LCOV - code coverage report
Current view: top level - kernel - workqueue.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 1192 2023 58.9 %
Date: 2021-04-22 12:43:58 Functions: 105 155 67.7 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * kernel/workqueue.c - generic async execution with shared worker pool
       4             :  *
       5             :  * Copyright (C) 2002           Ingo Molnar
       6             :  *
       7             :  *   Derived from the taskqueue/keventd code by:
       8             :  *     David Woodhouse <dwmw2@infradead.org>
       9             :  *     Andrew Morton
      10             :  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
      11             :  *     Theodore Ts'o <tytso@mit.edu>
      12             :  *
      13             :  * Made to use alloc_percpu by Christoph Lameter.
      14             :  *
      15             :  * Copyright (C) 2010           SUSE Linux Products GmbH
      16             :  * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
      17             :  *
      18             :  * This is the generic async execution mechanism.  Work items as are
      19             :  * executed in process context.  The worker pool is shared and
      20             :  * automatically managed.  There are two worker pools for each CPU (one for
      21             :  * normal work items and the other for high priority ones) and some extra
      22             :  * pools for workqueues which are not bound to any specific CPU - the
      23             :  * number of these backing pools is dynamic.
      24             :  *
      25             :  * Please read Documentation/core-api/workqueue.rst for details.
      26             :  */
      27             : 
      28             : #include <linux/export.h>
      29             : #include <linux/kernel.h>
      30             : #include <linux/sched.h>
      31             : #include <linux/init.h>
      32             : #include <linux/signal.h>
      33             : #include <linux/completion.h>
      34             : #include <linux/workqueue.h>
      35             : #include <linux/slab.h>
      36             : #include <linux/cpu.h>
      37             : #include <linux/notifier.h>
      38             : #include <linux/kthread.h>
      39             : #include <linux/hardirq.h>
      40             : #include <linux/mempolicy.h>
      41             : #include <linux/freezer.h>
      42             : #include <linux/debug_locks.h>
      43             : #include <linux/lockdep.h>
      44             : #include <linux/idr.h>
      45             : #include <linux/jhash.h>
      46             : #include <linux/hashtable.h>
      47             : #include <linux/rculist.h>
      48             : #include <linux/nodemask.h>
      49             : #include <linux/moduleparam.h>
      50             : #include <linux/uaccess.h>
      51             : #include <linux/sched/isolation.h>
      52             : #include <linux/nmi.h>
      53             : 
      54             : #include "workqueue_internal.h"
      55             : 
      56             : enum {
      57             :         /*
      58             :          * worker_pool flags
      59             :          *
      60             :          * A bound pool is either associated or disassociated with its CPU.
      61             :          * While associated (!DISASSOCIATED), all workers are bound to the
      62             :          * CPU and none has %WORKER_UNBOUND set and concurrency management
      63             :          * is in effect.
      64             :          *
      65             :          * While DISASSOCIATED, the cpu may be offline and all workers have
      66             :          * %WORKER_UNBOUND set and concurrency management disabled, and may
      67             :          * be executing on any CPU.  The pool behaves as an unbound one.
      68             :          *
      69             :          * Note that DISASSOCIATED should be flipped only while holding
      70             :          * wq_pool_attach_mutex to avoid changing binding state while
      71             :          * worker_attach_to_pool() is in progress.
      72             :          */
      73             :         POOL_MANAGER_ACTIVE     = 1 << 0, /* being managed */
      74             :         POOL_DISASSOCIATED      = 1 << 2, /* cpu can't serve workers */
      75             : 
      76             :         /* worker flags */
      77             :         WORKER_DIE              = 1 << 1, /* die die die */
      78             :         WORKER_IDLE             = 1 << 2, /* is idle */
      79             :         WORKER_PREP             = 1 << 3, /* preparing to run works */
      80             :         WORKER_CPU_INTENSIVE    = 1 << 6, /* cpu intensive */
      81             :         WORKER_UNBOUND          = 1 << 7, /* worker is unbound */
      82             :         WORKER_REBOUND          = 1 << 8, /* worker was rebound */
      83             : 
      84             :         WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
      85             :                                   WORKER_UNBOUND | WORKER_REBOUND,
      86             : 
      87             :         NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
      88             : 
      89             :         UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
      90             :         BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
      91             : 
      92             :         MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
      93             :         IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
      94             : 
      95             :         MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
      96             :                                                 /* call for help after 10ms
      97             :                                                    (min two ticks) */
      98             :         MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
      99             :         CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
     100             : 
     101             :         /*
     102             :          * Rescue workers are used only on emergencies and shared by
     103             :          * all cpus.  Give MIN_NICE.
     104             :          */
     105             :         RESCUER_NICE_LEVEL      = MIN_NICE,
     106             :         HIGHPRI_NICE_LEVEL      = MIN_NICE,
     107             : 
     108             :         WQ_NAME_LEN             = 24,
     109             : };
     110             : 
     111             : /*
     112             :  * Structure fields follow one of the following exclusion rules.
     113             :  *
     114             :  * I: Modifiable by initialization/destruction paths and read-only for
     115             :  *    everyone else.
     116             :  *
     117             :  * P: Preemption protected.  Disabling preemption is enough and should
     118             :  *    only be modified and accessed from the local cpu.
     119             :  *
     120             :  * L: pool->lock protected.  Access with pool->lock held.
     121             :  *
     122             :  * X: During normal operation, modification requires pool->lock and should
     123             :  *    be done only from local cpu.  Either disabling preemption on local
     124             :  *    cpu or grabbing pool->lock is enough for read access.  If
     125             :  *    POOL_DISASSOCIATED is set, it's identical to L.
     126             :  *
     127             :  * A: wq_pool_attach_mutex protected.
     128             :  *
     129             :  * PL: wq_pool_mutex protected.
     130             :  *
     131             :  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
     132             :  *
     133             :  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
     134             :  *
     135             :  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
     136             :  *      RCU for reads.
     137             :  *
     138             :  * WQ: wq->mutex protected.
     139             :  *
     140             :  * WR: wq->mutex protected for writes.  RCU protected for reads.
     141             :  *
     142             :  * MD: wq_mayday_lock protected.
     143             :  */
     144             : 
     145             : /* struct worker is defined in workqueue_internal.h */
     146             : 
     147             : struct worker_pool {
     148             :         raw_spinlock_t          lock;           /* the pool lock */
     149             :         int                     cpu;            /* I: the associated cpu */
     150             :         int                     node;           /* I: the associated node ID */
     151             :         int                     id;             /* I: pool ID */
     152             :         unsigned int            flags;          /* X: flags */
     153             : 
     154             :         unsigned long           watchdog_ts;    /* L: watchdog timestamp */
     155             : 
     156             :         struct list_head        worklist;       /* L: list of pending works */
     157             : 
     158             :         int                     nr_workers;     /* L: total number of workers */
     159             :         int                     nr_idle;        /* L: currently idle workers */
     160             : 
     161             :         struct list_head        idle_list;      /* X: list of idle workers */
     162             :         struct timer_list       idle_timer;     /* L: worker idle timeout */
     163             :         struct timer_list       mayday_timer;   /* L: SOS timer for workers */
     164             : 
     165             :         /* a workers is either on busy_hash or idle_list, or the manager */
     166             :         DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
     167             :                                                 /* L: hash of busy workers */
     168             : 
     169             :         struct worker           *manager;       /* L: purely informational */
     170             :         struct list_head        workers;        /* A: attached workers */
     171             :         struct completion       *detach_completion; /* all workers detached */
     172             : 
     173             :         struct ida              worker_ida;     /* worker IDs for task name */
     174             : 
     175             :         struct workqueue_attrs  *attrs;         /* I: worker attributes */
     176             :         struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
     177             :         int                     refcnt;         /* PL: refcnt for unbound pools */
     178             : 
     179             :         /*
     180             :          * The current concurrency level.  As it's likely to be accessed
     181             :          * from other CPUs during try_to_wake_up(), put it in a separate
     182             :          * cacheline.
     183             :          */
     184             :         atomic_t                nr_running ____cacheline_aligned_in_smp;
     185             : 
     186             :         /*
     187             :          * Destruction of pool is RCU protected to allow dereferences
     188             :          * from get_work_pool().
     189             :          */
     190             :         struct rcu_head         rcu;
     191             : } ____cacheline_aligned_in_smp;
     192             : 
     193             : /*
     194             :  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
     195             :  * of work_struct->data are used for flags and the remaining high bits
     196             :  * point to the pwq; thus, pwqs need to be aligned at two's power of the
     197             :  * number of flag bits.
     198             :  */
     199             : struct pool_workqueue {
     200             :         struct worker_pool      *pool;          /* I: the associated pool */
     201             :         struct workqueue_struct *wq;            /* I: the owning workqueue */
     202             :         int                     work_color;     /* L: current color */
     203             :         int                     flush_color;    /* L: flushing color */
     204             :         int                     refcnt;         /* L: reference count */
     205             :         int                     nr_in_flight[WORK_NR_COLORS];
     206             :                                                 /* L: nr of in_flight works */
     207             :         int                     nr_active;      /* L: nr of active works */
     208             :         int                     max_active;     /* L: max active works */
     209             :         struct list_head        delayed_works;  /* L: delayed works */
     210             :         struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
     211             :         struct list_head        mayday_node;    /* MD: node on wq->maydays */
     212             : 
     213             :         /*
     214             :          * Release of unbound pwq is punted to system_wq.  See put_pwq()
     215             :          * and pwq_unbound_release_workfn() for details.  pool_workqueue
     216             :          * itself is also RCU protected so that the first pwq can be
     217             :          * determined without grabbing wq->mutex.
     218             :          */
     219             :         struct work_struct      unbound_release_work;
     220             :         struct rcu_head         rcu;
     221             : } __aligned(1 << WORK_STRUCT_FLAG_BITS);
     222             : 
     223             : /*
     224             :  * Structure used to wait for workqueue flush.
     225             :  */
     226             : struct wq_flusher {
     227             :         struct list_head        list;           /* WQ: list of flushers */
     228             :         int                     flush_color;    /* WQ: flush color waiting for */
     229             :         struct completion       done;           /* flush completion */
     230             : };
     231             : 
     232             : struct wq_device;
     233             : 
     234             : /*
     235             :  * The externally visible workqueue.  It relays the issued work items to
     236             :  * the appropriate worker_pool through its pool_workqueues.
     237             :  */
     238             : struct workqueue_struct {
     239             :         struct list_head        pwqs;           /* WR: all pwqs of this wq */
     240             :         struct list_head        list;           /* PR: list of all workqueues */
     241             : 
     242             :         struct mutex            mutex;          /* protects this wq */
     243             :         int                     work_color;     /* WQ: current work color */
     244             :         int                     flush_color;    /* WQ: current flush color */
     245             :         atomic_t                nr_pwqs_to_flush; /* flush in progress */
     246             :         struct wq_flusher       *first_flusher; /* WQ: first flusher */
     247             :         struct list_head        flusher_queue;  /* WQ: flush waiters */
     248             :         struct list_head        flusher_overflow; /* WQ: flush overflow list */
     249             : 
     250             :         struct list_head        maydays;        /* MD: pwqs requesting rescue */
     251             :         struct worker           *rescuer;       /* MD: rescue worker */
     252             : 
     253             :         int                     nr_drainers;    /* WQ: drain in progress */
     254             :         int                     saved_max_active; /* WQ: saved pwq max_active */
     255             : 
     256             :         struct workqueue_attrs  *unbound_attrs; /* PW: only for unbound wqs */
     257             :         struct pool_workqueue   *dfl_pwq;       /* PW: only for unbound wqs */
     258             : 
     259             : #ifdef CONFIG_SYSFS
     260             :         struct wq_device        *wq_dev;        /* I: for sysfs interface */
     261             : #endif
     262             : #ifdef CONFIG_LOCKDEP
     263             :         char                    *lock_name;
     264             :         struct lock_class_key   key;
     265             :         struct lockdep_map      lockdep_map;
     266             : #endif
     267             :         char                    name[WQ_NAME_LEN]; /* I: workqueue name */
     268             : 
     269             :         /*
     270             :          * Destruction of workqueue_struct is RCU protected to allow walking
     271             :          * the workqueues list without grabbing wq_pool_mutex.
     272             :          * This is used to dump all workqueues from sysrq.
     273             :          */
     274             :         struct rcu_head         rcu;
     275             : 
     276             :         /* hot fields used during command issue, aligned to cacheline */
     277             :         unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
     278             :         struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
     279             :         struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
     280             : };
     281             : 
     282             : static struct kmem_cache *pwq_cache;
     283             : 
     284             : static cpumask_var_t *wq_numa_possible_cpumask;
     285             :                                         /* possible CPUs of each node */
     286             : 
     287             : static bool wq_disable_numa;
     288             : module_param_named(disable_numa, wq_disable_numa, bool, 0444);
     289             : 
     290             : /* see the comment above the definition of WQ_POWER_EFFICIENT */
     291             : static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
     292             : module_param_named(power_efficient, wq_power_efficient, bool, 0444);
     293             : 
     294             : static bool wq_online;                  /* can kworkers be created yet? */
     295             : 
     296             : static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
     297             : 
     298             : /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
     299             : static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
     300             : 
     301             : static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
     302             : static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
     303             : static DEFINE_RAW_SPINLOCK(wq_mayday_lock);     /* protects wq->maydays list */
     304             : /* wait for manager to go away */
     305             : static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
     306             : 
     307             : static LIST_HEAD(workqueues);           /* PR: list of all workqueues */
     308             : static bool workqueue_freezing;         /* PL: have wqs started freezing? */
     309             : 
     310             : /* PL: allowable cpus for unbound wqs and work items */
     311             : static cpumask_var_t wq_unbound_cpumask;
     312             : 
     313             : /* CPU where unbound work was last round robin scheduled from this CPU */
     314             : static DEFINE_PER_CPU(int, wq_rr_cpu_last);
     315             : 
     316             : /*
     317             :  * Local execution of unbound work items is no longer guaranteed.  The
     318             :  * following always forces round-robin CPU selection on unbound work items
     319             :  * to uncover usages which depend on it.
     320             :  */
     321             : #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
     322             : static bool wq_debug_force_rr_cpu = true;
     323             : #else
     324             : static bool wq_debug_force_rr_cpu = false;
     325             : #endif
     326             : module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
     327             : 
     328             : /* the per-cpu worker pools */
     329             : static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
     330             : 
     331             : static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
     332             : 
     333             : /* PL: hash of all unbound pools keyed by pool->attrs */
     334             : static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
     335             : 
     336             : /* I: attributes used when instantiating standard unbound pools on demand */
     337             : static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
     338             : 
     339             : /* I: attributes used when instantiating ordered pools on demand */
     340             : static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
     341             : 
     342             : struct workqueue_struct *system_wq __read_mostly;
     343             : EXPORT_SYMBOL(system_wq);
     344             : struct workqueue_struct *system_highpri_wq __read_mostly;
     345             : EXPORT_SYMBOL_GPL(system_highpri_wq);
     346             : struct workqueue_struct *system_long_wq __read_mostly;
     347             : EXPORT_SYMBOL_GPL(system_long_wq);
     348             : struct workqueue_struct *system_unbound_wq __read_mostly;
     349             : EXPORT_SYMBOL_GPL(system_unbound_wq);
     350             : struct workqueue_struct *system_freezable_wq __read_mostly;
     351             : EXPORT_SYMBOL_GPL(system_freezable_wq);
     352             : struct workqueue_struct *system_power_efficient_wq __read_mostly;
     353             : EXPORT_SYMBOL_GPL(system_power_efficient_wq);
     354             : struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
     355             : EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
     356             : 
     357             : static int worker_thread(void *__worker);
     358             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
     359             : static void show_pwq(struct pool_workqueue *pwq);
     360             : 
     361             : #define CREATE_TRACE_POINTS
     362             : #include <trace/events/workqueue.h>
     363             : 
     364             : #define assert_rcu_or_pool_mutex()                                      \
     365             :         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
     366             :                          !lockdep_is_held(&wq_pool_mutex),          \
     367             :                          "RCU or wq_pool_mutex should be held")
     368             : 
     369             : #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)                        \
     370             :         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
     371             :                          !lockdep_is_held(&wq->mutex) &&         \
     372             :                          !lockdep_is_held(&wq_pool_mutex),          \
     373             :                          "RCU, wq->mutex or wq_pool_mutex should be held")
     374             : 
     375             : #define for_each_cpu_worker_pool(pool, cpu)                             \
     376             :         for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];           \
     377             :              (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
     378             :              (pool)++)
     379             : 
     380             : /**
     381             :  * for_each_pool - iterate through all worker_pools in the system
     382             :  * @pool: iteration cursor
     383             :  * @pi: integer used for iteration
     384             :  *
     385             :  * This must be called either with wq_pool_mutex held or RCU read
     386             :  * locked.  If the pool needs to be used beyond the locking in effect, the
     387             :  * caller is responsible for guaranteeing that the pool stays online.
     388             :  *
     389             :  * The if/else clause exists only for the lockdep assertion and can be
     390             :  * ignored.
     391             :  */
     392             : #define for_each_pool(pool, pi)                                         \
     393             :         idr_for_each_entry(&worker_pool_idr, pool, pi)                      \
     394             :                 if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
     395             :                 else
     396             : 
     397             : /**
     398             :  * for_each_pool_worker - iterate through all workers of a worker_pool
     399             :  * @worker: iteration cursor
     400             :  * @pool: worker_pool to iterate workers of
     401             :  *
     402             :  * This must be called with wq_pool_attach_mutex.
     403             :  *
     404             :  * The if/else clause exists only for the lockdep assertion and can be
     405             :  * ignored.
     406             :  */
     407             : #define for_each_pool_worker(worker, pool)                              \
     408             :         list_for_each_entry((worker), &(pool)->workers, node)            \
     409             :                 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
     410             :                 else
     411             : 
     412             : /**
     413             :  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
     414             :  * @pwq: iteration cursor
     415             :  * @wq: the target workqueue
     416             :  *
     417             :  * This must be called either with wq->mutex held or RCU read locked.
     418             :  * If the pwq needs to be used beyond the locking in effect, the caller is
     419             :  * responsible for guaranteeing that the pwq stays online.
     420             :  *
     421             :  * The if/else clause exists only for the lockdep assertion and can be
     422             :  * ignored.
     423             :  */
     424             : #define for_each_pwq(pwq, wq)                                           \
     425             :         list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,           \
     426             :                                  lockdep_is_held(&(wq->mutex)))
     427             : 
     428             : #ifdef CONFIG_DEBUG_OBJECTS_WORK
     429             : 
     430             : static const struct debug_obj_descr work_debug_descr;
     431             : 
     432           0 : static void *work_debug_hint(void *addr)
     433             : {
     434           0 :         return ((struct work_struct *) addr)->func;
     435             : }
     436             : 
     437          11 : static bool work_is_static_object(void *addr)
     438             : {
     439          11 :         struct work_struct *work = addr;
     440             : 
     441          11 :         return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
     442             : }
     443             : 
     444             : /*
     445             :  * fixup_init is called when:
     446             :  * - an active object is initialized
     447             :  */
     448           0 : static bool work_fixup_init(void *addr, enum debug_obj_state state)
     449             : {
     450           0 :         struct work_struct *work = addr;
     451             : 
     452           0 :         switch (state) {
     453             :         case ODEBUG_STATE_ACTIVE:
     454           0 :                 cancel_work_sync(work);
     455           0 :                 debug_object_init(work, &work_debug_descr);
     456           0 :                 return true;
     457             :         default:
     458             :                 return false;
     459             :         }
     460             : }
     461             : 
     462             : /*
     463             :  * fixup_free is called when:
     464             :  * - an active object is freed
     465             :  */
     466           0 : static bool work_fixup_free(void *addr, enum debug_obj_state state)
     467             : {
     468           0 :         struct work_struct *work = addr;
     469             : 
     470           0 :         switch (state) {
     471             :         case ODEBUG_STATE_ACTIVE:
     472           0 :                 cancel_work_sync(work);
     473           0 :                 debug_object_free(work, &work_debug_descr);
     474           0 :                 return true;
     475             :         default:
     476             :                 return false;
     477             :         }
     478             : }
     479             : 
     480             : static const struct debug_obj_descr work_debug_descr = {
     481             :         .name           = "work_struct",
     482             :         .debug_hint     = work_debug_hint,
     483             :         .is_static_object = work_is_static_object,
     484             :         .fixup_init     = work_fixup_init,
     485             :         .fixup_free     = work_fixup_free,
     486             : };
     487             : 
     488        1905 : static inline void debug_work_activate(struct work_struct *work)
     489             : {
     490        1905 :         debug_object_activate(work, &work_debug_descr);
     491             : }
     492             : 
     493        1906 : static inline void debug_work_deactivate(struct work_struct *work)
     494             : {
     495        1906 :         debug_object_deactivate(work, &work_debug_descr);
     496             : }
     497             : 
     498        6662 : void __init_work(struct work_struct *work, int onstack)
     499             : {
     500        6586 :         if (onstack)
     501         159 :                 debug_object_init_on_stack(work, &work_debug_descr);
     502             :         else
     503        6427 :                 debug_object_init(work, &work_debug_descr);
     504        6586 : }
     505             : EXPORT_SYMBOL_GPL(__init_work);
     506             : 
     507         170 : void destroy_work_on_stack(struct work_struct *work)
     508             : {
     509         159 :         debug_object_free(work, &work_debug_descr);
     510         159 : }
     511             : EXPORT_SYMBOL_GPL(destroy_work_on_stack);
     512             : 
     513           0 : void destroy_delayed_work_on_stack(struct delayed_work *work)
     514             : {
     515           0 :         destroy_timer_on_stack(&work->timer);
     516           0 :         debug_object_free(&work->work, &work_debug_descr);
     517           0 : }
     518             : EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
     519             : 
     520             : #else
     521             : static inline void debug_work_activate(struct work_struct *work) { }
     522             : static inline void debug_work_deactivate(struct work_struct *work) { }
     523             : #endif
     524             : 
     525             : /**
     526             :  * worker_pool_assign_id - allocate ID and assing it to @pool
     527             :  * @pool: the pool pointer of interest
     528             :  *
     529             :  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
     530             :  * successfully, -errno on failure.
     531             :  */
     532           9 : static int worker_pool_assign_id(struct worker_pool *pool)
     533             : {
     534           9 :         int ret;
     535             : 
     536          27 :         lockdep_assert_held(&wq_pool_mutex);
     537             : 
     538           9 :         ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
     539             :                         GFP_KERNEL);
     540           9 :         if (ret >= 0) {
     541           9 :                 pool->id = ret;
     542           9 :                 return 0;
     543             :         }
     544             :         return ret;
     545             : }
     546             : 
     547             : /**
     548             :  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
     549             :  * @wq: the target workqueue
     550             :  * @node: the node ID
     551             :  *
     552             :  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
     553             :  * read locked.
     554             :  * If the pwq needs to be used beyond the locking in effect, the caller is
     555             :  * responsible for guaranteeing that the pwq stays online.
     556             :  *
     557             :  * Return: The unbound pool_workqueue for @node.
     558             :  */
     559         117 : static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
     560             :                                                   int node)
     561             : {
     562         117 :         assert_rcu_or_wq_mutex_or_pool_mutex(wq);
     563             : 
     564             :         /*
     565             :          * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
     566             :          * delayed item is pending.  The plan is to keep CPU -> NODE
     567             :          * mapping valid and stable across CPU on/offlines.  Once that
     568             :          * happens, this workaround can be removed.
     569             :          */
     570         117 :         if (unlikely(node == NUMA_NO_NODE))
     571           0 :                 return wq->dfl_pwq;
     572             : 
     573         117 :         return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
     574             : }
     575             : 
     576        1905 : static unsigned int work_color_to_flags(int color)
     577             : {
     578        1905 :         return color << WORK_STRUCT_COLOR_SHIFT;
     579             : }
     580             : 
     581        1906 : static int get_work_color(struct work_struct *work)
     582             : {
     583        1906 :         return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
     584             :                 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
     585             : }
     586             : 
     587         242 : static int work_next_color(int color)
     588             : {
     589         242 :         return (color + 1) % WORK_NR_COLORS;
     590             : }
     591             : 
     592             : /*
     593             :  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
     594             :  * contain the pointer to the queued pwq.  Once execution starts, the flag
     595             :  * is cleared and the high bits contain OFFQ flags and pool ID.
     596             :  *
     597             :  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
     598             :  * and clear_work_data() can be used to set the pwq, pool or clear
     599             :  * work->data.  These functions should only be called while the work is
     600             :  * owned - ie. while the PENDING bit is set.
     601             :  *
     602             :  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
     603             :  * corresponding to a work.  Pool is available once the work has been
     604             :  * queued anywhere after initialization until it is sync canceled.  pwq is
     605             :  * available only while the work item is queued.
     606             :  *
     607             :  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
     608             :  * canceled.  While being canceled, a work item may have its PENDING set
     609             :  * but stay off timer and worklist for arbitrarily long and nobody should
     610             :  * try to steal the PENDING bit.
     611             :  */
     612        4178 : static inline void set_work_data(struct work_struct *work, unsigned long data,
     613             :                                  unsigned long flags)
     614             : {
     615        4178 :         WARN_ON_ONCE(!work_pending(work));
     616        4181 :         atomic_long_set(&work->data, data | flags | work_static(work));
     617        4182 : }
     618             : 
     619        1905 : static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
     620             :                          unsigned long extra_flags)
     621             : {
     622        1905 :         set_work_data(work, (unsigned long)pwq,
     623             :                       WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
     624             : }
     625             : 
     626           0 : static void set_work_pool_and_keep_pending(struct work_struct *work,
     627             :                                            int pool_id)
     628             : {
     629           0 :         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
     630             :                       WORK_STRUCT_PENDING);
     631             : }
     632             : 
     633        1908 : static void set_work_pool_and_clear_pending(struct work_struct *work,
     634             :                                             int pool_id)
     635             : {
     636             :         /*
     637             :          * The following wmb is paired with the implied mb in
     638             :          * test_and_set_bit(PENDING) and ensures all updates to @work made
     639             :          * here are visible to and precede any updates by the next PENDING
     640             :          * owner.
     641             :          */
     642        1908 :         smp_wmb();
     643        1908 :         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
     644             :         /*
     645             :          * The following mb guarantees that previous clear of a PENDING bit
     646             :          * will not be reordered with any speculative LOADS or STORES from
     647             :          * work->current_func, which is executed afterwards.  This possible
     648             :          * reordering can lead to a missed execution on attempt to queue
     649             :          * the same @work.  E.g. consider this case:
     650             :          *
     651             :          *   CPU#0                         CPU#1
     652             :          *   ----------------------------  --------------------------------
     653             :          *
     654             :          * 1  STORE event_indicated
     655             :          * 2  queue_work_on() {
     656             :          * 3    test_and_set_bit(PENDING)
     657             :          * 4 }                             set_..._and_clear_pending() {
     658             :          * 5                                 set_work_data() # clear bit
     659             :          * 6                                 smp_mb()
     660             :          * 7                               work->current_func() {
     661             :          * 8                                  LOAD event_indicated
     662             :          *                                 }
     663             :          *
     664             :          * Without an explicit full barrier speculative LOAD on line 8 can
     665             :          * be executed before CPU#0 does STORE on line 1.  If that happens,
     666             :          * CPU#0 observes the PENDING bit is still set and new execution of
     667             :          * a @work is not queued in a hope, that CPU#1 will eventually
     668             :          * finish the queued @work.  Meanwhile CPU#1 does not see
     669             :          * event_indicated is set, because speculative LOAD was executed
     670             :          * before actual STORE.
     671             :          */
     672        1908 :         smp_mb();
     673        1908 : }
     674             : 
     675         184 : static void clear_work_data(struct work_struct *work)
     676             : {
     677         184 :         smp_wmb();      /* see set_work_pool_and_clear_pending() */
     678         184 :         set_work_data(work, WORK_STRUCT_NO_POOL, 0);
     679             : }
     680             : 
     681        1963 : static struct pool_workqueue *get_work_pwq(struct work_struct *work)
     682             : {
     683        1963 :         unsigned long data = atomic_long_read(&work->data);
     684             : 
     685        1963 :         if (data & WORK_STRUCT_PWQ)
     686        1954 :                 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
     687             :         else
     688             :                 return NULL;
     689             : }
     690             : 
     691             : /**
     692             :  * get_work_pool - return the worker_pool a given work was associated with
     693             :  * @work: the work item of interest
     694             :  *
     695             :  * Pools are created and destroyed under wq_pool_mutex, and allows read
     696             :  * access under RCU read lock.  As such, this function should be
     697             :  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
     698             :  *
     699             :  * All fields of the returned pool are accessible as long as the above
     700             :  * mentioned locking is in effect.  If the returned pool needs to be used
     701             :  * beyond the critical section, the caller is responsible for ensuring the
     702             :  * returned pool is and stays online.
     703             :  *
     704             :  * Return: The worker_pool @work was last associated with.  %NULL if none.
     705             :  */
     706        2365 : static struct worker_pool *get_work_pool(struct work_struct *work)
     707             : {
     708        2365 :         unsigned long data = atomic_long_read(&work->data);
     709        2365 :         int pool_id;
     710             : 
     711        2365 :         assert_rcu_or_pool_mutex();
     712             : 
     713        2368 :         if (data & WORK_STRUCT_PWQ)
     714           9 :                 return ((struct pool_workqueue *)
     715           9 :                         (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
     716             : 
     717        2359 :         pool_id = data >> WORK_OFFQ_POOL_SHIFT;
     718        2359 :         if (pool_id == WORK_OFFQ_POOL_NONE)
     719             :                 return NULL;
     720             : 
     721        1172 :         return idr_find(&worker_pool_idr, pool_id);
     722             : }
     723             : 
     724             : /**
     725             :  * get_work_pool_id - return the worker pool ID a given work is associated with
     726             :  * @work: the work item of interest
     727             :  *
     728             :  * Return: The worker_pool ID @work was last associated with.
     729             :  * %WORK_OFFQ_POOL_NONE if none.
     730             :  */
     731         186 : static int get_work_pool_id(struct work_struct *work)
     732             : {
     733         186 :         unsigned long data = atomic_long_read(&work->data);
     734             : 
     735         186 :         if (data & WORK_STRUCT_PWQ)
     736           0 :                 return ((struct pool_workqueue *)
     737           0 :                         (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
     738             : 
     739         186 :         return data >> WORK_OFFQ_POOL_SHIFT;
     740             : }
     741             : 
     742         184 : static void mark_work_canceling(struct work_struct *work)
     743             : {
     744         184 :         unsigned long pool_id = get_work_pool_id(work);
     745             : 
     746         184 :         pool_id <<= WORK_OFFQ_POOL_SHIFT;
     747         184 :         set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
     748         184 : }
     749             : 
     750           0 : static bool work_is_canceling(struct work_struct *work)
     751             : {
     752           0 :         unsigned long data = atomic_long_read(&work->data);
     753             : 
     754           0 :         return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
     755             : }
     756             : 
     757             : /*
     758             :  * Policy functions.  These define the policies on how the global worker
     759             :  * pools are managed.  Unless noted otherwise, these functions assume that
     760             :  * they're being called with pool->lock held.
     761             :  */
     762             : 
     763        3724 : static bool __need_more_worker(struct worker_pool *pool)
     764             : {
     765        1818 :         return !atomic_read(&pool->nr_running);
     766             : }
     767             : 
     768             : /*
     769             :  * Need to wake up a worker?  Called from anything but currently
     770             :  * running workers.
     771             :  *
     772             :  * Note that, because unbound workers never contribute to nr_running, this
     773             :  * function will always return %true for unbound pools as long as the
     774             :  * worklist isn't empty.
     775             :  */
     776        3601 : static bool need_more_worker(struct worker_pool *pool)
     777             : {
     778        5419 :         return !list_empty(&pool->worklist) && __need_more_worker(pool);
     779             : }
     780             : 
     781             : /* Can I start working?  Called from busy but !running workers. */
     782        1661 : static bool may_start_working(struct worker_pool *pool)
     783             : {
     784        1661 :         return pool->nr_idle;
     785             : }
     786             : 
     787             : /* Do I need to keep working?  Called from currently running workers. */
     788        1895 : static bool keep_working(struct worker_pool *pool)
     789             : {
     790        1895 :         return !list_empty(&pool->worklist) &&
     791         256 :                 atomic_read(&pool->nr_running) <= 1;
     792             : }
     793             : 
     794             : /* Do we need a new worker?  Called from manager. */
     795          13 : static bool need_to_create_worker(struct worker_pool *pool)
     796             : {
     797          13 :         return need_more_worker(pool) && !may_start_working(pool);
     798             : }
     799             : 
     800             : /* Do we have too many workers and should some go away? */
     801        1691 : static bool too_many_workers(struct worker_pool *pool)
     802             : {
     803        1691 :         bool managing = pool->flags & POOL_MANAGER_ACTIVE;
     804        1691 :         int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
     805        1691 :         int nr_busy = pool->nr_workers - nr_idle;
     806             : 
     807        1691 :         return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
     808             : }
     809             : 
     810             : /*
     811             :  * Wake up functions.
     812             :  */
     813             : 
     814             : /* Return the first idle worker.  Safe with preemption disabled */
     815        1838 : static struct worker *first_idle_worker(struct worker_pool *pool)
     816             : {
     817        1838 :         if (unlikely(list_empty(&pool->idle_list)))
     818             :                 return NULL;
     819             : 
     820        1836 :         return list_first_entry(&pool->idle_list, struct worker, entry);
     821             : }
     822             : 
     823             : /**
     824             :  * wake_up_worker - wake up an idle worker
     825             :  * @pool: worker pool to wake worker from
     826             :  *
     827             :  * Wake up the first idle worker of @pool.
     828             :  *
     829             :  * CONTEXT:
     830             :  * raw_spin_lock_irq(pool->lock).
     831             :  */
     832        1837 : static void wake_up_worker(struct worker_pool *pool)
     833             : {
     834        1837 :         struct worker *worker = first_idle_worker(pool);
     835             : 
     836        1837 :         if (likely(worker))
     837        1836 :                 wake_up_process(worker->task);
     838        1841 : }
     839             : 
     840             : /**
     841             :  * wq_worker_running - a worker is running again
     842             :  * @task: task waking up
     843             :  *
     844             :  * This function is called when a worker returns from schedule()
     845             :  */
     846        1869 : void wq_worker_running(struct task_struct *task)
     847             : {
     848        1869 :         struct worker *worker = kthread_data(task);
     849             : 
     850        1870 :         if (!worker->sleeping)
     851             :                 return;
     852         151 :         if (!(worker->flags & WORKER_NOT_RUNNING))
     853         151 :                 atomic_inc(&worker->pool->nr_running);
     854         151 :         worker->sleeping = 0;
     855             : }
     856             : 
     857             : /**
     858             :  * wq_worker_sleeping - a worker is going to sleep
     859             :  * @task: task going to sleep
     860             :  *
     861             :  * This function is called from schedule() when a busy worker is
     862             :  * going to sleep. Preemption needs to be disabled to protect ->sleeping
     863             :  * assignment.
     864             :  */
     865        1898 : void wq_worker_sleeping(struct task_struct *task)
     866             : {
     867        1898 :         struct worker *next, *worker = kthread_data(task);
     868        1898 :         struct worker_pool *pool;
     869             : 
     870             :         /*
     871             :          * Rescuers, which may not have all the fields set up like normal
     872             :          * workers, also reach here, let's not access anything before
     873             :          * checking NOT_RUNNING.
     874             :          */
     875        1898 :         if (worker->flags & WORKER_NOT_RUNNING)
     876             :                 return;
     877             : 
     878         151 :         pool = worker->pool;
     879             : 
     880             :         /* Return if preempted before wq_worker_running() was reached */
     881         151 :         if (worker->sleeping)
     882             :                 return;
     883             : 
     884         151 :         worker->sleeping = 1;
     885         151 :         raw_spin_lock_irq(&pool->lock);
     886             : 
     887             :         /*
     888             :          * The counterpart of the following dec_and_test, implied mb,
     889             :          * worklist not empty test sequence is in insert_work().
     890             :          * Please read comment there.
     891             :          *
     892             :          * NOT_RUNNING is clear.  This means that we're bound to and
     893             :          * running on the local cpu w/ rq lock held and preemption
     894             :          * disabled, which in turn means that none else could be
     895             :          * manipulating idle_list, so dereferencing idle_list without pool
     896             :          * lock is safe.
     897             :          */
     898         302 :         if (atomic_dec_and_test(&pool->nr_running) &&
     899         151 :             !list_empty(&pool->worklist)) {
     900           1 :                 next = first_idle_worker(pool);
     901           1 :                 if (next)
     902           1 :                         wake_up_process(next->task);
     903             :         }
     904         151 :         raw_spin_unlock_irq(&pool->lock);
     905             : }
     906             : 
     907             : /**
     908             :  * wq_worker_last_func - retrieve worker's last work function
     909             :  * @task: Task to retrieve last work function of.
     910             :  *
     911             :  * Determine the last function a worker executed. This is called from
     912             :  * the scheduler to get a worker's last known identity.
     913             :  *
     914             :  * CONTEXT:
     915             :  * raw_spin_lock_irq(rq->lock)
     916             :  *
     917             :  * This function is called during schedule() when a kworker is going
     918             :  * to sleep. It's used by psi to identify aggregation workers during
     919             :  * dequeuing, to allow periodic aggregation to shut-off when that
     920             :  * worker is the last task in the system or cgroup to go to sleep.
     921             :  *
     922             :  * As this function doesn't involve any workqueue-related locking, it
     923             :  * only returns stable values when called from inside the scheduler's
     924             :  * queuing and dequeuing paths, when @task, which must be a kworker,
     925             :  * is guaranteed to not be processing any works.
     926             :  *
     927             :  * Return:
     928             :  * The last work function %current executed as a worker, NULL if it
     929             :  * hasn't executed any work yet.
     930             :  */
     931           0 : work_func_t wq_worker_last_func(struct task_struct *task)
     932             : {
     933           0 :         struct worker *worker = kthread_data(task);
     934             : 
     935           0 :         return worker->last_func;
     936             : }
     937             : 
     938             : /**
     939             :  * worker_set_flags - set worker flags and adjust nr_running accordingly
     940             :  * @worker: self
     941             :  * @flags: flags to set
     942             :  *
     943             :  * Set @flags in @worker->flags and adjust nr_running accordingly.
     944             :  *
     945             :  * CONTEXT:
     946             :  * raw_spin_lock_irq(pool->lock)
     947             :  */
     948        1639 : static inline void worker_set_flags(struct worker *worker, unsigned int flags)
     949             : {
     950        1639 :         struct worker_pool *pool = worker->pool;
     951             : 
     952        1639 :         WARN_ON_ONCE(worker->task != current);
     953             : 
     954             :         /* If transitioning into NOT_RUNNING, adjust nr_running. */
     955        1639 :         if ((flags & WORKER_NOT_RUNNING) &&
     956        1639 :             !(worker->flags & WORKER_NOT_RUNNING)) {
     957        1525 :                 atomic_dec(&pool->nr_running);
     958             :         }
     959             : 
     960        1639 :         worker->flags |= flags;
     961        1639 : }
     962             : 
     963             : /**
     964             :  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
     965             :  * @worker: self
     966             :  * @flags: flags to clear
     967             :  *
     968             :  * Clear @flags in @worker->flags and adjust nr_running accordingly.
     969             :  *
     970             :  * CONTEXT:
     971             :  * raw_spin_lock_irq(pool->lock)
     972             :  */
     973        3308 : static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
     974             : {
     975        3308 :         struct worker_pool *pool = worker->pool;
     976        3308 :         unsigned int oflags = worker->flags;
     977             : 
     978        3308 :         WARN_ON_ONCE(worker->task != current);
     979             : 
     980        3308 :         worker->flags &= ~flags;
     981             : 
     982             :         /*
     983             :          * If transitioning out of NOT_RUNNING, increment nr_running.  Note
     984             :          * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
     985             :          * of multiple flags, not a single flag.
     986             :          */
     987        3308 :         if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
     988        1639 :                 if (!(worker->flags & WORKER_NOT_RUNNING))
     989        1525 :                         atomic_inc(&pool->nr_running);
     990        3308 : }
     991             : 
     992             : /**
     993             :  * find_worker_executing_work - find worker which is executing a work
     994             :  * @pool: pool of interest
     995             :  * @work: work to find worker for
     996             :  *
     997             :  * Find a worker which is executing @work on @pool by searching
     998             :  * @pool->busy_hash which is keyed by the address of @work.  For a worker
     999             :  * to match, its current execution should match the address of @work and
    1000             :  * its work function.  This is to avoid unwanted dependency between
    1001             :  * unrelated work executions through a work item being recycled while still
    1002             :  * being executed.
    1003             :  *
    1004             :  * This is a bit tricky.  A work item may be freed once its execution
    1005             :  * starts and nothing prevents the freed area from being recycled for
    1006             :  * another work item.  If the same work item address ends up being reused
    1007             :  * before the original execution finishes, workqueue will identify the
    1008             :  * recycled work item as currently executing and make it wait until the
    1009             :  * current execution finishes, introducing an unwanted dependency.
    1010             :  *
    1011             :  * This function checks the work item address and work function to avoid
    1012             :  * false positives.  Note that this isn't complete as one may construct a
    1013             :  * work function which can introduce dependency onto itself through a
    1014             :  * recycled work item.  Well, if somebody wants to shoot oneself in the
    1015             :  * foot that badly, there's only so much we can do, and if such deadlock
    1016             :  * actually occurs, it should be easy to locate the culprit work function.
    1017             :  *
    1018             :  * CONTEXT:
    1019             :  * raw_spin_lock_irq(pool->lock).
    1020             :  *
    1021             :  * Return:
    1022             :  * Pointer to worker which is executing @work if found, %NULL
    1023             :  * otherwise.
    1024             :  */
    1025        2194 : static struct worker *find_worker_executing_work(struct worker_pool *pool,
    1026             :                                                  struct work_struct *work)
    1027             : {
    1028        2194 :         struct worker *worker;
    1029             : 
    1030        4388 :         hash_for_each_possible(pool->busy_hash, worker, hentry,
    1031             :                                (unsigned long)work)
    1032           3 :                 if (worker->current_work == work &&
    1033           3 :                     worker->current_func == work->func)
    1034           3 :                         return worker;
    1035             : 
    1036             :         return NULL;
    1037             : }
    1038             : 
    1039             : /**
    1040             :  * move_linked_works - move linked works to a list
    1041             :  * @work: start of series of works to be scheduled
    1042             :  * @head: target list to append @work to
    1043             :  * @nextp: out parameter for nested worklist walking
    1044             :  *
    1045             :  * Schedule linked works starting from @work to @head.  Work series to
    1046             :  * be scheduled starts at @work and includes any consecutive work with
    1047             :  * WORK_STRUCT_LINKED set in its predecessor.
    1048             :  *
    1049             :  * If @nextp is not NULL, it's updated to point to the next work of
    1050             :  * the last scheduled work.  This allows move_linked_works() to be
    1051             :  * nested inside outer list_for_each_entry_safe().
    1052             :  *
    1053             :  * CONTEXT:
    1054             :  * raw_spin_lock_irq(pool->lock).
    1055             :  */
    1056          48 : static void move_linked_works(struct work_struct *work, struct list_head *head,
    1057             :                               struct work_struct **nextp)
    1058             : {
    1059          48 :         struct work_struct *n;
    1060             : 
    1061             :         /*
    1062             :          * Linked worklist will always end before the end of the list,
    1063             :          * use NULL for list head.
    1064             :          */
    1065          56 :         list_for_each_entry_safe_from(work, n, NULL, entry) {
    1066          56 :                 list_move_tail(&work->entry, head);
    1067          56 :                 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
    1068             :                         break;
    1069             :         }
    1070             : 
    1071             :         /*
    1072             :          * If we're already inside safe list traversal and have moved
    1073             :          * multiple works to the scheduled queue, the next position
    1074             :          * needs to be updated.
    1075             :          */
    1076          48 :         if (nextp)
    1077           0 :                 *nextp = n;
    1078          48 : }
    1079             : 
    1080             : /**
    1081             :  * get_pwq - get an extra reference on the specified pool_workqueue
    1082             :  * @pwq: pool_workqueue to get
    1083             :  *
    1084             :  * Obtain an extra reference on @pwq.  The caller should guarantee that
    1085             :  * @pwq has positive refcnt and be holding the matching pool->lock.
    1086             :  */
    1087        1903 : static void get_pwq(struct pool_workqueue *pwq)
    1088             : {
    1089        3809 :         lockdep_assert_held(&pwq->pool->lock);
    1090        1905 :         WARN_ON_ONCE(pwq->refcnt <= 0);
    1091        1905 :         pwq->refcnt++;
    1092        1905 : }
    1093             : 
    1094             : /**
    1095             :  * put_pwq - put a pool_workqueue reference
    1096             :  * @pwq: pool_workqueue to put
    1097             :  *
    1098             :  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
    1099             :  * destruction.  The caller should be holding the matching pool->lock.
    1100             :  */
    1101        1908 : static void put_pwq(struct pool_workqueue *pwq)
    1102             : {
    1103        3816 :         lockdep_assert_held(&pwq->pool->lock);
    1104        1908 :         if (likely(--pwq->refcnt))
    1105             :                 return;
    1106           1 :         if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
    1107             :                 return;
    1108             :         /*
    1109             :          * @pwq can't be released under pool->lock, bounce to
    1110             :          * pwq_unbound_release_workfn().  This never recurses on the same
    1111             :          * pool->lock as this path is taken only for unbound workqueues and
    1112             :          * the release work item is scheduled on a per-cpu workqueue.  To
    1113             :          * avoid lockdep warning, unbound pool->locks are given lockdep
    1114             :          * subclass of 1 in get_unbound_pool().
    1115             :          */
    1116           1 :         schedule_work(&pwq->unbound_release_work);
    1117             : }
    1118             : 
    1119             : /**
    1120             :  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
    1121             :  * @pwq: pool_workqueue to put (can be %NULL)
    1122             :  *
    1123             :  * put_pwq() with locking.  This function also allows %NULL @pwq.
    1124             :  */
    1125          12 : static void put_pwq_unlocked(struct pool_workqueue *pwq)
    1126             : {
    1127          12 :         if (pwq) {
    1128             :                 /*
    1129             :                  * As both pwqs and pools are RCU protected, the
    1130             :                  * following lock operations are safe.
    1131             :                  */
    1132           2 :                 raw_spin_lock_irq(&pwq->pool->lock);
    1133           2 :                 put_pwq(pwq);
    1134           2 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    1135             :         }
    1136          12 : }
    1137             : 
    1138          40 : static void pwq_activate_delayed_work(struct work_struct *work)
    1139             : {
    1140          40 :         struct pool_workqueue *pwq = get_work_pwq(work);
    1141             : 
    1142          40 :         trace_workqueue_activate_work(work);
    1143          40 :         if (list_empty(&pwq->pool->worklist))
    1144          37 :                 pwq->pool->watchdog_ts = jiffies;
    1145          40 :         move_linked_works(work, &pwq->pool->worklist, NULL);
    1146          40 :         __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
    1147          40 :         pwq->nr_active++;
    1148          40 : }
    1149             : 
    1150          40 : static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
    1151             : {
    1152          40 :         struct work_struct *work = list_first_entry(&pwq->delayed_works,
    1153             :                                                     struct work_struct, entry);
    1154             : 
    1155          40 :         pwq_activate_delayed_work(work);
    1156          40 : }
    1157             : 
    1158             : /**
    1159             :  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
    1160             :  * @pwq: pwq of interest
    1161             :  * @color: color of work which left the queue
    1162             :  *
    1163             :  * A work either has completed or is removed from pending queue,
    1164             :  * decrement nr_in_flight of its pwq and handle workqueue flushing.
    1165             :  *
    1166             :  * CONTEXT:
    1167             :  * raw_spin_lock_irq(pool->lock).
    1168             :  */
    1169        1906 : static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
    1170             : {
    1171             :         /* uncolored work items don't participate in flushing or nr_active */
    1172        1906 :         if (color == WORK_NO_COLOR)
    1173          11 :                 goto out_put;
    1174             : 
    1175        1895 :         pwq->nr_in_flight[color]--;
    1176             : 
    1177        1895 :         pwq->nr_active--;
    1178        1895 :         if (!list_empty(&pwq->delayed_works)) {
    1179             :                 /* one down, submit a delayed one */
    1180          40 :                 if (pwq->nr_active < pwq->max_active)
    1181          40 :                         pwq_activate_first_delayed(pwq);
    1182             :         }
    1183             : 
    1184             :         /* is flush in progress and are we at the flushing tip? */
    1185        1895 :         if (likely(pwq->flush_color != color))
    1186        1895 :                 goto out_put;
    1187             : 
    1188             :         /* are there still in-flight works? */
    1189           0 :         if (pwq->nr_in_flight[color])
    1190           0 :                 goto out_put;
    1191             : 
    1192             :         /* this pwq is done, clear flush_color */
    1193           0 :         pwq->flush_color = -1;
    1194             : 
    1195             :         /*
    1196             :          * If this was the last pwq, wake up the first flusher.  It
    1197             :          * will handle the rest.
    1198             :          */
    1199           0 :         if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
    1200           0 :                 complete(&pwq->wq->first_flusher->done);
    1201           0 : out_put:
    1202        1906 :         put_pwq(pwq);
    1203        1906 : }
    1204             : 
    1205             : /**
    1206             :  * try_to_grab_pending - steal work item from worklist and disable irq
    1207             :  * @work: work item to steal
    1208             :  * @is_dwork: @work is a delayed_work
    1209             :  * @flags: place to store irq state
    1210             :  *
    1211             :  * Try to grab PENDING bit of @work.  This function can handle @work in any
    1212             :  * stable state - idle, on timer or on worklist.
    1213             :  *
    1214             :  * Return:
    1215             :  *
    1216             :  *  ========    ================================================================
    1217             :  *  1           if @work was pending and we successfully stole PENDING
    1218             :  *  0           if @work was idle and we claimed PENDING
    1219             :  *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
    1220             :  *  -ENOENT     if someone else is canceling @work, this state may persist
    1221             :  *              for arbitrarily long
    1222             :  *  ========    ================================================================
    1223             :  *
    1224             :  * Note:
    1225             :  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
    1226             :  * interrupted while holding PENDING and @work off queue, irq must be
    1227             :  * disabled on entry.  This, combined with delayed_work->timer being
    1228             :  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
    1229             :  *
    1230             :  * On successful return, >= 0, irq is disabled and the caller is
    1231             :  * responsible for releasing it using local_irq_restore(*@flags).
    1232             :  *
    1233             :  * This function is safe to call from any context including IRQ handler.
    1234             :  */
    1235         433 : static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
    1236             :                                unsigned long *flags)
    1237             : {
    1238         433 :         struct worker_pool *pool;
    1239         433 :         struct pool_workqueue *pwq;
    1240             : 
    1241         866 :         local_irq_save(*flags);
    1242             : 
    1243             :         /* try to steal the timer if it exists */
    1244         433 :         if (is_dwork) {
    1245         249 :                 struct delayed_work *dwork = to_delayed_work(work);
    1246             : 
    1247             :                 /*
    1248             :                  * dwork->timer is irqsafe.  If del_timer() fails, it's
    1249             :                  * guaranteed that the timer is not queued anywhere and not
    1250             :                  * running on the local CPU.
    1251             :                  */
    1252         249 :                 if (likely(del_timer(&dwork->timer)))
    1253             :                         return 1;
    1254             :         }
    1255             : 
    1256             :         /* try to claim PENDING the normal way */
    1257         431 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
    1258             :                 return 0;
    1259             : 
    1260           0 :         rcu_read_lock();
    1261             :         /*
    1262             :          * The queueing is in progress, or it is already queued. Try to
    1263             :          * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
    1264             :          */
    1265           0 :         pool = get_work_pool(work);
    1266           0 :         if (!pool)
    1267           0 :                 goto fail;
    1268             : 
    1269           0 :         raw_spin_lock(&pool->lock);
    1270             :         /*
    1271             :          * work->data is guaranteed to point to pwq only while the work
    1272             :          * item is queued on pwq->wq, and both updating work->data to point
    1273             :          * to pwq on queueing and to pool on dequeueing are done under
    1274             :          * pwq->pool->lock.  This in turn guarantees that, if work->data
    1275             :          * points to pwq which is associated with a locked pool, the work
    1276             :          * item is currently queued on that pool.
    1277             :          */
    1278           0 :         pwq = get_work_pwq(work);
    1279           0 :         if (pwq && pwq->pool == pool) {
    1280           0 :                 debug_work_deactivate(work);
    1281             : 
    1282             :                 /*
    1283             :                  * A delayed work item cannot be grabbed directly because
    1284             :                  * it might have linked NO_COLOR work items which, if left
    1285             :                  * on the delayed_list, will confuse pwq->nr_active
    1286             :                  * management later on and cause stall.  Make sure the work
    1287             :                  * item is activated before grabbing.
    1288             :                  */
    1289           0 :                 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
    1290           0 :                         pwq_activate_delayed_work(work);
    1291             : 
    1292           0 :                 list_del_init(&work->entry);
    1293           0 :                 pwq_dec_nr_in_flight(pwq, get_work_color(work));
    1294             : 
    1295             :                 /* work->data points to pwq iff queued, point to pool */
    1296           0 :                 set_work_pool_and_keep_pending(work, pool->id);
    1297             : 
    1298           0 :                 raw_spin_unlock(&pool->lock);
    1299           0 :                 rcu_read_unlock();
    1300           0 :                 return 1;
    1301             :         }
    1302           0 :         raw_spin_unlock(&pool->lock);
    1303           0 : fail:
    1304           0 :         rcu_read_unlock();
    1305           0 :         local_irq_restore(*flags);
    1306           0 :         if (work_is_canceling(work))
    1307             :                 return -ENOENT;
    1308           0 :         cpu_relax();
    1309           0 :         return -EAGAIN;
    1310             : }
    1311             : 
    1312             : /**
    1313             :  * insert_work - insert a work into a pool
    1314             :  * @pwq: pwq @work belongs to
    1315             :  * @work: work to insert
    1316             :  * @head: insertion point
    1317             :  * @extra_flags: extra WORK_STRUCT_* flags to set
    1318             :  *
    1319             :  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
    1320             :  * work_struct flags.
    1321             :  *
    1322             :  * CONTEXT:
    1323             :  * raw_spin_lock_irq(pool->lock).
    1324             :  */
    1325        1905 : static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
    1326             :                         struct list_head *head, unsigned int extra_flags)
    1327             : {
    1328        1905 :         struct worker_pool *pool = pwq->pool;
    1329             : 
    1330             :         /* record the work call stack in order to print it in KASAN reports */
    1331        1905 :         kasan_record_aux_stack(work);
    1332             : 
    1333             :         /* we own @work, set data and link */
    1334        1905 :         set_work_pwq(work, pwq, extra_flags);
    1335        1906 :         list_add_tail(&work->entry, head);
    1336        1906 :         get_pwq(pwq);
    1337             : 
    1338             :         /*
    1339             :          * Ensure either wq_worker_sleeping() sees the above
    1340             :          * list_add_tail() or we see zero nr_running to avoid workers lying
    1341             :          * around lazily while there are works to be processed.
    1342             :          */
    1343        1906 :         smp_mb();
    1344             : 
    1345        1906 :         if (__need_more_worker(pool))
    1346        1839 :                 wake_up_worker(pool);
    1347        1906 : }
    1348             : 
    1349             : /*
    1350             :  * Test whether @work is being queued from another work executing on the
    1351             :  * same workqueue.
    1352             :  */
    1353           0 : static bool is_chained_work(struct workqueue_struct *wq)
    1354             : {
    1355           0 :         struct worker *worker;
    1356             : 
    1357           0 :         worker = current_wq_worker();
    1358             :         /*
    1359             :          * Return %true iff I'm a worker executing a work item on @wq.  If
    1360             :          * I'm @worker, it's safe to dereference it without locking.
    1361             :          */
    1362           0 :         return worker && worker->current_pwq->wq == wq;
    1363             : }
    1364             : 
    1365             : /*
    1366             :  * When queueing an unbound work item to a wq, prefer local CPU if allowed
    1367             :  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
    1368             :  * avoid perturbing sensitive tasks.
    1369             :  */
    1370         117 : static int wq_select_unbound_cpu(int cpu)
    1371             : {
    1372         117 :         static bool printed_dbg_warning;
    1373         117 :         int new_cpu;
    1374             : 
    1375         117 :         if (likely(!wq_debug_force_rr_cpu)) {
    1376         117 :                 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
    1377             :                         return cpu;
    1378           0 :         } else if (!printed_dbg_warning) {
    1379           0 :                 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
    1380           0 :                 printed_dbg_warning = true;
    1381             :         }
    1382             : 
    1383           0 :         if (cpumask_empty(wq_unbound_cpumask))
    1384             :                 return cpu;
    1385             : 
    1386           0 :         new_cpu = __this_cpu_read(wq_rr_cpu_last);
    1387           0 :         new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
    1388           0 :         if (unlikely(new_cpu >= nr_cpu_ids)) {
    1389           0 :                 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
    1390           0 :                 if (unlikely(new_cpu >= nr_cpu_ids))
    1391             :                         return cpu;
    1392             :         }
    1393           0 :         __this_cpu_write(wq_rr_cpu_last, new_cpu);
    1394             : 
    1395           0 :         return new_cpu;
    1396             : }
    1397             : 
    1398        1894 : static void __queue_work(int cpu, struct workqueue_struct *wq,
    1399             :                          struct work_struct *work)
    1400             : {
    1401        1894 :         struct pool_workqueue *pwq;
    1402        1894 :         struct worker_pool *last_pool;
    1403        1894 :         struct list_head *worklist;
    1404        1894 :         unsigned int work_flags;
    1405        1894 :         unsigned int req_cpu = cpu;
    1406             : 
    1407             :         /*
    1408             :          * While a work item is PENDING && off queue, a task trying to
    1409             :          * steal the PENDING will busy-loop waiting for it to either get
    1410             :          * queued or lose PENDING.  Grabbing PENDING and queueing should
    1411             :          * happen with IRQ disabled.
    1412             :          */
    1413        3788 :         lockdep_assert_irqs_disabled();
    1414             : 
    1415        1894 :         debug_work_activate(work);
    1416             : 
    1417             :         /* if draining, only works from the same workqueue are allowed */
    1418        1894 :         if (unlikely(wq->flags & __WQ_DRAINING) &&
    1419           0 :             WARN_ON_ONCE(!is_chained_work(wq)))
    1420             :                 return;
    1421        1894 :         rcu_read_lock();
    1422        1894 : retry:
    1423             :         /* pwq which will be used unless @work is executing elsewhere */
    1424        1894 :         if (wq->flags & WQ_UNBOUND) {
    1425         117 :                 if (req_cpu == WORK_CPU_UNBOUND)
    1426         117 :                         cpu = wq_select_unbound_cpu(raw_smp_processor_id());
    1427         117 :                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
    1428             :         } else {
    1429        1777 :                 if (req_cpu == WORK_CPU_UNBOUND)
    1430        1594 :                         cpu = raw_smp_processor_id();
    1431        1777 :                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    1432             :         }
    1433             : 
    1434             :         /*
    1435             :          * If @work was previously on a different pool, it might still be
    1436             :          * running there, in which case the work needs to be queued on that
    1437             :          * pool to guarantee non-reentrancy.
    1438             :          */
    1439        1894 :         last_pool = get_work_pool(work);
    1440        1894 :         if (last_pool && last_pool != pwq->pool) {
    1441         279 :                 struct worker *worker;
    1442             : 
    1443         279 :                 raw_spin_lock(&last_pool->lock);
    1444             : 
    1445         279 :                 worker = find_worker_executing_work(last_pool, work);
    1446             : 
    1447         279 :                 if (worker && worker->current_pwq->wq == wq) {
    1448             :                         pwq = worker->current_pwq;
    1449             :                 } else {
    1450             :                         /* meh... not running there, queue here */
    1451         279 :                         raw_spin_unlock(&last_pool->lock);
    1452         279 :                         raw_spin_lock(&pwq->pool->lock);
    1453             :                 }
    1454             :         } else {
    1455        1615 :                 raw_spin_lock(&pwq->pool->lock);
    1456             :         }
    1457             : 
    1458             :         /*
    1459             :          * pwq is determined and locked.  For unbound pools, we could have
    1460             :          * raced with pwq release and it could already be dead.  If its
    1461             :          * refcnt is zero, repeat pwq selection.  Note that pwqs never die
    1462             :          * without another pwq replacing it in the numa_pwq_tbl or while
    1463             :          * work items are executing on it, so the retrying is guaranteed to
    1464             :          * make forward-progress.
    1465             :          */
    1466        1895 :         if (unlikely(!pwq->refcnt)) {
    1467           0 :                 if (wq->flags & WQ_UNBOUND) {
    1468           0 :                         raw_spin_unlock(&pwq->pool->lock);
    1469           0 :                         cpu_relax();
    1470           0 :                         goto retry;
    1471             :                 }
    1472             :                 /* oops */
    1473           0 :                 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
    1474             :                           wq->name, cpu);
    1475             :         }
    1476             : 
    1477             :         /* pwq determined, queue */
    1478        1895 :         trace_workqueue_queue_work(req_cpu, pwq, work);
    1479             : 
    1480        1894 :         if (WARN_ON(!list_empty(&work->entry)))
    1481           0 :                 goto out;
    1482             : 
    1483        1894 :         pwq->nr_in_flight[pwq->work_color]++;
    1484        1894 :         work_flags = work_color_to_flags(pwq->work_color);
    1485             : 
    1486        1894 :         if (likely(pwq->nr_active < pwq->max_active)) {
    1487        1854 :                 trace_workqueue_activate_work(work);
    1488        1854 :                 pwq->nr_active++;
    1489        1854 :                 worklist = &pwq->pool->worklist;
    1490        1854 :                 if (list_empty(worklist))
    1491        1701 :                         pwq->pool->watchdog_ts = jiffies;
    1492             :         } else {
    1493          40 :                 work_flags |= WORK_STRUCT_DELAYED;
    1494          40 :                 worklist = &pwq->delayed_works;
    1495             :         }
    1496             : 
    1497        1894 :         insert_work(pwq, work, worklist, work_flags);
    1498             : 
    1499        1895 : out:
    1500        1895 :         raw_spin_unlock(&pwq->pool->lock);
    1501        1895 :         rcu_read_unlock();
    1502             : }
    1503             : 
    1504             : /**
    1505             :  * queue_work_on - queue work on specific cpu
    1506             :  * @cpu: CPU number to execute work on
    1507             :  * @wq: workqueue to use
    1508             :  * @work: work to queue
    1509             :  *
    1510             :  * We queue the work to a specific CPU, the caller must ensure it
    1511             :  * can't go away.
    1512             :  *
    1513             :  * Return: %false if @work was already on a queue, %true otherwise.
    1514             :  */
    1515         848 : bool queue_work_on(int cpu, struct workqueue_struct *wq,
    1516             :                    struct work_struct *work)
    1517             : {
    1518         848 :         bool ret = false;
    1519         848 :         unsigned long flags;
    1520             : 
    1521        1696 :         local_irq_save(flags);
    1522             : 
    1523         848 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1524         837 :                 __queue_work(cpu, wq, work);
    1525         837 :                 ret = true;
    1526             :         }
    1527             : 
    1528         848 :         local_irq_restore(flags);
    1529         848 :         return ret;
    1530             : }
    1531             : EXPORT_SYMBOL(queue_work_on);
    1532             : 
    1533             : /**
    1534             :  * workqueue_select_cpu_near - Select a CPU based on NUMA node
    1535             :  * @node: NUMA node ID that we want to select a CPU from
    1536             :  *
    1537             :  * This function will attempt to find a "random" cpu available on a given
    1538             :  * node. If there are no CPUs available on the given node it will return
    1539             :  * WORK_CPU_UNBOUND indicating that we should just schedule to any
    1540             :  * available CPU if we need to schedule this work.
    1541             :  */
    1542           0 : static int workqueue_select_cpu_near(int node)
    1543             : {
    1544           0 :         int cpu;
    1545             : 
    1546             :         /* No point in doing this if NUMA isn't enabled for workqueues */
    1547           0 :         if (!wq_numa_enabled)
    1548             :                 return WORK_CPU_UNBOUND;
    1549             : 
    1550             :         /* Delay binding to CPU if node is not valid or online */
    1551           0 :         if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
    1552           0 :                 return WORK_CPU_UNBOUND;
    1553             : 
    1554             :         /* Use local node/cpu if we are already there */
    1555           0 :         cpu = raw_smp_processor_id();
    1556           0 :         if (node == cpu_to_node(cpu))
    1557             :                 return cpu;
    1558             : 
    1559             :         /* Use "random" otherwise know as "first" online CPU of node */
    1560           0 :         cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
    1561             : 
    1562             :         /* If CPU is valid return that, otherwise just defer */
    1563           0 :         return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
    1564             : }
    1565             : 
    1566             : /**
    1567             :  * queue_work_node - queue work on a "random" cpu for a given NUMA node
    1568             :  * @node: NUMA node that we are targeting the work for
    1569             :  * @wq: workqueue to use
    1570             :  * @work: work to queue
    1571             :  *
    1572             :  * We queue the work to a "random" CPU within a given NUMA node. The basic
    1573             :  * idea here is to provide a way to somehow associate work with a given
    1574             :  * NUMA node.
    1575             :  *
    1576             :  * This function will only make a best effort attempt at getting this onto
    1577             :  * the right NUMA node. If no node is requested or the requested node is
    1578             :  * offline then we just fall back to standard queue_work behavior.
    1579             :  *
    1580             :  * Currently the "random" CPU ends up being the first available CPU in the
    1581             :  * intersection of cpu_online_mask and the cpumask of the node, unless we
    1582             :  * are running on the node. In that case we just use the current CPU.
    1583             :  *
    1584             :  * Return: %false if @work was already on a queue, %true otherwise.
    1585             :  */
    1586           0 : bool queue_work_node(int node, struct workqueue_struct *wq,
    1587             :                      struct work_struct *work)
    1588             : {
    1589           0 :         unsigned long flags;
    1590           0 :         bool ret = false;
    1591             : 
    1592             :         /*
    1593             :          * This current implementation is specific to unbound workqueues.
    1594             :          * Specifically we only return the first available CPU for a given
    1595             :          * node instead of cycling through individual CPUs within the node.
    1596             :          *
    1597             :          * If this is used with a per-cpu workqueue then the logic in
    1598             :          * workqueue_select_cpu_near would need to be updated to allow for
    1599             :          * some round robin type logic.
    1600             :          */
    1601           0 :         WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
    1602             : 
    1603           0 :         local_irq_save(flags);
    1604             : 
    1605           0 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1606           0 :                 int cpu = workqueue_select_cpu_near(node);
    1607             : 
    1608           0 :                 __queue_work(cpu, wq, work);
    1609           0 :                 ret = true;
    1610             :         }
    1611             : 
    1612           0 :         local_irq_restore(flags);
    1613           0 :         return ret;
    1614             : }
    1615             : EXPORT_SYMBOL_GPL(queue_work_node);
    1616             : 
    1617         539 : void delayed_work_timer_fn(struct timer_list *t)
    1618             : {
    1619         539 :         struct delayed_work *dwork = from_timer(dwork, t, timer);
    1620             : 
    1621             :         /* should have been called from irqsafe timer with irq already off */
    1622         539 :         __queue_work(dwork->cpu, dwork->wq, &dwork->work);
    1623         541 : }
    1624             : EXPORT_SYMBOL(delayed_work_timer_fn);
    1625             : 
    1626         879 : static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
    1627             :                                 struct delayed_work *dwork, unsigned long delay)
    1628             : {
    1629         879 :         struct timer_list *timer = &dwork->timer;
    1630         879 :         struct work_struct *work = &dwork->work;
    1631             : 
    1632         879 :         WARN_ON_ONCE(!wq);
    1633         879 :         WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
    1634         879 :         WARN_ON_ONCE(timer_pending(timer));
    1635         879 :         WARN_ON_ONCE(!list_empty(&work->entry));
    1636             : 
    1637             :         /*
    1638             :          * If @delay is 0, queue @dwork->work immediately.  This is for
    1639             :          * both optimization and correctness.  The earliest @timer can
    1640             :          * expire is on the closest next tick and delayed_work users depend
    1641             :          * on that there's no such delay when @delay is 0.
    1642             :          */
    1643         879 :         if (!delay) {
    1644         320 :                 __queue_work(cpu, wq, &dwork->work);
    1645         320 :                 return;
    1646             :         }
    1647             : 
    1648         559 :         dwork->wq = wq;
    1649         559 :         dwork->cpu = cpu;
    1650         559 :         timer->expires = jiffies + delay;
    1651             : 
    1652         559 :         if (unlikely(cpu != WORK_CPU_UNBOUND))
    1653         110 :                 add_timer_on(timer, cpu);
    1654             :         else
    1655         449 :                 add_timer(timer);
    1656             : }
    1657             : 
    1658             : /**
    1659             :  * queue_delayed_work_on - queue work on specific CPU after delay
    1660             :  * @cpu: CPU number to execute work on
    1661             :  * @wq: workqueue to use
    1662             :  * @dwork: work to queue
    1663             :  * @delay: number of jiffies to wait before queueing
    1664             :  *
    1665             :  * Return: %false if @work was already on a queue, %true otherwise.  If
    1666             :  * @delay is zero and @dwork is idle, it will be scheduled for immediate
    1667             :  * execution.
    1668             :  */
    1669         635 : bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
    1670             :                            struct delayed_work *dwork, unsigned long delay)
    1671             : {
    1672         635 :         struct work_struct *work = &dwork->work;
    1673         635 :         bool ret = false;
    1674         635 :         unsigned long flags;
    1675             : 
    1676             :         /* read the comment in __queue_work() */
    1677        1270 :         local_irq_save(flags);
    1678             : 
    1679         635 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1680         632 :                 __queue_delayed_work(cpu, wq, dwork, delay);
    1681         632 :                 ret = true;
    1682             :         }
    1683             : 
    1684         635 :         local_irq_restore(flags);
    1685         635 :         return ret;
    1686             : }
    1687             : EXPORT_SYMBOL(queue_delayed_work_on);
    1688             : 
    1689             : /**
    1690             :  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
    1691             :  * @cpu: CPU number to execute work on
    1692             :  * @wq: workqueue to use
    1693             :  * @dwork: work to queue
    1694             :  * @delay: number of jiffies to wait before queueing
    1695             :  *
    1696             :  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
    1697             :  * modify @dwork's timer so that it expires after @delay.  If @delay is
    1698             :  * zero, @work is guaranteed to be scheduled immediately regardless of its
    1699             :  * current state.
    1700             :  *
    1701             :  * Return: %false if @dwork was idle and queued, %true if @dwork was
    1702             :  * pending and its timer was modified.
    1703             :  *
    1704             :  * This function is safe to call from any context including IRQ handler.
    1705             :  * See try_to_grab_pending() for details.
    1706             :  */
    1707         247 : bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
    1708             :                          struct delayed_work *dwork, unsigned long delay)
    1709             : {
    1710         247 :         unsigned long flags;
    1711         247 :         int ret;
    1712             : 
    1713         247 :         do {
    1714         247 :                 ret = try_to_grab_pending(&dwork->work, true, &flags);
    1715         247 :         } while (unlikely(ret == -EAGAIN));
    1716             : 
    1717         247 :         if (likely(ret >= 0)) {
    1718         247 :                 __queue_delayed_work(cpu, wq, dwork, delay);
    1719         247 :                 local_irq_restore(flags);
    1720             :         }
    1721             : 
    1722             :         /* -ENOENT from try_to_grab_pending() becomes %true */
    1723         247 :         return ret;
    1724             : }
    1725             : EXPORT_SYMBOL_GPL(mod_delayed_work_on);
    1726             : 
    1727         191 : static void rcu_work_rcufn(struct rcu_head *rcu)
    1728             : {
    1729         191 :         struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
    1730             : 
    1731             :         /* read the comment in __queue_work() */
    1732         191 :         local_irq_disable();
    1733         191 :         __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
    1734         191 :         local_irq_enable();
    1735         191 : }
    1736             : 
    1737             : /**
    1738             :  * queue_rcu_work - queue work after a RCU grace period
    1739             :  * @wq: workqueue to use
    1740             :  * @rwork: work to queue
    1741             :  *
    1742             :  * Return: %false if @rwork was already pending, %true otherwise.  Note
    1743             :  * that a full RCU grace period is guaranteed only after a %true return.
    1744             :  * While @rwork is guaranteed to be executed after a %false return, the
    1745             :  * execution may happen before a full RCU grace period has passed.
    1746             :  */
    1747         191 : bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
    1748             : {
    1749         191 :         struct work_struct *work = &rwork->work;
    1750             : 
    1751         191 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1752         191 :                 rwork->wq = wq;
    1753         191 :                 call_rcu(&rwork->rcu, rcu_work_rcufn);
    1754         191 :                 return true;
    1755             :         }
    1756             : 
    1757             :         return false;
    1758             : }
    1759             : EXPORT_SYMBOL(queue_rcu_work);
    1760             : 
    1761             : /**
    1762             :  * worker_enter_idle - enter idle state
    1763             :  * @worker: worker which is entering idle state
    1764             :  *
    1765             :  * @worker is entering idle state.  Update stats and idle timer if
    1766             :  * necessary.
    1767             :  *
    1768             :  * LOCKING:
    1769             :  * raw_spin_lock_irq(pool->lock).
    1770             :  */
    1771        1691 : static void worker_enter_idle(struct worker *worker)
    1772             : {
    1773        1691 :         struct worker_pool *pool = worker->pool;
    1774             : 
    1775        1691 :         if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
    1776        3382 :             WARN_ON_ONCE(!list_empty(&worker->entry) &&
    1777             :                          (worker->hentry.next || worker->hentry.pprev)))
    1778             :                 return;
    1779             : 
    1780             :         /* can't use worker_set_flags(), also called from create_worker() */
    1781        1691 :         worker->flags |= WORKER_IDLE;
    1782        1691 :         pool->nr_idle++;
    1783        1691 :         worker->last_active = jiffies;
    1784             : 
    1785             :         /* idle_list is LIFO */
    1786        1691 :         list_add(&worker->entry, &pool->idle_list);
    1787             : 
    1788        1691 :         if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
    1789           3 :                 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
    1790             : 
    1791             :         /*
    1792             :          * Sanity check nr_running.  Because unbind_workers() releases
    1793             :          * pool->lock between setting %WORKER_UNBOUND and zapping
    1794             :          * nr_running, the warning may trigger spuriously.  Check iff
    1795             :          * unbind is not in progress.
    1796             :          */
    1797        3234 :         WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
    1798             :                      pool->nr_workers == pool->nr_idle &&
    1799             :                      atomic_read(&pool->nr_running));
    1800             : }
    1801             : 
    1802             : /**
    1803             :  * worker_leave_idle - leave idle state
    1804             :  * @worker: worker which is leaving idle state
    1805             :  *
    1806             :  * @worker is leaving idle state.  Update stats.
    1807             :  *
    1808             :  * LOCKING:
    1809             :  * raw_spin_lock_irq(pool->lock).
    1810             :  */
    1811        1669 : static void worker_leave_idle(struct worker *worker)
    1812             : {
    1813        1669 :         struct worker_pool *pool = worker->pool;
    1814             : 
    1815        1669 :         if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
    1816             :                 return;
    1817        1669 :         worker_clr_flags(worker, WORKER_IDLE);
    1818        1670 :         pool->nr_idle--;
    1819        1670 :         list_del_init(&worker->entry);
    1820             : }
    1821             : 
    1822          28 : static struct worker *alloc_worker(int node)
    1823             : {
    1824          28 :         struct worker *worker;
    1825             : 
    1826          28 :         worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
    1827          28 :         if (worker) {
    1828          28 :                 INIT_LIST_HEAD(&worker->entry);
    1829          28 :                 INIT_LIST_HEAD(&worker->scheduled);
    1830          28 :                 INIT_LIST_HEAD(&worker->node);
    1831             :                 /* on creation a worker is in !idle && prep state */
    1832          28 :                 worker->flags = WORKER_PREP;
    1833             :         }
    1834          28 :         return worker;
    1835             : }
    1836             : 
    1837             : /**
    1838             :  * worker_attach_to_pool() - attach a worker to a pool
    1839             :  * @worker: worker to be attached
    1840             :  * @pool: the target pool
    1841             :  *
    1842             :  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
    1843             :  * cpu-binding of @worker are kept coordinated with the pool across
    1844             :  * cpu-[un]hotplugs.
    1845             :  */
    1846          21 : static void worker_attach_to_pool(struct worker *worker,
    1847             :                                    struct worker_pool *pool)
    1848             : {
    1849          21 :         mutex_lock(&wq_pool_attach_mutex);
    1850             : 
    1851             :         /*
    1852             :          * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
    1853             :          * stable across this function.  See the comments above the flag
    1854             :          * definition for details.
    1855             :          */
    1856          21 :         if (pool->flags & POOL_DISASSOCIATED)
    1857           9 :                 worker->flags |= WORKER_UNBOUND;
    1858             :         else
    1859          12 :                 kthread_set_per_cpu(worker->task, pool->cpu);
    1860             : 
    1861          21 :         if (worker->rescue_wq)
    1862           0 :                 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
    1863             : 
    1864          21 :         list_add_tail(&worker->node, &pool->workers);
    1865          21 :         worker->pool = pool;
    1866             : 
    1867          21 :         mutex_unlock(&wq_pool_attach_mutex);
    1868          21 : }
    1869             : 
    1870             : /**
    1871             :  * worker_detach_from_pool() - detach a worker from its pool
    1872             :  * @worker: worker which is attached to its pool
    1873             :  *
    1874             :  * Undo the attaching which had been done in worker_attach_to_pool().  The
    1875             :  * caller worker shouldn't access to the pool after detached except it has
    1876             :  * other reference to the pool.
    1877             :  */
    1878           0 : static void worker_detach_from_pool(struct worker *worker)
    1879             : {
    1880           0 :         struct worker_pool *pool = worker->pool;
    1881           0 :         struct completion *detach_completion = NULL;
    1882             : 
    1883           0 :         mutex_lock(&wq_pool_attach_mutex);
    1884             : 
    1885           0 :         kthread_set_per_cpu(worker->task, -1);
    1886           0 :         list_del(&worker->node);
    1887           0 :         worker->pool = NULL;
    1888             : 
    1889           0 :         if (list_empty(&pool->workers))
    1890           0 :                 detach_completion = pool->detach_completion;
    1891           0 :         mutex_unlock(&wq_pool_attach_mutex);
    1892             : 
    1893             :         /* clear leftover flags without pool->lock after it is detached */
    1894           0 :         worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
    1895             : 
    1896           0 :         if (detach_completion)
    1897           0 :                 complete(detach_completion);
    1898           0 : }
    1899             : 
    1900             : /**
    1901             :  * create_worker - create a new workqueue worker
    1902             :  * @pool: pool the new worker will belong to
    1903             :  *
    1904             :  * Create and start a new worker which is attached to @pool.
    1905             :  *
    1906             :  * CONTEXT:
    1907             :  * Might sleep.  Does GFP_KERNEL allocations.
    1908             :  *
    1909             :  * Return:
    1910             :  * Pointer to the newly created worker.
    1911             :  */
    1912          21 : static struct worker *create_worker(struct worker_pool *pool)
    1913             : {
    1914          21 :         struct worker *worker = NULL;
    1915          21 :         int id = -1;
    1916          21 :         char id_buf[16];
    1917             : 
    1918             :         /* ID is needed to determine kthread name */
    1919          21 :         id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
    1920          21 :         if (id < 0)
    1921           0 :                 goto fail;
    1922             : 
    1923          21 :         worker = alloc_worker(pool->node);
    1924          21 :         if (!worker)
    1925           0 :                 goto fail;
    1926             : 
    1927          21 :         worker->id = id;
    1928             : 
    1929          21 :         if (pool->cpu >= 0)
    1930          18 :                 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
    1931          18 :                          pool->attrs->nice < 0  ? "H" : "");
    1932             :         else
    1933           3 :                 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
    1934             : 
    1935          21 :         worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
    1936             :                                               "kworker/%s", id_buf);
    1937          21 :         if (IS_ERR(worker->task))
    1938           0 :                 goto fail;
    1939             : 
    1940          21 :         set_user_nice(worker->task, pool->attrs->nice);
    1941          21 :         kthread_bind_mask(worker->task, pool->attrs->cpumask);
    1942             : 
    1943             :         /* successful, attach the worker to the pool */
    1944          21 :         worker_attach_to_pool(worker, pool);
    1945             : 
    1946             :         /* start the newly created worker */
    1947          21 :         raw_spin_lock_irq(&pool->lock);
    1948          21 :         worker->pool->nr_workers++;
    1949          21 :         worker_enter_idle(worker);
    1950          21 :         wake_up_process(worker->task);
    1951          21 :         raw_spin_unlock_irq(&pool->lock);
    1952             : 
    1953          21 :         return worker;
    1954             : 
    1955           0 : fail:
    1956           0 :         if (id >= 0)
    1957           0 :                 ida_simple_remove(&pool->worker_ida, id);
    1958           0 :         kfree(worker);
    1959           0 :         return NULL;
    1960             : }
    1961             : 
    1962             : /**
    1963             :  * destroy_worker - destroy a workqueue worker
    1964             :  * @worker: worker to be destroyed
    1965             :  *
    1966             :  * Destroy @worker and adjust @pool stats accordingly.  The worker should
    1967             :  * be idle.
    1968             :  *
    1969             :  * CONTEXT:
    1970             :  * raw_spin_lock_irq(pool->lock).
    1971             :  */
    1972           0 : static void destroy_worker(struct worker *worker)
    1973             : {
    1974           0 :         struct worker_pool *pool = worker->pool;
    1975             : 
    1976           0 :         lockdep_assert_held(&pool->lock);
    1977             : 
    1978             :         /* sanity check frenzy */
    1979           0 :         if (WARN_ON(worker->current_work) ||
    1980           0 :             WARN_ON(!list_empty(&worker->scheduled)) ||
    1981           0 :             WARN_ON(!(worker->flags & WORKER_IDLE)))
    1982             :                 return;
    1983             : 
    1984           0 :         pool->nr_workers--;
    1985           0 :         pool->nr_idle--;
    1986             : 
    1987           0 :         list_del_init(&worker->entry);
    1988           0 :         worker->flags |= WORKER_DIE;
    1989           0 :         wake_up_process(worker->task);
    1990             : }
    1991             : 
    1992           0 : static void idle_worker_timeout(struct timer_list *t)
    1993             : {
    1994           0 :         struct worker_pool *pool = from_timer(pool, t, idle_timer);
    1995             : 
    1996           0 :         raw_spin_lock_irq(&pool->lock);
    1997             : 
    1998           0 :         while (too_many_workers(pool)) {
    1999           0 :                 struct worker *worker;
    2000           0 :                 unsigned long expires;
    2001             : 
    2002             :                 /* idle_list is kept in LIFO order, check the last one */
    2003           0 :                 worker = list_entry(pool->idle_list.prev, struct worker, entry);
    2004           0 :                 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
    2005             : 
    2006           0 :                 if (time_before(jiffies, expires)) {
    2007           0 :                         mod_timer(&pool->idle_timer, expires);
    2008           0 :                         break;
    2009             :                 }
    2010             : 
    2011           0 :                 destroy_worker(worker);
    2012             :         }
    2013             : 
    2014           0 :         raw_spin_unlock_irq(&pool->lock);
    2015           0 : }
    2016             : 
    2017           0 : static void send_mayday(struct work_struct *work)
    2018             : {
    2019           0 :         struct pool_workqueue *pwq = get_work_pwq(work);
    2020           0 :         struct workqueue_struct *wq = pwq->wq;
    2021             : 
    2022           0 :         lockdep_assert_held(&wq_mayday_lock);
    2023             : 
    2024           0 :         if (!wq->rescuer)
    2025             :                 return;
    2026             : 
    2027             :         /* mayday mayday mayday */
    2028           0 :         if (list_empty(&pwq->mayday_node)) {
    2029             :                 /*
    2030             :                  * If @pwq is for an unbound wq, its base ref may be put at
    2031             :                  * any time due to an attribute change.  Pin @pwq until the
    2032             :                  * rescuer is done with it.
    2033             :                  */
    2034           0 :                 get_pwq(pwq);
    2035           0 :                 list_add_tail(&pwq->mayday_node, &wq->maydays);
    2036           0 :                 wake_up_process(wq->rescuer->task);
    2037             :         }
    2038             : }
    2039             : 
    2040           1 : static void pool_mayday_timeout(struct timer_list *t)
    2041             : {
    2042           1 :         struct worker_pool *pool = from_timer(pool, t, mayday_timer);
    2043           1 :         struct work_struct *work;
    2044             : 
    2045           1 :         raw_spin_lock_irq(&pool->lock);
    2046           1 :         raw_spin_lock(&wq_mayday_lock);             /* for wq->maydays */
    2047             : 
    2048           1 :         if (need_to_create_worker(pool)) {
    2049             :                 /*
    2050             :                  * We've been trying to create a new worker but
    2051             :                  * haven't been successful.  We might be hitting an
    2052             :                  * allocation deadlock.  Send distress signals to
    2053             :                  * rescuers.
    2054             :                  */
    2055           0 :                 list_for_each_entry(work, &pool->worklist, entry)
    2056           0 :                         send_mayday(work);
    2057             :         }
    2058             : 
    2059           1 :         raw_spin_unlock(&wq_mayday_lock);
    2060           1 :         raw_spin_unlock_irq(&pool->lock);
    2061             : 
    2062           1 :         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
    2063           1 : }
    2064             : 
    2065             : /**
    2066             :  * maybe_create_worker - create a new worker if necessary
    2067             :  * @pool: pool to create a new worker for
    2068             :  *
    2069             :  * Create a new worker for @pool if necessary.  @pool is guaranteed to
    2070             :  * have at least one idle worker on return from this function.  If
    2071             :  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
    2072             :  * sent to all rescuers with works scheduled on @pool to resolve
    2073             :  * possible allocation deadlock.
    2074             :  *
    2075             :  * On return, need_to_create_worker() is guaranteed to be %false and
    2076             :  * may_start_working() %true.
    2077             :  *
    2078             :  * LOCKING:
    2079             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2080             :  * multiple times.  Does GFP_KERNEL allocations.  Called only from
    2081             :  * manager.
    2082             :  */
    2083          12 : static void maybe_create_worker(struct worker_pool *pool)
    2084             : __releases(&pool->lock)
    2085             : __acquires(&pool->lock)
    2086             : {
    2087          12 : restart:
    2088          12 :         raw_spin_unlock_irq(&pool->lock);
    2089             : 
    2090             :         /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
    2091          12 :         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
    2092             : 
    2093          12 :         while (true) {
    2094          12 :                 if (create_worker(pool) || !need_to_create_worker(pool))
    2095             :                         break;
    2096             : 
    2097           0 :                 schedule_timeout_interruptible(CREATE_COOLDOWN);
    2098             : 
    2099           0 :                 if (!need_to_create_worker(pool))
    2100             :                         break;
    2101             :         }
    2102             : 
    2103          12 :         del_timer_sync(&pool->mayday_timer);
    2104          12 :         raw_spin_lock_irq(&pool->lock);
    2105             :         /*
    2106             :          * This is necessary even after a new worker was just successfully
    2107             :          * created as @pool->lock was dropped and the new worker might have
    2108             :          * already become busy.
    2109             :          */
    2110          12 :         if (need_to_create_worker(pool))
    2111           0 :                 goto restart;
    2112          12 : }
    2113             : 
    2114             : /**
    2115             :  * manage_workers - manage worker pool
    2116             :  * @worker: self
    2117             :  *
    2118             :  * Assume the manager role and manage the worker pool @worker belongs
    2119             :  * to.  At any given time, there can be only zero or one manager per
    2120             :  * pool.  The exclusion is handled automatically by this function.
    2121             :  *
    2122             :  * The caller can safely start processing works on false return.  On
    2123             :  * true return, it's guaranteed that need_to_create_worker() is false
    2124             :  * and may_start_working() is true.
    2125             :  *
    2126             :  * CONTEXT:
    2127             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2128             :  * multiple times.  Does GFP_KERNEL allocations.
    2129             :  *
    2130             :  * Return:
    2131             :  * %false if the pool doesn't need management and the caller can safely
    2132             :  * start processing works, %true if management function was performed and
    2133             :  * the conditions that the caller verified before calling the function may
    2134             :  * no longer be true.
    2135             :  */
    2136          12 : static bool manage_workers(struct worker *worker)
    2137             : {
    2138          12 :         struct worker_pool *pool = worker->pool;
    2139             : 
    2140          12 :         if (pool->flags & POOL_MANAGER_ACTIVE)
    2141             :                 return false;
    2142             : 
    2143          12 :         pool->flags |= POOL_MANAGER_ACTIVE;
    2144          12 :         pool->manager = worker;
    2145             : 
    2146          12 :         maybe_create_worker(pool);
    2147             : 
    2148          12 :         pool->manager = NULL;
    2149          12 :         pool->flags &= ~POOL_MANAGER_ACTIVE;
    2150          12 :         rcuwait_wake_up(&manager_wait);
    2151          12 :         return true;
    2152             : }
    2153             : 
    2154             : /**
    2155             :  * process_one_work - process single work
    2156             :  * @worker: self
    2157             :  * @work: work to process
    2158             :  *
    2159             :  * Process @work.  This function contains all the logics necessary to
    2160             :  * process a single work including synchronization against and
    2161             :  * interaction with other workers on the same cpu, queueing and
    2162             :  * flushing.  As long as context requirement is met, any worker can
    2163             :  * call this function to process a work.
    2164             :  *
    2165             :  * CONTEXT:
    2166             :  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
    2167             :  */
    2168        1906 : static void process_one_work(struct worker *worker, struct work_struct *work)
    2169             : __releases(&pool->lock)
    2170             : __acquires(&pool->lock)
    2171             : {
    2172        1906 :         struct pool_workqueue *pwq = get_work_pwq(work);
    2173        1906 :         struct worker_pool *pool = worker->pool;
    2174        1906 :         bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
    2175        1906 :         int work_color;
    2176        1906 :         struct worker *collision;
    2177             : #ifdef CONFIG_LOCKDEP
    2178             :         /*
    2179             :          * It is permissible to free the struct work_struct from
    2180             :          * inside the function that is called from it, this we need to
    2181             :          * take into account for lockdep too.  To avoid bogus "held
    2182             :          * lock freed" warnings as well as problems when looking into
    2183             :          * work->lockdep_map, make a copy and use that here.
    2184             :          */
    2185        1906 :         struct lockdep_map lockdep_map;
    2186             : 
    2187        1906 :         lockdep_copy_map(&lockdep_map, &work->lockdep_map);
    2188             : #endif
    2189             :         /* ensure we're on the correct CPU */
    2190        3812 :         WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
    2191             :                      raw_smp_processor_id() != pool->cpu);
    2192             : 
    2193             :         /*
    2194             :          * A single work shouldn't be executed concurrently by
    2195             :          * multiple workers on a single cpu.  Check whether anyone is
    2196             :          * already processing the work.  If so, defer the work to the
    2197             :          * currently executing one.
    2198             :          */
    2199        1906 :         collision = find_worker_executing_work(pool, work);
    2200        1906 :         if (unlikely(collision)) {
    2201           0 :                 move_linked_works(work, &collision->scheduled, NULL);
    2202           0 :                 return;
    2203             :         }
    2204             : 
    2205             :         /* claim and dequeue */
    2206        1906 :         debug_work_deactivate(work);
    2207        1906 :         hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
    2208        1906 :         worker->current_work = work;
    2209        1906 :         worker->current_func = work->func;
    2210        1906 :         worker->current_pwq = pwq;
    2211        1906 :         work_color = get_work_color(work);
    2212             : 
    2213             :         /*
    2214             :          * Record wq name for cmdline and debug reporting, may get
    2215             :          * overridden through set_worker_desc().
    2216             :          */
    2217        1906 :         strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
    2218             : 
    2219        1906 :         list_del_init(&work->entry);
    2220             : 
    2221             :         /*
    2222             :          * CPU intensive works don't participate in concurrency management.
    2223             :          * They're the scheduler's responsibility.  This takes @worker out
    2224             :          * of concurrency management and the next code block will chain
    2225             :          * execution of the pending work items.
    2226             :          */
    2227        1906 :         if (unlikely(cpu_intensive))
    2228           0 :                 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
    2229             : 
    2230             :         /*
    2231             :          * Wake up another worker if necessary.  The condition is always
    2232             :          * false for normal per-cpu workers since nr_running would always
    2233             :          * be >= 1 at this point.  This is used to chain execution of the
    2234             :          * pending work items for WORKER_NOT_RUNNING workers such as the
    2235             :          * UNBOUND and CPU_INTENSIVE ones.
    2236             :          */
    2237        1906 :         if (need_more_worker(pool))
    2238           2 :                 wake_up_worker(pool);
    2239             : 
    2240             :         /*
    2241             :          * Record the last pool and clear PENDING which should be the last
    2242             :          * update to @work.  Also, do this inside @pool->lock so that
    2243             :          * PENDING and queued state changes happen together while IRQ is
    2244             :          * disabled.
    2245             :          */
    2246        1905 :         set_work_pool_and_clear_pending(work, pool->id);
    2247             : 
    2248        1906 :         raw_spin_unlock_irq(&pool->lock);
    2249             : 
    2250        1906 :         lock_map_acquire(&pwq->wq->lockdep_map);
    2251        1906 :         lock_map_acquire(&lockdep_map);
    2252             :         /*
    2253             :          * Strictly speaking we should mark the invariant state without holding
    2254             :          * any locks, that is, before these two lock_map_acquire()'s.
    2255             :          *
    2256             :          * However, that would result in:
    2257             :          *
    2258             :          *   A(W1)
    2259             :          *   WFC(C)
    2260             :          *              A(W1)
    2261             :          *              C(C)
    2262             :          *
    2263             :          * Which would create W1->C->W1 dependencies, even though there is no
    2264             :          * actual deadlock possible. There are two solutions, using a
    2265             :          * read-recursive acquire on the work(queue) 'locks', but this will then
    2266             :          * hit the lockdep limitation on recursive locks, or simply discard
    2267             :          * these locks.
    2268             :          *
    2269             :          * AFAICT there is no possible deadlock scenario between the
    2270             :          * flush_work() and complete() primitives (except for single-threaded
    2271             :          * workqueues), so hiding them isn't a problem.
    2272             :          */
    2273        1906 :         lockdep_invariant_state(true);
    2274        1906 :         trace_workqueue_execute_start(work);
    2275        1905 :         worker->current_func(work);
    2276             :         /*
    2277             :          * While we must be careful to not use "work" after this, the trace
    2278             :          * point will only record its address.
    2279             :          */
    2280        1906 :         trace_workqueue_execute_end(work, worker->current_func);
    2281        1906 :         lock_map_release(&lockdep_map);
    2282        1906 :         lock_map_release(&pwq->wq->lockdep_map);
    2283             : 
    2284        1906 :         if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
    2285           0 :                 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
    2286             :                        "     last function: %ps\n",
    2287             :                        current->comm, preempt_count(), task_pid_nr(current),
    2288             :                        worker->current_func);
    2289           0 :                 debug_show_held_locks(current);
    2290           0 :                 dump_stack();
    2291             :         }
    2292             : 
    2293             :         /*
    2294             :          * The following prevents a kworker from hogging CPU on !PREEMPTION
    2295             :          * kernels, where a requeueing work item waiting for something to
    2296             :          * happen could deadlock with stop_machine as such work item could
    2297             :          * indefinitely requeue itself while all other CPUs are trapped in
    2298             :          * stop_machine. At the same time, report a quiescent RCU state so
    2299             :          * the same condition doesn't freeze RCU.
    2300             :          */
    2301        1906 :         cond_resched();
    2302             : 
    2303        1906 :         raw_spin_lock_irq(&pool->lock);
    2304             : 
    2305             :         /* clear cpu intensive status */
    2306        1906 :         if (unlikely(cpu_intensive))
    2307           0 :                 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
    2308             : 
    2309             :         /* tag the worker for identification in schedule() */
    2310        1906 :         worker->last_func = worker->current_func;
    2311             : 
    2312             :         /* we're done with it, release */
    2313        1906 :         hash_del(&worker->hentry);
    2314        1906 :         worker->current_work = NULL;
    2315        1906 :         worker->current_func = NULL;
    2316        1906 :         worker->current_pwq = NULL;
    2317        1906 :         pwq_dec_nr_in_flight(pwq, work_color);
    2318             : }
    2319             : 
    2320             : /**
    2321             :  * process_scheduled_works - process scheduled works
    2322             :  * @worker: self
    2323             :  *
    2324             :  * Process all scheduled works.  Please note that the scheduled list
    2325             :  * may change while processing a work, so this function repeatedly
    2326             :  * fetches a work from the top and executes it.
    2327             :  *
    2328             :  * CONTEXT:
    2329             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2330             :  * multiple times.
    2331             :  */
    2332          11 : static void process_scheduled_works(struct worker *worker)
    2333             : {
    2334          30 :         while (!list_empty(&worker->scheduled)) {
    2335          19 :                 struct work_struct *work = list_first_entry(&worker->scheduled,
    2336             :                                                 struct work_struct, entry);
    2337          19 :                 process_one_work(worker, work);
    2338             :         }
    2339          11 : }
    2340             : 
    2341          28 : static void set_pf_worker(bool val)
    2342             : {
    2343          28 :         mutex_lock(&wq_pool_attach_mutex);
    2344          28 :         if (val)
    2345          28 :                 current->flags |= PF_WQ_WORKER;
    2346             :         else
    2347           0 :                 current->flags &= ~PF_WQ_WORKER;
    2348          28 :         mutex_unlock(&wq_pool_attach_mutex);
    2349          28 : }
    2350             : 
    2351             : /**
    2352             :  * worker_thread - the worker thread function
    2353             :  * @__worker: self
    2354             :  *
    2355             :  * The worker thread function.  All workers belong to a worker_pool -
    2356             :  * either a per-cpu one or dynamic unbound one.  These workers process all
    2357             :  * work items regardless of their specific target workqueue.  The only
    2358             :  * exception is work items which belong to workqueues with a rescuer which
    2359             :  * will be explained in rescuer_thread().
    2360             :  *
    2361             :  * Return: 0
    2362             :  */
    2363          21 : static int worker_thread(void *__worker)
    2364             : {
    2365          21 :         struct worker *worker = __worker;
    2366          21 :         struct worker_pool *pool = worker->pool;
    2367             : 
    2368             :         /* tell the scheduler that this is a workqueue worker */
    2369          21 :         set_pf_worker(true);
    2370        1669 : woke_up:
    2371        1669 :         raw_spin_lock_irq(&pool->lock);
    2372             : 
    2373             :         /* am I supposed to die? */
    2374        1670 :         if (unlikely(worker->flags & WORKER_DIE)) {
    2375           0 :                 raw_spin_unlock_irq(&pool->lock);
    2376           0 :                 WARN_ON_ONCE(!list_empty(&worker->entry));
    2377           0 :                 set_pf_worker(false);
    2378             : 
    2379           0 :                 set_task_comm(worker->task, "kworker/dying");
    2380           0 :                 ida_simple_remove(&pool->worker_ida, worker->id);
    2381           0 :                 worker_detach_from_pool(worker);
    2382           0 :                 kfree(worker);
    2383           0 :                 return 0;
    2384             :         }
    2385             : 
    2386        1670 :         worker_leave_idle(worker);
    2387        1682 : recheck:
    2388             :         /* no more worker necessary? */
    2389        1682 :         if (!need_more_worker(pool))
    2390          31 :                 goto sleep;
    2391             : 
    2392             :         /* do we need to manage? */
    2393        1651 :         if (unlikely(!may_start_working(pool)) && manage_workers(worker))
    2394          12 :                 goto recheck;
    2395             : 
    2396             :         /*
    2397             :          * ->scheduled list can only be filled while a worker is
    2398             :          * preparing to process a work or actually processing it.
    2399             :          * Make sure nobody diddled with it while I was sleeping.
    2400             :          */
    2401        1639 :         WARN_ON_ONCE(!list_empty(&worker->scheduled));
    2402             : 
    2403             :         /*
    2404             :          * Finish PREP stage.  We're guaranteed to have at least one idle
    2405             :          * worker or that someone else has already assumed the manager
    2406             :          * role.  This is where @worker starts participating in concurrency
    2407             :          * management if applicable and concurrency management is restored
    2408             :          * after being rebound.  See rebind_workers() for details.
    2409             :          */
    2410        1639 :         worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
    2411             : 
    2412        1895 :         do {
    2413        1895 :                 struct work_struct *work =
    2414        1895 :                         list_first_entry(&pool->worklist,
    2415             :                                          struct work_struct, entry);
    2416             : 
    2417        1895 :                 pool->watchdog_ts = jiffies;
    2418             : 
    2419        1895 :                 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
    2420             :                         /* optimization path, not strictly necessary */
    2421        1887 :                         process_one_work(worker, work);
    2422        1887 :                         if (unlikely(!list_empty(&worker->scheduled)))
    2423           3 :                                 process_scheduled_works(worker);
    2424             :                 } else {
    2425           8 :                         move_linked_works(work, &worker->scheduled, NULL);
    2426           8 :                         process_scheduled_works(worker);
    2427             :                 }
    2428        1895 :         } while (keep_working(pool));
    2429             : 
    2430        1639 :         worker_set_flags(worker, WORKER_PREP);
    2431        1670 : sleep:
    2432             :         /*
    2433             :          * pool->lock is held and there's no work to process and no need to
    2434             :          * manage, sleep.  Workers are woken up only while holding
    2435             :          * pool->lock or from local cpu, so setting the current state
    2436             :          * before releasing pool->lock is enough to prevent losing any
    2437             :          * event.
    2438             :          */
    2439        1670 :         worker_enter_idle(worker);
    2440        1670 :         __set_current_state(TASK_IDLE);
    2441        1670 :         raw_spin_unlock_irq(&pool->lock);
    2442        1670 :         schedule();
    2443        1648 :         goto woke_up;
    2444             : }
    2445             : 
    2446             : /**
    2447             :  * rescuer_thread - the rescuer thread function
    2448             :  * @__rescuer: self
    2449             :  *
    2450             :  * Workqueue rescuer thread function.  There's one rescuer for each
    2451             :  * workqueue which has WQ_MEM_RECLAIM set.
    2452             :  *
    2453             :  * Regular work processing on a pool may block trying to create a new
    2454             :  * worker which uses GFP_KERNEL allocation which has slight chance of
    2455             :  * developing into deadlock if some works currently on the same queue
    2456             :  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
    2457             :  * the problem rescuer solves.
    2458             :  *
    2459             :  * When such condition is possible, the pool summons rescuers of all
    2460             :  * workqueues which have works queued on the pool and let them process
    2461             :  * those works so that forward progress can be guaranteed.
    2462             :  *
    2463             :  * This should happen rarely.
    2464             :  *
    2465             :  * Return: 0
    2466             :  */
    2467           7 : static int rescuer_thread(void *__rescuer)
    2468             : {
    2469           7 :         struct worker *rescuer = __rescuer;
    2470           7 :         struct workqueue_struct *wq = rescuer->rescue_wq;
    2471           7 :         struct list_head *scheduled = &rescuer->scheduled;
    2472           7 :         bool should_stop;
    2473             : 
    2474           7 :         set_user_nice(current, RESCUER_NICE_LEVEL);
    2475             : 
    2476             :         /*
    2477             :          * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
    2478             :          * doesn't participate in concurrency management.
    2479             :          */
    2480           7 :         set_pf_worker(true);
    2481           7 : repeat:
    2482           7 :         set_current_state(TASK_IDLE);
    2483             : 
    2484             :         /*
    2485             :          * By the time the rescuer is requested to stop, the workqueue
    2486             :          * shouldn't have any work pending, but @wq->maydays may still have
    2487             :          * pwq(s) queued.  This can happen by non-rescuer workers consuming
    2488             :          * all the work items before the rescuer got to them.  Go through
    2489             :          * @wq->maydays processing before acting on should_stop so that the
    2490             :          * list is always empty on exit.
    2491             :          */
    2492           7 :         should_stop = kthread_should_stop();
    2493             : 
    2494             :         /* see whether any pwq is asking for help */
    2495           7 :         raw_spin_lock_irq(&wq_mayday_lock);
    2496             : 
    2497           7 :         while (!list_empty(&wq->maydays)) {
    2498           0 :                 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
    2499             :                                         struct pool_workqueue, mayday_node);
    2500           0 :                 struct worker_pool *pool = pwq->pool;
    2501           0 :                 struct work_struct *work, *n;
    2502           0 :                 bool first = true;
    2503             : 
    2504           0 :                 __set_current_state(TASK_RUNNING);
    2505           0 :                 list_del_init(&pwq->mayday_node);
    2506             : 
    2507           0 :                 raw_spin_unlock_irq(&wq_mayday_lock);
    2508             : 
    2509           0 :                 worker_attach_to_pool(rescuer, pool);
    2510             : 
    2511           0 :                 raw_spin_lock_irq(&pool->lock);
    2512             : 
    2513             :                 /*
    2514             :                  * Slurp in all works issued via this workqueue and
    2515             :                  * process'em.
    2516             :                  */
    2517           0 :                 WARN_ON_ONCE(!list_empty(scheduled));
    2518           0 :                 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
    2519           0 :                         if (get_work_pwq(work) == pwq) {
    2520           0 :                                 if (first)
    2521           0 :                                         pool->watchdog_ts = jiffies;
    2522           0 :                                 move_linked_works(work, scheduled, &n);
    2523             :                         }
    2524           0 :                         first = false;
    2525             :                 }
    2526             : 
    2527           0 :                 if (!list_empty(scheduled)) {
    2528           0 :                         process_scheduled_works(rescuer);
    2529             : 
    2530             :                         /*
    2531             :                          * The above execution of rescued work items could
    2532             :                          * have created more to rescue through
    2533             :                          * pwq_activate_first_delayed() or chained
    2534             :                          * queueing.  Let's put @pwq back on mayday list so
    2535             :                          * that such back-to-back work items, which may be
    2536             :                          * being used to relieve memory pressure, don't
    2537             :                          * incur MAYDAY_INTERVAL delay inbetween.
    2538             :                          */
    2539           0 :                         if (pwq->nr_active && need_to_create_worker(pool)) {
    2540           0 :                                 raw_spin_lock(&wq_mayday_lock);
    2541             :                                 /*
    2542             :                                  * Queue iff we aren't racing destruction
    2543             :                                  * and somebody else hasn't queued it already.
    2544             :                                  */
    2545           0 :                                 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
    2546           0 :                                         get_pwq(pwq);
    2547           0 :                                         list_add_tail(&pwq->mayday_node, &wq->maydays);
    2548             :                                 }
    2549           0 :                                 raw_spin_unlock(&wq_mayday_lock);
    2550             :                         }
    2551             :                 }
    2552             : 
    2553             :                 /*
    2554             :                  * Put the reference grabbed by send_mayday().  @pool won't
    2555             :                  * go away while we're still attached to it.
    2556             :                  */
    2557           0 :                 put_pwq(pwq);
    2558             : 
    2559             :                 /*
    2560             :                  * Leave this pool.  If need_more_worker() is %true, notify a
    2561             :                  * regular worker; otherwise, we end up with 0 concurrency
    2562             :                  * and stalling the execution.
    2563             :                  */
    2564           0 :                 if (need_more_worker(pool))
    2565           0 :                         wake_up_worker(pool);
    2566             : 
    2567           0 :                 raw_spin_unlock_irq(&pool->lock);
    2568             : 
    2569           0 :                 worker_detach_from_pool(rescuer);
    2570             : 
    2571           0 :                 raw_spin_lock_irq(&wq_mayday_lock);
    2572             :         }
    2573             : 
    2574           7 :         raw_spin_unlock_irq(&wq_mayday_lock);
    2575             : 
    2576           7 :         if (should_stop) {
    2577           0 :                 __set_current_state(TASK_RUNNING);
    2578           0 :                 set_pf_worker(false);
    2579           0 :                 return 0;
    2580             :         }
    2581             : 
    2582             :         /* rescuers should never participate in concurrency management */
    2583           7 :         WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
    2584           7 :         schedule();
    2585           0 :         goto repeat;
    2586             : }
    2587             : 
    2588             : /**
    2589             :  * check_flush_dependency - check for flush dependency sanity
    2590             :  * @target_wq: workqueue being flushed
    2591             :  * @target_work: work item being flushed (NULL for workqueue flushes)
    2592             :  *
    2593             :  * %current is trying to flush the whole @target_wq or @target_work on it.
    2594             :  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
    2595             :  * reclaiming memory or running on a workqueue which doesn't have
    2596             :  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
    2597             :  * a deadlock.
    2598             :  */
    2599          11 : static void check_flush_dependency(struct workqueue_struct *target_wq,
    2600             :                                    struct work_struct *target_work)
    2601             : {
    2602          11 :         work_func_t target_func = target_work ? target_work->func : NULL;
    2603          11 :         struct worker *worker;
    2604             : 
    2605          11 :         if (target_wq->flags & WQ_MEM_RECLAIM)
    2606             :                 return;
    2607             : 
    2608           8 :         worker = current_wq_worker();
    2609             : 
    2610           8 :         WARN_ONCE(current->flags & PF_MEMALLOC,
    2611             :                   "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
    2612             :                   current->pid, current->comm, target_wq->name, target_func);
    2613          16 :         WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
    2614             :                               (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
    2615             :                   "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
    2616             :                   worker->current_pwq->wq->name, worker->current_func,
    2617             :                   target_wq->name, target_func);
    2618             : }
    2619             : 
    2620             : struct wq_barrier {
    2621             :         struct work_struct      work;
    2622             :         struct completion       done;
    2623             :         struct task_struct      *task;  /* purely informational */
    2624             : };
    2625             : 
    2626          11 : static void wq_barrier_func(struct work_struct *work)
    2627             : {
    2628          11 :         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
    2629          11 :         complete(&barr->done);
    2630          11 : }
    2631             : 
    2632             : /**
    2633             :  * insert_wq_barrier - insert a barrier work
    2634             :  * @pwq: pwq to insert barrier into
    2635             :  * @barr: wq_barrier to insert
    2636             :  * @target: target work to attach @barr to
    2637             :  * @worker: worker currently executing @target, NULL if @target is not executing
    2638             :  *
    2639             :  * @barr is linked to @target such that @barr is completed only after
    2640             :  * @target finishes execution.  Please note that the ordering
    2641             :  * guarantee is observed only with respect to @target and on the local
    2642             :  * cpu.
    2643             :  *
    2644             :  * Currently, a queued barrier can't be canceled.  This is because
    2645             :  * try_to_grab_pending() can't determine whether the work to be
    2646             :  * grabbed is at the head of the queue and thus can't clear LINKED
    2647             :  * flag of the previous work while there must be a valid next work
    2648             :  * after a work with LINKED flag set.
    2649             :  *
    2650             :  * Note that when @worker is non-NULL, @target may be modified
    2651             :  * underneath us, so we can't reliably determine pwq from @target.
    2652             :  *
    2653             :  * CONTEXT:
    2654             :  * raw_spin_lock_irq(pool->lock).
    2655             :  */
    2656          11 : static void insert_wq_barrier(struct pool_workqueue *pwq,
    2657             :                               struct wq_barrier *barr,
    2658             :                               struct work_struct *target, struct worker *worker)
    2659             : {
    2660          11 :         struct list_head *head;
    2661          11 :         unsigned int linked = 0;
    2662             : 
    2663             :         /*
    2664             :          * debugobject calls are safe here even with pool->lock locked
    2665             :          * as we know for sure that this will not trigger any of the
    2666             :          * checks and call back into the fixup functions where we
    2667             :          * might deadlock.
    2668             :          */
    2669          11 :         INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
    2670          11 :         __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
    2671             : 
    2672          11 :         init_completion_map(&barr->done, &target->lockdep_map);
    2673             : 
    2674          11 :         barr->task = current;
    2675             : 
    2676             :         /*
    2677             :          * If @target is currently being executed, schedule the
    2678             :          * barrier to the worker; otherwise, put it after @target.
    2679             :          */
    2680          11 :         if (worker)
    2681           3 :                 head = worker->scheduled.next;
    2682             :         else {
    2683           8 :                 unsigned long *bits = work_data_bits(target);
    2684             : 
    2685           8 :                 head = target->entry.next;
    2686             :                 /* there can already be other linked works, inherit and set */
    2687           8 :                 linked = *bits & WORK_STRUCT_LINKED;
    2688           8 :                 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
    2689             :         }
    2690             : 
    2691          11 :         debug_work_activate(&barr->work);
    2692          11 :         insert_work(pwq, &barr->work, head,
    2693          11 :                     work_color_to_flags(WORK_NO_COLOR) | linked);
    2694          11 : }
    2695             : 
    2696             : /**
    2697             :  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
    2698             :  * @wq: workqueue being flushed
    2699             :  * @flush_color: new flush color, < 0 for no-op
    2700             :  * @work_color: new work color, < 0 for no-op
    2701             :  *
    2702             :  * Prepare pwqs for workqueue flushing.
    2703             :  *
    2704             :  * If @flush_color is non-negative, flush_color on all pwqs should be
    2705             :  * -1.  If no pwq has in-flight commands at the specified color, all
    2706             :  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
    2707             :  * has in flight commands, its pwq->flush_color is set to
    2708             :  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
    2709             :  * wakeup logic is armed and %true is returned.
    2710             :  *
    2711             :  * The caller should have initialized @wq->first_flusher prior to
    2712             :  * calling this function with non-negative @flush_color.  If
    2713             :  * @flush_color is negative, no flush color update is done and %false
    2714             :  * is returned.
    2715             :  *
    2716             :  * If @work_color is non-negative, all pwqs should have the same
    2717             :  * work_color which is previous to @work_color and all will be
    2718             :  * advanced to @work_color.
    2719             :  *
    2720             :  * CONTEXT:
    2721             :  * mutex_lock(wq->mutex).
    2722             :  *
    2723             :  * Return:
    2724             :  * %true if @flush_color >= 0 and there's something to flush.  %false
    2725             :  * otherwise.
    2726             :  */
    2727          49 : static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
    2728             :                                       int flush_color, int work_color)
    2729             : {
    2730          49 :         bool wait = false;
    2731          49 :         struct pool_workqueue *pwq;
    2732             : 
    2733          49 :         if (flush_color >= 0) {
    2734          49 :                 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
    2735          49 :                 atomic_set(&wq->nr_pwqs_to_flush, 1);
    2736             :         }
    2737             : 
    2738         242 :         for_each_pwq(pwq, wq) {
    2739         193 :                 struct worker_pool *pool = pwq->pool;
    2740             : 
    2741         193 :                 raw_spin_lock_irq(&pool->lock);
    2742             : 
    2743         193 :                 if (flush_color >= 0) {
    2744         193 :                         WARN_ON_ONCE(pwq->flush_color != -1);
    2745             : 
    2746         193 :                         if (pwq->nr_in_flight[flush_color]) {
    2747           0 :                                 pwq->flush_color = flush_color;
    2748           0 :                                 atomic_inc(&wq->nr_pwqs_to_flush);
    2749           0 :                                 wait = true;
    2750             :                         }
    2751             :                 }
    2752             : 
    2753         193 :                 if (work_color >= 0) {
    2754         193 :                         WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
    2755         193 :                         pwq->work_color = work_color;
    2756             :                 }
    2757             : 
    2758         193 :                 raw_spin_unlock_irq(&pool->lock);
    2759             :         }
    2760             : 
    2761          98 :         if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
    2762          49 :                 complete(&wq->first_flusher->done);
    2763             : 
    2764          49 :         return wait;
    2765             : }
    2766             : 
    2767             : /**
    2768             :  * flush_workqueue - ensure that any scheduled work has run to completion.
    2769             :  * @wq: workqueue to flush
    2770             :  *
    2771             :  * This function sleeps until all work items which were queued on entry
    2772             :  * have finished execution, but it is not livelocked by new incoming ones.
    2773             :  */
    2774          49 : void flush_workqueue(struct workqueue_struct *wq)
    2775             : {
    2776          98 :         struct wq_flusher this_flusher = {
    2777             :                 .list = LIST_HEAD_INIT(this_flusher.list),
    2778             :                 .flush_color = -1,
    2779          49 :                 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
    2780             :         };
    2781          49 :         int next_color;
    2782             : 
    2783          49 :         if (WARN_ON(!wq_online))
    2784           0 :                 return;
    2785             : 
    2786          49 :         lock_map_acquire(&wq->lockdep_map);
    2787          49 :         lock_map_release(&wq->lockdep_map);
    2788             : 
    2789          49 :         mutex_lock(&wq->mutex);
    2790             : 
    2791             :         /*
    2792             :          * Start-to-wait phase
    2793             :          */
    2794          49 :         next_color = work_next_color(wq->work_color);
    2795             : 
    2796          49 :         if (next_color != wq->flush_color) {
    2797             :                 /*
    2798             :                  * Color space is not full.  The current work_color
    2799             :                  * becomes our flush_color and work_color is advanced
    2800             :                  * by one.
    2801             :                  */
    2802          49 :                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
    2803          49 :                 this_flusher.flush_color = wq->work_color;
    2804          49 :                 wq->work_color = next_color;
    2805             : 
    2806          49 :                 if (!wq->first_flusher) {
    2807             :                         /* no flush in progress, become the first flusher */
    2808          49 :                         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
    2809             : 
    2810          49 :                         wq->first_flusher = &this_flusher;
    2811             : 
    2812          49 :                         if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
    2813             :                                                        wq->work_color)) {
    2814             :                                 /* nothing to flush, done */
    2815          49 :                                 wq->flush_color = next_color;
    2816          49 :                                 wq->first_flusher = NULL;
    2817          49 :                                 goto out_unlock;
    2818             :                         }
    2819             :                 } else {
    2820             :                         /* wait in queue */
    2821           0 :                         WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
    2822           0 :                         list_add_tail(&this_flusher.list, &wq->flusher_queue);
    2823           0 :                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
    2824             :                 }
    2825             :         } else {
    2826             :                 /*
    2827             :                  * Oops, color space is full, wait on overflow queue.
    2828             :                  * The next flush completion will assign us
    2829             :                  * flush_color and transfer to flusher_queue.
    2830             :                  */
    2831           0 :                 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
    2832             :         }
    2833             : 
    2834           0 :         check_flush_dependency(wq, NULL);
    2835             : 
    2836           0 :         mutex_unlock(&wq->mutex);
    2837             : 
    2838           0 :         wait_for_completion(&this_flusher.done);
    2839             : 
    2840             :         /*
    2841             :          * Wake-up-and-cascade phase
    2842             :          *
    2843             :          * First flushers are responsible for cascading flushes and
    2844             :          * handling overflow.  Non-first flushers can simply return.
    2845             :          */
    2846           0 :         if (READ_ONCE(wq->first_flusher) != &this_flusher)
    2847             :                 return;
    2848             : 
    2849           0 :         mutex_lock(&wq->mutex);
    2850             : 
    2851             :         /* we might have raced, check again with mutex held */
    2852           0 :         if (wq->first_flusher != &this_flusher)
    2853           0 :                 goto out_unlock;
    2854             : 
    2855           0 :         WRITE_ONCE(wq->first_flusher, NULL);
    2856             : 
    2857           0 :         WARN_ON_ONCE(!list_empty(&this_flusher.list));
    2858           0 :         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
    2859             : 
    2860           0 :         while (true) {
    2861           0 :                 struct wq_flusher *next, *tmp;
    2862             : 
    2863             :                 /* complete all the flushers sharing the current flush color */
    2864           0 :                 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
    2865           0 :                         if (next->flush_color != wq->flush_color)
    2866             :                                 break;
    2867           0 :                         list_del_init(&next->list);
    2868           0 :                         complete(&next->done);
    2869             :                 }
    2870             : 
    2871           0 :                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
    2872             :                              wq->flush_color != work_next_color(wq->work_color));
    2873             : 
    2874             :                 /* this flush_color is finished, advance by one */
    2875           0 :                 wq->flush_color = work_next_color(wq->flush_color);
    2876             : 
    2877             :                 /* one color has been freed, handle overflow queue */
    2878           0 :                 if (!list_empty(&wq->flusher_overflow)) {
    2879             :                         /*
    2880             :                          * Assign the same color to all overflowed
    2881             :                          * flushers, advance work_color and append to
    2882             :                          * flusher_queue.  This is the start-to-wait
    2883             :                          * phase for these overflowed flushers.
    2884             :                          */
    2885           0 :                         list_for_each_entry(tmp, &wq->flusher_overflow, list)
    2886           0 :                                 tmp->flush_color = wq->work_color;
    2887             : 
    2888           0 :                         wq->work_color = work_next_color(wq->work_color);
    2889             : 
    2890           0 :                         list_splice_tail_init(&wq->flusher_overflow,
    2891             :                                               &wq->flusher_queue);
    2892           0 :                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
    2893             :                 }
    2894             : 
    2895           0 :                 if (list_empty(&wq->flusher_queue)) {
    2896           0 :                         WARN_ON_ONCE(wq->flush_color != wq->work_color);
    2897             :                         break;
    2898             :                 }
    2899             : 
    2900             :                 /*
    2901             :                  * Need to flush more colors.  Make the next flusher
    2902             :                  * the new first flusher and arm pwqs.
    2903             :                  */
    2904           0 :                 WARN_ON_ONCE(wq->flush_color == wq->work_color);
    2905           0 :                 WARN_ON_ONCE(wq->flush_color != next->flush_color);
    2906             : 
    2907           0 :                 list_del_init(&next->list);
    2908           0 :                 wq->first_flusher = next;
    2909             : 
    2910           0 :                 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
    2911             :                         break;
    2912             : 
    2913             :                 /*
    2914             :                  * Meh... this color is already done, clear first
    2915             :                  * flusher and repeat cascading.
    2916             :                  */
    2917           0 :                 wq->first_flusher = NULL;
    2918             :         }
    2919             : 
    2920           0 : out_unlock:
    2921          49 :         mutex_unlock(&wq->mutex);
    2922             : }
    2923             : EXPORT_SYMBOL(flush_workqueue);
    2924             : 
    2925             : /**
    2926             :  * drain_workqueue - drain a workqueue
    2927             :  * @wq: workqueue to drain
    2928             :  *
    2929             :  * Wait until the workqueue becomes empty.  While draining is in progress,
    2930             :  * only chain queueing is allowed.  IOW, only currently pending or running
    2931             :  * work items on @wq can queue further work items on it.  @wq is flushed
    2932             :  * repeatedly until it becomes empty.  The number of flushing is determined
    2933             :  * by the depth of chaining and should be relatively short.  Whine if it
    2934             :  * takes too long.
    2935             :  */
    2936           1 : void drain_workqueue(struct workqueue_struct *wq)
    2937             : {
    2938           1 :         unsigned int flush_cnt = 0;
    2939           1 :         struct pool_workqueue *pwq;
    2940             : 
    2941             :         /*
    2942             :          * __queue_work() needs to test whether there are drainers, is much
    2943             :          * hotter than drain_workqueue() and already looks at @wq->flags.
    2944             :          * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
    2945             :          */
    2946           1 :         mutex_lock(&wq->mutex);
    2947           1 :         if (!wq->nr_drainers++)
    2948           1 :                 wq->flags |= __WQ_DRAINING;
    2949           1 :         mutex_unlock(&wq->mutex);
    2950           1 : reflush:
    2951           1 :         flush_workqueue(wq);
    2952             : 
    2953           1 :         mutex_lock(&wq->mutex);
    2954             : 
    2955           2 :         for_each_pwq(pwq, wq) {
    2956           1 :                 bool drained;
    2957             : 
    2958           1 :                 raw_spin_lock_irq(&pwq->pool->lock);
    2959           1 :                 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
    2960           1 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    2961             : 
    2962           1 :                 if (drained)
    2963           1 :                         continue;
    2964             : 
    2965           0 :                 if (++flush_cnt == 10 ||
    2966           0 :                     (flush_cnt % 100 == 0 && flush_cnt <= 1000))
    2967           0 :                         pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
    2968             :                                 wq->name, __func__, flush_cnt);
    2969             : 
    2970           0 :                 mutex_unlock(&wq->mutex);
    2971           0 :                 goto reflush;
    2972             :         }
    2973             : 
    2974           1 :         if (!--wq->nr_drainers)
    2975           1 :                 wq->flags &= ~__WQ_DRAINING;
    2976           1 :         mutex_unlock(&wq->mutex);
    2977           1 : }
    2978             : EXPORT_SYMBOL_GPL(drain_workqueue);
    2979             : 
    2980         475 : static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
    2981             :                              bool from_cancel)
    2982             : {
    2983         475 :         struct worker *worker = NULL;
    2984         475 :         struct worker_pool *pool;
    2985         475 :         struct pool_workqueue *pwq;
    2986             : 
    2987         475 :         might_sleep();
    2988             : 
    2989         475 :         rcu_read_lock();
    2990         475 :         pool = get_work_pool(work);
    2991         475 :         if (!pool) {
    2992         458 :                 rcu_read_unlock();
    2993         458 :                 return false;
    2994             :         }
    2995             : 
    2996          17 :         raw_spin_lock_irq(&pool->lock);
    2997             :         /* see the comment in try_to_grab_pending() with the same code */
    2998          17 :         pwq = get_work_pwq(work);
    2999          17 :         if (pwq) {
    3000           8 :                 if (unlikely(pwq->pool != pool))
    3001           0 :                         goto already_gone;
    3002             :         } else {
    3003           9 :                 worker = find_worker_executing_work(pool, work);
    3004           9 :                 if (!worker)
    3005           6 :                         goto already_gone;
    3006           3 :                 pwq = worker->current_pwq;
    3007             :         }
    3008             : 
    3009          11 :         check_flush_dependency(pwq->wq, work);
    3010             : 
    3011          11 :         insert_wq_barrier(pwq, barr, work, worker);
    3012          11 :         raw_spin_unlock_irq(&pool->lock);
    3013             : 
    3014             :         /*
    3015             :          * Force a lock recursion deadlock when using flush_work() inside a
    3016             :          * single-threaded or rescuer equipped workqueue.
    3017             :          *
    3018             :          * For single threaded workqueues the deadlock happens when the work
    3019             :          * is after the work issuing the flush_work(). For rescuer equipped
    3020             :          * workqueues the deadlock happens when the rescuer stalls, blocking
    3021             :          * forward progress.
    3022             :          */
    3023          11 :         if (!from_cancel &&
    3024          11 :             (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
    3025           3 :                 lock_map_acquire(&pwq->wq->lockdep_map);
    3026           3 :                 lock_map_release(&pwq->wq->lockdep_map);
    3027             :         }
    3028          11 :         rcu_read_unlock();
    3029          11 :         return true;
    3030           6 : already_gone:
    3031           6 :         raw_spin_unlock_irq(&pool->lock);
    3032           6 :         rcu_read_unlock();
    3033           6 :         return false;
    3034             : }
    3035             : 
    3036         475 : static bool __flush_work(struct work_struct *work, bool from_cancel)
    3037             : {
    3038         475 :         struct wq_barrier barr;
    3039             : 
    3040         475 :         if (WARN_ON(!wq_online))
    3041             :                 return false;
    3042             : 
    3043         475 :         if (WARN_ON(!work->func))
    3044             :                 return false;
    3045             : 
    3046         475 :         if (!from_cancel) {
    3047         291 :                 lock_map_acquire(&work->lockdep_map);
    3048         291 :                 lock_map_release(&work->lockdep_map);
    3049             :         }
    3050             : 
    3051         475 :         if (start_flush_work(work, &barr, from_cancel)) {
    3052          11 :                 wait_for_completion(&barr.done);
    3053          11 :                 destroy_work_on_stack(&barr.work);
    3054          11 :                 return true;
    3055             :         } else {
    3056             :                 return false;
    3057             :         }
    3058             : }
    3059             : 
    3060             : /**
    3061             :  * flush_work - wait for a work to finish executing the last queueing instance
    3062             :  * @work: the work to flush
    3063             :  *
    3064             :  * Wait until @work has finished execution.  @work is guaranteed to be idle
    3065             :  * on return if it hasn't been requeued since flush started.
    3066             :  *
    3067             :  * Return:
    3068             :  * %true if flush_work() waited for the work to finish execution,
    3069             :  * %false if it was already idle.
    3070             :  */
    3071         291 : bool flush_work(struct work_struct *work)
    3072             : {
    3073         285 :         return __flush_work(work, false);
    3074             : }
    3075             : EXPORT_SYMBOL_GPL(flush_work);
    3076             : 
    3077             : struct cwt_wait {
    3078             :         wait_queue_entry_t              wait;
    3079             :         struct work_struct      *work;
    3080             : };
    3081             : 
    3082           0 : static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
    3083             : {
    3084           0 :         struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
    3085             : 
    3086           0 :         if (cwait->work != key)
    3087             :                 return 0;
    3088           0 :         return autoremove_wake_function(wait, mode, sync, key);
    3089             : }
    3090             : 
    3091         184 : static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
    3092             : {
    3093         184 :         static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
    3094         184 :         unsigned long flags;
    3095         184 :         int ret;
    3096             : 
    3097         184 :         do {
    3098         184 :                 ret = try_to_grab_pending(work, is_dwork, &flags);
    3099             :                 /*
    3100             :                  * If someone else is already canceling, wait for it to
    3101             :                  * finish.  flush_work() doesn't work for PREEMPT_NONE
    3102             :                  * because we may get scheduled between @work's completion
    3103             :                  * and the other canceling task resuming and clearing
    3104             :                  * CANCELING - flush_work() will return false immediately
    3105             :                  * as @work is no longer busy, try_to_grab_pending() will
    3106             :                  * return -ENOENT as @work is still being canceled and the
    3107             :                  * other canceling task won't be able to clear CANCELING as
    3108             :                  * we're hogging the CPU.
    3109             :                  *
    3110             :                  * Let's wait for completion using a waitqueue.  As this
    3111             :                  * may lead to the thundering herd problem, use a custom
    3112             :                  * wake function which matches @work along with exclusive
    3113             :                  * wait and wakeup.
    3114             :                  */
    3115         184 :                 if (unlikely(ret == -ENOENT)) {
    3116           0 :                         struct cwt_wait cwait;
    3117             : 
    3118           0 :                         init_wait(&cwait.wait);
    3119           0 :                         cwait.wait.func = cwt_wakefn;
    3120           0 :                         cwait.work = work;
    3121             : 
    3122           0 :                         prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
    3123             :                                                   TASK_UNINTERRUPTIBLE);
    3124           0 :                         if (work_is_canceling(work))
    3125           0 :                                 schedule();
    3126           0 :                         finish_wait(&cancel_waitq, &cwait.wait);
    3127             :                 }
    3128         184 :         } while (unlikely(ret < 0));
    3129             : 
    3130             :         /* tell other tasks trying to grab @work to back off */
    3131         184 :         mark_work_canceling(work);
    3132         184 :         local_irq_restore(flags);
    3133             : 
    3134             :         /*
    3135             :          * This allows canceling during early boot.  We know that @work
    3136             :          * isn't executing.
    3137             :          */
    3138         184 :         if (wq_online)
    3139         184 :                 __flush_work(work, true);
    3140             : 
    3141         184 :         clear_work_data(work);
    3142             : 
    3143             :         /*
    3144             :          * Paired with prepare_to_wait() above so that either
    3145             :          * waitqueue_active() is visible here or !work_is_canceling() is
    3146             :          * visible there.
    3147             :          */
    3148         184 :         smp_mb();
    3149         184 :         if (waitqueue_active(&cancel_waitq))
    3150           0 :                 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
    3151             : 
    3152         184 :         return ret;
    3153             : }
    3154             : 
    3155             : /**
    3156             :  * cancel_work_sync - cancel a work and wait for it to finish
    3157             :  * @work: the work to cancel
    3158             :  *
    3159             :  * Cancel @work and wait for its execution to finish.  This function
    3160             :  * can be used even if the work re-queues itself or migrates to
    3161             :  * another workqueue.  On return from this function, @work is
    3162             :  * guaranteed to be not pending or executing on any CPU.
    3163             :  *
    3164             :  * cancel_work_sync(&delayed_work->work) must not be used for
    3165             :  * delayed_work's.  Use cancel_delayed_work_sync() instead.
    3166             :  *
    3167             :  * The caller must ensure that the workqueue on which @work was last
    3168             :  * queued can't be destroyed before this function returns.
    3169             :  *
    3170             :  * Return:
    3171             :  * %true if @work was pending, %false otherwise.
    3172             :  */
    3173         184 : bool cancel_work_sync(struct work_struct *work)
    3174             : {
    3175         184 :         return __cancel_work_timer(work, false);
    3176             : }
    3177             : EXPORT_SYMBOL_GPL(cancel_work_sync);
    3178             : 
    3179             : /**
    3180             :  * flush_delayed_work - wait for a dwork to finish executing the last queueing
    3181             :  * @dwork: the delayed work to flush
    3182             :  *
    3183             :  * Delayed timer is cancelled and the pending work is queued for
    3184             :  * immediate execution.  Like flush_work(), this function only
    3185             :  * considers the last queueing instance of @dwork.
    3186             :  *
    3187             :  * Return:
    3188             :  * %true if flush_work() waited for the work to finish execution,
    3189             :  * %false if it was already idle.
    3190             :  */
    3191           6 : bool flush_delayed_work(struct delayed_work *dwork)
    3192             : {
    3193           6 :         local_irq_disable();
    3194           6 :         if (del_timer_sync(&dwork->timer))
    3195           6 :                 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
    3196           6 :         local_irq_enable();
    3197           6 :         return flush_work(&dwork->work);
    3198             : }
    3199             : EXPORT_SYMBOL(flush_delayed_work);
    3200             : 
    3201             : /**
    3202             :  * flush_rcu_work - wait for a rwork to finish executing the last queueing
    3203             :  * @rwork: the rcu work to flush
    3204             :  *
    3205             :  * Return:
    3206             :  * %true if flush_rcu_work() waited for the work to finish execution,
    3207             :  * %false if it was already idle.
    3208             :  */
    3209           0 : bool flush_rcu_work(struct rcu_work *rwork)
    3210             : {
    3211           0 :         if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
    3212           0 :                 rcu_barrier();
    3213           0 :                 flush_work(&rwork->work);
    3214           0 :                 return true;
    3215             :         } else {
    3216           0 :                 return flush_work(&rwork->work);
    3217             :         }
    3218             : }
    3219             : EXPORT_SYMBOL(flush_rcu_work);
    3220             : 
    3221           2 : static bool __cancel_work(struct work_struct *work, bool is_dwork)
    3222             : {
    3223           2 :         unsigned long flags;
    3224           2 :         int ret;
    3225             : 
    3226           2 :         do {
    3227           2 :                 ret = try_to_grab_pending(work, is_dwork, &flags);
    3228           2 :         } while (unlikely(ret == -EAGAIN));
    3229             : 
    3230           2 :         if (unlikely(ret < 0))
    3231             :                 return false;
    3232             : 
    3233           2 :         set_work_pool_and_clear_pending(work, get_work_pool_id(work));
    3234           2 :         local_irq_restore(flags);
    3235           2 :         return ret;
    3236             : }
    3237             : 
    3238             : /**
    3239             :  * cancel_delayed_work - cancel a delayed work
    3240             :  * @dwork: delayed_work to cancel
    3241             :  *
    3242             :  * Kill off a pending delayed_work.
    3243             :  *
    3244             :  * Return: %true if @dwork was pending and canceled; %false if it wasn't
    3245             :  * pending.
    3246             :  *
    3247             :  * Note:
    3248             :  * The work callback function may still be running on return, unless
    3249             :  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
    3250             :  * use cancel_delayed_work_sync() to wait on it.
    3251             :  *
    3252             :  * This function is safe to call from any context including IRQ handler.
    3253             :  */
    3254           2 : bool cancel_delayed_work(struct delayed_work *dwork)
    3255             : {
    3256           2 :         return __cancel_work(&dwork->work, true);
    3257             : }
    3258             : EXPORT_SYMBOL(cancel_delayed_work);
    3259             : 
    3260             : /**
    3261             :  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
    3262             :  * @dwork: the delayed work cancel
    3263             :  *
    3264             :  * This is cancel_work_sync() for delayed works.
    3265             :  *
    3266             :  * Return:
    3267             :  * %true if @dwork was pending, %false otherwise.
    3268             :  */
    3269           0 : bool cancel_delayed_work_sync(struct delayed_work *dwork)
    3270             : {
    3271           0 :         return __cancel_work_timer(&dwork->work, true);
    3272             : }
    3273             : EXPORT_SYMBOL(cancel_delayed_work_sync);
    3274             : 
    3275             : /**
    3276             :  * schedule_on_each_cpu - execute a function synchronously on each online CPU
    3277             :  * @func: the function to call
    3278             :  *
    3279             :  * schedule_on_each_cpu() executes @func on each online CPU using the
    3280             :  * system workqueue and blocks until all CPUs have completed.
    3281             :  * schedule_on_each_cpu() is very slow.
    3282             :  *
    3283             :  * Return:
    3284             :  * 0 on success, -errno on failure.
    3285             :  */
    3286           0 : int schedule_on_each_cpu(work_func_t func)
    3287             : {
    3288           0 :         int cpu;
    3289           0 :         struct work_struct __percpu *works;
    3290             : 
    3291           0 :         works = alloc_percpu(struct work_struct);
    3292           0 :         if (!works)
    3293             :                 return -ENOMEM;
    3294             : 
    3295           0 :         get_online_cpus();
    3296             : 
    3297           0 :         for_each_online_cpu(cpu) {
    3298           0 :                 struct work_struct *work = per_cpu_ptr(works, cpu);
    3299             : 
    3300           0 :                 INIT_WORK(work, func);
    3301           0 :                 schedule_work_on(cpu, work);
    3302             :         }
    3303             : 
    3304           0 :         for_each_online_cpu(cpu)
    3305           0 :                 flush_work(per_cpu_ptr(works, cpu));
    3306             : 
    3307           0 :         put_online_cpus();
    3308           0 :         free_percpu(works);
    3309           0 :         return 0;
    3310             : }
    3311             : 
    3312             : /**
    3313             :  * execute_in_process_context - reliably execute the routine with user context
    3314             :  * @fn:         the function to execute
    3315             :  * @ew:         guaranteed storage for the execute work structure (must
    3316             :  *              be available when the work executes)
    3317             :  *
    3318             :  * Executes the function immediately if process context is available,
    3319             :  * otherwise schedules the function for delayed execution.
    3320             :  *
    3321             :  * Return:      0 - function was executed
    3322             :  *              1 - function was scheduled for execution
    3323             :  */
    3324           0 : int execute_in_process_context(work_func_t fn, struct execute_work *ew)
    3325             : {
    3326           0 :         if (!in_interrupt()) {
    3327           0 :                 fn(&ew->work);
    3328           0 :                 return 0;
    3329             :         }
    3330             : 
    3331           0 :         INIT_WORK(&ew->work, fn);
    3332           0 :         schedule_work(&ew->work);
    3333             : 
    3334           0 :         return 1;
    3335             : }
    3336             : EXPORT_SYMBOL_GPL(execute_in_process_context);
    3337             : 
    3338             : /**
    3339             :  * free_workqueue_attrs - free a workqueue_attrs
    3340             :  * @attrs: workqueue_attrs to free
    3341             :  *
    3342             :  * Undo alloc_workqueue_attrs().
    3343             :  */
    3344          11 : void free_workqueue_attrs(struct workqueue_attrs *attrs)
    3345             : {
    3346           0 :         if (attrs) {
    3347           6 :                 free_cpumask_var(attrs->cpumask);
    3348           6 :                 kfree(attrs);
    3349             :         }
    3350           0 : }
    3351             : 
    3352             : /**
    3353             :  * alloc_workqueue_attrs - allocate a workqueue_attrs
    3354             :  *
    3355             :  * Allocate a new workqueue_attrs, initialize with default settings and
    3356             :  * return it.
    3357             :  *
    3358             :  * Return: The allocated new workqueue_attr on success. %NULL on failure.
    3359             :  */
    3360          28 : struct workqueue_attrs *alloc_workqueue_attrs(void)
    3361             : {
    3362          28 :         struct workqueue_attrs *attrs;
    3363             : 
    3364          28 :         attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
    3365          28 :         if (!attrs)
    3366           0 :                 goto fail;
    3367          28 :         if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
    3368             :                 goto fail;
    3369             : 
    3370          28 :         cpumask_copy(attrs->cpumask, cpu_possible_mask);
    3371          28 :         return attrs;
    3372           0 : fail:
    3373           0 :         free_workqueue_attrs(attrs);
    3374           0 :         return NULL;
    3375             : }
    3376             : 
    3377          21 : static void copy_workqueue_attrs(struct workqueue_attrs *to,
    3378             :                                  const struct workqueue_attrs *from)
    3379             : {
    3380          21 :         to->nice = from->nice;
    3381          21 :         cpumask_copy(to->cpumask, from->cpumask);
    3382             :         /*
    3383             :          * Unlike hash and equality test, this function doesn't ignore
    3384             :          * ->no_numa as it is used for both pool and wq attrs.  Instead,
    3385             :          * get_unbound_pool() explicitly clears ->no_numa after copying.
    3386             :          */
    3387          21 :         to->no_numa = from->no_numa;
    3388             : }
    3389             : 
    3390             : /* hash value of the content of @attr */
    3391           5 : static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
    3392             : {
    3393           5 :         u32 hash = 0;
    3394             : 
    3395           5 :         hash = jhash_1word(attrs->nice, hash);
    3396           5 :         hash = jhash(cpumask_bits(attrs->cpumask),
    3397             :                      BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
    3398           5 :         return hash;
    3399             : }
    3400             : 
    3401             : /* content equality test */
    3402           4 : static bool wqattrs_equal(const struct workqueue_attrs *a,
    3403             :                           const struct workqueue_attrs *b)
    3404             : {
    3405           4 :         if (a->nice != b->nice)
    3406             :                 return false;
    3407           4 :         if (!cpumask_equal(a->cpumask, b->cpumask))
    3408             :                 return false;
    3409             :         return true;
    3410             : }
    3411             : 
    3412             : /**
    3413             :  * init_worker_pool - initialize a newly zalloc'd worker_pool
    3414             :  * @pool: worker_pool to initialize
    3415             :  *
    3416             :  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
    3417             :  *
    3418             :  * Return: 0 on success, -errno on failure.  Even on failure, all fields
    3419             :  * inside @pool proper are initialized and put_unbound_pool() can be called
    3420             :  * on @pool safely to release it.
    3421             :  */
    3422           9 : static int init_worker_pool(struct worker_pool *pool)
    3423             : {
    3424           9 :         raw_spin_lock_init(&pool->lock);
    3425           9 :         pool->id = -1;
    3426           9 :         pool->cpu = -1;
    3427           9 :         pool->node = NUMA_NO_NODE;
    3428           9 :         pool->flags |= POOL_DISASSOCIATED;
    3429           9 :         pool->watchdog_ts = jiffies;
    3430           9 :         INIT_LIST_HEAD(&pool->worklist);
    3431           9 :         INIT_LIST_HEAD(&pool->idle_list);
    3432           9 :         hash_init(pool->busy_hash);
    3433             : 
    3434           9 :         timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
    3435             : 
    3436           9 :         timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
    3437             : 
    3438           9 :         INIT_LIST_HEAD(&pool->workers);
    3439             : 
    3440           9 :         ida_init(&pool->worker_ida);
    3441           9 :         INIT_HLIST_NODE(&pool->hash_node);
    3442           9 :         pool->refcnt = 1;
    3443             : 
    3444             :         /* shouldn't fail above this point */
    3445           9 :         pool->attrs = alloc_workqueue_attrs();
    3446           9 :         if (!pool->attrs)
    3447           0 :                 return -ENOMEM;
    3448             :         return 0;
    3449             : }
    3450             : 
    3451             : #ifdef CONFIG_LOCKDEP
    3452          20 : static void wq_init_lockdep(struct workqueue_struct *wq)
    3453             : {
    3454          20 :         char *lock_name;
    3455             : 
    3456          20 :         lockdep_register_key(&wq->key);
    3457          20 :         lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
    3458          20 :         if (!lock_name)
    3459           0 :                 lock_name = wq->name;
    3460             : 
    3461          20 :         wq->lock_name = lock_name;
    3462          20 :         lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
    3463          20 : }
    3464             : 
    3465           1 : static void wq_unregister_lockdep(struct workqueue_struct *wq)
    3466             : {
    3467           1 :         lockdep_unregister_key(&wq->key);
    3468             : }
    3469             : 
    3470           1 : static void wq_free_lockdep(struct workqueue_struct *wq)
    3471             : {
    3472           1 :         if (wq->lock_name != wq->name)
    3473           1 :                 kfree(wq->lock_name);
    3474             : }
    3475             : #else
    3476             : static void wq_init_lockdep(struct workqueue_struct *wq)
    3477             : {
    3478             : }
    3479             : 
    3480             : static void wq_unregister_lockdep(struct workqueue_struct *wq)
    3481             : {
    3482             : }
    3483             : 
    3484             : static void wq_free_lockdep(struct workqueue_struct *wq)
    3485             : {
    3486             : }
    3487             : #endif
    3488             : 
    3489           1 : static void rcu_free_wq(struct rcu_head *rcu)
    3490             : {
    3491           1 :         struct workqueue_struct *wq =
    3492           1 :                 container_of(rcu, struct workqueue_struct, rcu);
    3493             : 
    3494           1 :         wq_free_lockdep(wq);
    3495             : 
    3496           1 :         if (!(wq->flags & WQ_UNBOUND))
    3497           0 :                 free_percpu(wq->cpu_pwqs);
    3498             :         else
    3499           1 :                 free_workqueue_attrs(wq->unbound_attrs);
    3500             : 
    3501           1 :         kfree(wq);
    3502           1 : }
    3503             : 
    3504           0 : static void rcu_free_pool(struct rcu_head *rcu)
    3505             : {
    3506           0 :         struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
    3507             : 
    3508           0 :         ida_destroy(&pool->worker_ida);
    3509           0 :         free_workqueue_attrs(pool->attrs);
    3510           0 :         kfree(pool);
    3511           0 : }
    3512             : 
    3513             : /* This returns with the lock held on success (pool manager is inactive). */
    3514           0 : static bool wq_manager_inactive(struct worker_pool *pool)
    3515             : {
    3516           0 :         raw_spin_lock_irq(&pool->lock);
    3517             : 
    3518           0 :         if (pool->flags & POOL_MANAGER_ACTIVE) {
    3519           0 :                 raw_spin_unlock_irq(&pool->lock);
    3520           0 :                 return false;
    3521             :         }
    3522             :         return true;
    3523             : }
    3524             : 
    3525             : /**
    3526             :  * put_unbound_pool - put a worker_pool
    3527             :  * @pool: worker_pool to put
    3528             :  *
    3529             :  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
    3530             :  * safe manner.  get_unbound_pool() calls this function on its failure path
    3531             :  * and this function should be able to release pools which went through,
    3532             :  * successfully or not, init_worker_pool().
    3533             :  *
    3534             :  * Should be called with wq_pool_mutex held.
    3535             :  */
    3536           1 : static void put_unbound_pool(struct worker_pool *pool)
    3537             : {
    3538           1 :         DECLARE_COMPLETION_ONSTACK(detach_completion);
    3539           1 :         struct worker *worker;
    3540             : 
    3541           3 :         lockdep_assert_held(&wq_pool_mutex);
    3542             : 
    3543           1 :         if (--pool->refcnt)
    3544           1 :                 return;
    3545             : 
    3546             :         /* sanity checks */
    3547           0 :         if (WARN_ON(!(pool->cpu < 0)) ||
    3548           0 :             WARN_ON(!list_empty(&pool->worklist)))
    3549             :                 return;
    3550             : 
    3551             :         /* release id and unhash */
    3552           0 :         if (pool->id >= 0)
    3553           0 :                 idr_remove(&worker_pool_idr, pool->id);
    3554           0 :         hash_del(&pool->hash_node);
    3555             : 
    3556             :         /*
    3557             :          * Become the manager and destroy all workers.  This prevents
    3558             :          * @pool's workers from blocking on attach_mutex.  We're the last
    3559             :          * manager and @pool gets freed with the flag set.
    3560             :          * Because of how wq_manager_inactive() works, we will hold the
    3561             :          * spinlock after a successful wait.
    3562             :          */
    3563           0 :         rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
    3564             :                            TASK_UNINTERRUPTIBLE);
    3565           0 :         pool->flags |= POOL_MANAGER_ACTIVE;
    3566             : 
    3567           0 :         while ((worker = first_idle_worker(pool)))
    3568           0 :                 destroy_worker(worker);
    3569           0 :         WARN_ON(pool->nr_workers || pool->nr_idle);
    3570           0 :         raw_spin_unlock_irq(&pool->lock);
    3571             : 
    3572           0 :         mutex_lock(&wq_pool_attach_mutex);
    3573           0 :         if (!list_empty(&pool->workers))
    3574           0 :                 pool->detach_completion = &detach_completion;
    3575           0 :         mutex_unlock(&wq_pool_attach_mutex);
    3576             : 
    3577           0 :         if (pool->detach_completion)
    3578           0 :                 wait_for_completion(pool->detach_completion);
    3579             : 
    3580             :         /* shut down the timers */
    3581           0 :         del_timer_sync(&pool->idle_timer);
    3582           0 :         del_timer_sync(&pool->mayday_timer);
    3583             : 
    3584             :         /* RCU protected to allow dereferences from get_work_pool() */
    3585           0 :         call_rcu(&pool->rcu, rcu_free_pool);
    3586             : }
    3587             : 
    3588             : /**
    3589             :  * get_unbound_pool - get a worker_pool with the specified attributes
    3590             :  * @attrs: the attributes of the worker_pool to get
    3591             :  *
    3592             :  * Obtain a worker_pool which has the same attributes as @attrs, bump the
    3593             :  * reference count and return it.  If there already is a matching
    3594             :  * worker_pool, it will be used; otherwise, this function attempts to
    3595             :  * create a new one.
    3596             :  *
    3597             :  * Should be called with wq_pool_mutex held.
    3598             :  *
    3599             :  * Return: On success, a worker_pool with the same attributes as @attrs.
    3600             :  * On failure, %NULL.
    3601             :  */
    3602           5 : static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
    3603             : {
    3604           5 :         u32 hash = wqattrs_hash(attrs);
    3605           5 :         struct worker_pool *pool;
    3606           5 :         int node;
    3607           5 :         int target_node = NUMA_NO_NODE;
    3608             : 
    3609          15 :         lockdep_assert_held(&wq_pool_mutex);
    3610             : 
    3611             :         /* do we already have a matching pool? */
    3612          10 :         hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
    3613           4 :                 if (wqattrs_equal(pool->attrs, attrs)) {
    3614           4 :                         pool->refcnt++;
    3615           4 :                         return pool;
    3616             :                 }
    3617             :         }
    3618             : 
    3619             :         /* if cpumask is contained inside a NUMA node, we belong to that node */
    3620           1 :         if (wq_numa_enabled) {
    3621           0 :                 for_each_node(node) {
    3622           0 :                         if (cpumask_subset(attrs->cpumask,
    3623           0 :                                            wq_numa_possible_cpumask[node])) {
    3624             :                                 target_node = node;
    3625             :                                 break;
    3626             :                         }
    3627             :                 }
    3628             :         }
    3629             : 
    3630             :         /* nope, create a new one */
    3631           1 :         pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
    3632           1 :         if (!pool || init_worker_pool(pool) < 0)
    3633           0 :                 goto fail;
    3634             : 
    3635           1 :         lockdep_set_subclass(&pool->lock, 1);    /* see put_pwq() */
    3636           1 :         copy_workqueue_attrs(pool->attrs, attrs);
    3637           1 :         pool->node = target_node;
    3638             : 
    3639             :         /*
    3640             :          * no_numa isn't a worker_pool attribute, always clear it.  See
    3641             :          * 'struct workqueue_attrs' comments for detail.
    3642             :          */
    3643           1 :         pool->attrs->no_numa = false;
    3644             : 
    3645           1 :         if (worker_pool_assign_id(pool) < 0)
    3646           0 :                 goto fail;
    3647             : 
    3648             :         /* create and start the initial worker */
    3649           1 :         if (wq_online && !create_worker(pool))
    3650           0 :                 goto fail;
    3651             : 
    3652             :         /* install */
    3653           1 :         hash_add(unbound_pool_hash, &pool->hash_node, hash);
    3654             : 
    3655           1 :         return pool;
    3656           0 : fail:
    3657           0 :         if (pool)
    3658           0 :                 put_unbound_pool(pool);
    3659             :         return NULL;
    3660             : }
    3661             : 
    3662           1 : static void rcu_free_pwq(struct rcu_head *rcu)
    3663             : {
    3664           1 :         kmem_cache_free(pwq_cache,
    3665           1 :                         container_of(rcu, struct pool_workqueue, rcu));
    3666           1 : }
    3667             : 
    3668             : /*
    3669             :  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
    3670             :  * and needs to be destroyed.
    3671             :  */
    3672           1 : static void pwq_unbound_release_workfn(struct work_struct *work)
    3673             : {
    3674           1 :         struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
    3675             :                                                   unbound_release_work);
    3676           1 :         struct workqueue_struct *wq = pwq->wq;
    3677           1 :         struct worker_pool *pool = pwq->pool;
    3678           1 :         bool is_last;
    3679             : 
    3680           1 :         if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
    3681             :                 return;
    3682             : 
    3683           1 :         mutex_lock(&wq->mutex);
    3684           1 :         list_del_rcu(&pwq->pwqs_node);
    3685           1 :         is_last = list_empty(&wq->pwqs);
    3686           1 :         mutex_unlock(&wq->mutex);
    3687             : 
    3688           1 :         mutex_lock(&wq_pool_mutex);
    3689           1 :         put_unbound_pool(pool);
    3690           1 :         mutex_unlock(&wq_pool_mutex);
    3691             : 
    3692           1 :         call_rcu(&pwq->rcu, rcu_free_pwq);
    3693             : 
    3694             :         /*
    3695             :          * If we're the last pwq going away, @wq is already dead and no one
    3696             :          * is gonna access it anymore.  Schedule RCU free.
    3697             :          */
    3698           1 :         if (is_last) {
    3699           1 :                 wq_unregister_lockdep(wq);
    3700           1 :                 call_rcu(&wq->rcu, rcu_free_wq);
    3701             :         }
    3702             : }
    3703             : 
    3704             : /**
    3705             :  * pwq_adjust_max_active - update a pwq's max_active to the current setting
    3706             :  * @pwq: target pool_workqueue
    3707             :  *
    3708             :  * If @pwq isn't freezing, set @pwq->max_active to the associated
    3709             :  * workqueue's saved_max_active and activate delayed work items
    3710             :  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
    3711             :  */
    3712         130 : static void pwq_adjust_max_active(struct pool_workqueue *pwq)
    3713             : {
    3714         130 :         struct workqueue_struct *wq = pwq->wq;
    3715         130 :         bool freezable = wq->flags & WQ_FREEZABLE;
    3716         130 :         unsigned long flags;
    3717             : 
    3718             :         /* for @wq->saved_max_active */
    3719         260 :         lockdep_assert_held(&wq->mutex);
    3720             : 
    3721             :         /* fast exit for non-freezable wqs */
    3722         130 :         if (!freezable && pwq->max_active == wq->saved_max_active)
    3723             :                 return;
    3724             : 
    3725             :         /* this function can be called during early boot w/ irq disabled */
    3726          73 :         raw_spin_lock_irqsave(&pwq->pool->lock, flags);
    3727             : 
    3728             :         /*
    3729             :          * During [un]freezing, the caller is responsible for ensuring that
    3730             :          * this function is called at least once after @workqueue_freezing
    3731             :          * is updated and visible.
    3732             :          */
    3733          73 :         if (!freezable || !workqueue_freezing) {
    3734          73 :                 bool kick = false;
    3735             : 
    3736          73 :                 pwq->max_active = wq->saved_max_active;
    3737             : 
    3738          73 :                 while (!list_empty(&pwq->delayed_works) &&
    3739           0 :                        pwq->nr_active < pwq->max_active) {
    3740           0 :                         pwq_activate_first_delayed(pwq);
    3741           0 :                         kick = true;
    3742             :                 }
    3743             : 
    3744             :                 /*
    3745             :                  * Need to kick a worker after thawed or an unbound wq's
    3746             :                  * max_active is bumped. In realtime scenarios, always kicking a
    3747             :                  * worker will cause interference on the isolated cpu cores, so
    3748             :                  * let's kick iff work items were activated.
    3749             :                  */
    3750          73 :                 if (kick)
    3751           0 :                         wake_up_worker(pwq->pool);
    3752             :         } else {
    3753           0 :                 pwq->max_active = 0;
    3754             :         }
    3755             : 
    3756          73 :         raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
    3757             : }
    3758             : 
    3759             : /* initialize newly alloced @pwq which is associated with @wq and @pool */
    3760          65 : static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
    3761             :                      struct worker_pool *pool)
    3762             : {
    3763          65 :         BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
    3764             : 
    3765          65 :         memset(pwq, 0, sizeof(*pwq));
    3766             : 
    3767          65 :         pwq->pool = pool;
    3768          65 :         pwq->wq = wq;
    3769          65 :         pwq->flush_color = -1;
    3770          65 :         pwq->refcnt = 1;
    3771          65 :         INIT_LIST_HEAD(&pwq->delayed_works);
    3772          65 :         INIT_LIST_HEAD(&pwq->pwqs_node);
    3773          65 :         INIT_LIST_HEAD(&pwq->mayday_node);
    3774          65 :         INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
    3775          65 : }
    3776             : 
    3777             : /* sync @pwq with the current state of its associated wq and link it */
    3778          70 : static void link_pwq(struct pool_workqueue *pwq)
    3779             : {
    3780          70 :         struct workqueue_struct *wq = pwq->wq;
    3781             : 
    3782         140 :         lockdep_assert_held(&wq->mutex);
    3783             : 
    3784             :         /* may be called multiple times, ignore if already linked */
    3785          70 :         if (!list_empty(&pwq->pwqs_node))
    3786             :                 return;
    3787             : 
    3788             :         /* set the matching work_color */
    3789          65 :         pwq->work_color = wq->work_color;
    3790             : 
    3791             :         /* sync max_active to the current setting */
    3792          65 :         pwq_adjust_max_active(pwq);
    3793             : 
    3794             :         /* link in @pwq */
    3795          65 :         list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
    3796             : }
    3797             : 
    3798             : /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
    3799           5 : static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
    3800             :                                         const struct workqueue_attrs *attrs)
    3801             : {
    3802           5 :         struct worker_pool *pool;
    3803           5 :         struct pool_workqueue *pwq;
    3804             : 
    3805          15 :         lockdep_assert_held(&wq_pool_mutex);
    3806             : 
    3807           5 :         pool = get_unbound_pool(attrs);
    3808           5 :         if (!pool)
    3809             :                 return NULL;
    3810             : 
    3811           5 :         pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
    3812           5 :         if (!pwq) {
    3813           0 :                 put_unbound_pool(pool);
    3814           0 :                 return NULL;
    3815             :         }
    3816             : 
    3817           5 :         init_pwq(pwq, wq, pool);
    3818           5 :         return pwq;
    3819             : }
    3820             : 
    3821             : /**
    3822             :  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
    3823             :  * @attrs: the wq_attrs of the default pwq of the target workqueue
    3824             :  * @node: the target NUMA node
    3825             :  * @cpu_going_down: if >= 0, the CPU to consider as offline
    3826             :  * @cpumask: outarg, the resulting cpumask
    3827             :  *
    3828             :  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
    3829             :  * @cpu_going_down is >= 0, that cpu is considered offline during
    3830             :  * calculation.  The result is stored in @cpumask.
    3831             :  *
    3832             :  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
    3833             :  * enabled and @node has online CPUs requested by @attrs, the returned
    3834             :  * cpumask is the intersection of the possible CPUs of @node and
    3835             :  * @attrs->cpumask.
    3836             :  *
    3837             :  * The caller is responsible for ensuring that the cpumask of @node stays
    3838             :  * stable.
    3839             :  *
    3840             :  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
    3841             :  * %false if equal.
    3842             :  */
    3843           5 : static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
    3844             :                                  int cpu_going_down, cpumask_t *cpumask)
    3845             : {
    3846           5 :         if (!wq_numa_enabled || attrs->no_numa)
    3847           5 :                 goto use_dfl;
    3848             : 
    3849             :         /* does @node have any online CPUs @attrs wants? */
    3850           0 :         cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
    3851           0 :         if (cpu_going_down >= 0)
    3852           0 :                 cpumask_clear_cpu(cpu_going_down, cpumask);
    3853             : 
    3854           0 :         if (cpumask_empty(cpumask))
    3855           0 :                 goto use_dfl;
    3856             : 
    3857             :         /* yeap, return possible CPUs in @node that @attrs wants */
    3858           0 :         cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
    3859             : 
    3860           0 :         if (cpumask_empty(cpumask)) {
    3861           0 :                 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
    3862             :                                 "possible intersect\n");
    3863           0 :                 return false;
    3864             :         }
    3865             : 
    3866           0 :         return !cpumask_equal(cpumask, attrs->cpumask);
    3867             : 
    3868           5 : use_dfl:
    3869           5 :         cpumask_copy(cpumask, attrs->cpumask);
    3870           5 :         return false;
    3871             : }
    3872             : 
    3873             : /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
    3874           5 : static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
    3875             :                                                    int node,
    3876             :                                                    struct pool_workqueue *pwq)
    3877             : {
    3878           5 :         struct pool_workqueue *old_pwq;
    3879             : 
    3880          15 :         lockdep_assert_held(&wq_pool_mutex);
    3881          10 :         lockdep_assert_held(&wq->mutex);
    3882             : 
    3883             :         /* link_pwq() can handle duplicate calls */
    3884           5 :         link_pwq(pwq);
    3885             : 
    3886           5 :         old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
    3887           5 :         rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
    3888           5 :         return old_pwq;
    3889             : }
    3890             : 
    3891             : /* context to store the prepared attrs & pwqs before applying */
    3892             : struct apply_wqattrs_ctx {
    3893             :         struct workqueue_struct *wq;            /* target workqueue */
    3894             :         struct workqueue_attrs  *attrs;         /* attrs to apply */
    3895             :         struct list_head        list;           /* queued for batching commit */
    3896             :         struct pool_workqueue   *dfl_pwq;
    3897             :         struct pool_workqueue   *pwq_tbl[];
    3898             : };
    3899             : 
    3900             : /* free the resources after success or abort */
    3901           5 : static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
    3902             : {
    3903           5 :         if (ctx) {
    3904           5 :                 int node;
    3905             : 
    3906          10 :                 for_each_node(node)
    3907           5 :                         put_pwq_unlocked(ctx->pwq_tbl[node]);
    3908           5 :                 put_pwq_unlocked(ctx->dfl_pwq);
    3909             : 
    3910           5 :                 free_workqueue_attrs(ctx->attrs);
    3911             : 
    3912           5 :                 kfree(ctx);
    3913             :         }
    3914           5 : }
    3915             : 
    3916             : /* allocate the attrs and pwqs for later installation */
    3917             : static struct apply_wqattrs_ctx *
    3918           5 : apply_wqattrs_prepare(struct workqueue_struct *wq,
    3919             :                       const struct workqueue_attrs *attrs)
    3920             : {
    3921           5 :         struct apply_wqattrs_ctx *ctx;
    3922           5 :         struct workqueue_attrs *new_attrs, *tmp_attrs;
    3923           5 :         int node;
    3924             : 
    3925          15 :         lockdep_assert_held(&wq_pool_mutex);
    3926             : 
    3927           5 :         ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
    3928             : 
    3929           5 :         new_attrs = alloc_workqueue_attrs();
    3930           5 :         tmp_attrs = alloc_workqueue_attrs();
    3931           5 :         if (!ctx || !new_attrs || !tmp_attrs)
    3932           0 :                 goto out_free;
    3933             : 
    3934             :         /*
    3935             :          * Calculate the attrs of the default pwq.
    3936             :          * If the user configured cpumask doesn't overlap with the
    3937             :          * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
    3938             :          */
    3939           5 :         copy_workqueue_attrs(new_attrs, attrs);
    3940           5 :         cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
    3941           5 :         if (unlikely(cpumask_empty(new_attrs->cpumask)))
    3942           0 :                 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
    3943             : 
    3944             :         /*
    3945             :          * We may create multiple pwqs with differing cpumasks.  Make a
    3946             :          * copy of @new_attrs which will be modified and used to obtain
    3947             :          * pools.
    3948             :          */
    3949           5 :         copy_workqueue_attrs(tmp_attrs, new_attrs);
    3950             : 
    3951             :         /*
    3952             :          * If something goes wrong during CPU up/down, we'll fall back to
    3953             :          * the default pwq covering whole @attrs->cpumask.  Always create
    3954             :          * it even if we don't use it immediately.
    3955             :          */
    3956           5 :         ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
    3957           5 :         if (!ctx->dfl_pwq)
    3958           0 :                 goto out_free;
    3959             : 
    3960          10 :         for_each_node(node) {
    3961           5 :                 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
    3962           0 :                         ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
    3963           0 :                         if (!ctx->pwq_tbl[node])
    3964           0 :                                 goto out_free;
    3965             :                 } else {
    3966           5 :                         ctx->dfl_pwq->refcnt++;
    3967           5 :                         ctx->pwq_tbl[node] = ctx->dfl_pwq;
    3968             :                 }
    3969             :         }
    3970             : 
    3971             :         /* save the user configured attrs and sanitize it. */
    3972           5 :         copy_workqueue_attrs(new_attrs, attrs);
    3973           5 :         cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
    3974           5 :         ctx->attrs = new_attrs;
    3975             : 
    3976           5 :         ctx->wq = wq;
    3977           5 :         free_workqueue_attrs(tmp_attrs);
    3978           5 :         return ctx;
    3979             : 
    3980           0 : out_free:
    3981           0 :         free_workqueue_attrs(tmp_attrs);
    3982           0 :         free_workqueue_attrs(new_attrs);
    3983           0 :         apply_wqattrs_cleanup(ctx);
    3984           0 :         return NULL;
    3985             : }
    3986             : 
    3987             : /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
    3988           5 : static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
    3989             : {
    3990           5 :         int node;
    3991             : 
    3992             :         /* all pwqs have been created successfully, let's install'em */
    3993           5 :         mutex_lock(&ctx->wq->mutex);
    3994             : 
    3995           5 :         copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
    3996             : 
    3997             :         /* save the previous pwq and install the new one */
    3998          10 :         for_each_node(node)
    3999           5 :                 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
    4000             :                                                           ctx->pwq_tbl[node]);
    4001             : 
    4002             :         /* @dfl_pwq might not have been used, ensure it's linked */
    4003           5 :         link_pwq(ctx->dfl_pwq);
    4004           5 :         swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
    4005             : 
    4006           5 :         mutex_unlock(&ctx->wq->mutex);
    4007           5 : }
    4008             : 
    4009           0 : static void apply_wqattrs_lock(void)
    4010             : {
    4011             :         /* CPUs should stay stable across pwq creations and installations */
    4012           0 :         get_online_cpus();
    4013           0 :         mutex_lock(&wq_pool_mutex);
    4014           0 : }
    4015             : 
    4016           0 : static void apply_wqattrs_unlock(void)
    4017             : {
    4018           0 :         mutex_unlock(&wq_pool_mutex);
    4019           0 :         put_online_cpus();
    4020           0 : }
    4021             : 
    4022           5 : static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
    4023             :                                         const struct workqueue_attrs *attrs)
    4024             : {
    4025           5 :         struct apply_wqattrs_ctx *ctx;
    4026             : 
    4027             :         /* only unbound workqueues can change attributes */
    4028           5 :         if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
    4029             :                 return -EINVAL;
    4030             : 
    4031             :         /* creating multiple pwqs breaks ordering guarantee */
    4032           5 :         if (!list_empty(&wq->pwqs)) {
    4033           0 :                 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    4034             :                         return -EINVAL;
    4035             : 
    4036           0 :                 wq->flags &= ~__WQ_ORDERED;
    4037             :         }
    4038             : 
    4039           5 :         ctx = apply_wqattrs_prepare(wq, attrs);
    4040           5 :         if (!ctx)
    4041             :                 return -ENOMEM;
    4042             : 
    4043             :         /* the ctx has been prepared successfully, let's commit it */
    4044           5 :         apply_wqattrs_commit(ctx);
    4045           5 :         apply_wqattrs_cleanup(ctx);
    4046             : 
    4047           5 :         return 0;
    4048             : }
    4049             : 
    4050             : /**
    4051             :  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
    4052             :  * @wq: the target workqueue
    4053             :  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
    4054             :  *
    4055             :  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
    4056             :  * machines, this function maps a separate pwq to each NUMA node with
    4057             :  * possibles CPUs in @attrs->cpumask so that work items are affine to the
    4058             :  * NUMA node it was issued on.  Older pwqs are released as in-flight work
    4059             :  * items finish.  Note that a work item which repeatedly requeues itself
    4060             :  * back-to-back will stay on its current pwq.
    4061             :  *
    4062             :  * Performs GFP_KERNEL allocations.
    4063             :  *
    4064             :  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
    4065             :  *
    4066             :  * Return: 0 on success and -errno on failure.
    4067             :  */
    4068           5 : int apply_workqueue_attrs(struct workqueue_struct *wq,
    4069             :                           const struct workqueue_attrs *attrs)
    4070             : {
    4071           5 :         int ret;
    4072             : 
    4073           5 :         lockdep_assert_cpus_held();
    4074             : 
    4075           5 :         mutex_lock(&wq_pool_mutex);
    4076           5 :         ret = apply_workqueue_attrs_locked(wq, attrs);
    4077           5 :         mutex_unlock(&wq_pool_mutex);
    4078             : 
    4079           5 :         return ret;
    4080             : }
    4081             : 
    4082             : /**
    4083             :  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
    4084             :  * @wq: the target workqueue
    4085             :  * @cpu: the CPU coming up or going down
    4086             :  * @online: whether @cpu is coming up or going down
    4087             :  *
    4088             :  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
    4089             :  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
    4090             :  * @wq accordingly.
    4091             :  *
    4092             :  * If NUMA affinity can't be adjusted due to memory allocation failure, it
    4093             :  * falls back to @wq->dfl_pwq which may not be optimal but is always
    4094             :  * correct.
    4095             :  *
    4096             :  * Note that when the last allowed CPU of a NUMA node goes offline for a
    4097             :  * workqueue with a cpumask spanning multiple nodes, the workers which were
    4098             :  * already executing the work items for the workqueue will lose their CPU
    4099             :  * affinity and may execute on any CPU.  This is similar to how per-cpu
    4100             :  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
    4101             :  * affinity, it's the user's responsibility to flush the work item from
    4102             :  * CPU_DOWN_PREPARE.
    4103             :  */
    4104          39 : static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
    4105             :                                    bool online)
    4106             : {
    4107          39 :         int node = cpu_to_node(cpu);
    4108          39 :         int cpu_off = online ? -1 : cpu;
    4109          39 :         struct pool_workqueue *old_pwq = NULL, *pwq;
    4110          39 :         struct workqueue_attrs *target_attrs;
    4111          39 :         cpumask_t *cpumask;
    4112             : 
    4113         117 :         lockdep_assert_held(&wq_pool_mutex);
    4114             : 
    4115          39 :         if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
    4116           0 :             wq->unbound_attrs->no_numa)
    4117             :                 return;
    4118             : 
    4119             :         /*
    4120             :          * We don't wanna alloc/free wq_attrs for each wq for each CPU.
    4121             :          * Let's use a preallocated one.  The following buf is protected by
    4122             :          * CPU hotplug exclusion.
    4123             :          */
    4124           0 :         target_attrs = wq_update_unbound_numa_attrs_buf;
    4125           0 :         cpumask = target_attrs->cpumask;
    4126             : 
    4127           0 :         copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
    4128           0 :         pwq = unbound_pwq_by_node(wq, node);
    4129             : 
    4130             :         /*
    4131             :          * Let's determine what needs to be done.  If the target cpumask is
    4132             :          * different from the default pwq's, we need to compare it to @pwq's
    4133             :          * and create a new one if they don't match.  If the target cpumask
    4134             :          * equals the default pwq's, the default pwq should be used.
    4135             :          */
    4136           0 :         if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
    4137           0 :                 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
    4138             :                         return;
    4139             :         } else {
    4140           0 :                 goto use_dfl_pwq;
    4141             :         }
    4142             : 
    4143             :         /* create a new pwq */
    4144           0 :         pwq = alloc_unbound_pwq(wq, target_attrs);
    4145           0 :         if (!pwq) {
    4146           0 :                 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
    4147             :                         wq->name);
    4148           0 :                 goto use_dfl_pwq;
    4149             :         }
    4150             : 
    4151             :         /* Install the new pwq. */
    4152           0 :         mutex_lock(&wq->mutex);
    4153           0 :         old_pwq = numa_pwq_tbl_install(wq, node, pwq);
    4154           0 :         goto out_unlock;
    4155             : 
    4156           0 : use_dfl_pwq:
    4157           0 :         mutex_lock(&wq->mutex);
    4158           0 :         raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
    4159           0 :         get_pwq(wq->dfl_pwq);
    4160           0 :         raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
    4161           0 :         old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
    4162           0 : out_unlock:
    4163           0 :         mutex_unlock(&wq->mutex);
    4164           0 :         put_pwq_unlocked(old_pwq);
    4165             : }
    4166             : 
    4167          20 : static int alloc_and_link_pwqs(struct workqueue_struct *wq)
    4168             : {
    4169          20 :         bool highpri = wq->flags & WQ_HIGHPRI;
    4170          20 :         int cpu, ret;
    4171             : 
    4172          20 :         if (!(wq->flags & WQ_UNBOUND)) {
    4173          15 :                 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
    4174          15 :                 if (!wq->cpu_pwqs)
    4175             :                         return -ENOMEM;
    4176             : 
    4177          75 :                 for_each_possible_cpu(cpu) {
    4178          60 :                         struct pool_workqueue *pwq =
    4179          60 :                                 per_cpu_ptr(wq->cpu_pwqs, cpu);
    4180          60 :                         struct worker_pool *cpu_pools =
    4181          60 :                                 per_cpu(cpu_worker_pools, cpu);
    4182             : 
    4183          60 :                         init_pwq(pwq, wq, &cpu_pools[highpri]);
    4184             : 
    4185          60 :                         mutex_lock(&wq->mutex);
    4186          60 :                         link_pwq(pwq);
    4187          60 :                         mutex_unlock(&wq->mutex);
    4188             :                 }
    4189             :                 return 0;
    4190             :         }
    4191             : 
    4192           5 :         get_online_cpus();
    4193           5 :         if (wq->flags & __WQ_ORDERED) {
    4194           2 :                 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
    4195             :                 /* there should only be single pwq for ordering guarantee */
    4196           4 :                 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
    4197             :                               wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
    4198             :                      "ordering guarantee broken for workqueue %s\n", wq->name);
    4199             :         } else {
    4200           3 :                 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
    4201             :         }
    4202           5 :         put_online_cpus();
    4203             : 
    4204           5 :         return ret;
    4205             : }
    4206             : 
    4207          20 : static int wq_clamp_max_active(int max_active, unsigned int flags,
    4208             :                                const char *name)
    4209             : {
    4210          20 :         int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
    4211             : 
    4212          20 :         if (max_active < 1 || max_active > lim)
    4213           0 :                 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
    4214             :                         max_active, name, 1, lim);
    4215             : 
    4216          20 :         return clamp_val(max_active, 1, lim);
    4217             : }
    4218             : 
    4219             : /*
    4220             :  * Workqueues which may be used during memory reclaim should have a rescuer
    4221             :  * to guarantee forward progress.
    4222             :  */
    4223          20 : static int init_rescuer(struct workqueue_struct *wq)
    4224             : {
    4225          20 :         struct worker *rescuer;
    4226          20 :         int ret;
    4227             : 
    4228          20 :         if (!(wq->flags & WQ_MEM_RECLAIM))
    4229             :                 return 0;
    4230             : 
    4231           7 :         rescuer = alloc_worker(NUMA_NO_NODE);
    4232           7 :         if (!rescuer)
    4233             :                 return -ENOMEM;
    4234             : 
    4235           7 :         rescuer->rescue_wq = wq;
    4236           7 :         rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
    4237           7 :         if (IS_ERR(rescuer->task)) {
    4238           0 :                 ret = PTR_ERR(rescuer->task);
    4239           0 :                 kfree(rescuer);
    4240           0 :                 return ret;
    4241             :         }
    4242             : 
    4243           7 :         wq->rescuer = rescuer;
    4244           7 :         kthread_bind_mask(rescuer->task, cpu_possible_mask);
    4245           7 :         wake_up_process(rescuer->task);
    4246             : 
    4247           7 :         return 0;
    4248             : }
    4249             : 
    4250             : __printf(1, 4)
    4251          20 : struct workqueue_struct *alloc_workqueue(const char *fmt,
    4252             :                                          unsigned int flags,
    4253             :                                          int max_active, ...)
    4254             : {
    4255          20 :         size_t tbl_size = 0;
    4256          20 :         va_list args;
    4257          20 :         struct workqueue_struct *wq;
    4258          20 :         struct pool_workqueue *pwq;
    4259             : 
    4260             :         /*
    4261             :          * Unbound && max_active == 1 used to imply ordered, which is no
    4262             :          * longer the case on NUMA machines due to per-node pools.  While
    4263             :          * alloc_ordered_workqueue() is the right way to create an ordered
    4264             :          * workqueue, keep the previous behavior to avoid subtle breakages
    4265             :          * on NUMA.
    4266             :          */
    4267          20 :         if ((flags & WQ_UNBOUND) && max_active == 1)
    4268           2 :                 flags |= __WQ_ORDERED;
    4269             : 
    4270             :         /* see the comment above the definition of WQ_POWER_EFFICIENT */
    4271          20 :         if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
    4272           0 :                 flags |= WQ_UNBOUND;
    4273             : 
    4274             :         /* allocate wq and format name */
    4275          20 :         if (flags & WQ_UNBOUND)
    4276           5 :                 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
    4277             : 
    4278          20 :         wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
    4279          20 :         if (!wq)
    4280             :                 return NULL;
    4281             : 
    4282          20 :         if (flags & WQ_UNBOUND) {
    4283           5 :                 wq->unbound_attrs = alloc_workqueue_attrs();
    4284           5 :                 if (!wq->unbound_attrs)
    4285           0 :                         goto err_free_wq;
    4286             :         }
    4287             : 
    4288          20 :         va_start(args, max_active);
    4289          20 :         vsnprintf(wq->name, sizeof(wq->name), fmt, args);
    4290          20 :         va_end(args);
    4291             : 
    4292          20 :         max_active = max_active ?: WQ_DFL_ACTIVE;
    4293          20 :         max_active = wq_clamp_max_active(max_active, flags, wq->name);
    4294             : 
    4295             :         /* init wq */
    4296          20 :         wq->flags = flags;
    4297          20 :         wq->saved_max_active = max_active;
    4298          20 :         mutex_init(&wq->mutex);
    4299          20 :         atomic_set(&wq->nr_pwqs_to_flush, 0);
    4300          20 :         INIT_LIST_HEAD(&wq->pwqs);
    4301          20 :         INIT_LIST_HEAD(&wq->flusher_queue);
    4302          20 :         INIT_LIST_HEAD(&wq->flusher_overflow);
    4303          20 :         INIT_LIST_HEAD(&wq->maydays);
    4304             : 
    4305          20 :         wq_init_lockdep(wq);
    4306          20 :         INIT_LIST_HEAD(&wq->list);
    4307             : 
    4308          20 :         if (alloc_and_link_pwqs(wq) < 0)
    4309           0 :                 goto err_unreg_lockdep;
    4310             : 
    4311          20 :         if (wq_online && init_rescuer(wq) < 0)
    4312           0 :                 goto err_destroy;
    4313             : 
    4314          20 :         if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
    4315           0 :                 goto err_destroy;
    4316             : 
    4317             :         /*
    4318             :          * wq_pool_mutex protects global freeze state and workqueues list.
    4319             :          * Grab it, adjust max_active and add the new @wq to workqueues
    4320             :          * list.
    4321             :          */
    4322          20 :         mutex_lock(&wq_pool_mutex);
    4323             : 
    4324          20 :         mutex_lock(&wq->mutex);
    4325          85 :         for_each_pwq(pwq, wq)
    4326          65 :                 pwq_adjust_max_active(pwq);
    4327          20 :         mutex_unlock(&wq->mutex);
    4328             : 
    4329          20 :         list_add_tail_rcu(&wq->list, &workqueues);
    4330             : 
    4331          20 :         mutex_unlock(&wq_pool_mutex);
    4332             : 
    4333          20 :         return wq;
    4334             : 
    4335           0 : err_unreg_lockdep:
    4336           0 :         wq_unregister_lockdep(wq);
    4337           0 :         wq_free_lockdep(wq);
    4338           0 : err_free_wq:
    4339           0 :         free_workqueue_attrs(wq->unbound_attrs);
    4340           0 :         kfree(wq);
    4341           0 :         return NULL;
    4342           0 : err_destroy:
    4343           0 :         destroy_workqueue(wq);
    4344           0 :         return NULL;
    4345             : }
    4346             : EXPORT_SYMBOL_GPL(alloc_workqueue);
    4347             : 
    4348           1 : static bool pwq_busy(struct pool_workqueue *pwq)
    4349             : {
    4350           1 :         int i;
    4351             : 
    4352          16 :         for (i = 0; i < WORK_NR_COLORS; i++)
    4353          15 :                 if (pwq->nr_in_flight[i])
    4354             :                         return true;
    4355             : 
    4356           1 :         if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
    4357             :                 return true;
    4358           1 :         if (pwq->nr_active || !list_empty(&pwq->delayed_works))
    4359           0 :                 return true;
    4360             : 
    4361             :         return false;
    4362             : }
    4363             : 
    4364             : /**
    4365             :  * destroy_workqueue - safely terminate a workqueue
    4366             :  * @wq: target workqueue
    4367             :  *
    4368             :  * Safely destroy a workqueue. All work currently pending will be done first.
    4369             :  */
    4370           1 : void destroy_workqueue(struct workqueue_struct *wq)
    4371             : {
    4372           1 :         struct pool_workqueue *pwq;
    4373           1 :         int node;
    4374             : 
    4375             :         /*
    4376             :          * Remove it from sysfs first so that sanity check failure doesn't
    4377             :          * lead to sysfs name conflicts.
    4378             :          */
    4379           2 :         workqueue_sysfs_unregister(wq);
    4380             : 
    4381             :         /* drain it before proceeding with destruction */
    4382           1 :         drain_workqueue(wq);
    4383             : 
    4384             :         /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
    4385           1 :         if (wq->rescuer) {
    4386           0 :                 struct worker *rescuer = wq->rescuer;
    4387             : 
    4388             :                 /* this prevents new queueing */
    4389           0 :                 raw_spin_lock_irq(&wq_mayday_lock);
    4390           0 :                 wq->rescuer = NULL;
    4391           0 :                 raw_spin_unlock_irq(&wq_mayday_lock);
    4392             : 
    4393             :                 /* rescuer will empty maydays list before exiting */
    4394           0 :                 kthread_stop(rescuer->task);
    4395           0 :                 kfree(rescuer);
    4396             :         }
    4397             : 
    4398             :         /*
    4399             :          * Sanity checks - grab all the locks so that we wait for all
    4400             :          * in-flight operations which may do put_pwq().
    4401             :          */
    4402           1 :         mutex_lock(&wq_pool_mutex);
    4403           1 :         mutex_lock(&wq->mutex);
    4404           2 :         for_each_pwq(pwq, wq) {
    4405           1 :                 raw_spin_lock_irq(&pwq->pool->lock);
    4406           1 :                 if (WARN_ON(pwq_busy(pwq))) {
    4407           0 :                         pr_warn("%s: %s has the following busy pwq\n",
    4408             :                                 __func__, wq->name);
    4409           0 :                         show_pwq(pwq);
    4410           0 :                         raw_spin_unlock_irq(&pwq->pool->lock);
    4411           0 :                         mutex_unlock(&wq->mutex);
    4412           0 :                         mutex_unlock(&wq_pool_mutex);
    4413           0 :                         show_workqueue_state();
    4414           0 :                         return;
    4415             :                 }
    4416           1 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    4417             :         }
    4418           1 :         mutex_unlock(&wq->mutex);
    4419             : 
    4420             :         /*
    4421             :          * wq list is used to freeze wq, remove from list after
    4422             :          * flushing is complete in case freeze races us.
    4423             :          */
    4424           1 :         list_del_rcu(&wq->list);
    4425           1 :         mutex_unlock(&wq_pool_mutex);
    4426             : 
    4427           1 :         if (!(wq->flags & WQ_UNBOUND)) {
    4428           0 :                 wq_unregister_lockdep(wq);
    4429             :                 /*
    4430             :                  * The base ref is never dropped on per-cpu pwqs.  Directly
    4431             :                  * schedule RCU free.
    4432             :                  */
    4433           0 :                 call_rcu(&wq->rcu, rcu_free_wq);
    4434             :         } else {
    4435             :                 /*
    4436             :                  * We're the sole accessor of @wq at this point.  Directly
    4437             :                  * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
    4438             :                  * @wq will be freed when the last pwq is released.
    4439             :                  */
    4440           2 :                 for_each_node(node) {
    4441           1 :                         pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
    4442           1 :                         RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
    4443           1 :                         put_pwq_unlocked(pwq);
    4444             :                 }
    4445             : 
    4446             :                 /*
    4447             :                  * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
    4448             :                  * put.  Don't access it afterwards.
    4449             :                  */
    4450           1 :                 pwq = wq->dfl_pwq;
    4451           1 :                 wq->dfl_pwq = NULL;
    4452           1 :                 put_pwq_unlocked(pwq);
    4453             :         }
    4454             : }
    4455             : EXPORT_SYMBOL_GPL(destroy_workqueue);
    4456             : 
    4457             : /**
    4458             :  * workqueue_set_max_active - adjust max_active of a workqueue
    4459             :  * @wq: target workqueue
    4460             :  * @max_active: new max_active value.
    4461             :  *
    4462             :  * Set max_active of @wq to @max_active.
    4463             :  *
    4464             :  * CONTEXT:
    4465             :  * Don't call from IRQ context.
    4466             :  */
    4467           0 : void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
    4468             : {
    4469           0 :         struct pool_workqueue *pwq;
    4470             : 
    4471             :         /* disallow meddling with max_active for ordered workqueues */
    4472           0 :         if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    4473             :                 return;
    4474             : 
    4475           0 :         max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
    4476             : 
    4477           0 :         mutex_lock(&wq->mutex);
    4478             : 
    4479           0 :         wq->flags &= ~__WQ_ORDERED;
    4480           0 :         wq->saved_max_active = max_active;
    4481             : 
    4482           0 :         for_each_pwq(pwq, wq)
    4483           0 :                 pwq_adjust_max_active(pwq);
    4484             : 
    4485           0 :         mutex_unlock(&wq->mutex);
    4486             : }
    4487             : EXPORT_SYMBOL_GPL(workqueue_set_max_active);
    4488             : 
    4489             : /**
    4490             :  * current_work - retrieve %current task's work struct
    4491             :  *
    4492             :  * Determine if %current task is a workqueue worker and what it's working on.
    4493             :  * Useful to find out the context that the %current task is running in.
    4494             :  *
    4495             :  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
    4496             :  */
    4497           0 : struct work_struct *current_work(void)
    4498             : {
    4499           0 :         struct worker *worker = current_wq_worker();
    4500             : 
    4501           0 :         return worker ? worker->current_work : NULL;
    4502             : }
    4503             : EXPORT_SYMBOL(current_work);
    4504             : 
    4505             : /**
    4506             :  * current_is_workqueue_rescuer - is %current workqueue rescuer?
    4507             :  *
    4508             :  * Determine whether %current is a workqueue rescuer.  Can be used from
    4509             :  * work functions to determine whether it's being run off the rescuer task.
    4510             :  *
    4511             :  * Return: %true if %current is a workqueue rescuer. %false otherwise.
    4512             :  */
    4513           5 : bool current_is_workqueue_rescuer(void)
    4514             : {
    4515           5 :         struct worker *worker = current_wq_worker();
    4516             : 
    4517           5 :         return worker && worker->rescue_wq;
    4518             : }
    4519             : 
    4520             : /**
    4521             :  * workqueue_congested - test whether a workqueue is congested
    4522             :  * @cpu: CPU in question
    4523             :  * @wq: target workqueue
    4524             :  *
    4525             :  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
    4526             :  * no synchronization around this function and the test result is
    4527             :  * unreliable and only useful as advisory hints or for debugging.
    4528             :  *
    4529             :  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
    4530             :  * Note that both per-cpu and unbound workqueues may be associated with
    4531             :  * multiple pool_workqueues which have separate congested states.  A
    4532             :  * workqueue being congested on one CPU doesn't mean the workqueue is also
    4533             :  * contested on other CPUs / NUMA nodes.
    4534             :  *
    4535             :  * Return:
    4536             :  * %true if congested, %false otherwise.
    4537             :  */
    4538           0 : bool workqueue_congested(int cpu, struct workqueue_struct *wq)
    4539             : {
    4540           0 :         struct pool_workqueue *pwq;
    4541           0 :         bool ret;
    4542             : 
    4543           0 :         rcu_read_lock();
    4544           0 :         preempt_disable();
    4545             : 
    4546           0 :         if (cpu == WORK_CPU_UNBOUND)
    4547           0 :                 cpu = smp_processor_id();
    4548             : 
    4549           0 :         if (!(wq->flags & WQ_UNBOUND))
    4550           0 :                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    4551             :         else
    4552           0 :                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
    4553             : 
    4554           0 :         ret = !list_empty(&pwq->delayed_works);
    4555           0 :         preempt_enable();
    4556           0 :         rcu_read_unlock();
    4557             : 
    4558           0 :         return ret;
    4559             : }
    4560             : EXPORT_SYMBOL_GPL(workqueue_congested);
    4561             : 
    4562             : /**
    4563             :  * work_busy - test whether a work is currently pending or running
    4564             :  * @work: the work to be tested
    4565             :  *
    4566             :  * Test whether @work is currently pending or running.  There is no
    4567             :  * synchronization around this function and the test result is
    4568             :  * unreliable and only useful as advisory hints or for debugging.
    4569             :  *
    4570             :  * Return:
    4571             :  * OR'd bitmask of WORK_BUSY_* bits.
    4572             :  */
    4573           0 : unsigned int work_busy(struct work_struct *work)
    4574             : {
    4575           0 :         struct worker_pool *pool;
    4576           0 :         unsigned long flags;
    4577           0 :         unsigned int ret = 0;
    4578             : 
    4579           0 :         if (work_pending(work))
    4580           0 :                 ret |= WORK_BUSY_PENDING;
    4581             : 
    4582           0 :         rcu_read_lock();
    4583           0 :         pool = get_work_pool(work);
    4584           0 :         if (pool) {
    4585           0 :                 raw_spin_lock_irqsave(&pool->lock, flags);
    4586           0 :                 if (find_worker_executing_work(pool, work))
    4587           0 :                         ret |= WORK_BUSY_RUNNING;
    4588           0 :                 raw_spin_unlock_irqrestore(&pool->lock, flags);
    4589             :         }
    4590           0 :         rcu_read_unlock();
    4591             : 
    4592           0 :         return ret;
    4593             : }
    4594             : EXPORT_SYMBOL_GPL(work_busy);
    4595             : 
    4596             : /**
    4597             :  * set_worker_desc - set description for the current work item
    4598             :  * @fmt: printf-style format string
    4599             :  * @...: arguments for the format string
    4600             :  *
    4601             :  * This function can be called by a running work function to describe what
    4602             :  * the work item is about.  If the worker task gets dumped, this
    4603             :  * information will be printed out together to help debugging.  The
    4604             :  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
    4605             :  */
    4606           5 : void set_worker_desc(const char *fmt, ...)
    4607             : {
    4608           5 :         struct worker *worker = current_wq_worker();
    4609           5 :         va_list args;
    4610             : 
    4611           5 :         if (worker) {
    4612           5 :                 va_start(args, fmt);
    4613           5 :                 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
    4614           5 :                 va_end(args);
    4615             :         }
    4616           5 : }
    4617             : EXPORT_SYMBOL_GPL(set_worker_desc);
    4618             : 
    4619             : /**
    4620             :  * print_worker_info - print out worker information and description
    4621             :  * @log_lvl: the log level to use when printing
    4622             :  * @task: target task
    4623             :  *
    4624             :  * If @task is a worker and currently executing a work item, print out the
    4625             :  * name of the workqueue being serviced and worker description set with
    4626             :  * set_worker_desc() by the currently executing work item.
    4627             :  *
    4628             :  * This function can be safely called on any task as long as the
    4629             :  * task_struct itself is accessible.  While safe, this function isn't
    4630             :  * synchronized and may print out mixups or garbages of limited length.
    4631             :  */
    4632           1 : void print_worker_info(const char *log_lvl, struct task_struct *task)
    4633             : {
    4634           1 :         work_func_t *fn = NULL;
    4635           1 :         char name[WQ_NAME_LEN] = { };
    4636           1 :         char desc[WORKER_DESC_LEN] = { };
    4637           1 :         struct pool_workqueue *pwq = NULL;
    4638           1 :         struct workqueue_struct *wq = NULL;
    4639           1 :         struct worker *worker;
    4640             : 
    4641           1 :         if (!(task->flags & PF_WQ_WORKER))
    4642           1 :                 return;
    4643             : 
    4644             :         /*
    4645             :          * This function is called without any synchronization and @task
    4646             :          * could be in any state.  Be careful with dereferences.
    4647             :          */
    4648           0 :         worker = kthread_probe_data(task);
    4649             : 
    4650             :         /*
    4651             :          * Carefully copy the associated workqueue's workfn, name and desc.
    4652             :          * Keep the original last '\0' in case the original is garbage.
    4653             :          */
    4654           0 :         copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
    4655           0 :         copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
    4656           0 :         copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
    4657           0 :         copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
    4658           0 :         copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
    4659             : 
    4660           0 :         if (fn || name[0] || desc[0]) {
    4661           0 :                 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
    4662           0 :                 if (strcmp(name, desc))
    4663           0 :                         pr_cont(" (%s)", desc);
    4664           0 :                 pr_cont("\n");
    4665             :         }
    4666             : }
    4667             : 
    4668           0 : static void pr_cont_pool_info(struct worker_pool *pool)
    4669             : {
    4670           0 :         pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
    4671           0 :         if (pool->node != NUMA_NO_NODE)
    4672           0 :                 pr_cont(" node=%d", pool->node);
    4673           0 :         pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
    4674           0 : }
    4675             : 
    4676           0 : static void pr_cont_work(bool comma, struct work_struct *work)
    4677             : {
    4678           0 :         if (work->func == wq_barrier_func) {
    4679           0 :                 struct wq_barrier *barr;
    4680             : 
    4681           0 :                 barr = container_of(work, struct wq_barrier, work);
    4682             : 
    4683           0 :                 pr_cont("%s BAR(%d)", comma ? "," : "",
    4684             :                         task_pid_nr(barr->task));
    4685             :         } else {
    4686           0 :                 pr_cont("%s %ps", comma ? "," : "", work->func);
    4687             :         }
    4688           0 : }
    4689             : 
    4690           0 : static void show_pwq(struct pool_workqueue *pwq)
    4691             : {
    4692           0 :         struct worker_pool *pool = pwq->pool;
    4693           0 :         struct work_struct *work;
    4694           0 :         struct worker *worker;
    4695           0 :         bool has_in_flight = false, has_pending = false;
    4696           0 :         int bkt;
    4697             : 
    4698           0 :         pr_info("  pwq %d:", pool->id);
    4699           0 :         pr_cont_pool_info(pool);
    4700             : 
    4701           0 :         pr_cont(" active=%d/%d refcnt=%d%s\n",
    4702             :                 pwq->nr_active, pwq->max_active, pwq->refcnt,
    4703             :                 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
    4704             : 
    4705           0 :         hash_for_each(pool->busy_hash, bkt, worker, hentry) {
    4706           0 :                 if (worker->current_pwq == pwq) {
    4707             :                         has_in_flight = true;
    4708             :                         break;
    4709             :                 }
    4710             :         }
    4711           0 :         if (has_in_flight) {
    4712           0 :                 bool comma = false;
    4713             : 
    4714           0 :                 pr_info("    in-flight:");
    4715           0 :                 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
    4716           0 :                         if (worker->current_pwq != pwq)
    4717           0 :                                 continue;
    4718             : 
    4719           0 :                         pr_cont("%s %d%s:%ps", comma ? "," : "",
    4720             :                                 task_pid_nr(worker->task),
    4721             :                                 worker->rescue_wq ? "(RESCUER)" : "",
    4722             :                                 worker->current_func);
    4723           0 :                         list_for_each_entry(work, &worker->scheduled, entry)
    4724           0 :                                 pr_cont_work(false, work);
    4725             :                         comma = true;
    4726             :                 }
    4727           0 :                 pr_cont("\n");
    4728             :         }
    4729             : 
    4730           0 :         list_for_each_entry(work, &pool->worklist, entry) {
    4731           0 :                 if (get_work_pwq(work) == pwq) {
    4732             :                         has_pending = true;
    4733             :                         break;
    4734             :                 }
    4735             :         }
    4736           0 :         if (has_pending) {
    4737           0 :                 bool comma = false;
    4738             : 
    4739           0 :                 pr_info("    pending:");
    4740           0 :                 list_for_each_entry(work, &pool->worklist, entry) {
    4741           0 :                         if (get_work_pwq(work) != pwq)
    4742           0 :                                 continue;
    4743             : 
    4744           0 :                         pr_cont_work(comma, work);
    4745           0 :                         comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
    4746             :                 }
    4747           0 :                 pr_cont("\n");
    4748             :         }
    4749             : 
    4750           0 :         if (!list_empty(&pwq->delayed_works)) {
    4751           0 :                 bool comma = false;
    4752             : 
    4753           0 :                 pr_info("    delayed:");
    4754           0 :                 list_for_each_entry(work, &pwq->delayed_works, entry) {
    4755           0 :                         pr_cont_work(comma, work);
    4756           0 :                         comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
    4757             :                 }
    4758           0 :                 pr_cont("\n");
    4759             :         }
    4760           0 : }
    4761             : 
    4762             : /**
    4763             :  * show_workqueue_state - dump workqueue state
    4764             :  *
    4765             :  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
    4766             :  * all busy workqueues and pools.
    4767             :  */
    4768           0 : void show_workqueue_state(void)
    4769             : {
    4770           0 :         struct workqueue_struct *wq;
    4771           0 :         struct worker_pool *pool;
    4772           0 :         unsigned long flags;
    4773           0 :         int pi;
    4774             : 
    4775           0 :         rcu_read_lock();
    4776             : 
    4777           0 :         pr_info("Showing busy workqueues and worker pools:\n");
    4778             : 
    4779           0 :         list_for_each_entry_rcu(wq, &workqueues, list) {
    4780           0 :                 struct pool_workqueue *pwq;
    4781           0 :                 bool idle = true;
    4782             : 
    4783           0 :                 for_each_pwq(pwq, wq) {
    4784           0 :                         if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
    4785           0 :                                 idle = false;
    4786           0 :                                 break;
    4787             :                         }
    4788             :                 }
    4789           0 :                 if (idle)
    4790           0 :                         continue;
    4791             : 
    4792           0 :                 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
    4793             : 
    4794           0 :                 for_each_pwq(pwq, wq) {
    4795           0 :                         raw_spin_lock_irqsave(&pwq->pool->lock, flags);
    4796           0 :                         if (pwq->nr_active || !list_empty(&pwq->delayed_works))
    4797           0 :                                 show_pwq(pwq);
    4798           0 :                         raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
    4799             :                         /*
    4800             :                          * We could be printing a lot from atomic context, e.g.
    4801             :                          * sysrq-t -> show_workqueue_state(). Avoid triggering
    4802             :                          * hard lockup.
    4803             :                          */
    4804           0 :                         touch_nmi_watchdog();
    4805             :                 }
    4806             :         }
    4807             : 
    4808           0 :         for_each_pool(pool, pi) {
    4809           0 :                 struct worker *worker;
    4810           0 :                 bool first = true;
    4811             : 
    4812           0 :                 raw_spin_lock_irqsave(&pool->lock, flags);
    4813           0 :                 if (pool->nr_workers == pool->nr_idle)
    4814           0 :                         goto next_pool;
    4815             : 
    4816           0 :                 pr_info("pool %d:", pool->id);
    4817           0 :                 pr_cont_pool_info(pool);
    4818           0 :                 pr_cont(" hung=%us workers=%d",
    4819             :                         jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
    4820             :                         pool->nr_workers);
    4821           0 :                 if (pool->manager)
    4822           0 :                         pr_cont(" manager: %d",
    4823             :                                 task_pid_nr(pool->manager->task));
    4824           0 :                 list_for_each_entry(worker, &pool->idle_list, entry) {
    4825           0 :                         pr_cont(" %s%d", first ? "idle: " : "",
    4826             :                                 task_pid_nr(worker->task));
    4827           0 :                         first = false;
    4828             :                 }
    4829           0 :                 pr_cont("\n");
    4830           0 :         next_pool:
    4831           0 :                 raw_spin_unlock_irqrestore(&pool->lock, flags);
    4832             :                 /*
    4833             :                  * We could be printing a lot from atomic context, e.g.
    4834             :                  * sysrq-t -> show_workqueue_state(). Avoid triggering
    4835             :                  * hard lockup.
    4836             :                  */
    4837           0 :                 touch_nmi_watchdog();
    4838             :         }
    4839             : 
    4840           0 :         rcu_read_unlock();
    4841           0 : }
    4842             : 
    4843             : /* used to show worker information through /proc/PID/{comm,stat,status} */
    4844          24 : void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
    4845             : {
    4846          24 :         int off;
    4847             : 
    4848             :         /* always show the actual comm */
    4849          24 :         off = strscpy(buf, task->comm, size);
    4850          24 :         if (off < 0)
    4851             :                 return;
    4852             : 
    4853             :         /* stabilize PF_WQ_WORKER and worker pool association */
    4854          24 :         mutex_lock(&wq_pool_attach_mutex);
    4855             : 
    4856          24 :         if (task->flags & PF_WQ_WORKER) {
    4857          24 :                 struct worker *worker = kthread_data(task);
    4858          24 :                 struct worker_pool *pool = worker->pool;
    4859             : 
    4860          24 :                 if (pool) {
    4861          17 :                         raw_spin_lock_irq(&pool->lock);
    4862             :                         /*
    4863             :                          * ->desc tracks information (wq name or
    4864             :                          * set_worker_desc()) for the latest execution.  If
    4865             :                          * current, prepend '+', otherwise '-'.
    4866             :                          */
    4867          17 :                         if (worker->desc[0] != '\0') {
    4868          12 :                                 if (worker->current_work)
    4869           0 :                                         scnprintf(buf + off, size - off, "+%s",
    4870           0 :                                                   worker->desc);
    4871             :                                 else
    4872          12 :                                         scnprintf(buf + off, size - off, "-%s",
    4873          12 :                                                   worker->desc);
    4874             :                         }
    4875          17 :                         raw_spin_unlock_irq(&pool->lock);
    4876             :                 }
    4877             :         }
    4878             : 
    4879          24 :         mutex_unlock(&wq_pool_attach_mutex);
    4880             : }
    4881             : 
    4882             : #ifdef CONFIG_SMP
    4883             : 
    4884             : /*
    4885             :  * CPU hotplug.
    4886             :  *
    4887             :  * There are two challenges in supporting CPU hotplug.  Firstly, there
    4888             :  * are a lot of assumptions on strong associations among work, pwq and
    4889             :  * pool which make migrating pending and scheduled works very
    4890             :  * difficult to implement without impacting hot paths.  Secondly,
    4891             :  * worker pools serve mix of short, long and very long running works making
    4892             :  * blocked draining impractical.
    4893             :  *
    4894             :  * This is solved by allowing the pools to be disassociated from the CPU
    4895             :  * running as an unbound one and allowing it to be reattached later if the
    4896             :  * cpu comes back online.
    4897             :  */
    4898             : 
    4899           0 : static void unbind_workers(int cpu)
    4900             : {
    4901           0 :         struct worker_pool *pool;
    4902           0 :         struct worker *worker;
    4903             : 
    4904           0 :         for_each_cpu_worker_pool(pool, cpu) {
    4905           0 :                 mutex_lock(&wq_pool_attach_mutex);
    4906           0 :                 raw_spin_lock_irq(&pool->lock);
    4907             : 
    4908             :                 /*
    4909             :                  * We've blocked all attach/detach operations. Make all workers
    4910             :                  * unbound and set DISASSOCIATED.  Before this, all workers
    4911             :                  * except for the ones which are still executing works from
    4912             :                  * before the last CPU down must be on the cpu.  After
    4913             :                  * this, they may become diasporas.
    4914             :                  */
    4915           0 :                 for_each_pool_worker(worker, pool)
    4916           0 :                         worker->flags |= WORKER_UNBOUND;
    4917             : 
    4918           0 :                 pool->flags |= POOL_DISASSOCIATED;
    4919             : 
    4920           0 :                 raw_spin_unlock_irq(&pool->lock);
    4921             : 
    4922           0 :                 for_each_pool_worker(worker, pool) {
    4923           0 :                         kthread_set_per_cpu(worker->task, -1);
    4924           0 :                         WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
    4925             :                 }
    4926             : 
    4927           0 :                 mutex_unlock(&wq_pool_attach_mutex);
    4928             : 
    4929             :                 /*
    4930             :                  * Call schedule() so that we cross rq->lock and thus can
    4931             :                  * guarantee sched callbacks see the %WORKER_UNBOUND flag.
    4932             :                  * This is necessary as scheduler callbacks may be invoked
    4933             :                  * from other cpus.
    4934             :                  */
    4935           0 :                 schedule();
    4936             : 
    4937             :                 /*
    4938             :                  * Sched callbacks are disabled now.  Zap nr_running.
    4939             :                  * After this, nr_running stays zero and need_more_worker()
    4940             :                  * and keep_working() are always true as long as the
    4941             :                  * worklist is not empty.  This pool now behaves as an
    4942             :                  * unbound (in terms of concurrency management) pool which
    4943             :                  * are served by workers tied to the pool.
    4944             :                  */
    4945           0 :                 atomic_set(&pool->nr_running, 0);
    4946             : 
    4947             :                 /*
    4948             :                  * With concurrency management just turned off, a busy
    4949             :                  * worker blocking could lead to lengthy stalls.  Kick off
    4950             :                  * unbound chain execution of currently pending work items.
    4951             :                  */
    4952           0 :                 raw_spin_lock_irq(&pool->lock);
    4953           0 :                 wake_up_worker(pool);
    4954           0 :                 raw_spin_unlock_irq(&pool->lock);
    4955             :         }
    4956           0 : }
    4957             : 
    4958             : /**
    4959             :  * rebind_workers - rebind all workers of a pool to the associated CPU
    4960             :  * @pool: pool of interest
    4961             :  *
    4962             :  * @pool->cpu is coming online.  Rebind all workers to the CPU.
    4963             :  */
    4964           6 : static void rebind_workers(struct worker_pool *pool)
    4965             : {
    4966           6 :         struct worker *worker;
    4967             : 
    4968          18 :         lockdep_assert_held(&wq_pool_attach_mutex);
    4969             : 
    4970             :         /*
    4971             :          * Restore CPU affinity of all workers.  As all idle workers should
    4972             :          * be on the run-queue of the associated CPU before any local
    4973             :          * wake-ups for concurrency management happen, restore CPU affinity
    4974             :          * of all workers first and then clear UNBOUND.  As we're called
    4975             :          * from CPU_ONLINE, the following shouldn't fail.
    4976             :          */
    4977          24 :         for_each_pool_worker(worker, pool) {
    4978           6 :                 kthread_set_per_cpu(worker->task, pool->cpu);
    4979           6 :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
    4980             :                                                   pool->attrs->cpumask) < 0);
    4981             :         }
    4982             : 
    4983           6 :         raw_spin_lock_irq(&pool->lock);
    4984             : 
    4985           6 :         pool->flags &= ~POOL_DISASSOCIATED;
    4986             : 
    4987          24 :         for_each_pool_worker(worker, pool) {
    4988           6 :                 unsigned int worker_flags = worker->flags;
    4989             : 
    4990             :                 /*
    4991             :                  * A bound idle worker should actually be on the runqueue
    4992             :                  * of the associated CPU for local wake-ups targeting it to
    4993             :                  * work.  Kick all idle workers so that they migrate to the
    4994             :                  * associated CPU.  Doing this in the same loop as
    4995             :                  * replacing UNBOUND with REBOUND is safe as no worker will
    4996             :                  * be bound before @pool->lock is released.
    4997             :                  */
    4998           6 :                 if (worker_flags & WORKER_IDLE)
    4999           6 :                         wake_up_process(worker->task);
    5000             : 
    5001             :                 /*
    5002             :                  * We want to clear UNBOUND but can't directly call
    5003             :                  * worker_clr_flags() or adjust nr_running.  Atomically
    5004             :                  * replace UNBOUND with another NOT_RUNNING flag REBOUND.
    5005             :                  * @worker will clear REBOUND using worker_clr_flags() when
    5006             :                  * it initiates the next execution cycle thus restoring
    5007             :                  * concurrency management.  Note that when or whether
    5008             :                  * @worker clears REBOUND doesn't affect correctness.
    5009             :                  *
    5010             :                  * WRITE_ONCE() is necessary because @worker->flags may be
    5011             :                  * tested without holding any lock in
    5012             :                  * wq_worker_running().  Without it, NOT_RUNNING test may
    5013             :                  * fail incorrectly leading to premature concurrency
    5014             :                  * management operations.
    5015             :                  */
    5016           6 :                 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
    5017           6 :                 worker_flags |= WORKER_REBOUND;
    5018           6 :                 worker_flags &= ~WORKER_UNBOUND;
    5019           6 :                 WRITE_ONCE(worker->flags, worker_flags);
    5020             :         }
    5021             : 
    5022           6 :         raw_spin_unlock_irq(&pool->lock);
    5023           6 : }
    5024             : 
    5025             : /**
    5026             :  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
    5027             :  * @pool: unbound pool of interest
    5028             :  * @cpu: the CPU which is coming up
    5029             :  *
    5030             :  * An unbound pool may end up with a cpumask which doesn't have any online
    5031             :  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
    5032             :  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
    5033             :  * online CPU before, cpus_allowed of all its workers should be restored.
    5034             :  */
    5035           3 : static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
    5036             : {
    5037           3 :         static cpumask_t cpumask;
    5038           3 :         struct worker *worker;
    5039             : 
    5040           9 :         lockdep_assert_held(&wq_pool_attach_mutex);
    5041             : 
    5042             :         /* is @cpu allowed for @pool? */
    5043           3 :         if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
    5044             :                 return;
    5045             : 
    5046           3 :         cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
    5047             : 
    5048             :         /* as we're called from CPU_ONLINE, the following shouldn't fail */
    5049          12 :         for_each_pool_worker(worker, pool)
    5050           3 :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
    5051             : }
    5052             : 
    5053           3 : int workqueue_prepare_cpu(unsigned int cpu)
    5054             : {
    5055           3 :         struct worker_pool *pool;
    5056             : 
    5057           9 :         for_each_cpu_worker_pool(pool, cpu) {
    5058           6 :                 if (pool->nr_workers)
    5059           0 :                         continue;
    5060           6 :                 if (!create_worker(pool))
    5061             :                         return -ENOMEM;
    5062             :         }
    5063             :         return 0;
    5064             : }
    5065             : 
    5066           3 : int workqueue_online_cpu(unsigned int cpu)
    5067             : {
    5068           3 :         struct worker_pool *pool;
    5069           3 :         struct workqueue_struct *wq;
    5070           3 :         int pi;
    5071             : 
    5072           3 :         mutex_lock(&wq_pool_mutex);
    5073             : 
    5074          57 :         for_each_pool(pool, pi) {
    5075          27 :                 mutex_lock(&wq_pool_attach_mutex);
    5076             : 
    5077          27 :                 if (pool->cpu == cpu)
    5078           6 :                         rebind_workers(pool);
    5079          21 :                 else if (pool->cpu < 0)
    5080           3 :                         restore_unbound_workers_cpumask(pool, cpu);
    5081             : 
    5082          27 :                 mutex_unlock(&wq_pool_attach_mutex);
    5083             :         }
    5084             : 
    5085             :         /* update NUMA affinity of unbound workqueues */
    5086          33 :         list_for_each_entry(wq, &workqueues, list)
    5087          30 :                 wq_update_unbound_numa(wq, cpu, true);
    5088             : 
    5089           3 :         mutex_unlock(&wq_pool_mutex);
    5090           3 :         return 0;
    5091             : }
    5092             : 
    5093           0 : int workqueue_offline_cpu(unsigned int cpu)
    5094             : {
    5095           0 :         struct workqueue_struct *wq;
    5096             : 
    5097             :         /* unbinding per-cpu workers should happen on the local CPU */
    5098           0 :         if (WARN_ON(cpu != smp_processor_id()))
    5099             :                 return -1;
    5100             : 
    5101           0 :         unbind_workers(cpu);
    5102             : 
    5103             :         /* update NUMA affinity of unbound workqueues */
    5104           0 :         mutex_lock(&wq_pool_mutex);
    5105           0 :         list_for_each_entry(wq, &workqueues, list)
    5106           0 :                 wq_update_unbound_numa(wq, cpu, false);
    5107           0 :         mutex_unlock(&wq_pool_mutex);
    5108             : 
    5109           0 :         return 0;
    5110             : }
    5111             : 
    5112             : struct work_for_cpu {
    5113             :         struct work_struct work;
    5114             :         long (*fn)(void *);
    5115             :         void *arg;
    5116             :         long ret;
    5117             : };
    5118             : 
    5119           0 : static void work_for_cpu_fn(struct work_struct *work)
    5120             : {
    5121           0 :         struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
    5122             : 
    5123           0 :         wfc->ret = wfc->fn(wfc->arg);
    5124           0 : }
    5125             : 
    5126             : /**
    5127             :  * work_on_cpu - run a function in thread context on a particular cpu
    5128             :  * @cpu: the cpu to run on
    5129             :  * @fn: the function to run
    5130             :  * @arg: the function arg
    5131             :  *
    5132             :  * It is up to the caller to ensure that the cpu doesn't go offline.
    5133             :  * The caller must not hold any locks which would prevent @fn from completing.
    5134             :  *
    5135             :  * Return: The value @fn returns.
    5136             :  */
    5137           0 : long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
    5138             : {
    5139           0 :         struct work_for_cpu wfc = { .fn = fn, .arg = arg };
    5140             : 
    5141           0 :         INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
    5142           0 :         schedule_work_on(cpu, &wfc.work);
    5143           0 :         flush_work(&wfc.work);
    5144           0 :         destroy_work_on_stack(&wfc.work);
    5145           0 :         return wfc.ret;
    5146             : }
    5147             : EXPORT_SYMBOL_GPL(work_on_cpu);
    5148             : 
    5149             : /**
    5150             :  * work_on_cpu_safe - run a function in thread context on a particular cpu
    5151             :  * @cpu: the cpu to run on
    5152             :  * @fn:  the function to run
    5153             :  * @arg: the function argument
    5154             :  *
    5155             :  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
    5156             :  * any locks which would prevent @fn from completing.
    5157             :  *
    5158             :  * Return: The value @fn returns.
    5159             :  */
    5160           0 : long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
    5161             : {
    5162           0 :         long ret = -ENODEV;
    5163             : 
    5164           0 :         get_online_cpus();
    5165           0 :         if (cpu_online(cpu))
    5166           0 :                 ret = work_on_cpu(cpu, fn, arg);
    5167           0 :         put_online_cpus();
    5168           0 :         return ret;
    5169             : }
    5170             : EXPORT_SYMBOL_GPL(work_on_cpu_safe);
    5171             : #endif /* CONFIG_SMP */
    5172             : 
    5173             : #ifdef CONFIG_FREEZER
    5174             : 
    5175             : /**
    5176             :  * freeze_workqueues_begin - begin freezing workqueues
    5177             :  *
    5178             :  * Start freezing workqueues.  After this function returns, all freezable
    5179             :  * workqueues will queue new works to their delayed_works list instead of
    5180             :  * pool->worklist.
    5181             :  *
    5182             :  * CONTEXT:
    5183             :  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
    5184             :  */
    5185             : void freeze_workqueues_begin(void)
    5186             : {
    5187             :         struct workqueue_struct *wq;
    5188             :         struct pool_workqueue *pwq;
    5189             : 
    5190             :         mutex_lock(&wq_pool_mutex);
    5191             : 
    5192             :         WARN_ON_ONCE(workqueue_freezing);
    5193             :         workqueue_freezing = true;
    5194             : 
    5195             :         list_for_each_entry(wq, &workqueues, list) {
    5196             :                 mutex_lock(&wq->mutex);
    5197             :                 for_each_pwq(pwq, wq)
    5198             :                         pwq_adjust_max_active(pwq);
    5199             :                 mutex_unlock(&wq->mutex);
    5200             :         }
    5201             : 
    5202             :         mutex_unlock(&wq_pool_mutex);
    5203             : }
    5204             : 
    5205             : /**
    5206             :  * freeze_workqueues_busy - are freezable workqueues still busy?
    5207             :  *
    5208             :  * Check whether freezing is complete.  This function must be called
    5209             :  * between freeze_workqueues_begin() and thaw_workqueues().
    5210             :  *
    5211             :  * CONTEXT:
    5212             :  * Grabs and releases wq_pool_mutex.
    5213             :  *
    5214             :  * Return:
    5215             :  * %true if some freezable workqueues are still busy.  %false if freezing
    5216             :  * is complete.
    5217             :  */
    5218             : bool freeze_workqueues_busy(void)
    5219             : {
    5220             :         bool busy = false;
    5221             :         struct workqueue_struct *wq;
    5222             :         struct pool_workqueue *pwq;
    5223             : 
    5224             :         mutex_lock(&wq_pool_mutex);
    5225             : 
    5226             :         WARN_ON_ONCE(!workqueue_freezing);
    5227             : 
    5228             :         list_for_each_entry(wq, &workqueues, list) {
    5229             :                 if (!(wq->flags & WQ_FREEZABLE))
    5230             :                         continue;
    5231             :                 /*
    5232             :                  * nr_active is monotonically decreasing.  It's safe
    5233             :                  * to peek without lock.
    5234             :                  */
    5235             :                 rcu_read_lock();
    5236             :                 for_each_pwq(pwq, wq) {
    5237             :                         WARN_ON_ONCE(pwq->nr_active < 0);
    5238             :                         if (pwq->nr_active) {
    5239             :                                 busy = true;
    5240             :                                 rcu_read_unlock();
    5241             :                                 goto out_unlock;
    5242             :                         }
    5243             :                 }
    5244             :                 rcu_read_unlock();
    5245             :         }
    5246             : out_unlock:
    5247             :         mutex_unlock(&wq_pool_mutex);
    5248             :         return busy;
    5249             : }
    5250             : 
    5251             : /**
    5252             :  * thaw_workqueues - thaw workqueues
    5253             :  *
    5254             :  * Thaw workqueues.  Normal queueing is restored and all collected
    5255             :  * frozen works are transferred to their respective pool worklists.
    5256             :  *
    5257             :  * CONTEXT:
    5258             :  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
    5259             :  */
    5260             : void thaw_workqueues(void)
    5261             : {
    5262             :         struct workqueue_struct *wq;
    5263             :         struct pool_workqueue *pwq;
    5264             : 
    5265             :         mutex_lock(&wq_pool_mutex);
    5266             : 
    5267             :         if (!workqueue_freezing)
    5268             :                 goto out_unlock;
    5269             : 
    5270             :         workqueue_freezing = false;
    5271             : 
    5272             :         /* restore max_active and repopulate worklist */
    5273             :         list_for_each_entry(wq, &workqueues, list) {
    5274             :                 mutex_lock(&wq->mutex);
    5275             :                 for_each_pwq(pwq, wq)
    5276             :                         pwq_adjust_max_active(pwq);
    5277             :                 mutex_unlock(&wq->mutex);
    5278             :         }
    5279             : 
    5280             : out_unlock:
    5281             :         mutex_unlock(&wq_pool_mutex);
    5282             : }
    5283             : #endif /* CONFIG_FREEZER */
    5284             : 
    5285           0 : static int workqueue_apply_unbound_cpumask(void)
    5286             : {
    5287           0 :         LIST_HEAD(ctxs);
    5288           0 :         int ret = 0;
    5289           0 :         struct workqueue_struct *wq;
    5290           0 :         struct apply_wqattrs_ctx *ctx, *n;
    5291             : 
    5292           0 :         lockdep_assert_held(&wq_pool_mutex);
    5293             : 
    5294           0 :         list_for_each_entry(wq, &workqueues, list) {
    5295           0 :                 if (!(wq->flags & WQ_UNBOUND))
    5296           0 :                         continue;
    5297             :                 /* creating multiple pwqs breaks ordering guarantee */
    5298           0 :                 if (wq->flags & __WQ_ORDERED)
    5299           0 :                         continue;
    5300             : 
    5301           0 :                 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
    5302           0 :                 if (!ctx) {
    5303             :                         ret = -ENOMEM;
    5304             :                         break;
    5305             :                 }
    5306             : 
    5307           0 :                 list_add_tail(&ctx->list, &ctxs);
    5308             :         }
    5309             : 
    5310           0 :         list_for_each_entry_safe(ctx, n, &ctxs, list) {
    5311           0 :                 if (!ret)
    5312           0 :                         apply_wqattrs_commit(ctx);
    5313           0 :                 apply_wqattrs_cleanup(ctx);
    5314             :         }
    5315             : 
    5316           0 :         return ret;
    5317             : }
    5318             : 
    5319             : /**
    5320             :  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
    5321             :  *  @cpumask: the cpumask to set
    5322             :  *
    5323             :  *  The low-level workqueues cpumask is a global cpumask that limits
    5324             :  *  the affinity of all unbound workqueues.  This function check the @cpumask
    5325             :  *  and apply it to all unbound workqueues and updates all pwqs of them.
    5326             :  *
    5327             :  *  Retun:      0       - Success
    5328             :  *              -EINVAL - Invalid @cpumask
    5329             :  *              -ENOMEM - Failed to allocate memory for attrs or pwqs.
    5330             :  */
    5331           0 : int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
    5332             : {
    5333           0 :         int ret = -EINVAL;
    5334           0 :         cpumask_var_t saved_cpumask;
    5335             : 
    5336           0 :         if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
    5337             :                 return -ENOMEM;
    5338             : 
    5339             :         /*
    5340             :          * Not excluding isolated cpus on purpose.
    5341             :          * If the user wishes to include them, we allow that.
    5342             :          */
    5343           0 :         cpumask_and(cpumask, cpumask, cpu_possible_mask);
    5344           0 :         if (!cpumask_empty(cpumask)) {
    5345           0 :                 apply_wqattrs_lock();
    5346             : 
    5347             :                 /* save the old wq_unbound_cpumask. */
    5348           0 :                 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
    5349             : 
    5350             :                 /* update wq_unbound_cpumask at first and apply it to wqs. */
    5351           0 :                 cpumask_copy(wq_unbound_cpumask, cpumask);
    5352           0 :                 ret = workqueue_apply_unbound_cpumask();
    5353             : 
    5354             :                 /* restore the wq_unbound_cpumask when failed. */
    5355           0 :                 if (ret < 0)
    5356           0 :                         cpumask_copy(wq_unbound_cpumask, saved_cpumask);
    5357             : 
    5358           0 :                 apply_wqattrs_unlock();
    5359             :         }
    5360             : 
    5361           0 :         free_cpumask_var(saved_cpumask);
    5362           0 :         return ret;
    5363             : }
    5364             : 
    5365             : #ifdef CONFIG_SYSFS
    5366             : /*
    5367             :  * Workqueues with WQ_SYSFS flag set is visible to userland via
    5368             :  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
    5369             :  * following attributes.
    5370             :  *
    5371             :  *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
    5372             :  *  max_active  RW int  : maximum number of in-flight work items
    5373             :  *
    5374             :  * Unbound workqueues have the following extra attributes.
    5375             :  *
    5376             :  *  pool_ids    RO int  : the associated pool IDs for each node
    5377             :  *  nice        RW int  : nice value of the workers
    5378             :  *  cpumask     RW mask : bitmask of allowed CPUs for the workers
    5379             :  *  numa        RW bool : whether enable NUMA affinity
    5380             :  */
    5381             : struct wq_device {
    5382             :         struct workqueue_struct         *wq;
    5383             :         struct device                   dev;
    5384             : };
    5385             : 
    5386           0 : static struct workqueue_struct *dev_to_wq(struct device *dev)
    5387             : {
    5388           0 :         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
    5389             : 
    5390           0 :         return wq_dev->wq;
    5391             : }
    5392             : 
    5393           0 : static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
    5394             :                             char *buf)
    5395             : {
    5396           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5397             : 
    5398           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
    5399             : }
    5400             : static DEVICE_ATTR_RO(per_cpu);
    5401             : 
    5402           0 : static ssize_t max_active_show(struct device *dev,
    5403             :                                struct device_attribute *attr, char *buf)
    5404             : {
    5405           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5406             : 
    5407           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
    5408             : }
    5409             : 
    5410           0 : static ssize_t max_active_store(struct device *dev,
    5411             :                                 struct device_attribute *attr, const char *buf,
    5412             :                                 size_t count)
    5413             : {
    5414           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5415           0 :         int val;
    5416             : 
    5417           0 :         if (sscanf(buf, "%d", &val) != 1 || val <= 0)
    5418             :                 return -EINVAL;
    5419             : 
    5420           0 :         workqueue_set_max_active(wq, val);
    5421           0 :         return count;
    5422             : }
    5423             : static DEVICE_ATTR_RW(max_active);
    5424             : 
    5425             : static struct attribute *wq_sysfs_attrs[] = {
    5426             :         &dev_attr_per_cpu.attr,
    5427             :         &dev_attr_max_active.attr,
    5428             :         NULL,
    5429             : };
    5430             : ATTRIBUTE_GROUPS(wq_sysfs);
    5431             : 
    5432           0 : static ssize_t wq_pool_ids_show(struct device *dev,
    5433             :                                 struct device_attribute *attr, char *buf)
    5434             : {
    5435           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5436           0 :         const char *delim = "";
    5437           0 :         int node, written = 0;
    5438             : 
    5439           0 :         get_online_cpus();
    5440           0 :         rcu_read_lock();
    5441           0 :         for_each_node(node) {
    5442           0 :                 written += scnprintf(buf + written, PAGE_SIZE - written,
    5443             :                                      "%s%d:%d", delim, node,
    5444           0 :                                      unbound_pwq_by_node(wq, node)->pool->id);
    5445           0 :                 delim = " ";
    5446             :         }
    5447           0 :         written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
    5448           0 :         rcu_read_unlock();
    5449           0 :         put_online_cpus();
    5450             : 
    5451           0 :         return written;
    5452             : }
    5453             : 
    5454           0 : static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
    5455             :                             char *buf)
    5456             : {
    5457           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5458           0 :         int written;
    5459             : 
    5460           0 :         mutex_lock(&wq->mutex);
    5461           0 :         written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
    5462           0 :         mutex_unlock(&wq->mutex);
    5463             : 
    5464           0 :         return written;
    5465             : }
    5466             : 
    5467             : /* prepare workqueue_attrs for sysfs store operations */
    5468           0 : static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
    5469             : {
    5470           0 :         struct workqueue_attrs *attrs;
    5471             : 
    5472           0 :         lockdep_assert_held(&wq_pool_mutex);
    5473             : 
    5474           0 :         attrs = alloc_workqueue_attrs();
    5475           0 :         if (!attrs)
    5476             :                 return NULL;
    5477             : 
    5478           0 :         copy_workqueue_attrs(attrs, wq->unbound_attrs);
    5479           0 :         return attrs;
    5480             : }
    5481             : 
    5482           0 : static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
    5483             :                              const char *buf, size_t count)
    5484             : {
    5485           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5486           0 :         struct workqueue_attrs *attrs;
    5487           0 :         int ret = -ENOMEM;
    5488             : 
    5489           0 :         apply_wqattrs_lock();
    5490             : 
    5491           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5492           0 :         if (!attrs)
    5493           0 :                 goto out_unlock;
    5494             : 
    5495           0 :         if (sscanf(buf, "%d", &attrs->nice) == 1 &&
    5496           0 :             attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
    5497           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5498             :         else
    5499             :                 ret = -EINVAL;
    5500             : 
    5501           0 : out_unlock:
    5502           0 :         apply_wqattrs_unlock();
    5503           0 :         free_workqueue_attrs(attrs);
    5504           0 :         return ret ?: count;
    5505             : }
    5506             : 
    5507           0 : static ssize_t wq_cpumask_show(struct device *dev,
    5508             :                                struct device_attribute *attr, char *buf)
    5509             : {
    5510           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5511           0 :         int written;
    5512             : 
    5513           0 :         mutex_lock(&wq->mutex);
    5514           0 :         written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
    5515           0 :                             cpumask_pr_args(wq->unbound_attrs->cpumask));
    5516           0 :         mutex_unlock(&wq->mutex);
    5517           0 :         return written;
    5518             : }
    5519             : 
    5520           0 : static ssize_t wq_cpumask_store(struct device *dev,
    5521             :                                 struct device_attribute *attr,
    5522             :                                 const char *buf, size_t count)
    5523             : {
    5524           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5525           0 :         struct workqueue_attrs *attrs;
    5526           0 :         int ret = -ENOMEM;
    5527             : 
    5528           0 :         apply_wqattrs_lock();
    5529             : 
    5530           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5531           0 :         if (!attrs)
    5532           0 :                 goto out_unlock;
    5533             : 
    5534           0 :         ret = cpumask_parse(buf, attrs->cpumask);
    5535           0 :         if (!ret)
    5536           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5537             : 
    5538           0 : out_unlock:
    5539           0 :         apply_wqattrs_unlock();
    5540           0 :         free_workqueue_attrs(attrs);
    5541           0 :         return ret ?: count;
    5542             : }
    5543             : 
    5544           0 : static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
    5545             :                             char *buf)
    5546             : {
    5547           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5548           0 :         int written;
    5549             : 
    5550           0 :         mutex_lock(&wq->mutex);
    5551           0 :         written = scnprintf(buf, PAGE_SIZE, "%d\n",
    5552           0 :                             !wq->unbound_attrs->no_numa);
    5553           0 :         mutex_unlock(&wq->mutex);
    5554             : 
    5555           0 :         return written;
    5556             : }
    5557             : 
    5558           0 : static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
    5559             :                              const char *buf, size_t count)
    5560             : {
    5561           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5562           0 :         struct workqueue_attrs *attrs;
    5563           0 :         int v, ret = -ENOMEM;
    5564             : 
    5565           0 :         apply_wqattrs_lock();
    5566             : 
    5567           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5568           0 :         if (!attrs)
    5569           0 :                 goto out_unlock;
    5570             : 
    5571           0 :         ret = -EINVAL;
    5572           0 :         if (sscanf(buf, "%d", &v) == 1) {
    5573           0 :                 attrs->no_numa = !v;
    5574           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5575             :         }
    5576             : 
    5577           0 : out_unlock:
    5578           0 :         apply_wqattrs_unlock();
    5579           0 :         free_workqueue_attrs(attrs);
    5580           0 :         return ret ?: count;
    5581             : }
    5582             : 
    5583             : static struct device_attribute wq_sysfs_unbound_attrs[] = {
    5584             :         __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
    5585             :         __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
    5586             :         __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
    5587             :         __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
    5588             :         __ATTR_NULL,
    5589             : };
    5590             : 
    5591             : static struct bus_type wq_subsys = {
    5592             :         .name                           = "workqueue",
    5593             :         .dev_groups                     = wq_sysfs_groups,
    5594             : };
    5595             : 
    5596           0 : static ssize_t wq_unbound_cpumask_show(struct device *dev,
    5597             :                 struct device_attribute *attr, char *buf)
    5598             : {
    5599           0 :         int written;
    5600             : 
    5601           0 :         mutex_lock(&wq_pool_mutex);
    5602           0 :         written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
    5603             :                             cpumask_pr_args(wq_unbound_cpumask));
    5604           0 :         mutex_unlock(&wq_pool_mutex);
    5605             : 
    5606           0 :         return written;
    5607             : }
    5608             : 
    5609           0 : static ssize_t wq_unbound_cpumask_store(struct device *dev,
    5610             :                 struct device_attribute *attr, const char *buf, size_t count)
    5611             : {
    5612           0 :         cpumask_var_t cpumask;
    5613           0 :         int ret;
    5614             : 
    5615           0 :         if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
    5616             :                 return -ENOMEM;
    5617             : 
    5618           0 :         ret = cpumask_parse(buf, cpumask);
    5619           0 :         if (!ret)
    5620           0 :                 ret = workqueue_set_unbound_cpumask(cpumask);
    5621             : 
    5622           0 :         free_cpumask_var(cpumask);
    5623           0 :         return ret ? ret : count;
    5624             : }
    5625             : 
    5626             : static struct device_attribute wq_sysfs_cpumask_attr =
    5627             :         __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
    5628             :                wq_unbound_cpumask_store);
    5629             : 
    5630           1 : static int __init wq_sysfs_init(void)
    5631             : {
    5632           1 :         int err;
    5633             : 
    5634           1 :         err = subsys_virtual_register(&wq_subsys, NULL);
    5635           1 :         if (err)
    5636             :                 return err;
    5637             : 
    5638           1 :         return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
    5639             : }
    5640             : core_initcall(wq_sysfs_init);
    5641             : 
    5642           0 : static void wq_device_release(struct device *dev)
    5643             : {
    5644           0 :         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
    5645             : 
    5646           0 :         kfree(wq_dev);
    5647           0 : }
    5648             : 
    5649             : /**
    5650             :  * workqueue_sysfs_register - make a workqueue visible in sysfs
    5651             :  * @wq: the workqueue to register
    5652             :  *
    5653             :  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
    5654             :  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
    5655             :  * which is the preferred method.
    5656             :  *
    5657             :  * Workqueue user should use this function directly iff it wants to apply
    5658             :  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
    5659             :  * apply_workqueue_attrs() may race against userland updating the
    5660             :  * attributes.
    5661             :  *
    5662             :  * Return: 0 on success, -errno on failure.
    5663             :  */
    5664           1 : int workqueue_sysfs_register(struct workqueue_struct *wq)
    5665             : {
    5666           1 :         struct wq_device *wq_dev;
    5667           1 :         int ret;
    5668             : 
    5669             :         /*
    5670             :          * Adjusting max_active or creating new pwqs by applying
    5671             :          * attributes breaks ordering guarantee.  Disallow exposing ordered
    5672             :          * workqueues.
    5673             :          */
    5674           1 :         if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    5675             :                 return -EINVAL;
    5676             : 
    5677           1 :         wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
    5678           1 :         if (!wq_dev)
    5679             :                 return -ENOMEM;
    5680             : 
    5681           1 :         wq_dev->wq = wq;
    5682           1 :         wq_dev->dev.bus = &wq_subsys;
    5683           1 :         wq_dev->dev.release = wq_device_release;
    5684           1 :         dev_set_name(&wq_dev->dev, "%s", wq->name);
    5685             : 
    5686             :         /*
    5687             :          * unbound_attrs are created separately.  Suppress uevent until
    5688             :          * everything is ready.
    5689             :          */
    5690           1 :         dev_set_uevent_suppress(&wq_dev->dev, true);
    5691             : 
    5692           1 :         ret = device_register(&wq_dev->dev);
    5693           1 :         if (ret) {
    5694           0 :                 put_device(&wq_dev->dev);
    5695           0 :                 wq->wq_dev = NULL;
    5696           0 :                 return ret;
    5697             :         }
    5698             : 
    5699           1 :         if (wq->flags & WQ_UNBOUND) {
    5700             :                 struct device_attribute *attr;
    5701             : 
    5702           5 :                 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
    5703           4 :                         ret = device_create_file(&wq_dev->dev, attr);
    5704           4 :                         if (ret) {
    5705           0 :                                 device_unregister(&wq_dev->dev);
    5706           0 :                                 wq->wq_dev = NULL;
    5707           0 :                                 return ret;
    5708             :                         }
    5709             :                 }
    5710             :         }
    5711             : 
    5712           1 :         dev_set_uevent_suppress(&wq_dev->dev, false);
    5713           1 :         kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
    5714           1 :         return 0;
    5715             : }
    5716             : 
    5717             : /**
    5718             :  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
    5719             :  * @wq: the workqueue to unregister
    5720             :  *
    5721             :  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
    5722             :  */
    5723           1 : static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
    5724             : {
    5725           1 :         struct wq_device *wq_dev = wq->wq_dev;
    5726             : 
    5727           1 :         if (!wq->wq_dev)
    5728             :                 return;
    5729             : 
    5730           0 :         wq->wq_dev = NULL;
    5731           0 :         device_unregister(&wq_dev->dev);
    5732             : }
    5733             : #else   /* CONFIG_SYSFS */
    5734             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
    5735             : #endif  /* CONFIG_SYSFS */
    5736             : 
    5737             : /*
    5738             :  * Workqueue watchdog.
    5739             :  *
    5740             :  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
    5741             :  * flush dependency, a concurrency managed work item which stays RUNNING
    5742             :  * indefinitely.  Workqueue stalls can be very difficult to debug as the
    5743             :  * usual warning mechanisms don't trigger and internal workqueue state is
    5744             :  * largely opaque.
    5745             :  *
    5746             :  * Workqueue watchdog monitors all worker pools periodically and dumps
    5747             :  * state if some pools failed to make forward progress for a while where
    5748             :  * forward progress is defined as the first item on ->worklist changing.
    5749             :  *
    5750             :  * This mechanism is controlled through the kernel parameter
    5751             :  * "workqueue.watchdog_thresh" which can be updated at runtime through the
    5752             :  * corresponding sysfs parameter file.
    5753             :  */
    5754             : #ifdef CONFIG_WQ_WATCHDOG
    5755             : 
    5756             : static unsigned long wq_watchdog_thresh = 30;
    5757             : static struct timer_list wq_watchdog_timer;
    5758             : 
    5759             : static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
    5760             : static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
    5761             : 
    5762             : static void wq_watchdog_reset_touched(void)
    5763             : {
    5764             :         int cpu;
    5765             : 
    5766             :         wq_watchdog_touched = jiffies;
    5767             :         for_each_possible_cpu(cpu)
    5768             :                 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
    5769             : }
    5770             : 
    5771             : static void wq_watchdog_timer_fn(struct timer_list *unused)
    5772             : {
    5773             :         unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
    5774             :         bool lockup_detected = false;
    5775             :         struct worker_pool *pool;
    5776             :         int pi;
    5777             : 
    5778             :         if (!thresh)
    5779             :                 return;
    5780             : 
    5781             :         rcu_read_lock();
    5782             : 
    5783             :         for_each_pool(pool, pi) {
    5784             :                 unsigned long pool_ts, touched, ts;
    5785             : 
    5786             :                 if (list_empty(&pool->worklist))
    5787             :                         continue;
    5788             : 
    5789             :                 /* get the latest of pool and touched timestamps */
    5790             :                 pool_ts = READ_ONCE(pool->watchdog_ts);
    5791             :                 touched = READ_ONCE(wq_watchdog_touched);
    5792             : 
    5793             :                 if (time_after(pool_ts, touched))
    5794             :                         ts = pool_ts;
    5795             :                 else
    5796             :                         ts = touched;
    5797             : 
    5798             :                 if (pool->cpu >= 0) {
    5799             :                         unsigned long cpu_touched =
    5800             :                                 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
    5801             :                                                   pool->cpu));
    5802             :                         if (time_after(cpu_touched, ts))
    5803             :                                 ts = cpu_touched;
    5804             :                 }
    5805             : 
    5806             :                 /* did we stall? */
    5807             :                 if (time_after(jiffies, ts + thresh)) {
    5808             :                         lockup_detected = true;
    5809             :                         pr_emerg("BUG: workqueue lockup - pool");
    5810             :                         pr_cont_pool_info(pool);
    5811             :                         pr_cont(" stuck for %us!\n",
    5812             :                                 jiffies_to_msecs(jiffies - pool_ts) / 1000);
    5813             :                 }
    5814             :         }
    5815             : 
    5816             :         rcu_read_unlock();
    5817             : 
    5818             :         if (lockup_detected)
    5819             :                 show_workqueue_state();
    5820             : 
    5821             :         wq_watchdog_reset_touched();
    5822             :         mod_timer(&wq_watchdog_timer, jiffies + thresh);
    5823             : }
    5824             : 
    5825             : notrace void wq_watchdog_touch(int cpu)
    5826             : {
    5827             :         if (cpu >= 0)
    5828             :                 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
    5829             :         else
    5830             :                 wq_watchdog_touched = jiffies;
    5831             : }
    5832             : 
    5833             : static void wq_watchdog_set_thresh(unsigned long thresh)
    5834             : {
    5835             :         wq_watchdog_thresh = 0;
    5836             :         del_timer_sync(&wq_watchdog_timer);
    5837             : 
    5838             :         if (thresh) {
    5839             :                 wq_watchdog_thresh = thresh;
    5840             :                 wq_watchdog_reset_touched();
    5841             :                 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
    5842             :         }
    5843             : }
    5844             : 
    5845             : static int wq_watchdog_param_set_thresh(const char *val,
    5846             :                                         const struct kernel_param *kp)
    5847             : {
    5848             :         unsigned long thresh;
    5849             :         int ret;
    5850             : 
    5851             :         ret = kstrtoul(val, 0, &thresh);
    5852             :         if (ret)
    5853             :                 return ret;
    5854             : 
    5855             :         if (system_wq)
    5856             :                 wq_watchdog_set_thresh(thresh);
    5857             :         else
    5858             :                 wq_watchdog_thresh = thresh;
    5859             : 
    5860             :         return 0;
    5861             : }
    5862             : 
    5863             : static const struct kernel_param_ops wq_watchdog_thresh_ops = {
    5864             :         .set    = wq_watchdog_param_set_thresh,
    5865             :         .get    = param_get_ulong,
    5866             : };
    5867             : 
    5868             : module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
    5869             :                 0644);
    5870             : 
    5871             : static void wq_watchdog_init(void)
    5872             : {
    5873             :         timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
    5874             :         wq_watchdog_set_thresh(wq_watchdog_thresh);
    5875             : }
    5876             : 
    5877             : #else   /* CONFIG_WQ_WATCHDOG */
    5878             : 
    5879           1 : static inline void wq_watchdog_init(void) { }
    5880             : 
    5881             : #endif  /* CONFIG_WQ_WATCHDOG */
    5882             : 
    5883           1 : static void __init wq_numa_init(void)
    5884             : {
    5885           1 :         cpumask_var_t *tbl;
    5886           1 :         int node, cpu;
    5887             : 
    5888           1 :         if (num_possible_nodes() <= 1)
    5889             :                 return;
    5890             : 
    5891           0 :         if (wq_disable_numa) {
    5892           0 :                 pr_info("workqueue: NUMA affinity support disabled\n");
    5893           0 :                 return;
    5894             :         }
    5895             : 
    5896           0 :         wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
    5897           0 :         BUG_ON(!wq_update_unbound_numa_attrs_buf);
    5898             : 
    5899             :         /*
    5900             :          * We want masks of possible CPUs of each node which isn't readily
    5901             :          * available.  Build one from cpu_to_node() which should have been
    5902             :          * fully initialized by now.
    5903             :          */
    5904           0 :         tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
    5905           0 :         BUG_ON(!tbl);
    5906             : 
    5907           0 :         for_each_node(node)
    5908           0 :                 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
    5909             :                                 node_online(node) ? node : NUMA_NO_NODE));
    5910             : 
    5911           0 :         for_each_possible_cpu(cpu) {
    5912           0 :                 node = cpu_to_node(cpu);
    5913           0 :                 if (WARN_ON(node == NUMA_NO_NODE)) {
    5914           0 :                         pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
    5915             :                         /* happens iff arch is bonkers, let's just proceed */
    5916           0 :                         return;
    5917             :                 }
    5918           0 :                 cpumask_set_cpu(cpu, tbl[node]);
    5919             :         }
    5920             : 
    5921           0 :         wq_numa_possible_cpumask = tbl;
    5922           0 :         wq_numa_enabled = true;
    5923             : }
    5924             : 
    5925             : /**
    5926             :  * workqueue_init_early - early init for workqueue subsystem
    5927             :  *
    5928             :  * This is the first half of two-staged workqueue subsystem initialization
    5929             :  * and invoked as soon as the bare basics - memory allocation, cpumasks and
    5930             :  * idr are up.  It sets up all the data structures and system workqueues
    5931             :  * and allows early boot code to create workqueues and queue/cancel work
    5932             :  * items.  Actual work item execution starts only after kthreads can be
    5933             :  * created and scheduled right before early initcalls.
    5934             :  */
    5935           1 : void __init workqueue_init_early(void)
    5936             : {
    5937           1 :         int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
    5938           1 :         int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
    5939           1 :         int i, cpu;
    5940             : 
    5941           1 :         BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
    5942             : 
    5943           1 :         BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
    5944           1 :         cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
    5945             : 
    5946           1 :         pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
    5947             : 
    5948             :         /* initialize CPU pools */
    5949           5 :         for_each_possible_cpu(cpu) {
    5950           4 :                 struct worker_pool *pool;
    5951             : 
    5952           4 :                 i = 0;
    5953          12 :                 for_each_cpu_worker_pool(pool, cpu) {
    5954           8 :                         BUG_ON(init_worker_pool(pool));
    5955           8 :                         pool->cpu = cpu;
    5956           8 :                         cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
    5957           8 :                         pool->attrs->nice = std_nice[i++];
    5958           8 :                         pool->node = cpu_to_node(cpu);
    5959             : 
    5960             :                         /* alloc pool ID */
    5961           8 :                         mutex_lock(&wq_pool_mutex);
    5962           8 :                         BUG_ON(worker_pool_assign_id(pool));
    5963           8 :                         mutex_unlock(&wq_pool_mutex);
    5964             :                 }
    5965             :         }
    5966             : 
    5967             :         /* create default unbound and ordered wq attrs */
    5968           3 :         for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
    5969           2 :                 struct workqueue_attrs *attrs;
    5970             : 
    5971           2 :                 BUG_ON(!(attrs = alloc_workqueue_attrs()));
    5972           2 :                 attrs->nice = std_nice[i];
    5973           2 :                 unbound_std_wq_attrs[i] = attrs;
    5974             : 
    5975             :                 /*
    5976             :                  * An ordered wq should have only one pwq as ordering is
    5977             :                  * guaranteed by max_active which is enforced by pwqs.
    5978             :                  * Turn off NUMA so that dfl_pwq is used for all nodes.
    5979             :                  */
    5980           2 :                 BUG_ON(!(attrs = alloc_workqueue_attrs()));
    5981           2 :                 attrs->nice = std_nice[i];
    5982           2 :                 attrs->no_numa = true;
    5983           2 :                 ordered_wq_attrs[i] = attrs;
    5984             :         }
    5985             : 
    5986           1 :         system_wq = alloc_workqueue("events", 0, 0);
    5987           1 :         system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
    5988           1 :         system_long_wq = alloc_workqueue("events_long", 0, 0);
    5989           2 :         system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
    5990           1 :                                             WQ_UNBOUND_MAX_ACTIVE);
    5991           1 :         system_freezable_wq = alloc_workqueue("events_freezable",
    5992             :                                               WQ_FREEZABLE, 0);
    5993           1 :         system_power_efficient_wq = alloc_workqueue("events_power_efficient",
    5994             :                                               WQ_POWER_EFFICIENT, 0);
    5995           1 :         system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
    5996             :                                               WQ_FREEZABLE | WQ_POWER_EFFICIENT,
    5997             :                                               0);
    5998           1 :         BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
    5999             :                !system_unbound_wq || !system_freezable_wq ||
    6000             :                !system_power_efficient_wq ||
    6001             :                !system_freezable_power_efficient_wq);
    6002           1 : }
    6003             : 
    6004             : /**
    6005             :  * workqueue_init - bring workqueue subsystem fully online
    6006             :  *
    6007             :  * This is the latter half of two-staged workqueue subsystem initialization
    6008             :  * and invoked as soon as kthreads can be created and scheduled.
    6009             :  * Workqueues have been created and work items queued on them, but there
    6010             :  * are no kworkers executing the work items yet.  Populate the worker pools
    6011             :  * with the initial workers and enable future kworker creations.
    6012             :  */
    6013           1 : void __init workqueue_init(void)
    6014             : {
    6015           1 :         struct workqueue_struct *wq;
    6016           1 :         struct worker_pool *pool;
    6017           1 :         int cpu, bkt;
    6018             : 
    6019             :         /*
    6020             :          * It'd be simpler to initialize NUMA in workqueue_init_early() but
    6021             :          * CPU to node mapping may not be available that early on some
    6022             :          * archs such as power and arm64.  As per-cpu pools created
    6023             :          * previously could be missing node hint and unbound pools NUMA
    6024             :          * affinity, fix them up.
    6025             :          *
    6026             :          * Also, while iterating workqueues, create rescuers if requested.
    6027             :          */
    6028           1 :         wq_numa_init();
    6029             : 
    6030           1 :         mutex_lock(&wq_pool_mutex);
    6031             : 
    6032           6 :         for_each_possible_cpu(cpu) {
    6033          12 :                 for_each_cpu_worker_pool(pool, cpu) {
    6034           8 :                         pool->node = cpu_to_node(cpu);
    6035             :                 }
    6036             :         }
    6037             : 
    6038          10 :         list_for_each_entry(wq, &workqueues, list) {
    6039           9 :                 wq_update_unbound_numa(wq, smp_processor_id(), true);
    6040           9 :                 WARN(init_rescuer(wq),
    6041             :                      "workqueue: failed to create early rescuer for %s",
    6042             :                      wq->name);
    6043             :         }
    6044             : 
    6045           1 :         mutex_unlock(&wq_pool_mutex);
    6046             : 
    6047             :         /* create the initial workers */
    6048           3 :         for_each_online_cpu(cpu) {
    6049           3 :                 for_each_cpu_worker_pool(pool, cpu) {
    6050           2 :                         pool->flags &= ~POOL_DISASSOCIATED;
    6051           2 :                         BUG_ON(!create_worker(pool));
    6052             :                 }
    6053             :         }
    6054             : 
    6055          66 :         hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
    6056           1 :                 BUG_ON(!create_worker(pool));
    6057             : 
    6058           1 :         wq_online = true;
    6059           1 :         wq_watchdog_init();
    6060           1 : }

Generated by: LCOV version 1.14