC / HZ) * j;
     704             : #else
     705             :         return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
     706             : #endif
     707             : }
     708             : EXPORT_SYMBOL(jiffies64_to_msecs);
     709             : 
     710             : /**
     711             :  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
     712             :  *
     713             :  * @n:  nsecs in u64
     714             :  *
     715             :  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
     716             :  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
     717             :  * for scheduler, not for use in device drivers to calculate timeout value.
     718             :  *
     719             :  * note:
     720             :  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
     721             :  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
     722             :  */
     723           0 : u64 nsecs_to_jiffies64(u64 n)
     724             : {
     725             : #if (NSEC_PER_SEC % HZ) == 0
     726             :         /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
     727           0 :         return div_u64(n, NSEC_PER_SEC / HZ);
     728             : #elif (HZ % 512) == 0
     729             :         /* overflow after 292 years if HZ = 1024 */
     730             :         return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
     731             : #else
     732             :         /*
     733             :          * Generic case - optimized for cases where HZ is a multiple of 3.
     734             :          * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
     735             :          */
     736             :         return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
     737             : #endif
     738             : }
     739             : EXPORT_SYMBOL(nsecs_to_jiffies64);
     740             : 
     741             : /**
     742             :  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
     743             :  *
     744             :  * @n:  nsecs in u64
     745             :  *
     746             :  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
     747             :  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
     748             :  * for scheduler, not for use in device drivers to calculate timeout value.
     749             :  *
     750             :  * note:
     751             :  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
     752             :  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
     753             :  */
     754           0 : unsigned long nsecs_to_jiffies(u64 n)
     755             : {
     756           0 :         return (unsigned long)nsecs_to_jiffies64(n);
     757             : }
     758             : EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
     759             : 
     760             : /*
     761             :  * Add two timespec64 values and do a safety check for overflow.
     762             :  * It's assumed that both values are valid (>= 0).
     763             :  * And, each timespec64 is in normalized form.
     764             :  */
     765         297 : struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
     766             :                                 const struct timespec64 rhs)
     767             : {
     768         297 :         struct timespec64 res;
     769             : 
     770         297 :         set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
     771         297 :                         lhs.tv_nsec + rhs.tv_nsec);
     772             : 
     773         297 :         if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
     774           0 :                 res.tv_sec = TIME64_MAX;
     775           0 :                 res.tv_nsec = 0;
     776             :         }
     777             : 
     778         297 :         return res;
     779             : }
     780             : 
     781         893 : int get_timespec64(struct timespec64 *ts,
     782             :                    const struct __kernel_timespec __user *uts)
     783             : {
     784         893 :         struct __kernel_timespec kts;
     785         893 :         int ret;
     786             : 
     787         893 :         ret = copy_from_user(&kts, uts, sizeof(kts));
     788         893 :         if (ret)
     789             :                 return -EFAULT;
     790             : 
     791         893 :         ts->tv_sec = kts.tv_sec;
     792             : 
     793             :         /* Zero out the padding in compat mode */
     794         893 :         if (in_compat_syscall())
     795           0 :                 kts.tv_nsec &= 0xFFFFFFFFUL;
     796             : 
     797             :         /* In 32-bit mode, this drops the padding */
     798         893 :         ts->tv_nsec = kts.tv_nsec;
     799             : 
     800         893 :         return 0;
     801             : }
     802             : EXPORT_SYMBOL_GPL(get_timespec64);
     803             : 
     804         202 : int put_timespec64(const struct timespec64 *ts,
     805             :                    struct __kernel_timespec __user *uts)
     806             : {
     807         202 :         struct __kernel_timespec kts = {
     808         202 :                 .tv_sec = ts->tv_sec,
     809         202 :                 .tv_nsec = ts->tv_nsec
     810             :         };
     811             : 
     812         202 :         return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
     813             : }
     814             : EXPORT_SYMBOL_GPL(put_timespec64);
     815             : 
     816           0 : static int __get_old_timespec32(struct timespec64 *ts64,
     817             :                                    const struct old_timespec32 __user *cts)
     818             : {
     819           0 :         struct old_timespec32 ts;
     820           0 :         int ret;
     821             : 
     822           0 :         ret = copy_from_user(&ts, cts, sizeof(ts));
     823           0 :         if (ret)
     824             :                 return -EFAULT;
     825             : 
     826           0 :         ts64->tv_sec = ts.tv_sec;
     827           0 :         ts64->tv_nsec = ts.tv_nsec;
     828             : 
     829           0 :         return 0;
     830             : }
     831             : 
     832           0 : static int __put_old_timespec32(const struct timespec64 *ts64,
     833             :                                    struct old_timespec32 __user *cts)
     834             : {
     835           0 :         struct old_timespec32 ts = {
     836           0 :                 .tv_sec = ts64->tv_sec,
     837           0 :                 .tv_nsec = ts64->tv_nsec
     838             :         };
     839           0 :         return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
     840             : }
     841             : 
     842           0 : int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
     843             : {
     844           0 :         if (COMPAT_USE_64BIT_TIME)
     845             :                 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
     846             :         else
     847           0 :                 return __get_old_timespec32(ts, uts);
     848             : }
     849             : EXPORT_SYMBOL_GPL(get_old_timespec32);
     850             : 
     851           0 : int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
     852             : {
     853           0 :         if (COMPAT_USE_64BIT_TIME)
     854             :                 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
     855             :         else
     856           0 :                 return __put_old_timespec32(ts, uts);
     857             : }
     858             : EXPORT_SYMBOL_GPL(put_old_timespec32);
     859             : 
     860         265 : int get_itimerspec64(struct itimerspec64 *it,
     861             :                         const struct __kernel_itimerspec __user *uit)
     862             : {
     863         265 :         int ret;
     864             : 
     865         265 :         ret = get_timespec64(&it->it_interval, &uit->it_interval);
     866         265 :         if (ret)
     867             :                 return ret;
     868             : 
     869         265 :         ret = get_timespec64(&it->it_value, &uit->it_value);
     870             : 
     871         265 :         return ret;
     872             : }
     873             : EXPORT_SYMBOL_GPL(get_itimerspec64);
     874             : 
     875           0 : int put_itimerspec64(const struct itimerspec64 *it,
     876             :                         struct __kernel_itimerspec __user *uit)
     877             : {
     878           0 :         int ret;
     879             : 
     880           0 :         ret = put_timespec64(&it->it_interval, &uit->it_interval);
     881           0 :         if (ret)
     882             :                 return ret;
     883             : 
     884           0 :         ret = put_timespec64(&it->it_value, &uit->it_value);
     885             : 
     886           0 :         return ret;
     887             : }
     888             : EXPORT_SYMBOL_GPL(put_itimerspec64);
     889             : 
     890           0 : int get_old_itimerspec32(struct itimerspec64 *its,
     891             :                         const struct old_itimerspec32 __user *uits)
     892             : {
     893             : 
     894           0 :         if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
     895           0 :             __get_old_timespec32(&its->it_value, &uits->it_value))
     896           0 :                 return -EFAULT;
     897             :         return 0;
     898             : }
     899             : EXPORT_SYMBOL_GPL(get_old_itimerspec32);
     900             : 
     901           0 : int put_old_itimerspec32(const struct itimerspec64 *its,
     902             :                         struct old_itimerspec32 __user *uits)
     903             : {
     904           0 :         if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
     905           0 :             __put_old_timespec32(&its->it_value, &uits->it_value))
     906           0 :                 return -EFAULT;
     907             :         return 0;
     908             : }
     909             : EXPORT_SYMBOL_GPL(put_old_itimerspec32);

Generated by: LCOV version 1.14