Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : #define pr_fmt(fmt) "%s: " fmt, __func__
3 :
4 : #include <linux/kernel.h>
5 : #include <linux/sched.h>
6 : #include <linux/wait.h>
7 : #include <linux/slab.h>
8 : #include <linux/mm.h>
9 : #include <linux/percpu-refcount.h>
10 :
11 : /*
12 : * Initially, a percpu refcount is just a set of percpu counters. Initially, we
13 : * don't try to detect the ref hitting 0 - which means that get/put can just
14 : * increment or decrement the local counter. Note that the counter on a
15 : * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
16 : * percpu counters will all sum to the correct value
17 : *
18 : * (More precisely: because modular arithmetic is commutative the sum of all the
19 : * percpu_count vars will be equal to what it would have been if all the gets
20 : * and puts were done to a single integer, even if some of the percpu integers
21 : * overflow or underflow).
22 : *
23 : * The real trick to implementing percpu refcounts is shutdown. We can't detect
24 : * the ref hitting 0 on every put - this would require global synchronization
25 : * and defeat the whole purpose of using percpu refs.
26 : *
27 : * What we do is require the user to keep track of the initial refcount; we know
28 : * the ref can't hit 0 before the user drops the initial ref, so as long as we
29 : * convert to non percpu mode before the initial ref is dropped everything
30 : * works.
31 : *
32 : * Converting to non percpu mode is done with some RCUish stuff in
33 : * percpu_ref_kill. Additionally, we need a bias value so that the
34 : * atomic_long_t can't hit 0 before we've added up all the percpu refs.
35 : */
36 :
37 : #define PERCPU_COUNT_BIAS (1LU << (BITS_PER_LONG - 1))
38 :
39 : static DEFINE_SPINLOCK(percpu_ref_switch_lock);
40 : static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);
41 :
42 171 : static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
43 : {
44 171 : return (unsigned long __percpu *)
45 171 : (ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
46 : }
47 :
48 : /**
49 : * percpu_ref_init - initialize a percpu refcount
50 : * @ref: percpu_ref to initialize
51 : * @release: function which will be called when refcount hits 0
52 : * @flags: PERCPU_REF_INIT_* flags
53 : * @gfp: allocation mask to use
54 : *
55 : * Initializes @ref. @ref starts out in percpu mode with a refcount of 1 unless
56 : * @flags contains PERCPU_REF_INIT_ATOMIC or PERCPU_REF_INIT_DEAD. These flags
57 : * change the start state to atomic with the latter setting the initial refcount
58 : * to 0. See the definitions of PERCPU_REF_INIT_* flags for flag behaviors.
59 : *
60 : * Note that @release must not sleep - it may potentially be called from RCU
61 : * callback context by percpu_ref_kill().
62 : */
63 111 : int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
64 : unsigned int flags, gfp_t gfp)
65 : {
66 111 : size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
67 : __alignof__(unsigned long));
68 111 : unsigned long start_count = 0;
69 111 : struct percpu_ref_data *data;
70 :
71 222 : ref->percpu_count_ptr = (unsigned long)
72 111 : __alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
73 111 : if (!ref->percpu_count_ptr)
74 : return -ENOMEM;
75 :
76 111 : data = kzalloc(sizeof(*ref->data), gfp);
77 111 : if (!data) {
78 0 : free_percpu((void __percpu *)ref->percpu_count_ptr);
79 0 : return -ENOMEM;
80 : }
81 :
82 111 : data->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
83 111 : data->allow_reinit = flags & PERCPU_REF_ALLOW_REINIT;
84 :
85 111 : if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD)) {
86 9 : ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
87 9 : data->allow_reinit = true;
88 : } else {
89 : start_count += PERCPU_COUNT_BIAS;
90 : }
91 :
92 111 : if (flags & PERCPU_REF_INIT_DEAD)
93 0 : ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
94 : else
95 111 : start_count++;
96 :
97 111 : atomic_long_set(&data->count, start_count);
98 :
99 111 : data->release = release;
100 111 : data->confirm_switch = NULL;
101 111 : data->ref = ref;
102 111 : ref->data = data;
103 111 : return 0;
104 : }
105 : EXPORT_SYMBOL_GPL(percpu_ref_init);
106 :
107 108 : static void __percpu_ref_exit(struct percpu_ref *ref)
108 : {
109 108 : unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
110 :
111 108 : if (percpu_count) {
112 : /* non-NULL confirm_switch indicates switching in progress */
113 108 : WARN_ON_ONCE(ref->data && ref->data->confirm_switch);
114 54 : free_percpu(percpu_count);
115 54 : ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
116 : }
117 108 : }
118 :
119 : /**
120 : * percpu_ref_exit - undo percpu_ref_init()
121 : * @ref: percpu_ref to exit
122 : *
123 : * This function exits @ref. The caller is responsible for ensuring that
124 : * @ref is no longer in active use. The usual places to invoke this
125 : * function from are the @ref->release() callback or in init failure path
126 : * where percpu_ref_init() succeeded but other parts of the initialization
127 : * of the embedding object failed.
128 : */
129 54 : void percpu_ref_exit(struct percpu_ref *ref)
130 : {
131 54 : struct percpu_ref_data *data = ref->data;
132 54 : unsigned long flags;
133 :
134 54 : __percpu_ref_exit(ref);
135 :
136 54 : if (!data)
137 : return;
138 :
139 54 : spin_lock_irqsave(&percpu_ref_switch_lock, flags);
140 54 : ref->percpu_count_ptr |= atomic_long_read(&ref->data->count) <<
141 : __PERCPU_REF_FLAG_BITS;
142 54 : ref->data = NULL;
143 54 : spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
144 :
145 54 : kfree(data);
146 : }
147 : EXPORT_SYMBOL_GPL(percpu_ref_exit);
148 :
149 54 : static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
150 : {
151 54 : struct percpu_ref_data *data = container_of(rcu,
152 : struct percpu_ref_data, rcu);
153 54 : struct percpu_ref *ref = data->ref;
154 :
155 54 : data->confirm_switch(ref);
156 54 : data->confirm_switch = NULL;
157 54 : wake_up_all(&percpu_ref_switch_waitq);
158 :
159 54 : if (!data->allow_reinit)
160 54 : __percpu_ref_exit(ref);
161 :
162 : /* drop ref from percpu_ref_switch_to_atomic() */
163 54 : percpu_ref_put(ref);
164 54 : }
165 :
166 54 : static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
167 : {
168 54 : struct percpu_ref_data *data = container_of(rcu,
169 : struct percpu_ref_data, rcu);
170 54 : struct percpu_ref *ref = data->ref;
171 54 : unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
172 54 : static atomic_t underflows;
173 54 : unsigned long count = 0;
174 54 : int cpu;
175 :
176 270 : for_each_possible_cpu(cpu)
177 216 : count += *per_cpu_ptr(percpu_count, cpu);
178 :
179 54 : pr_debug("global %lu percpu %lu\n",
180 : atomic_long_read(&data->count), count);
181 :
182 : /*
183 : * It's crucial that we sum the percpu counters _before_ adding the sum
184 : * to &ref->count; since gets could be happening on one cpu while puts
185 : * happen on another, adding a single cpu's count could cause
186 : * @ref->count to hit 0 before we've got a consistent value - but the
187 : * sum of all the counts will be consistent and correct.
188 : *
189 : * Subtracting the bias value then has to happen _after_ adding count to
190 : * &ref->count; we need the bias value to prevent &ref->count from
191 : * reaching 0 before we add the percpu counts. But doing it at the same
192 : * time is equivalent and saves us atomic operations:
193 : */
194 54 : atomic_long_add((long)count - PERCPU_COUNT_BIAS, &data->count);
195 :
196 54 : if (WARN_ONCE(atomic_long_read(&data->count) <= 0,
197 : "percpu ref (%ps) <= 0 (%ld) after switching to atomic",
198 0 : data->release, atomic_long_read(&data->count)) &&
199 0 : atomic_inc_return(&underflows) < 4) {
200 0 : pr_err("%s(): percpu_ref underflow", __func__);
201 0 : mem_dump_obj(data);
202 : }
203 :
204 : /* @ref is viewed as dead on all CPUs, send out switch confirmation */
205 54 : percpu_ref_call_confirm_rcu(rcu);
206 54 : }
207 :
208 54 : static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
209 : {
210 54 : }
211 :
212 54 : static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
213 : percpu_ref_func_t *confirm_switch)
214 : {
215 54 : if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) {
216 0 : if (confirm_switch)
217 0 : confirm_switch(ref);
218 0 : return;
219 : }
220 :
221 : /* switching from percpu to atomic */
222 54 : ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
223 :
224 : /*
225 : * Non-NULL ->confirm_switch is used to indicate that switching is
226 : * in progress. Use noop one if unspecified.
227 : */
228 54 : ref->data->confirm_switch = confirm_switch ?:
229 : percpu_ref_noop_confirm_switch;
230 :
231 54 : percpu_ref_get(ref); /* put after confirmation */
232 54 : call_rcu(&ref->data->rcu, percpu_ref_switch_to_atomic_rcu);
233 : }
234 :
235 9 : static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
236 : {
237 9 : unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
238 9 : int cpu;
239 :
240 9 : BUG_ON(!percpu_count);
241 :
242 9 : if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
243 : return;
244 :
245 9 : if (WARN_ON_ONCE(!ref->data->allow_reinit))
246 : return;
247 :
248 9 : atomic_long_add(PERCPU_COUNT_BIAS, &ref->data->count);
249 :
250 : /*
251 : * Restore per-cpu operation. smp_store_release() is paired
252 : * with READ_ONCE() in __ref_is_percpu() and guarantees that the
253 : * zeroing is visible to all percpu accesses which can see the
254 : * following __PERCPU_REF_ATOMIC clearing.
255 : */
256 54 : for_each_possible_cpu(cpu)
257 36 : *per_cpu_ptr(percpu_count, cpu) = 0;
258 :
259 9 : smp_store_release(&ref->percpu_count_ptr,
260 : ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
261 : }
262 :
263 63 : static void __percpu_ref_switch_mode(struct percpu_ref *ref,
264 : percpu_ref_func_t *confirm_switch)
265 : {
266 63 : struct percpu_ref_data *data = ref->data;
267 :
268 189 : lockdep_assert_held(&percpu_ref_switch_lock);
269 :
270 : /*
271 : * If the previous ATOMIC switching hasn't finished yet, wait for
272 : * its completion. If the caller ensures that ATOMIC switching
273 : * isn't in progress, this function can be called from any context.
274 : */
275 63 : wait_event_lock_irq(percpu_ref_switch_waitq, !data->confirm_switch,
276 : percpu_ref_switch_lock);
277 :
278 63 : if (data->force_atomic || (ref->percpu_count_ptr & __PERCPU_REF_DEAD))
279 54 : __percpu_ref_switch_to_atomic(ref, confirm_switch);
280 : else
281 9 : __percpu_ref_switch_to_percpu(ref);
282 63 : }
283 :
284 : /**
285 : * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
286 : * @ref: percpu_ref to switch to atomic mode
287 : * @confirm_switch: optional confirmation callback
288 : *
289 : * There's no reason to use this function for the usual reference counting.
290 : * Use percpu_ref_kill[_and_confirm]().
291 : *
292 : * Schedule switching of @ref to atomic mode. All its percpu counts will
293 : * be collected to the main atomic counter. On completion, when all CPUs
294 : * are guaraneed to be in atomic mode, @confirm_switch, which may not
295 : * block, is invoked. This function may be invoked concurrently with all
296 : * the get/put operations and can safely be mixed with kill and reinit
297 : * operations. Note that @ref will stay in atomic mode across kill/reinit
298 : * cycles until percpu_ref_switch_to_percpu() is called.
299 : *
300 : * This function may block if @ref is in the process of switching to atomic
301 : * mode. If the caller ensures that @ref is not in the process of
302 : * switching to atomic mode, this function can be called from any context.
303 : */
304 0 : void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
305 : percpu_ref_func_t *confirm_switch)
306 : {
307 0 : unsigned long flags;
308 :
309 0 : spin_lock_irqsave(&percpu_ref_switch_lock, flags);
310 :
311 0 : ref->data->force_atomic = true;
312 0 : __percpu_ref_switch_mode(ref, confirm_switch);
313 :
314 0 : spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
315 0 : }
316 : EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic);
317 :
318 : /**
319 : * percpu_ref_switch_to_atomic_sync - switch a percpu_ref to atomic mode
320 : * @ref: percpu_ref to switch to atomic mode
321 : *
322 : * Schedule switching the ref to atomic mode, and wait for the
323 : * switch to complete. Caller must ensure that no other thread
324 : * will switch back to percpu mode.
325 : */
326 0 : void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref)
327 : {
328 0 : percpu_ref_switch_to_atomic(ref, NULL);
329 0 : wait_event(percpu_ref_switch_waitq, !ref->data->confirm_switch);
330 0 : }
331 : EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic_sync);
332 :
333 : /**
334 : * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
335 : * @ref: percpu_ref to switch to percpu mode
336 : *
337 : * There's no reason to use this function for the usual reference counting.
338 : * To re-use an expired ref, use percpu_ref_reinit().
339 : *
340 : * Switch @ref to percpu mode. This function may be invoked concurrently
341 : * with all the get/put operations and can safely be mixed with kill and
342 : * reinit operations. This function reverses the sticky atomic state set
343 : * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic(). If @ref is
344 : * dying or dead, the actual switching takes place on the following
345 : * percpu_ref_reinit().
346 : *
347 : * This function may block if @ref is in the process of switching to atomic
348 : * mode. If the caller ensures that @ref is not in the process of
349 : * switching to atomic mode, this function can be called from any context.
350 : */
351 9 : void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
352 : {
353 9 : unsigned long flags;
354 :
355 9 : spin_lock_irqsave(&percpu_ref_switch_lock, flags);
356 :
357 9 : ref->data->force_atomic = false;
358 9 : __percpu_ref_switch_mode(ref, NULL);
359 :
360 9 : spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
361 9 : }
362 : EXPORT_SYMBOL_GPL(percpu_ref_switch_to_percpu);
363 :
364 : /**
365 : * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
366 : * @ref: percpu_ref to kill
367 : * @confirm_kill: optional confirmation callback
368 : *
369 : * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
370 : * @confirm_kill is not NULL. @confirm_kill, which may not block, will be
371 : * called after @ref is seen as dead from all CPUs at which point all
372 : * further invocations of percpu_ref_tryget_live() will fail. See
373 : * percpu_ref_tryget_live() for details.
374 : *
375 : * This function normally doesn't block and can be called from any context
376 : * but it may block if @confirm_kill is specified and @ref is in the
377 : * process of switching to atomic mode by percpu_ref_switch_to_atomic().
378 : *
379 : * There are no implied RCU grace periods between kill and release.
380 : */
381 54 : void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
382 : percpu_ref_func_t *confirm_kill)
383 : {
384 54 : unsigned long flags;
385 :
386 54 : spin_lock_irqsave(&percpu_ref_switch_lock, flags);
387 :
388 54 : WARN_ONCE(ref->percpu_count_ptr & __PERCPU_REF_DEAD,
389 : "%s called more than once on %ps!", __func__,
390 : ref->data->release);
391 :
392 54 : ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
393 54 : __percpu_ref_switch_mode(ref, confirm_kill);
394 54 : percpu_ref_put(ref);
395 :
396 54 : spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
397 54 : }
398 : EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
399 :
400 : /**
401 : * percpu_ref_is_zero - test whether a percpu refcount reached zero
402 : * @ref: percpu_ref to test
403 : *
404 : * Returns %true if @ref reached zero.
405 : *
406 : * This function is safe to call as long as @ref is between init and exit.
407 : */
408 0 : bool percpu_ref_is_zero(struct percpu_ref *ref)
409 : {
410 0 : unsigned long __percpu *percpu_count;
411 0 : unsigned long count, flags;
412 :
413 0 : if (__ref_is_percpu(ref, &percpu_count))
414 : return false;
415 :
416 : /* protect us from being destroyed */
417 0 : spin_lock_irqsave(&percpu_ref_switch_lock, flags);
418 0 : if (ref->data)
419 0 : count = atomic_long_read(&ref->data->count);
420 : else
421 0 : count = ref->percpu_count_ptr >> __PERCPU_REF_FLAG_BITS;
422 0 : spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
423 :
424 0 : return count == 0;
425 : }
426 : EXPORT_SYMBOL_GPL(percpu_ref_is_zero);
427 :
428 : /**
429 : * percpu_ref_reinit - re-initialize a percpu refcount
430 : * @ref: perpcu_ref to re-initialize
431 : *
432 : * Re-initialize @ref so that it's in the same state as when it finished
433 : * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD. @ref must have been
434 : * initialized successfully and reached 0 but not exited.
435 : *
436 : * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
437 : * this function is in progress.
438 : */
439 0 : void percpu_ref_reinit(struct percpu_ref *ref)
440 : {
441 0 : WARN_ON_ONCE(!percpu_ref_is_zero(ref));
442 :
443 0 : percpu_ref_resurrect(ref);
444 0 : }
445 : EXPORT_SYMBOL_GPL(percpu_ref_reinit);
446 :
447 : /**
448 : * percpu_ref_resurrect - modify a percpu refcount from dead to live
449 : * @ref: perpcu_ref to resurrect
450 : *
451 : * Modify @ref so that it's in the same state as before percpu_ref_kill() was
452 : * called. @ref must be dead but must not yet have exited.
453 : *
454 : * If @ref->release() frees @ref then the caller is responsible for
455 : * guaranteeing that @ref->release() does not get called while this
456 : * function is in progress.
457 : *
458 : * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
459 : * this function is in progress.
460 : */
461 0 : void percpu_ref_resurrect(struct percpu_ref *ref)
462 : {
463 0 : unsigned long __percpu *percpu_count;
464 0 : unsigned long flags;
465 :
466 0 : spin_lock_irqsave(&percpu_ref_switch_lock, flags);
467 :
468 0 : WARN_ON_ONCE(!(ref->percpu_count_ptr & __PERCPU_REF_DEAD));
469 0 : WARN_ON_ONCE(__ref_is_percpu(ref, &percpu_count));
470 :
471 0 : ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
472 0 : percpu_ref_get(ref);
473 0 : __percpu_ref_switch_mode(ref, NULL);
474 :
475 0 : spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
476 0 : }
477 : EXPORT_SYMBOL_GPL(percpu_ref_resurrect);
|