Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only 2 : #include <linux/kernel.h> 3 : #include <linux/gcd.h> 4 : #include <linux/export.h> 5 : 6 : /* 7 : * This implements the binary GCD algorithm. (Often attributed to Stein, 8 : * but as Knuth has noted, appears in a first-century Chinese math text.) 9 : * 10 : * This is faster than the division-based algorithm even on x86, which 11 : * has decent hardware division. 12 : */ 13 : 14 : #if !defined(CONFIG_CPU_NO_EFFICIENT_FFS) 15 : 16 : /* If __ffs is available, the even/odd algorithm benchmarks slower. */ 17 : 18 : /** 19 : * gcd - calculate and return the greatest common divisor of 2 unsigned longs 20 : * @a: first value 21 : * @b: second value 22 : */ 23 1 : unsigned long gcd(unsigned long a, unsigned long b) 24 : { 25 1 : unsigned long r = a | b; 26 : 27 1 : if (!a || !b) 28 : return r; 29 : 30 1 : b >>= __ffs(b); 31 1 : if (b == 1) 32 1 : return r & -r; 33 : 34 0 : for (;;) { 35 0 : a >>= __ffs(a); 36 0 : if (a == 1) 37 0 : return r & -r; 38 0 : if (a == b) 39 0 : return a << __ffs(r); 40 : 41 0 : if (a < b) 42 0 : swap(a, b); 43 0 : a -= b; 44 : } 45 : } 46 : 47 : #else 48 : 49 : /* If normalization is done by loops, the even/odd algorithm is a win. */ 50 : unsigned long gcd(unsigned long a, unsigned long b) 51 : { 52 : unsigned long r = a | b; 53 : 54 : if (!a || !b) 55 : return r; 56 : 57 : /* Isolate lsbit of r */ 58 : r &= -r; 59 : 60 : while (!(b & r)) 61 : b >>= 1; 62 : if (b == r) 63 : return r; 64 : 65 : for (;;) { 66 : while (!(a & r)) 67 : a >>= 1; 68 : if (a == r) 69 : return r; 70 : if (a == b) 71 : return a; 72 : 73 : if (a < b) 74 : swap(a, b); 75 : a -= b; 76 : a >>= 1; 77 : if (a & r) 78 : a += b; 79 : a >>= 1; 80 : } 81 : } 82 : 83 : #endif 84 : 85 : EXPORT_SYMBOL_GPL(gcd);