Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : #include <linux/bitmap.h>
3 : #include <linux/bug.h>
4 : #include <linux/export.h>
5 : #include <linux/idr.h>
6 : #include <linux/slab.h>
7 : #include <linux/spinlock.h>
8 : #include <linux/xarray.h>
9 :
10 : /**
11 : * idr_alloc_u32() - Allocate an ID.
12 : * @idr: IDR handle.
13 : * @ptr: Pointer to be associated with the new ID.
14 : * @nextid: Pointer to an ID.
15 : * @max: The maximum ID to allocate (inclusive).
16 : * @gfp: Memory allocation flags.
17 : *
18 : * Allocates an unused ID in the range specified by @nextid and @max.
19 : * Note that @max is inclusive whereas the @end parameter to idr_alloc()
20 : * is exclusive. The new ID is assigned to @nextid before the pointer
21 : * is inserted into the IDR, so if @nextid points into the object pointed
22 : * to by @ptr, a concurrent lookup will not find an uninitialised ID.
23 : *
24 : * The caller should provide their own locking to ensure that two
25 : * concurrent modifications to the IDR are not possible. Read-only
26 : * accesses to the IDR may be done under the RCU read lock or may
27 : * exclude simultaneous writers.
28 : *
29 : * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
30 : * or -ENOSPC if no free IDs could be found. If an error occurred,
31 : * @nextid is unchanged.
32 : */
33 11083 : int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
34 : unsigned long max, gfp_t gfp)
35 : {
36 11083 : struct radix_tree_iter iter;
37 11083 : void __rcu **slot;
38 11083 : unsigned int base = idr->idr_base;
39 11083 : unsigned int id = *nextid;
40 :
41 11083 : if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR)))
42 0 : idr->idr_rt.xa_flags |= IDR_RT_MARKER;
43 :
44 11083 : id = (id < base) ? 0 : id - base;
45 11083 : radix_tree_iter_init(&iter, id);
46 11083 : slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
47 11083 : if (IS_ERR(slot))
48 0 : return PTR_ERR(slot);
49 :
50 11083 : *nextid = iter.index + base;
51 : /* there is a memory barrier inside radix_tree_iter_replace() */
52 11083 : radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
53 11083 : radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
54 :
55 11083 : return 0;
56 : }
57 : EXPORT_SYMBOL_GPL(idr_alloc_u32);
58 :
59 : /**
60 : * idr_alloc() - Allocate an ID.
61 : * @idr: IDR handle.
62 : * @ptr: Pointer to be associated with the new ID.
63 : * @start: The minimum ID (inclusive).
64 : * @end: The maximum ID (exclusive).
65 : * @gfp: Memory allocation flags.
66 : *
67 : * Allocates an unused ID in the range specified by @start and @end. If
68 : * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
69 : * callers to use @start + N as @end as long as N is within integer range.
70 : *
71 : * The caller should provide their own locking to ensure that two
72 : * concurrent modifications to the IDR are not possible. Read-only
73 : * accesses to the IDR may be done under the RCU read lock or may
74 : * exclude simultaneous writers.
75 : *
76 : * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
77 : * or -ENOSPC if no free IDs could be found.
78 : */
79 21 : int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
80 : {
81 21 : u32 id = start;
82 21 : int ret;
83 :
84 21 : if (WARN_ON_ONCE(start < 0))
85 : return -EINVAL;
86 :
87 21 : ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
88 21 : if (ret)
89 : return ret;
90 :
91 21 : return id;
92 : }
93 : EXPORT_SYMBOL_GPL(idr_alloc);
94 :
95 : /**
96 : * idr_alloc_cyclic() - Allocate an ID cyclically.
97 : * @idr: IDR handle.
98 : * @ptr: Pointer to be associated with the new ID.
99 : * @start: The minimum ID (inclusive).
100 : * @end: The maximum ID (exclusive).
101 : * @gfp: Memory allocation flags.
102 : *
103 : * Allocates an unused ID in the range specified by @nextid and @end. If
104 : * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
105 : * callers to use @start + N as @end as long as N is within integer range.
106 : * The search for an unused ID will start at the last ID allocated and will
107 : * wrap around to @start if no free IDs are found before reaching @end.
108 : *
109 : * The caller should provide their own locking to ensure that two
110 : * concurrent modifications to the IDR are not possible. Read-only
111 : * accesses to the IDR may be done under the RCU read lock or may
112 : * exclude simultaneous writers.
113 : *
114 : * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
115 : * or -ENOSPC if no free IDs could be found.
116 : */
117 11062 : int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
118 : {
119 11062 : u32 id = idr->idr_next;
120 11062 : int err, max = end > 0 ? end - 1 : INT_MAX;
121 :
122 11062 : if ((int)id < start)
123 25 : id = start;
124 :
125 11062 : err = idr_alloc_u32(idr, ptr, &id, max, gfp);
126 11062 : if ((err == -ENOSPC) && (id > start)) {
127 0 : id = start;
128 0 : err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 : }
130 11062 : if (err)
131 : return err;
132 :
133 11062 : idr->idr_next = id + 1;
134 11062 : return id;
135 : }
136 : EXPORT_SYMBOL(idr_alloc_cyclic);
137 :
138 : /**
139 : * idr_remove() - Remove an ID from the IDR.
140 : * @idr: IDR handle.
141 : * @id: Pointer ID.
142 : *
143 : * Removes this ID from the IDR. If the ID was not previously in the IDR,
144 : * this function returns %NULL.
145 : *
146 : * Since this function modifies the IDR, the caller should provide their
147 : * own locking to ensure that concurrent modification of the same IDR is
148 : * not possible.
149 : *
150 : * Return: The pointer formerly associated with this ID.
151 : */
152 3393 : void *idr_remove(struct idr *idr, unsigned long id)
153 : {
154 3393 : return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
155 : }
156 : EXPORT_SYMBOL_GPL(idr_remove);
157 :
158 : /**
159 : * idr_find() - Return pointer for given ID.
160 : * @idr: IDR handle.
161 : * @id: Pointer ID.
162 : *
163 : * Looks up the pointer associated with this ID. A %NULL pointer may
164 : * indicate that @id is not allocated or that the %NULL pointer was
165 : * associated with this ID.
166 : *
167 : * This function can be called under rcu_read_lock(), given that the leaf
168 : * pointers lifetimes are correctly managed.
169 : *
170 : * Return: The pointer associated with this ID.
171 : */
172 3971 : void *idr_find(const struct idr *idr, unsigned long id)
173 : {
174 3971 : return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
175 : }
176 : EXPORT_SYMBOL_GPL(idr_find);
177 :
178 : /**
179 : * idr_for_each() - Iterate through all stored pointers.
180 : * @idr: IDR handle.
181 : * @fn: Function to be called for each pointer.
182 : * @data: Data passed to callback function.
183 : *
184 : * The callback function will be called for each entry in @idr, passing
185 : * the ID, the entry and @data.
186 : *
187 : * If @fn returns anything other than %0, the iteration stops and that
188 : * value is returned from this function.
189 : *
190 : * idr_for_each() can be called concurrently with idr_alloc() and
191 : * idr_remove() if protected by RCU. Newly added entries may not be
192 : * seen and deleted entries may be seen, but adding and removing entries
193 : * will not cause other entries to be skipped, nor spurious ones to be seen.
194 : */
195 208 : int idr_for_each(const struct idr *idr,
196 : int (*fn)(int id, void *p, void *data), void *data)
197 : {
198 208 : struct radix_tree_iter iter;
199 208 : void __rcu **slot;
200 208 : int base = idr->idr_base;
201 :
202 416 : radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
203 0 : int ret;
204 0 : unsigned long id = iter.index + base;
205 :
206 0 : if (WARN_ON_ONCE(id > INT_MAX))
207 : break;
208 0 : ret = fn(id, rcu_dereference_raw(*slot), data);
209 0 : if (ret)
210 0 : return ret;
211 : }
212 :
213 : return 0;
214 : }
215 : EXPORT_SYMBOL(idr_for_each);
216 :
217 : /**
218 : * idr_get_next_ul() - Find next populated entry.
219 : * @idr: IDR handle.
220 : * @nextid: Pointer to an ID.
221 : *
222 : * Returns the next populated entry in the tree with an ID greater than
223 : * or equal to the value pointed to by @nextid. On exit, @nextid is updated
224 : * to the ID of the found value. To use in a loop, the value pointed to by
225 : * nextid must be incremented by the user.
226 : */
227 36 : void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
228 : {
229 36 : struct radix_tree_iter iter;
230 36 : void __rcu **slot;
231 36 : void *entry = NULL;
232 36 : unsigned long base = idr->idr_base;
233 36 : unsigned long id = *nextid;
234 :
235 36 : id = (id < base) ? 0 : id - base;
236 36 : radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
237 30 : entry = rcu_dereference_raw(*slot);
238 30 : if (!entry)
239 0 : continue;
240 30 : if (!xa_is_internal(entry))
241 : break;
242 0 : if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry))
243 : break;
244 0 : slot = radix_tree_iter_retry(&iter);
245 : }
246 36 : if (!slot)
247 : return NULL;
248 :
249 30 : *nextid = iter.index + base;
250 30 : return entry;
251 : }
252 : EXPORT_SYMBOL(idr_get_next_ul);
253 :
254 : /**
255 : * idr_get_next() - Find next populated entry.
256 : * @idr: IDR handle.
257 : * @nextid: Pointer to an ID.
258 : *
259 : * Returns the next populated entry in the tree with an ID greater than
260 : * or equal to the value pointed to by @nextid. On exit, @nextid is updated
261 : * to the ID of the found value. To use in a loop, the value pointed to by
262 : * nextid must be incremented by the user.
263 : */
264 36 : void *idr_get_next(struct idr *idr, int *nextid)
265 : {
266 36 : unsigned long id = *nextid;
267 36 : void *entry = idr_get_next_ul(idr, &id);
268 :
269 36 : if (WARN_ON_ONCE(id > INT_MAX))
270 : return NULL;
271 36 : *nextid = id;
272 36 : return entry;
273 : }
274 : EXPORT_SYMBOL(idr_get_next);
275 :
276 : /**
277 : * idr_replace() - replace pointer for given ID.
278 : * @idr: IDR handle.
279 : * @ptr: New pointer to associate with the ID.
280 : * @id: ID to change.
281 : *
282 : * Replace the pointer registered with an ID and return the old value.
283 : * This function can be called under the RCU read lock concurrently with
284 : * idr_alloc() and idr_remove() (as long as the ID being removed is not
285 : * the one being replaced!).
286 : *
287 : * Returns: the old value on success. %-ENOENT indicates that @id was not
288 : * found. %-EINVAL indicates that @ptr was not valid.
289 : */
290 2459 : void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
291 : {
292 2459 : struct radix_tree_node *node;
293 2459 : void __rcu **slot = NULL;
294 2459 : void *entry;
295 :
296 2459 : id -= idr->idr_base;
297 :
298 2459 : entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
299 2459 : if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
300 0 : return ERR_PTR(-ENOENT);
301 :
302 2459 : __radix_tree_replace(&idr->idr_rt, node, slot, ptr);
303 :
304 2459 : return entry;
305 : }
306 : EXPORT_SYMBOL(idr_replace);
307 :
308 : /**
309 : * DOC: IDA description
310 : *
311 : * The IDA is an ID allocator which does not provide the ability to
312 : * associate an ID with a pointer. As such, it only needs to store one
313 : * bit per ID, and so is more space efficient than an IDR. To use an IDA,
314 : * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
315 : * then initialise it using ida_init()). To allocate a new ID, call
316 : * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
317 : * To free an ID, call ida_free().
318 : *
319 : * ida_destroy() can be used to dispose of an IDA without needing to
320 : * free the individual IDs in it. You can use ida_is_empty() to find
321 : * out whether the IDA has any IDs currently allocated.
322 : *
323 : * The IDA handles its own locking. It is safe to call any of the IDA
324 : * functions without synchronisation in your code.
325 : *
326 : * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
327 : * limitation, it should be quite straightforward to raise the maximum.
328 : */
329 :
330 : /*
331 : * Developer's notes:
332 : *
333 : * The IDA uses the functionality provided by the XArray to store bitmaps in
334 : * each entry. The XA_FREE_MARK is only cleared when all bits in the bitmap
335 : * have been set.
336 : *
337 : * I considered telling the XArray that each slot is an order-10 node
338 : * and indexing by bit number, but the XArray can't allow a single multi-index
339 : * entry in the head, which would significantly increase memory consumption
340 : * for the IDA. So instead we divide the index by the number of bits in the
341 : * leaf bitmap before doing a radix tree lookup.
342 : *
343 : * As an optimisation, if there are only a few low bits set in any given
344 : * leaf, instead of allocating a 128-byte bitmap, we store the bits
345 : * as a value entry. Value entries never have the XA_FREE_MARK cleared
346 : * because we can always convert them into a bitmap entry.
347 : *
348 : * It would be possible to optimise further; once we've run out of a
349 : * single 128-byte bitmap, we currently switch to a 576-byte node, put
350 : * the 128-byte bitmap in the first entry and then start allocating extra
351 : * 128-byte entries. We could instead use the 512 bytes of the node's
352 : * data as a bitmap before moving to that scheme. I do not believe this
353 : * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
354 : * users of the IDA and almost none of them use more than 1024 entries.
355 : * Those that do use more than the 8192 IDs that the 512 bytes would
356 : * provide.
357 : *
358 : * The IDA always uses a lock to alloc/free. If we add a 'test_bit'
359 : * equivalent, it will still need locking. Going to RCU lookup would require
360 : * using RCU to free bitmaps, and that's not trivial without embedding an
361 : * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
362 : * bitmap, which is excessive.
363 : */
364 :
365 : /**
366 : * ida_alloc_range() - Allocate an unused ID.
367 : * @ida: IDA handle.
368 : * @min: Lowest ID to allocate.
369 : * @max: Highest ID to allocate.
370 : * @gfp: Memory allocation flags.
371 : *
372 : * Allocate an ID between @min and @max, inclusive. The allocated ID will
373 : * not exceed %INT_MAX, even if @max is larger.
374 : *
375 : * Context: Any context. It is safe to call this function without
376 : * locking in your code.
377 : * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
378 : * or %-ENOSPC if there are no free IDs.
379 : */
380 1830 : int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
381 : gfp_t gfp)
382 : {
383 1830 : XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS);
384 1830 : unsigned bit = min % IDA_BITMAP_BITS;
385 1830 : unsigned long flags;
386 1830 : struct ida_bitmap *bitmap, *alloc = NULL;
387 :
388 1830 : if ((int)min < 0)
389 : return -ENOSPC;
390 :
391 1830 : if ((int)max < 0)
392 1427 : max = INT_MAX;
393 :
394 1830 : retry:
395 1830 : xas_lock_irqsave(&xas, flags);
396 1830 : next:
397 1830 : bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK);
398 1830 : if (xas.xa_index > min / IDA_BITMAP_BITS)
399 0 : bit = 0;
400 1830 : if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
401 0 : goto nospc;
402 :
403 1830 : if (xa_is_value(bitmap)) {
404 337 : unsigned long tmp = xa_to_value(bitmap);
405 :
406 337 : if (bit < BITS_PER_XA_VALUE) {
407 337 : bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit);
408 337 : if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
409 0 : goto nospc;
410 337 : if (bit < BITS_PER_XA_VALUE) {
411 334 : tmp |= 1UL << bit;
412 334 : xas_store(&xas, xa_mk_value(tmp));
413 334 : goto out;
414 : }
415 : }
416 3 : bitmap = alloc;
417 3 : if (!bitmap)
418 3 : bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
419 3 : if (!bitmap)
420 0 : goto alloc;
421 3 : bitmap->bitmap[0] = tmp;
422 3 : xas_store(&xas, bitmap);
423 6 : if (xas_error(&xas)) {
424 0 : bitmap->bitmap[0] = 0;
425 0 : goto out;
426 : }
427 : }
428 :
429 1496 : if (bitmap) {
430 1477 : bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit);
431 1477 : if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
432 0 : goto nospc;
433 1477 : if (bit == IDA_BITMAP_BITS)
434 0 : goto next;
435 :
436 1477 : __set_bit(bit, bitmap->bitmap);
437 1477 : if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
438 0 : xas_clear_mark(&xas, XA_FREE_MARK);
439 : } else {
440 19 : if (bit < BITS_PER_XA_VALUE) {
441 19 : bitmap = xa_mk_value(1UL << bit);
442 : } else {
443 0 : bitmap = alloc;
444 0 : if (!bitmap)
445 0 : bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
446 0 : if (!bitmap)
447 0 : goto alloc;
448 0 : __set_bit(bit, bitmap->bitmap);
449 : }
450 19 : xas_store(&xas, bitmap);
451 : }
452 1830 : out:
453 1830 : xas_unlock_irqrestore(&xas, flags);
454 1830 : if (xas_nomem(&xas, gfp)) {
455 0 : xas.xa_index = min / IDA_BITMAP_BITS;
456 0 : bit = min % IDA_BITMAP_BITS;
457 0 : goto retry;
458 : }
459 1830 : if (bitmap != alloc)
460 1830 : kfree(alloc);
461 1830 : if (xas_error(&xas))
462 0 : return xas_error(&xas);
463 1830 : return xas.xa_index * IDA_BITMAP_BITS + bit;
464 0 : alloc:
465 0 : xas_unlock_irqrestore(&xas, flags);
466 0 : alloc = kzalloc(sizeof(*bitmap), gfp);
467 0 : if (!alloc)
468 : return -ENOMEM;
469 0 : xas_set(&xas, min / IDA_BITMAP_BITS);
470 0 : bit = min % IDA_BITMAP_BITS;
471 0 : goto retry;
472 0 : nospc:
473 0 : xas_unlock_irqrestore(&xas, flags);
474 0 : kfree(alloc);
475 0 : return -ENOSPC;
476 : }
477 : EXPORT_SYMBOL(ida_alloc_range);
478 :
479 : /**
480 : * ida_free() - Release an allocated ID.
481 : * @ida: IDA handle.
482 : * @id: Previously allocated ID.
483 : *
484 : * Context: Any context. It is safe to call this function without
485 : * locking in your code.
486 : */
487 1380 : void ida_free(struct ida *ida, unsigned int id)
488 : {
489 1380 : XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS);
490 1380 : unsigned bit = id % IDA_BITMAP_BITS;
491 1380 : struct ida_bitmap *bitmap;
492 1380 : unsigned long flags;
493 :
494 1380 : BUG_ON((int)id < 0);
495 :
496 1380 : xas_lock_irqsave(&xas, flags);
497 1380 : bitmap = xas_load(&xas);
498 :
499 1380 : if (xa_is_value(bitmap)) {
500 105 : unsigned long v = xa_to_value(bitmap);
501 105 : if (bit >= BITS_PER_XA_VALUE)
502 0 : goto err;
503 105 : if (!(v & (1UL << bit)))
504 0 : goto err;
505 105 : v &= ~(1UL << bit);
506 105 : if (!v)
507 1 : goto delete;
508 104 : xas_store(&xas, xa_mk_value(v));
509 : } else {
510 1275 : if (!test_bit(bit, bitmap->bitmap))
511 0 : goto err;
512 1275 : __clear_bit(bit, bitmap->bitmap);
513 1275 : xas_set_mark(&xas, XA_FREE_MARK);
514 1275 : if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
515 0 : kfree(bitmap);
516 1 : delete:
517 1 : xas_store(&xas, NULL);
518 : }
519 : }
520 1380 : xas_unlock_irqrestore(&xas, flags);
521 1380 : return;
522 0 : err:
523 0 : xas_unlock_irqrestore(&xas, flags);
524 0 : WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
525 : }
526 : EXPORT_SYMBOL(ida_free);
527 :
528 : /**
529 : * ida_destroy() - Free all IDs.
530 : * @ida: IDA handle.
531 : *
532 : * Calling this function frees all IDs and releases all resources used
533 : * by an IDA. When this call returns, the IDA is empty and can be reused
534 : * or freed. If the IDA is already empty, there is no need to call this
535 : * function.
536 : *
537 : * Context: Any context. It is safe to call this function without
538 : * locking in your code.
539 : */
540 0 : void ida_destroy(struct ida *ida)
541 : {
542 0 : XA_STATE(xas, &ida->xa, 0);
543 0 : struct ida_bitmap *bitmap;
544 0 : unsigned long flags;
545 :
546 0 : xas_lock_irqsave(&xas, flags);
547 0 : xas_for_each(&xas, bitmap, ULONG_MAX) {
548 0 : if (!xa_is_value(bitmap))
549 0 : kfree(bitmap);
550 0 : xas_store(&xas, NULL);
551 : }
552 0 : xas_unlock_irqrestore(&xas, flags);
553 0 : }
554 : EXPORT_SYMBOL(ida_destroy);
555 :
556 : #ifndef __KERNEL__
557 : extern void xa_dump_index(unsigned long index, unsigned int shift);
558 : #define IDA_CHUNK_SHIFT ilog2(IDA_BITMAP_BITS)
559 :
560 : static void ida_dump_entry(void *entry, unsigned long index)
561 : {
562 : unsigned long i;
563 :
564 : if (!entry)
565 : return;
566 :
567 : if (xa_is_node(entry)) {
568 : struct xa_node *node = xa_to_node(entry);
569 : unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
570 : XA_CHUNK_SHIFT;
571 :
572 : xa_dump_index(index * IDA_BITMAP_BITS, shift);
573 : xa_dump_node(node);
574 : for (i = 0; i < XA_CHUNK_SIZE; i++)
575 : ida_dump_entry(node->slots[i],
576 : index | (i << node->shift));
577 : } else if (xa_is_value(entry)) {
578 : xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
579 : pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
580 : } else {
581 : struct ida_bitmap *bitmap = entry;
582 :
583 : xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
584 : pr_cont("bitmap: %p data", bitmap);
585 : for (i = 0; i < IDA_BITMAP_LONGS; i++)
586 : pr_cont(" %lx", bitmap->bitmap[i]);
587 : pr_cont("\n");
588 : }
589 : }
590 :
591 : static void ida_dump(struct ida *ida)
592 : {
593 : struct xarray *xa = &ida->xa;
594 : pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
595 : xa->xa_flags >> ROOT_TAG_SHIFT);
596 : ida_dump_entry(xa->xa_head, 0);
597 : }
598 : #endif
|