LCOV - code coverage report
Current view: top level - lib - bitmap.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 65 406 16.0 %
Date: 2021-04-22 12:43:58 Functions: 8 44 18.2 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * lib/bitmap.c
       4             :  * Helper functions for bitmap.h.
       5             :  */
       6             : #include <linux/export.h>
       7             : #include <linux/thread_info.h>
       8             : #include <linux/ctype.h>
       9             : #include <linux/errno.h>
      10             : #include <linux/bitmap.h>
      11             : #include <linux/bitops.h>
      12             : #include <linux/bug.h>
      13             : #include <linux/kernel.h>
      14             : #include <linux/mm.h>
      15             : #include <linux/slab.h>
      16             : #include <linux/string.h>
      17             : #include <linux/uaccess.h>
      18             : 
      19             : #include <asm/page.h>
      20             : 
      21             : #include "kstrtox.h"
      22             : 
      23             : /**
      24             :  * DOC: bitmap introduction
      25             :  *
      26             :  * bitmaps provide an array of bits, implemented using an
      27             :  * array of unsigned longs.  The number of valid bits in a
      28             :  * given bitmap does _not_ need to be an exact multiple of
      29             :  * BITS_PER_LONG.
      30             :  *
      31             :  * The possible unused bits in the last, partially used word
      32             :  * of a bitmap are 'don't care'.  The implementation makes
      33             :  * no particular effort to keep them zero.  It ensures that
      34             :  * their value will not affect the results of any operation.
      35             :  * The bitmap operations that return Boolean (bitmap_empty,
      36             :  * for example) or scalar (bitmap_weight, for example) results
      37             :  * carefully filter out these unused bits from impacting their
      38             :  * results.
      39             :  *
      40             :  * The byte ordering of bitmaps is more natural on little
      41             :  * endian architectures.  See the big-endian headers
      42             :  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
      43             :  * for the best explanations of this ordering.
      44             :  */
      45             : 
      46           0 : int __bitmap_equal(const unsigned long *bitmap1,
      47             :                 const unsigned long *bitmap2, unsigned int bits)
      48             : {
      49           0 :         unsigned int k, lim = bits/BITS_PER_LONG;
      50           0 :         for (k = 0; k < lim; ++k)
      51           0 :                 if (bitmap1[k] != bitmap2[k])
      52             :                         return 0;
      53             : 
      54           0 :         if (bits % BITS_PER_LONG)
      55           0 :                 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
      56           0 :                         return 0;
      57             : 
      58             :         return 1;
      59             : }
      60             : EXPORT_SYMBOL(__bitmap_equal);
      61             : 
      62           0 : bool __bitmap_or_equal(const unsigned long *bitmap1,
      63             :                        const unsigned long *bitmap2,
      64             :                        const unsigned long *bitmap3,
      65             :                        unsigned int bits)
      66             : {
      67           0 :         unsigned int k, lim = bits / BITS_PER_LONG;
      68           0 :         unsigned long tmp;
      69             : 
      70           0 :         for (k = 0; k < lim; ++k) {
      71           0 :                 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
      72             :                         return false;
      73             :         }
      74             : 
      75           0 :         if (!(bits % BITS_PER_LONG))
      76             :                 return true;
      77             : 
      78           0 :         tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
      79           0 :         return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
      80             : }
      81             : 
      82           0 : void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
      83             : {
      84           0 :         unsigned int k, lim = BITS_TO_LONGS(bits);
      85           0 :         for (k = 0; k < lim; ++k)
      86           0 :                 dst[k] = ~src[k];
      87           0 : }
      88             : EXPORT_SYMBOL(__bitmap_complement);
      89             : 
      90             : /**
      91             :  * __bitmap_shift_right - logical right shift of the bits in a bitmap
      92             :  *   @dst : destination bitmap
      93             :  *   @src : source bitmap
      94             :  *   @shift : shift by this many bits
      95             :  *   @nbits : bitmap size, in bits
      96             :  *
      97             :  * Shifting right (dividing) means moving bits in the MS -> LS bit
      98             :  * direction.  Zeros are fed into the vacated MS positions and the
      99             :  * LS bits shifted off the bottom are lost.
     100             :  */
     101           0 : void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
     102             :                         unsigned shift, unsigned nbits)
     103             : {
     104           0 :         unsigned k, lim = BITS_TO_LONGS(nbits);
     105           0 :         unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
     106           0 :         unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
     107           0 :         for (k = 0; off + k < lim; ++k) {
     108           0 :                 unsigned long upper, lower;
     109             : 
     110             :                 /*
     111             :                  * If shift is not word aligned, take lower rem bits of
     112             :                  * word above and make them the top rem bits of result.
     113             :                  */
     114           0 :                 if (!rem || off + k + 1 >= lim)
     115             :                         upper = 0;
     116             :                 else {
     117           0 :                         upper = src[off + k + 1];
     118           0 :                         if (off + k + 1 == lim - 1)
     119           0 :                                 upper &= mask;
     120           0 :                         upper <<= (BITS_PER_LONG - rem);
     121             :                 }
     122           0 :                 lower = src[off + k];
     123           0 :                 if (off + k == lim - 1)
     124           0 :                         lower &= mask;
     125           0 :                 lower >>= rem;
     126           0 :                 dst[k] = lower | upper;
     127             :         }
     128           0 :         if (off)
     129           0 :                 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
     130           0 : }
     131             : EXPORT_SYMBOL(__bitmap_shift_right);
     132             : 
     133             : 
     134             : /**
     135             :  * __bitmap_shift_left - logical left shift of the bits in a bitmap
     136             :  *   @dst : destination bitmap
     137             :  *   @src : source bitmap
     138             :  *   @shift : shift by this many bits
     139             :  *   @nbits : bitmap size, in bits
     140             :  *
     141             :  * Shifting left (multiplying) means moving bits in the LS -> MS
     142             :  * direction.  Zeros are fed into the vacated LS bit positions
     143             :  * and those MS bits shifted off the top are lost.
     144             :  */
     145             : 
     146           0 : void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
     147             :                         unsigned int shift, unsigned int nbits)
     148             : {
     149           0 :         int k;
     150           0 :         unsigned int lim = BITS_TO_LONGS(nbits);
     151           0 :         unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
     152           0 :         for (k = lim - off - 1; k >= 0; --k) {
     153           0 :                 unsigned long upper, lower;
     154             : 
     155             :                 /*
     156             :                  * If shift is not word aligned, take upper rem bits of
     157             :                  * word below and make them the bottom rem bits of result.
     158             :                  */
     159           0 :                 if (rem && k > 0)
     160           0 :                         lower = src[k - 1] >> (BITS_PER_LONG - rem);
     161             :                 else
     162             :                         lower = 0;
     163           0 :                 upper = src[k] << rem;
     164           0 :                 dst[k + off] = lower | upper;
     165             :         }
     166           0 :         if (off)
     167           0 :                 memset(dst, 0, off*sizeof(unsigned long));
     168           0 : }
     169             : EXPORT_SYMBOL(__bitmap_shift_left);
     170             : 
     171             : /**
     172             :  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
     173             :  * @dst: destination bitmap, might overlap with src
     174             :  * @src: source bitmap
     175             :  * @first: start bit of region to be removed
     176             :  * @cut: number of bits to remove
     177             :  * @nbits: bitmap size, in bits
     178             :  *
     179             :  * Set the n-th bit of @dst iff the n-th bit of @src is set and
     180             :  * n is less than @first, or the m-th bit of @src is set for any
     181             :  * m such that @first <= n < nbits, and m = n + @cut.
     182             :  *
     183             :  * In pictures, example for a big-endian 32-bit architecture:
     184             :  *
     185             :  * The @src bitmap is::
     186             :  *
     187             :  *   31                                   63
     188             :  *   |                                    |
     189             :  *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
     190             :  *                   |  |              |                                    |
     191             :  *                  16  14             0                                   32
     192             :  *
     193             :  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
     194             :  *
     195             :  *   31                                   63
     196             :  *   |                                    |
     197             :  *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
     198             :  *                      |              |                                    |
     199             :  *                      14 (bit 17     0                                   32
     200             :  *                          from @src)
     201             :  *
     202             :  * Note that @dst and @src might overlap partially or entirely.
     203             :  *
     204             :  * This is implemented in the obvious way, with a shift and carry
     205             :  * step for each moved bit. Optimisation is left as an exercise
     206             :  * for the compiler.
     207             :  */
     208           0 : void bitmap_cut(unsigned long *dst, const unsigned long *src,
     209             :                 unsigned int first, unsigned int cut, unsigned int nbits)
     210             : {
     211           0 :         unsigned int len = BITS_TO_LONGS(nbits);
     212           0 :         unsigned long keep = 0, carry;
     213           0 :         int i;
     214             : 
     215           0 :         if (first % BITS_PER_LONG) {
     216           0 :                 keep = src[first / BITS_PER_LONG] &
     217           0 :                        (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
     218             :         }
     219             : 
     220           0 :         memmove(dst, src, len * sizeof(*dst));
     221             : 
     222           0 :         while (cut--) {
     223           0 :                 for (i = first / BITS_PER_LONG; i < len; i++) {
     224           0 :                         if (i < len - 1)
     225           0 :                                 carry = dst[i + 1] & 1UL;
     226             :                         else
     227             :                                 carry = 0;
     228             : 
     229           0 :                         dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
     230             :                 }
     231             :         }
     232             : 
     233           0 :         dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
     234           0 :         dst[first / BITS_PER_LONG] |= keep;
     235           0 : }
     236             : EXPORT_SYMBOL(bitmap_cut);
     237             : 
     238           0 : int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
     239             :                                 const unsigned long *bitmap2, unsigned int bits)
     240             : {
     241           0 :         unsigned int k;
     242           0 :         unsigned int lim = bits/BITS_PER_LONG;
     243           0 :         unsigned long result = 0;
     244             : 
     245           0 :         for (k = 0; k < lim; k++)
     246           0 :                 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
     247           0 :         if (bits % BITS_PER_LONG)
     248           0 :                 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
     249           0 :                            BITMAP_LAST_WORD_MASK(bits));
     250           0 :         return result != 0;
     251             : }
     252             : EXPORT_SYMBOL(__bitmap_and);
     253             : 
     254           6 : void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
     255             :                                 const unsigned long *bitmap2, unsigned int bits)
     256             : {
     257           6 :         unsigned int k;
     258           6 :         unsigned int nr = BITS_TO_LONGS(bits);
     259             : 
     260          30 :         for (k = 0; k < nr; k++)
     261          24 :                 dst[k] = bitmap1[k] | bitmap2[k];
     262           6 : }
     263             : EXPORT_SYMBOL(__bitmap_or);
     264             : 
     265           0 : void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
     266             :                                 const unsigned long *bitmap2, unsigned int bits)
     267             : {
     268           0 :         unsigned int k;
     269           0 :         unsigned int nr = BITS_TO_LONGS(bits);
     270             : 
     271           0 :         for (k = 0; k < nr; k++)
     272           0 :                 dst[k] = bitmap1[k] ^ bitmap2[k];
     273           0 : }
     274             : EXPORT_SYMBOL(__bitmap_xor);
     275             : 
     276           1 : int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
     277             :                                 const unsigned long *bitmap2, unsigned int bits)
     278             : {
     279           1 :         unsigned int k;
     280           1 :         unsigned int lim = bits/BITS_PER_LONG;
     281           1 :         unsigned long result = 0;
     282             : 
     283        1025 :         for (k = 0; k < lim; k++)
     284        1024 :                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
     285           1 :         if (bits % BITS_PER_LONG)
     286           0 :                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
     287           0 :                            BITMAP_LAST_WORD_MASK(bits));
     288           1 :         return result != 0;
     289             : }
     290             : EXPORT_SYMBOL(__bitmap_andnot);
     291             : 
     292           0 : void __bitmap_replace(unsigned long *dst,
     293             :                       const unsigned long *old, const unsigned long *new,
     294             :                       const unsigned long *mask, unsigned int nbits)
     295             : {
     296           0 :         unsigned int k;
     297           0 :         unsigned int nr = BITS_TO_LONGS(nbits);
     298             : 
     299           0 :         for (k = 0; k < nr; k++)
     300           0 :                 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
     301           0 : }
     302             : EXPORT_SYMBOL(__bitmap_replace);
     303             : 
     304           0 : int __bitmap_intersects(const unsigned long *bitmap1,
     305             :                         const unsigned long *bitmap2, unsigned int bits)
     306             : {
     307           0 :         unsigned int k, lim = bits/BITS_PER_LONG;
     308           0 :         for (k = 0; k < lim; ++k)
     309           0 :                 if (bitmap1[k] & bitmap2[k])
     310             :                         return 1;
     311             : 
     312           0 :         if (bits % BITS_PER_LONG)
     313           0 :                 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
     314           0 :                         return 1;
     315             :         return 0;
     316             : }
     317             : EXPORT_SYMBOL(__bitmap_intersects);
     318             : 
     319           0 : int __bitmap_subset(const unsigned long *bitmap1,
     320             :                     const unsigned long *bitmap2, unsigned int bits)
     321             : {
     322           0 :         unsigned int k, lim = bits/BITS_PER_LONG;
     323           0 :         for (k = 0; k < lim; ++k)
     324           0 :                 if (bitmap1[k] & ~bitmap2[k])
     325             :                         return 0;
     326             : 
     327           0 :         if (bits % BITS_PER_LONG)
     328           0 :                 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
     329           0 :                         return 0;
     330             :         return 1;
     331             : }
     332             : EXPORT_SYMBOL(__bitmap_subset);
     333             : 
     334           1 : int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
     335             : {
     336           1 :         unsigned int k, lim = bits/BITS_PER_LONG;
     337           1 :         int w = 0;
     338             : 
     339           5 :         for (k = 0; k < lim; k++)
     340           8 :                 w += hweight_long(bitmap[k]);
     341             : 
     342           1 :         if (bits % BITS_PER_LONG)
     343           0 :                 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
     344             : 
     345           1 :         return w;
     346             : }
     347             : EXPORT_SYMBOL(__bitmap_weight);
     348             : 
     349        2177 : void __bitmap_set(unsigned long *map, unsigned int start, int len)
     350             : {
     351        2177 :         unsigned long *p = map + BIT_WORD(start);
     352        2177 :         const unsigned int size = start + len;
     353        2177 :         int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
     354        2177 :         unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
     355             : 
     356        2368 :         while (len - bits_to_set >= 0) {
     357         191 :                 *p |= mask_to_set;
     358         191 :                 len -= bits_to_set;
     359         191 :                 bits_to_set = BITS_PER_LONG;
     360         191 :                 mask_to_set = ~0UL;
     361         191 :                 p++;
     362             :         }
     363        2177 :         if (len) {
     364        2096 :                 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
     365        2096 :                 *p |= mask_to_set;
     366             :         }
     367        2177 : }
     368             : EXPORT_SYMBOL(__bitmap_set);
     369             : 
     370        3739 : void __bitmap_clear(unsigned long *map, unsigned int start, int len)
     371             : {
     372        3739 :         unsigned long *p = map + BIT_WORD(start);
     373        3739 :         const unsigned int size = start + len;
     374        3739 :         int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
     375        3739 :         unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
     376             : 
     377        3954 :         while (len - bits_to_clear >= 0) {
     378         215 :                 *p &= ~mask_to_clear;
     379         215 :                 len -= bits_to_clear;
     380         215 :                 bits_to_clear = BITS_PER_LONG;
     381         215 :                 mask_to_clear = ~0UL;
     382         215 :                 p++;
     383             :         }
     384        3739 :         if (len) {
     385        3041 :                 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
     386        3041 :                 *p &= ~mask_to_clear;
     387             :         }
     388        3739 : }
     389             : EXPORT_SYMBOL(__bitmap_clear);
     390             : 
     391             : /**
     392             :  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
     393             :  * @map: The address to base the search on
     394             :  * @size: The bitmap size in bits
     395             :  * @start: The bitnumber to start searching at
     396             :  * @nr: The number of zeroed bits we're looking for
     397             :  * @align_mask: Alignment mask for zero area
     398             :  * @align_offset: Alignment offset for zero area.
     399             :  *
     400             :  * The @align_mask should be one less than a power of 2; the effect is that
     401             :  * the bit offset of all zero areas this function finds plus @align_offset
     402             :  * is multiple of that power of 2.
     403             :  */
     404           3 : unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
     405             :                                              unsigned long size,
     406             :                                              unsigned long start,
     407             :                                              unsigned int nr,
     408             :                                              unsigned long align_mask,
     409             :                                              unsigned long align_offset)
     410             : {
     411           3 :         unsigned long index, end, i;
     412           3 : again:
     413           3 :         index = find_next_zero_bit(map, size, start);
     414             : 
     415             :         /* Align allocation */
     416           3 :         index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
     417             : 
     418           3 :         end = index + nr;
     419           3 :         if (end > size)
     420           0 :                 return end;
     421           3 :         i = find_next_bit(map, end, index);
     422           3 :         if (i < end) {
     423           0 :                 start = i + 1;
     424           0 :                 goto again;
     425             :         }
     426             :         return index;
     427             : }
     428             : EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
     429             : 
     430             : /*
     431             :  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
     432             :  * second version by Paul Jackson, third by Joe Korty.
     433             :  */
     434             : 
     435             : /**
     436             :  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
     437             :  *
     438             :  * @ubuf: pointer to user buffer containing string.
     439             :  * @ulen: buffer size in bytes.  If string is smaller than this
     440             :  *    then it must be terminated with a \0.
     441             :  * @maskp: pointer to bitmap array that will contain result.
     442             :  * @nmaskbits: size of bitmap, in bits.
     443             :  */
     444           0 : int bitmap_parse_user(const char __user *ubuf,
     445             :                         unsigned int ulen, unsigned long *maskp,
     446             :                         int nmaskbits)
     447             : {
     448           0 :         char *buf;
     449           0 :         int ret;
     450             : 
     451           0 :         buf = memdup_user_nul(ubuf, ulen);
     452           0 :         if (IS_ERR(buf))
     453           0 :                 return PTR_ERR(buf);
     454             : 
     455           0 :         ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
     456             : 
     457           0 :         kfree(buf);
     458           0 :         return ret;
     459             : }
     460             : EXPORT_SYMBOL(bitmap_parse_user);
     461             : 
     462             : /**
     463             :  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
     464             :  * @list: indicates whether the bitmap must be list
     465             :  * @buf: page aligned buffer into which string is placed
     466             :  * @maskp: pointer to bitmap to convert
     467             :  * @nmaskbits: size of bitmap, in bits
     468             :  *
     469             :  * Output format is a comma-separated list of decimal numbers and
     470             :  * ranges if list is specified or hex digits grouped into comma-separated
     471             :  * sets of 8 digits/set. Returns the number of characters written to buf.
     472             :  *
     473             :  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
     474             :  * area and that sufficient storage remains at @buf to accommodate the
     475             :  * bitmap_print_to_pagebuf() output. Returns the number of characters
     476             :  * actually printed to @buf, excluding terminating '\0'.
     477             :  */
     478           0 : int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
     479             :                             int nmaskbits)
     480             : {
     481           0 :         ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
     482             : 
     483           0 :         return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
     484           0 :                       scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
     485             : }
     486             : EXPORT_SYMBOL(bitmap_print_to_pagebuf);
     487             : 
     488             : /*
     489             :  * Region 9-38:4/10 describes the following bitmap structure:
     490             :  * 0       9  12    18                  38
     491             :  * .........****......****......****......
     492             :  *          ^  ^     ^                   ^
     493             :  *      start  off   group_len         end
     494             :  */
     495             : struct region {
     496             :         unsigned int start;
     497             :         unsigned int off;
     498             :         unsigned int group_len;
     499             :         unsigned int end;
     500             : };
     501             : 
     502           0 : static int bitmap_set_region(const struct region *r,
     503             :                                 unsigned long *bitmap, int nbits)
     504             : {
     505           0 :         unsigned int start;
     506             : 
     507           0 :         if (r->end >= nbits)
     508             :                 return -ERANGE;
     509             : 
     510           0 :         for (start = r->start; start <= r->end; start += r->group_len)
     511           0 :                 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
     512             : 
     513             :         return 0;
     514             : }
     515             : 
     516           0 : static int bitmap_check_region(const struct region *r)
     517             : {
     518           0 :         if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
     519           0 :                 return -EINVAL;
     520             : 
     521             :         return 0;
     522             : }
     523             : 
     524           0 : static const char *bitmap_getnum(const char *str, unsigned int *num)
     525             : {
     526           0 :         unsigned long long n;
     527           0 :         unsigned int len;
     528             : 
     529           0 :         len = _parse_integer(str, 10, &n);
     530           0 :         if (!len)
     531           0 :                 return ERR_PTR(-EINVAL);
     532           0 :         if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
     533           0 :                 return ERR_PTR(-EOVERFLOW);
     534             : 
     535           0 :         *num = n;
     536           0 :         return str + len;
     537             : }
     538             : 
     539           0 : static inline bool end_of_str(char c)
     540             : {
     541           0 :         return c == '\0' || c == '\n';
     542             : }
     543             : 
     544           0 : static inline bool __end_of_region(char c)
     545             : {
     546           0 :         return isspace(c) || c == ',';
     547             : }
     548             : 
     549           0 : static inline bool end_of_region(char c)
     550             : {
     551           0 :         return __end_of_region(c) || end_of_str(c);
     552             : }
     553             : 
     554             : /*
     555             :  * The format allows commas and whitespaces at the beginning
     556             :  * of the region.
     557             :  */
     558           0 : static const char *bitmap_find_region(const char *str)
     559             : {
     560           0 :         while (__end_of_region(*str))
     561           0 :                 str++;
     562             : 
     563           0 :         return end_of_str(*str) ? NULL : str;
     564             : }
     565             : 
     566           0 : static const char *bitmap_find_region_reverse(const char *start, const char *end)
     567             : {
     568           0 :         while (start <= end && __end_of_region(*end))
     569           0 :                 end--;
     570             : 
     571           0 :         return end;
     572             : }
     573             : 
     574           0 : static const char *bitmap_parse_region(const char *str, struct region *r)
     575             : {
     576           0 :         str = bitmap_getnum(str, &r->start);
     577           0 :         if (IS_ERR(str))
     578             :                 return str;
     579             : 
     580           0 :         if (end_of_region(*str))
     581           0 :                 goto no_end;
     582             : 
     583           0 :         if (*str != '-')
     584           0 :                 return ERR_PTR(-EINVAL);
     585             : 
     586           0 :         str = bitmap_getnum(str + 1, &r->end);
     587           0 :         if (IS_ERR(str))
     588             :                 return str;
     589             : 
     590           0 :         if (end_of_region(*str))
     591           0 :                 goto no_pattern;
     592             : 
     593           0 :         if (*str != ':')
     594           0 :                 return ERR_PTR(-EINVAL);
     595             : 
     596           0 :         str = bitmap_getnum(str + 1, &r->off);
     597           0 :         if (IS_ERR(str))
     598             :                 return str;
     599             : 
     600           0 :         if (*str != '/')
     601           0 :                 return ERR_PTR(-EINVAL);
     602             : 
     603           0 :         return bitmap_getnum(str + 1, &r->group_len);
     604             : 
     605           0 : no_end:
     606           0 :         r->end = r->start;
     607           0 : no_pattern:
     608           0 :         r->off = r->end + 1;
     609           0 :         r->group_len = r->end + 1;
     610             : 
     611           0 :         return end_of_str(*str) ? NULL : str;
     612             : }
     613             : 
     614             : /**
     615             :  * bitmap_parselist - convert list format ASCII string to bitmap
     616             :  * @buf: read user string from this buffer; must be terminated
     617             :  *    with a \0 or \n.
     618             :  * @maskp: write resulting mask here
     619             :  * @nmaskbits: number of bits in mask to be written
     620             :  *
     621             :  * Input format is a comma-separated list of decimal numbers and
     622             :  * ranges.  Consecutively set bits are shown as two hyphen-separated
     623             :  * decimal numbers, the smallest and largest bit numbers set in
     624             :  * the range.
     625             :  * Optionally each range can be postfixed to denote that only parts of it
     626             :  * should be set. The range will divided to groups of specific size.
     627             :  * From each group will be used only defined amount of bits.
     628             :  * Syntax: range:used_size/group_size
     629             :  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
     630             :  *
     631             :  * Returns: 0 on success, -errno on invalid input strings. Error values:
     632             :  *
     633             :  *   - ``-EINVAL``: wrong region format
     634             :  *   - ``-EINVAL``: invalid character in string
     635             :  *   - ``-ERANGE``: bit number specified too large for mask
     636             :  *   - ``-EOVERFLOW``: integer overflow in the input parameters
     637             :  */
     638           0 : int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
     639             : {
     640           0 :         struct region r;
     641           0 :         long ret;
     642             : 
     643           0 :         bitmap_zero(maskp, nmaskbits);
     644             : 
     645           0 :         while (buf) {
     646           0 :                 buf = bitmap_find_region(buf);
     647           0 :                 if (buf == NULL)
     648             :                         return 0;
     649             : 
     650           0 :                 buf = bitmap_parse_region(buf, &r);
     651           0 :                 if (IS_ERR(buf))
     652           0 :                         return PTR_ERR(buf);
     653             : 
     654           0 :                 ret = bitmap_check_region(&r);
     655           0 :                 if (ret)
     656           0 :                         return ret;
     657             : 
     658           0 :                 ret = bitmap_set_region(&r, maskp, nmaskbits);
     659           0 :                 if (ret)
     660           0 :                         return ret;
     661             :         }
     662             : 
     663             :         return 0;
     664             : }
     665             : EXPORT_SYMBOL(bitmap_parselist);
     666             : 
     667             : 
     668             : /**
     669             :  * bitmap_parselist_user()
     670             :  *
     671             :  * @ubuf: pointer to user buffer containing string.
     672             :  * @ulen: buffer size in bytes.  If string is smaller than this
     673             :  *    then it must be terminated with a \0.
     674             :  * @maskp: pointer to bitmap array that will contain result.
     675             :  * @nmaskbits: size of bitmap, in bits.
     676             :  *
     677             :  * Wrapper for bitmap_parselist(), providing it with user buffer.
     678             :  */
     679           0 : int bitmap_parselist_user(const char __user *ubuf,
     680             :                         unsigned int ulen, unsigned long *maskp,
     681             :                         int nmaskbits)
     682             : {
     683           0 :         char *buf;
     684           0 :         int ret;
     685             : 
     686           0 :         buf = memdup_user_nul(ubuf, ulen);
     687           0 :         if (IS_ERR(buf))
     688           0 :                 return PTR_ERR(buf);
     689             : 
     690           0 :         ret = bitmap_parselist(buf, maskp, nmaskbits);
     691             : 
     692           0 :         kfree(buf);
     693           0 :         return ret;
     694             : }
     695             : EXPORT_SYMBOL(bitmap_parselist_user);
     696             : 
     697           0 : static const char *bitmap_get_x32_reverse(const char *start,
     698             :                                         const char *end, u32 *num)
     699             : {
     700           0 :         u32 ret = 0;
     701           0 :         int c, i;
     702             : 
     703           0 :         for (i = 0; i < 32; i += 4) {
     704           0 :                 c = hex_to_bin(*end--);
     705           0 :                 if (c < 0)
     706           0 :                         return ERR_PTR(-EINVAL);
     707             : 
     708           0 :                 ret |= c << i;
     709             : 
     710           0 :                 if (start > end || __end_of_region(*end))
     711           0 :                         goto out;
     712             :         }
     713             : 
     714           0 :         if (hex_to_bin(*end--) >= 0)
     715           0 :                 return ERR_PTR(-EOVERFLOW);
     716           0 : out:
     717           0 :         *num = ret;
     718           0 :         return end;
     719             : }
     720             : 
     721             : /**
     722             :  * bitmap_parse - convert an ASCII hex string into a bitmap.
     723             :  * @start: pointer to buffer containing string.
     724             :  * @buflen: buffer size in bytes.  If string is smaller than this
     725             :  *    then it must be terminated with a \0 or \n. In that case,
     726             :  *    UINT_MAX may be provided instead of string length.
     727             :  * @maskp: pointer to bitmap array that will contain result.
     728             :  * @nmaskbits: size of bitmap, in bits.
     729             :  *
     730             :  * Commas group hex digits into chunks.  Each chunk defines exactly 32
     731             :  * bits of the resultant bitmask.  No chunk may specify a value larger
     732             :  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
     733             :  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
     734             :  * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
     735             :  * Leading, embedded and trailing whitespace accepted.
     736             :  */
     737           0 : int bitmap_parse(const char *start, unsigned int buflen,
     738             :                 unsigned long *maskp, int nmaskbits)
     739             : {
     740           0 :         const char *end = strnchrnul(start, buflen, '\n') - 1;
     741           0 :         int chunks = BITS_TO_U32(nmaskbits);
     742           0 :         u32 *bitmap = (u32 *)maskp;
     743           0 :         int unset_bit;
     744           0 :         int chunk;
     745             : 
     746           0 :         for (chunk = 0; ; chunk++) {
     747           0 :                 end = bitmap_find_region_reverse(start, end);
     748           0 :                 if (start > end)
     749             :                         break;
     750             : 
     751           0 :                 if (!chunks--)
     752             :                         return -EOVERFLOW;
     753             : 
     754             : #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
     755             :                 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
     756             : #else
     757           0 :                 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
     758             : #endif
     759           0 :                 if (IS_ERR(end))
     760           0 :                         return PTR_ERR(end);
     761             :         }
     762             : 
     763           0 :         unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
     764           0 :         if (unset_bit < nmaskbits) {
     765           0 :                 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
     766           0 :                 return 0;
     767             :         }
     768             : 
     769           0 :         if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
     770           0 :                 return -EOVERFLOW;
     771             : 
     772             :         return 0;
     773             : }
     774             : EXPORT_SYMBOL(bitmap_parse);
     775             : 
     776             : 
     777             : #ifdef CONFIG_NUMA
     778             : /**
     779             :  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
     780             :  *      @buf: pointer to a bitmap
     781             :  *      @pos: a bit position in @buf (0 <= @pos < @nbits)
     782             :  *      @nbits: number of valid bit positions in @buf
     783             :  *
     784             :  * Map the bit at position @pos in @buf (of length @nbits) to the
     785             :  * ordinal of which set bit it is.  If it is not set or if @pos
     786             :  * is not a valid bit position, map to -1.
     787             :  *
     788             :  * If for example, just bits 4 through 7 are set in @buf, then @pos
     789             :  * values 4 through 7 will get mapped to 0 through 3, respectively,
     790             :  * and other @pos values will get mapped to -1.  When @pos value 7
     791             :  * gets mapped to (returns) @ord value 3 in this example, that means
     792             :  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
     793             :  *
     794             :  * The bit positions 0 through @bits are valid positions in @buf.
     795             :  */
     796           0 : static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
     797             : {
     798           0 :         if (pos >= nbits || !test_bit(pos, buf))
     799           0 :                 return -1;
     800             : 
     801           0 :         return __bitmap_weight(buf, pos);
     802             : }
     803             : 
     804             : /**
     805             :  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
     806             :  *      @buf: pointer to bitmap
     807             :  *      @ord: ordinal bit position (n-th set bit, n >= 0)
     808             :  *      @nbits: number of valid bit positions in @buf
     809             :  *
     810             :  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
     811             :  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
     812             :  * >= weight(buf), returns @nbits.
     813             :  *
     814             :  * If for example, just bits 4 through 7 are set in @buf, then @ord
     815             :  * values 0 through 3 will get mapped to 4 through 7, respectively,
     816             :  * and all other @ord values returns @nbits.  When @ord value 3
     817             :  * gets mapped to (returns) @pos value 7 in this example, that means
     818             :  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
     819             :  *
     820             :  * The bit positions 0 through @nbits-1 are valid positions in @buf.
     821             :  */
     822           0 : unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
     823             : {
     824           0 :         unsigned int pos;
     825             : 
     826           0 :         for (pos = find_first_bit(buf, nbits);
     827           0 :              pos < nbits && ord;
     828           0 :              pos = find_next_bit(buf, nbits, pos + 1))
     829           0 :                 ord--;
     830             : 
     831           0 :         return pos;
     832             : }
     833             : 
     834             : /**
     835             :  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
     836             :  *      @dst: remapped result
     837             :  *      @src: subset to be remapped
     838             :  *      @old: defines domain of map
     839             :  *      @new: defines range of map
     840             :  *      @nbits: number of bits in each of these bitmaps
     841             :  *
     842             :  * Let @old and @new define a mapping of bit positions, such that
     843             :  * whatever position is held by the n-th set bit in @old is mapped
     844             :  * to the n-th set bit in @new.  In the more general case, allowing
     845             :  * for the possibility that the weight 'w' of @new is less than the
     846             :  * weight of @old, map the position of the n-th set bit in @old to
     847             :  * the position of the m-th set bit in @new, where m == n % w.
     848             :  *
     849             :  * If either of the @old and @new bitmaps are empty, or if @src and
     850             :  * @dst point to the same location, then this routine copies @src
     851             :  * to @dst.
     852             :  *
     853             :  * The positions of unset bits in @old are mapped to themselves
     854             :  * (the identify map).
     855             :  *
     856             :  * Apply the above specified mapping to @src, placing the result in
     857             :  * @dst, clearing any bits previously set in @dst.
     858             :  *
     859             :  * For example, lets say that @old has bits 4 through 7 set, and
     860             :  * @new has bits 12 through 15 set.  This defines the mapping of bit
     861             :  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
     862             :  * bit positions unchanged.  So if say @src comes into this routine
     863             :  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
     864             :  * 13 and 15 set.
     865             :  */
     866           0 : void bitmap_remap(unsigned long *dst, const unsigned long *src,
     867             :                 const unsigned long *old, const unsigned long *new,
     868             :                 unsigned int nbits)
     869             : {
     870           0 :         unsigned int oldbit, w;
     871             : 
     872           0 :         if (dst == src)         /* following doesn't handle inplace remaps */
     873             :                 return;
     874           0 :         bitmap_zero(dst, nbits);
     875             : 
     876           0 :         w = bitmap_weight(new, nbits);
     877           0 :         for_each_set_bit(oldbit, src, nbits) {
     878           0 :                 int n = bitmap_pos_to_ord(old, oldbit, nbits);
     879             : 
     880           0 :                 if (n < 0 || w == 0)
     881           0 :                         set_bit(oldbit, dst);   /* identity map */
     882             :                 else
     883           0 :                         set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
     884             :         }
     885             : }
     886             : 
     887             : /**
     888             :  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
     889             :  *      @oldbit: bit position to be mapped
     890             :  *      @old: defines domain of map
     891             :  *      @new: defines range of map
     892             :  *      @bits: number of bits in each of these bitmaps
     893             :  *
     894             :  * Let @old and @new define a mapping of bit positions, such that
     895             :  * whatever position is held by the n-th set bit in @old is mapped
     896             :  * to the n-th set bit in @new.  In the more general case, allowing
     897             :  * for the possibility that the weight 'w' of @new is less than the
     898             :  * weight of @old, map the position of the n-th set bit in @old to
     899             :  * the position of the m-th set bit in @new, where m == n % w.
     900             :  *
     901             :  * The positions of unset bits in @old are mapped to themselves
     902             :  * (the identify map).
     903             :  *
     904             :  * Apply the above specified mapping to bit position @oldbit, returning
     905             :  * the new bit position.
     906             :  *
     907             :  * For example, lets say that @old has bits 4 through 7 set, and
     908             :  * @new has bits 12 through 15 set.  This defines the mapping of bit
     909             :  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
     910             :  * bit positions unchanged.  So if say @oldbit is 5, then this routine
     911             :  * returns 13.
     912             :  */
     913           0 : int bitmap_bitremap(int oldbit, const unsigned long *old,
     914             :                                 const unsigned long *new, int bits)
     915             : {
     916           0 :         int w = bitmap_weight(new, bits);
     917           0 :         int n = bitmap_pos_to_ord(old, oldbit, bits);
     918           0 :         if (n < 0 || w == 0)
     919             :                 return oldbit;
     920             :         else
     921           0 :                 return bitmap_ord_to_pos(new, n % w, bits);
     922             : }
     923             : 
     924             : /**
     925             :  * bitmap_onto - translate one bitmap relative to another
     926             :  *      @dst: resulting translated bitmap
     927             :  *      @orig: original untranslated bitmap
     928             :  *      @relmap: bitmap relative to which translated
     929             :  *      @bits: number of bits in each of these bitmaps
     930             :  *
     931             :  * Set the n-th bit of @dst iff there exists some m such that the
     932             :  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
     933             :  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
     934             :  * (If you understood the previous sentence the first time your
     935             :  * read it, you're overqualified for your current job.)
     936             :  *
     937             :  * In other words, @orig is mapped onto (surjectively) @dst,
     938             :  * using the map { <n, m> | the n-th bit of @relmap is the
     939             :  * m-th set bit of @relmap }.
     940             :  *
     941             :  * Any set bits in @orig above bit number W, where W is the
     942             :  * weight of (number of set bits in) @relmap are mapped nowhere.
     943             :  * In particular, if for all bits m set in @orig, m >= W, then
     944             :  * @dst will end up empty.  In situations where the possibility
     945             :  * of such an empty result is not desired, one way to avoid it is
     946             :  * to use the bitmap_fold() operator, below, to first fold the
     947             :  * @orig bitmap over itself so that all its set bits x are in the
     948             :  * range 0 <= x < W.  The bitmap_fold() operator does this by
     949             :  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
     950             :  *
     951             :  * Example [1] for bitmap_onto():
     952             :  *  Let's say @relmap has bits 30-39 set, and @orig has bits
     953             :  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
     954             :  *  @dst will have bits 31, 33, 35, 37 and 39 set.
     955             :  *
     956             :  *  When bit 0 is set in @orig, it means turn on the bit in
     957             :  *  @dst corresponding to whatever is the first bit (if any)
     958             :  *  that is turned on in @relmap.  Since bit 0 was off in the
     959             :  *  above example, we leave off that bit (bit 30) in @dst.
     960             :  *
     961             :  *  When bit 1 is set in @orig (as in the above example), it
     962             :  *  means turn on the bit in @dst corresponding to whatever
     963             :  *  is the second bit that is turned on in @relmap.  The second
     964             :  *  bit in @relmap that was turned on in the above example was
     965             :  *  bit 31, so we turned on bit 31 in @dst.
     966             :  *
     967             :  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
     968             :  *  because they were the 4th, 6th, 8th and 10th set bits
     969             :  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
     970             :  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
     971             :  *
     972             :  *  When bit 11 is set in @orig, it means turn on the bit in
     973             :  *  @dst corresponding to whatever is the twelfth bit that is
     974             :  *  turned on in @relmap.  In the above example, there were
     975             :  *  only ten bits turned on in @relmap (30..39), so that bit
     976             :  *  11 was set in @orig had no affect on @dst.
     977             :  *
     978             :  * Example [2] for bitmap_fold() + bitmap_onto():
     979             :  *  Let's say @relmap has these ten bits set::
     980             :  *
     981             :  *              40 41 42 43 45 48 53 61 74 95
     982             :  *
     983             :  *  (for the curious, that's 40 plus the first ten terms of the
     984             :  *  Fibonacci sequence.)
     985             :  *
     986             :  *  Further lets say we use the following code, invoking
     987             :  *  bitmap_fold() then bitmap_onto, as suggested above to
     988             :  *  avoid the possibility of an empty @dst result::
     989             :  *
     990             :  *      unsigned long *tmp;     // a temporary bitmap's bits
     991             :  *
     992             :  *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
     993             :  *      bitmap_onto(dst, tmp, relmap, bits);
     994             :  *
     995             :  *  Then this table shows what various values of @dst would be, for
     996             :  *  various @orig's.  I list the zero-based positions of each set bit.
     997             :  *  The tmp column shows the intermediate result, as computed by
     998             :  *  using bitmap_fold() to fold the @orig bitmap modulo ten
     999             :  *  (the weight of @relmap):
    1000             :  *
    1001             :  *      =============== ============== =================
    1002             :  *      @orig           tmp            @dst
    1003             :  *      0                0             40
    1004             :  *      1                1             41
    1005             :  *      9                9             95
    1006             :  *      10               0             40 [#f1]_
    1007             :  *      1 3 5 7          1 3 5 7       41 43 48 61
    1008             :  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
    1009             :  *      0 9 18 27        0 9 8 7       40 61 74 95
    1010             :  *      0 10 20 30       0             40
    1011             :  *      0 11 22 33       0 1 2 3       40 41 42 43
    1012             :  *      0 12 24 36       0 2 4 6       40 42 45 53
    1013             :  *      78 102 211       1 2 8         41 42 74 [#f1]_
    1014             :  *      =============== ============== =================
    1015             :  *
    1016             :  * .. [#f1]
    1017             :  *
    1018             :  *     For these marked lines, if we hadn't first done bitmap_fold()
    1019             :  *     into tmp, then the @dst result would have been empty.
    1020             :  *
    1021             :  * If either of @orig or @relmap is empty (no set bits), then @dst
    1022             :  * will be returned empty.
    1023             :  *
    1024             :  * If (as explained above) the only set bits in @orig are in positions
    1025             :  * m where m >= W, (where W is the weight of @relmap) then @dst will
    1026             :  * once again be returned empty.
    1027             :  *
    1028             :  * All bits in @dst not set by the above rule are cleared.
    1029             :  */
    1030           0 : void bitmap_onto(unsigned long *dst, const unsigned long *orig,
    1031             :                         const unsigned long *relmap, unsigned int bits)
    1032             : {
    1033           0 :         unsigned int n, m;      /* same meaning as in above comment */
    1034             : 
    1035           0 :         if (dst == orig)        /* following doesn't handle inplace mappings */
    1036             :                 return;
    1037           0 :         bitmap_zero(dst, bits);
    1038             : 
    1039             :         /*
    1040             :          * The following code is a more efficient, but less
    1041             :          * obvious, equivalent to the loop:
    1042             :          *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
    1043             :          *              n = bitmap_ord_to_pos(orig, m, bits);
    1044             :          *              if (test_bit(m, orig))
    1045             :          *                      set_bit(n, dst);
    1046             :          *      }
    1047             :          */
    1048             : 
    1049           0 :         m = 0;
    1050           0 :         for_each_set_bit(n, relmap, bits) {
    1051             :                 /* m == bitmap_pos_to_ord(relmap, n, bits) */
    1052           0 :                 if (test_bit(m, orig))
    1053           0 :                         set_bit(n, dst);
    1054           0 :                 m++;
    1055             :         }
    1056             : }
    1057             : 
    1058             : /**
    1059             :  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
    1060             :  *      @dst: resulting smaller bitmap
    1061             :  *      @orig: original larger bitmap
    1062             :  *      @sz: specified size
    1063             :  *      @nbits: number of bits in each of these bitmaps
    1064             :  *
    1065             :  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
    1066             :  * Clear all other bits in @dst.  See further the comment and
    1067             :  * Example [2] for bitmap_onto() for why and how to use this.
    1068             :  */
    1069           0 : void bitmap_fold(unsigned long *dst, const unsigned long *orig,
    1070             :                         unsigned int sz, unsigned int nbits)
    1071             : {
    1072           0 :         unsigned int oldbit;
    1073             : 
    1074           0 :         if (dst == orig)        /* following doesn't handle inplace mappings */
    1075             :                 return;
    1076           0 :         bitmap_zero(dst, nbits);
    1077             : 
    1078           0 :         for_each_set_bit(oldbit, orig, nbits)
    1079           0 :                 set_bit(oldbit % sz, dst);
    1080             : }
    1081             : #endif /* CONFIG_NUMA */
    1082             : 
    1083             : /*
    1084             :  * Common code for bitmap_*_region() routines.
    1085             :  *      bitmap: array of unsigned longs corresponding to the bitmap
    1086             :  *      pos: the beginning of the region
    1087             :  *      order: region size (log base 2 of number of bits)
    1088             :  *      reg_op: operation(s) to perform on that region of bitmap
    1089             :  *
    1090             :  * Can set, verify and/or release a region of bits in a bitmap,
    1091             :  * depending on which combination of REG_OP_* flag bits is set.
    1092             :  *
    1093             :  * A region of a bitmap is a sequence of bits in the bitmap, of
    1094             :  * some size '1 << order' (a power of two), aligned to that same
    1095             :  * '1 << order' power of two.
    1096             :  *
    1097             :  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
    1098             :  * Returns 0 in all other cases and reg_ops.
    1099             :  */
    1100             : 
    1101             : enum {
    1102             :         REG_OP_ISFREE,          /* true if region is all zero bits */
    1103             :         REG_OP_ALLOC,           /* set all bits in region */
    1104             :         REG_OP_RELEASE,         /* clear all bits in region */
    1105             : };
    1106             : 
    1107           0 : static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
    1108             : {
    1109           0 :         int nbits_reg;          /* number of bits in region */
    1110           0 :         int index;              /* index first long of region in bitmap */
    1111           0 :         int offset;             /* bit offset region in bitmap[index] */
    1112           0 :         int nlongs_reg;         /* num longs spanned by region in bitmap */
    1113           0 :         int nbitsinlong;        /* num bits of region in each spanned long */
    1114           0 :         unsigned long mask;     /* bitmask for one long of region */
    1115           0 :         int i;                  /* scans bitmap by longs */
    1116           0 :         int ret = 0;            /* return value */
    1117             : 
    1118             :         /*
    1119             :          * Either nlongs_reg == 1 (for small orders that fit in one long)
    1120             :          * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
    1121             :          */
    1122           0 :         nbits_reg = 1 << order;
    1123           0 :         index = pos / BITS_PER_LONG;
    1124           0 :         offset = pos - (index * BITS_PER_LONG);
    1125           0 :         nlongs_reg = BITS_TO_LONGS(nbits_reg);
    1126           0 :         nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
    1127             : 
    1128             :         /*
    1129             :          * Can't do "mask = (1UL << nbitsinlong) - 1", as that
    1130             :          * overflows if nbitsinlong == BITS_PER_LONG.
    1131             :          */
    1132           0 :         mask = (1UL << (nbitsinlong - 1));
    1133           0 :         mask += mask - 1;
    1134           0 :         mask <<= offset;
    1135             : 
    1136           0 :         switch (reg_op) {
    1137             :         case REG_OP_ISFREE:
    1138           0 :                 for (i = 0; i < nlongs_reg; i++) {
    1139           0 :                         if (bitmap[index + i] & mask)
    1140           0 :                                 goto done;
    1141             :                 }
    1142             :                 ret = 1;        /* all bits in region free (zero) */
    1143             :                 break;
    1144             : 
    1145             :         case REG_OP_ALLOC:
    1146           0 :                 for (i = 0; i < nlongs_reg; i++)
    1147           0 :                         bitmap[index + i] |= mask;
    1148             :                 break;
    1149             : 
    1150             :         case REG_OP_RELEASE:
    1151           0 :                 for (i = 0; i < nlongs_reg; i++)
    1152           0 :                         bitmap[index + i] &= ~mask;
    1153             :                 break;
    1154             :         }
    1155           0 : done:
    1156           0 :         return ret;
    1157             : }
    1158             : 
    1159             : /**
    1160             :  * bitmap_find_free_region - find a contiguous aligned mem region
    1161             :  *      @bitmap: array of unsigned longs corresponding to the bitmap
    1162             :  *      @bits: number of bits in the bitmap
    1163             :  *      @order: region size (log base 2 of number of bits) to find
    1164             :  *
    1165             :  * Find a region of free (zero) bits in a @bitmap of @bits bits and
    1166             :  * allocate them (set them to one).  Only consider regions of length
    1167             :  * a power (@order) of two, aligned to that power of two, which
    1168             :  * makes the search algorithm much faster.
    1169             :  *
    1170             :  * Return the bit offset in bitmap of the allocated region,
    1171             :  * or -errno on failure.
    1172             :  */
    1173           0 : int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
    1174             : {
    1175           0 :         unsigned int pos, end;          /* scans bitmap by regions of size order */
    1176             : 
    1177           0 :         for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
    1178           0 :                 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
    1179           0 :                         continue;
    1180           0 :                 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
    1181           0 :                 return pos;
    1182             :         }
    1183             :         return -ENOMEM;
    1184             : }
    1185             : EXPORT_SYMBOL(bitmap_find_free_region);
    1186             : 
    1187             : /**
    1188             :  * bitmap_release_region - release allocated bitmap region
    1189             :  *      @bitmap: array of unsigned longs corresponding to the bitmap
    1190             :  *      @pos: beginning of bit region to release
    1191             :  *      @order: region size (log base 2 of number of bits) to release
    1192             :  *
    1193             :  * This is the complement to __bitmap_find_free_region() and releases
    1194             :  * the found region (by clearing it in the bitmap).
    1195             :  *
    1196             :  * No return value.
    1197             :  */
    1198           0 : void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
    1199             : {
    1200           0 :         __reg_op(bitmap, pos, order, REG_OP_RELEASE);
    1201           0 : }
    1202             : EXPORT_SYMBOL(bitmap_release_region);
    1203             : 
    1204             : /**
    1205             :  * bitmap_allocate_region - allocate bitmap region
    1206             :  *      @bitmap: array of unsigned longs corresponding to the bitmap
    1207             :  *      @pos: beginning of bit region to allocate
    1208             :  *      @order: region size (log base 2 of number of bits) to allocate
    1209             :  *
    1210             :  * Allocate (set bits in) a specified region of a bitmap.
    1211             :  *
    1212             :  * Return 0 on success, or %-EBUSY if specified region wasn't
    1213             :  * free (not all bits were zero).
    1214             :  */
    1215           0 : int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
    1216             : {
    1217           0 :         if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
    1218             :                 return -EBUSY;
    1219           0 :         return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
    1220             : }
    1221             : EXPORT_SYMBOL(bitmap_allocate_region);
    1222             : 
    1223             : /**
    1224             :  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
    1225             :  * @dst:   destination buffer
    1226             :  * @src:   bitmap to copy
    1227             :  * @nbits: number of bits in the bitmap
    1228             :  *
    1229             :  * Require nbits % BITS_PER_LONG == 0.
    1230             :  */
    1231             : #ifdef __BIG_ENDIAN
    1232             : void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
    1233             : {
    1234             :         unsigned int i;
    1235             : 
    1236             :         for (i = 0; i < nbits/BITS_PER_LONG; i++) {
    1237             :                 if (BITS_PER_LONG == 64)
    1238             :                         dst[i] = cpu_to_le64(src[i]);
    1239             :                 else
    1240             :                         dst[i] = cpu_to_le32(src[i]);
    1241             :         }
    1242             : }
    1243             : EXPORT_SYMBOL(bitmap_copy_le);
    1244             : #endif
    1245             : 
    1246           1 : unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
    1247             : {
    1248           1 :         return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
    1249             :                              flags);
    1250             : }
    1251             : EXPORT_SYMBOL(bitmap_alloc);
    1252             : 
    1253           0 : unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
    1254             : {
    1255           0 :         return bitmap_alloc(nbits, flags | __GFP_ZERO);
    1256             : }
    1257             : EXPORT_SYMBOL(bitmap_zalloc);
    1258             : 
    1259           1 : void bitmap_free(const unsigned long *bitmap)
    1260             : {
    1261           1 :         kfree(bitmap);
    1262           1 : }
    1263             : EXPORT_SYMBOL(bitmap_free);
    1264             : 
    1265             : #if BITS_PER_LONG == 64
    1266             : /**
    1267             :  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
    1268             :  *      @bitmap: array of unsigned longs, the destination bitmap
    1269             :  *      @buf: array of u32 (in host byte order), the source bitmap
    1270             :  *      @nbits: number of bits in @bitmap
    1271             :  */
    1272           0 : void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
    1273             : {
    1274           0 :         unsigned int i, halfwords;
    1275             : 
    1276           0 :         halfwords = DIV_ROUND_UP(nbits, 32);
    1277           0 :         for (i = 0; i < halfwords; i++) {
    1278           0 :                 bitmap[i/2] = (unsigned long) buf[i];
    1279           0 :                 if (++i < halfwords)
    1280           0 :                         bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
    1281             :         }
    1282             : 
    1283             :         /* Clear tail bits in last word beyond nbits. */
    1284           0 :         if (nbits % BITS_PER_LONG)
    1285           0 :                 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
    1286           0 : }
    1287             : EXPORT_SYMBOL(bitmap_from_arr32);
    1288             : 
    1289             : /**
    1290             :  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
    1291             :  *      @buf: array of u32 (in host byte order), the dest bitmap
    1292             :  *      @bitmap: array of unsigned longs, the source bitmap
    1293             :  *      @nbits: number of bits in @bitmap
    1294             :  */
    1295           0 : void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
    1296             : {
    1297           0 :         unsigned int i, halfwords;
    1298             : 
    1299           0 :         halfwords = DIV_ROUND_UP(nbits, 32);
    1300           0 :         for (i = 0; i < halfwords; i++) {
    1301           0 :                 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
    1302           0 :                 if (++i < halfwords)
    1303           0 :                         buf[i] = (u32) (bitmap[i/2] >> 32);
    1304             :         }
    1305             : 
    1306             :         /* Clear tail bits in last element of array beyond nbits. */
    1307           0 :         if (nbits % BITS_PER_LONG)
    1308           0 :                 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
    1309           0 : }
    1310             : EXPORT_SYMBOL(bitmap_to_arr32);
    1311             : 
    1312             : #endif

Generated by: LCOV version 1.14