LCOV - code coverage report
Current view: top level - lib - random32.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 83 136 61.0 %
Date: 2021-04-22 12:43:58 Functions: 7 12 58.3 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * This is a maximally equidistributed combined Tausworthe generator
       4             :  * based on code from GNU Scientific Library 1.5 (30 Jun 2004)
       5             :  *
       6             :  * lfsr113 version:
       7             :  *
       8             :  * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)
       9             :  *
      10             :  * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n <<  6) ^ s1_n) >> 13))
      11             :  * s2_{n+1} = (((s2_n & 4294967288) <<  2) ^ (((s2_n <<  2) ^ s2_n) >> 27))
      12             :  * s3_{n+1} = (((s3_n & 4294967280) <<  7) ^ (((s3_n << 13) ^ s3_n) >> 21))
      13             :  * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n <<  3) ^ s4_n) >> 12))
      14             :  *
      15             :  * The period of this generator is about 2^113 (see erratum paper).
      16             :  *
      17             :  * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
      18             :  * Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
      19             :  * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
      20             :  * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
      21             :  *
      22             :  * There is an erratum in the paper "Tables of Maximally Equidistributed
      23             :  * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999),
      24             :  * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
      25             :  *
      26             :  *      ... the k_j most significant bits of z_j must be non-zero,
      27             :  *      for each j. (Note: this restriction also applies to the
      28             :  *      computer code given in [4], but was mistakenly not mentioned
      29             :  *      in that paper.)
      30             :  *
      31             :  * This affects the seeding procedure by imposing the requirement
      32             :  * s1 > 1, s2 > 7, s3 > 15, s4 > 127.
      33             :  */
      34             : 
      35             : #include <linux/types.h>
      36             : #include <linux/percpu.h>
      37             : #include <linux/export.h>
      38             : #include <linux/jiffies.h>
      39             : #include <linux/random.h>
      40             : #include <linux/sched.h>
      41             : #include <linux/bitops.h>
      42             : #include <asm/unaligned.h>
      43             : #include <trace/events/random.h>
      44             : 
      45             : /**
      46             :  *      prandom_u32_state - seeded pseudo-random number generator.
      47             :  *      @state: pointer to state structure holding seeded state.
      48             :  *
      49             :  *      This is used for pseudo-randomness with no outside seeding.
      50             :  *      For more random results, use prandom_u32().
      51             :  */
      52           0 : u32 prandom_u32_state(struct rnd_state *state)
      53             : {
      54             : #define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b)
      55           0 :         state->s1 = TAUSWORTHE(state->s1,  6U, 13U, 4294967294U, 18U);
      56           0 :         state->s2 = TAUSWORTHE(state->s2,  2U, 27U, 4294967288U,  2U);
      57           0 :         state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U,  7U);
      58           0 :         state->s4 = TAUSWORTHE(state->s4,  3U, 12U, 4294967168U, 13U);
      59             : 
      60           0 :         return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
      61             : }
      62             : EXPORT_SYMBOL(prandom_u32_state);
      63             : 
      64             : /**
      65             :  *      prandom_bytes_state - get the requested number of pseudo-random bytes
      66             :  *
      67             :  *      @state: pointer to state structure holding seeded state.
      68             :  *      @buf: where to copy the pseudo-random bytes to
      69             :  *      @bytes: the requested number of bytes
      70             :  *
      71             :  *      This is used for pseudo-randomness with no outside seeding.
      72             :  *      For more random results, use prandom_bytes().
      73             :  */
      74           0 : void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes)
      75             : {
      76           0 :         u8 *ptr = buf;
      77             : 
      78           0 :         while (bytes >= sizeof(u32)) {
      79           0 :                 put_unaligned(prandom_u32_state(state), (u32 *) ptr);
      80           0 :                 ptr += sizeof(u32);
      81           0 :                 bytes -= sizeof(u32);
      82             :         }
      83             : 
      84           0 :         if (bytes > 0) {
      85           0 :                 u32 rem = prandom_u32_state(state);
      86           0 :                 do {
      87           0 :                         *ptr++ = (u8) rem;
      88           0 :                         bytes--;
      89           0 :                         rem >>= BITS_PER_BYTE;
      90           0 :                 } while (bytes > 0);
      91             :         }
      92           0 : }
      93             : EXPORT_SYMBOL(prandom_bytes_state);
      94             : 
      95           0 : static void prandom_warmup(struct rnd_state *state)
      96             : {
      97             :         /* Calling RNG ten times to satisfy recurrence condition */
      98           0 :         prandom_u32_state(state);
      99           0 :         prandom_u32_state(state);
     100           0 :         prandom_u32_state(state);
     101           0 :         prandom_u32_state(state);
     102           0 :         prandom_u32_state(state);
     103           0 :         prandom_u32_state(state);
     104           0 :         prandom_u32_state(state);
     105           0 :         prandom_u32_state(state);
     106           0 :         prandom_u32_state(state);
     107           0 :         prandom_u32_state(state);
     108           0 : }
     109             : 
     110           0 : void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state)
     111             : {
     112           0 :         int i;
     113             : 
     114           0 :         for_each_possible_cpu(i) {
     115           0 :                 struct rnd_state *state = per_cpu_ptr(pcpu_state, i);
     116           0 :                 u32 seeds[4];
     117             : 
     118           0 :                 get_random_bytes(&seeds, sizeof(seeds));
     119           0 :                 state->s1 = __seed(seeds[0],   2U);
     120           0 :                 state->s2 = __seed(seeds[1],   8U);
     121           0 :                 state->s3 = __seed(seeds[2],  16U);
     122           0 :                 state->s4 = __seed(seeds[3], 128U);
     123             : 
     124           0 :                 prandom_warmup(state);
     125             :         }
     126           0 : }
     127             : EXPORT_SYMBOL(prandom_seed_full_state);
     128             : 
     129             : #ifdef CONFIG_RANDOM32_SELFTEST
     130             : static struct prandom_test1 {
     131             :         u32 seed;
     132             :         u32 result;
     133             : } test1[] = {
     134             :         { 1U, 3484351685U },
     135             :         { 2U, 2623130059U },
     136             :         { 3U, 3125133893U },
     137             :         { 4U,  984847254U },
     138             : };
     139             : 
     140             : static struct prandom_test2 {
     141             :         u32 seed;
     142             :         u32 iteration;
     143             :         u32 result;
     144             : } test2[] = {
     145             :         /* Test cases against taus113 from GSL library. */
     146             :         {  931557656U, 959U, 2975593782U },
     147             :         { 1339693295U, 876U, 3887776532U },
     148             :         { 1545556285U, 961U, 1615538833U },
     149             :         {  601730776U, 723U, 1776162651U },
     150             :         { 1027516047U, 687U,  511983079U },
     151             :         {  416526298U, 700U,  916156552U },
     152             :         { 1395522032U, 652U, 2222063676U },
     153             :         {  366221443U, 617U, 2992857763U },
     154             :         { 1539836965U, 714U, 3783265725U },
     155             :         {  556206671U, 994U,  799626459U },
     156             :         {  684907218U, 799U,  367789491U },
     157             :         { 2121230701U, 931U, 2115467001U },
     158             :         { 1668516451U, 644U, 3620590685U },
     159             :         {  768046066U, 883U, 2034077390U },
     160             :         { 1989159136U, 833U, 1195767305U },
     161             :         {  536585145U, 996U, 3577259204U },
     162             :         { 1008129373U, 642U, 1478080776U },
     163             :         { 1740775604U, 939U, 1264980372U },
     164             :         { 1967883163U, 508U,   10734624U },
     165             :         { 1923019697U, 730U, 3821419629U },
     166             :         {  442079932U, 560U, 3440032343U },
     167             :         { 1961302714U, 845U,  841962572U },
     168             :         { 2030205964U, 962U, 1325144227U },
     169             :         { 1160407529U, 507U,  240940858U },
     170             :         {  635482502U, 779U, 4200489746U },
     171             :         { 1252788931U, 699U,  867195434U },
     172             :         { 1961817131U, 719U,  668237657U },
     173             :         { 1071468216U, 983U,  917876630U },
     174             :         { 1281848367U, 932U, 1003100039U },
     175             :         {  582537119U, 780U, 1127273778U },
     176             :         { 1973672777U, 853U, 1071368872U },
     177             :         { 1896756996U, 762U, 1127851055U },
     178             :         {  847917054U, 500U, 1717499075U },
     179             :         { 1240520510U, 951U, 2849576657U },
     180             :         { 1685071682U, 567U, 1961810396U },
     181             :         { 1516232129U, 557U,    3173877U },
     182             :         { 1208118903U, 612U, 1613145022U },
     183             :         { 1817269927U, 693U, 4279122573U },
     184             :         { 1510091701U, 717U,  638191229U },
     185             :         {  365916850U, 807U,  600424314U },
     186             :         {  399324359U, 702U, 1803598116U },
     187             :         { 1318480274U, 779U, 2074237022U },
     188             :         {  697758115U, 840U, 1483639402U },
     189             :         { 1696507773U, 840U,  577415447U },
     190             :         { 2081979121U, 981U, 3041486449U },
     191             :         {  955646687U, 742U, 3846494357U },
     192             :         { 1250683506U, 749U,  836419859U },
     193             :         {  595003102U, 534U,  366794109U },
     194             :         {   47485338U, 558U, 3521120834U },
     195             :         {  619433479U, 610U, 3991783875U },
     196             :         {  704096520U, 518U, 4139493852U },
     197             :         { 1712224984U, 606U, 2393312003U },
     198             :         { 1318233152U, 922U, 3880361134U },
     199             :         {  855572992U, 761U, 1472974787U },
     200             :         {   64721421U, 703U,  683860550U },
     201             :         {  678931758U, 840U,  380616043U },
     202             :         {  692711973U, 778U, 1382361947U },
     203             :         {  677703619U, 530U, 2826914161U },
     204             :         {   92393223U, 586U, 1522128471U },
     205             :         { 1222592920U, 743U, 3466726667U },
     206             :         {  358288986U, 695U, 1091956998U },
     207             :         { 1935056945U, 958U,  514864477U },
     208             :         {  735675993U, 990U, 1294239989U },
     209             :         { 1560089402U, 897U, 2238551287U },
     210             :         {   70616361U, 829U,   22483098U },
     211             :         {  368234700U, 731U, 2913875084U },
     212             :         {   20221190U, 879U, 1564152970U },
     213             :         {  539444654U, 682U, 1835141259U },
     214             :         { 1314987297U, 840U, 1801114136U },
     215             :         { 2019295544U, 645U, 3286438930U },
     216             :         {  469023838U, 716U, 1637918202U },
     217             :         { 1843754496U, 653U, 2562092152U },
     218             :         {  400672036U, 809U, 4264212785U },
     219             :         {  404722249U, 965U, 2704116999U },
     220             :         {  600702209U, 758U,  584979986U },
     221             :         {  519953954U, 667U, 2574436237U },
     222             :         { 1658071126U, 694U, 2214569490U },
     223             :         {  420480037U, 749U, 3430010866U },
     224             :         {  690103647U, 969U, 3700758083U },
     225             :         { 1029424799U, 937U, 3787746841U },
     226             :         { 2012608669U, 506U, 3362628973U },
     227             :         { 1535432887U, 998U,   42610943U },
     228             :         { 1330635533U, 857U, 3040806504U },
     229             :         { 1223800550U, 539U, 3954229517U },
     230             :         { 1322411537U, 680U, 3223250324U },
     231             :         { 1877847898U, 945U, 2915147143U },
     232             :         { 1646356099U, 874U,  965988280U },
     233             :         {  805687536U, 744U, 4032277920U },
     234             :         { 1948093210U, 633U, 1346597684U },
     235             :         {  392609744U, 783U, 1636083295U },
     236             :         {  690241304U, 770U, 1201031298U },
     237             :         { 1360302965U, 696U, 1665394461U },
     238             :         { 1220090946U, 780U, 1316922812U },
     239             :         {  447092251U, 500U, 3438743375U },
     240             :         { 1613868791U, 592U,  828546883U },
     241             :         {  523430951U, 548U, 2552392304U },
     242             :         {  726692899U, 810U, 1656872867U },
     243             :         { 1364340021U, 836U, 3710513486U },
     244             :         { 1986257729U, 931U,  935013962U },
     245             :         {  407983964U, 921U,  728767059U },
     246             : };
     247             : 
     248             : static u32 __extract_hwseed(void)
     249             : {
     250             :         unsigned int val = 0;
     251             : 
     252             :         (void)(arch_get_random_seed_int(&val) ||
     253             :                arch_get_random_int(&val));
     254             : 
     255             :         return val;
     256             : }
     257             : 
     258             : static void prandom_seed_early(struct rnd_state *state, u32 seed,
     259             :                                bool mix_with_hwseed)
     260             : {
     261             : #define LCG(x)   ((x) * 69069U) /* super-duper LCG */
     262             : #define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0)
     263             :         state->s1 = __seed(HWSEED() ^ LCG(seed),        2U);
     264             :         state->s2 = __seed(HWSEED() ^ LCG(state->s1),   8U);
     265             :         state->s3 = __seed(HWSEED() ^ LCG(state->s2),  16U);
     266             :         state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U);
     267             : }
     268             : 
     269             : static int __init prandom_state_selftest(void)
     270             : {
     271             :         int i, j, errors = 0, runs = 0;
     272             :         bool error = false;
     273             : 
     274             :         for (i = 0; i < ARRAY_SIZE(test1); i++) {
     275             :                 struct rnd_state state;
     276             : 
     277             :                 prandom_seed_early(&state, test1[i].seed, false);
     278             :                 prandom_warmup(&state);
     279             : 
     280             :                 if (test1[i].result != prandom_u32_state(&state))
     281             :                         error = true;
     282             :         }
     283             : 
     284             :         if (error)
     285             :                 pr_warn("prandom: seed boundary self test failed\n");
     286             :         else
     287             :                 pr_info("prandom: seed boundary self test passed\n");
     288             : 
     289             :         for (i = 0; i < ARRAY_SIZE(test2); i++) {
     290             :                 struct rnd_state state;
     291             : 
     292             :                 prandom_seed_early(&state, test2[i].seed, false);
     293             :                 prandom_warmup(&state);
     294             : 
     295             :                 for (j = 0; j < test2[i].iteration - 1; j++)
     296             :                         prandom_u32_state(&state);
     297             : 
     298             :                 if (test2[i].result != prandom_u32_state(&state))
     299             :                         errors++;
     300             : 
     301             :                 runs++;
     302             :                 cond_resched();
     303             :         }
     304             : 
     305             :         if (errors)
     306             :                 pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
     307             :         else
     308             :                 pr_info("prandom: %d self tests passed\n", runs);
     309             :         return 0;
     310             : }
     311             : core_initcall(prandom_state_selftest);
     312             : #endif
     313             : 
     314             : /*
     315             :  * The prandom_u32() implementation is now completely separate from the
     316             :  * prandom_state() functions, which are retained (for now) for compatibility.
     317             :  *
     318             :  * Because of (ab)use in the networking code for choosing random TCP/UDP port
     319             :  * numbers, which open DoS possibilities if guessable, we want something
     320             :  * stronger than a standard PRNG.  But the performance requirements of
     321             :  * the network code do not allow robust crypto for this application.
     322             :  *
     323             :  * So this is a homebrew Junior Spaceman implementation, based on the
     324             :  * lowest-latency trustworthy crypto primitive available, SipHash.
     325             :  * (The authors of SipHash have not been consulted about this abuse of
     326             :  * their work.)
     327             :  *
     328             :  * Standard SipHash-2-4 uses 2n+4 rounds to hash n words of input to
     329             :  * one word of output.  This abbreviated version uses 2 rounds per word
     330             :  * of output.
     331             :  */
     332             : 
     333             : struct siprand_state {
     334             :         unsigned long v0;
     335             :         unsigned long v1;
     336             :         unsigned long v2;
     337             :         unsigned long v3;
     338             : };
     339             : 
     340             : static DEFINE_PER_CPU(struct siprand_state, net_rand_state) __latent_entropy;
     341             : DEFINE_PER_CPU(unsigned long, net_rand_noise);
     342             : EXPORT_PER_CPU_SYMBOL(net_rand_noise);
     343             : 
     344             : /*
     345             :  * This is the core CPRNG function.  As "pseudorandom", this is not used
     346             :  * for truly valuable things, just intended to be a PITA to guess.
     347             :  * For maximum speed, we do just two SipHash rounds per word.  This is
     348             :  * the same rate as 4 rounds per 64 bits that SipHash normally uses,
     349             :  * so hopefully it's reasonably secure.
     350             :  *
     351             :  * There are two changes from the official SipHash finalization:
     352             :  * - We omit some constants XORed with v2 in the SipHash spec as irrelevant;
     353             :  *   they are there only to make the output rounds distinct from the input
     354             :  *   rounds, and this application has no input rounds.
     355             :  * - Rather than returning v0^v1^v2^v3, return v1+v3.
     356             :  *   If you look at the SipHash round, the last operation on v3 is
     357             :  *   "v3 ^= v0", so "v0 ^ v3" just undoes that, a waste of time.
     358             :  *   Likewise "v1 ^= v2".  (The rotate of v2 makes a difference, but
     359             :  *   it still cancels out half of the bits in v2 for no benefit.)
     360             :  *   Second, since the last combining operation was xor, continue the
     361             :  *   pattern of alternating xor/add for a tiny bit of extra non-linearity.
     362             :  */
     363      191239 : static inline u32 siprand_u32(struct siprand_state *s)
     364             : {
     365      191239 :         unsigned long v0 = s->v0, v1 = s->v1, v2 = s->v2, v3 = s->v3;
     366      191239 :         unsigned long n = raw_cpu_read(net_rand_noise);
     367             : 
     368      191239 :         v3 ^= n;
     369      191239 :         PRND_SIPROUND(v0, v1, v2, v3);
     370      191239 :         PRND_SIPROUND(v0, v1, v2, v3);
     371      191239 :         v0 ^= n;
     372      191239 :         s->v0 = v0;  s->v1 = v1;  s->v2 = v2;  s->v3 = v3;
     373      191239 :         return v1 + v3;
     374             : }
     375             : 
     376             : 
     377             : /**
     378             :  *      prandom_u32 - pseudo random number generator
     379             :  *
     380             :  *      A 32 bit pseudo-random number is generated using a fast
     381             :  *      algorithm suitable for simulation. This algorithm is NOT
     382             :  *      considered safe for cryptographic use.
     383             :  */
     384      187349 : u32 prandom_u32(void)
     385             : {
     386      187349 :         struct siprand_state *state = get_cpu_ptr(&net_rand_state);
     387      188634 :         u32 res = siprand_u32(state);
     388             : 
     389      188941 :         trace_prandom_u32(res);
     390      188309 :         put_cpu_ptr(&net_rand_state);
     391      188349 :         return res;
     392             : }
     393             : EXPORT_SYMBOL(prandom_u32);
     394             : 
     395             : /**
     396             :  *      prandom_bytes - get the requested number of pseudo-random bytes
     397             :  *      @buf: where to copy the pseudo-random bytes to
     398             :  *      @bytes: the requested number of bytes
     399             :  */
     400         104 : void prandom_bytes(void *buf, size_t bytes)
     401             : {
     402         104 :         struct siprand_state *state = get_cpu_ptr(&net_rand_state);
     403         104 :         u8 *ptr = buf;
     404             : 
     405        2564 :         while (bytes >= sizeof(u32)) {
     406        2460 :                 put_unaligned(siprand_u32(state), (u32 *)ptr);
     407        2460 :                 ptr += sizeof(u32);
     408        2460 :                 bytes -= sizeof(u32);
     409             :         }
     410             : 
     411         104 :         if (bytes > 0) {
     412           0 :                 u32 rem = siprand_u32(state);
     413             : 
     414           0 :                 do {
     415           0 :                         *ptr++ = (u8)rem;
     416           0 :                         rem >>= BITS_PER_BYTE;
     417           0 :                 } while (--bytes > 0);
     418             :         }
     419         104 :         put_cpu_ptr(&net_rand_state);
     420         104 : }
     421             : EXPORT_SYMBOL(prandom_bytes);
     422             : 
     423             : /**
     424             :  *      prandom_seed - add entropy to pseudo random number generator
     425             :  *      @entropy: entropy value
     426             :  *
     427             :  *      Add some additional seed material to the prandom pool.
     428             :  *      The "entropy" is actually our IP address (the only caller is
     429             :  *      the network code), not for unpredictability, but to ensure that
     430             :  *      different machines are initialized differently.
     431             :  */
     432           2 : void prandom_seed(u32 entropy)
     433             : {
     434           2 :         int i;
     435             : 
     436           2 :         add_device_randomness(&entropy, sizeof(entropy));
     437             : 
     438          12 :         for_each_possible_cpu(i) {
     439           8 :                 struct siprand_state *state = per_cpu_ptr(&net_rand_state, i);
     440           8 :                 unsigned long v0 = state->v0, v1 = state->v1;
     441           8 :                 unsigned long v2 = state->v2, v3 = state->v3;
     442             : 
     443           8 :                 do {
     444           8 :                         v3 ^= entropy;
     445           8 :                         PRND_SIPROUND(v0, v1, v2, v3);
     446           8 :                         PRND_SIPROUND(v0, v1, v2, v3);
     447           8 :                         v0 ^= entropy;
     448           8 :                 } while (unlikely(!v0 || !v1 || !v2 || !v3));
     449             : 
     450           8 :                 WRITE_ONCE(state->v0, v0);
     451           8 :                 WRITE_ONCE(state->v1, v1);
     452           8 :                 WRITE_ONCE(state->v2, v2);
     453          10 :                 WRITE_ONCE(state->v3, v3);
     454             :         }
     455           2 : }
     456             : EXPORT_SYMBOL(prandom_seed);
     457             : 
     458             : /*
     459             :  *      Generate some initially weak seeding values to allow
     460             :  *      the prandom_u32() engine to be started.
     461             :  */
     462           1 : static int __init prandom_init_early(void)
     463             : {
     464           1 :         int i;
     465           1 :         unsigned long v0, v1, v2, v3;
     466             : 
     467           1 :         if (!arch_get_random_long(&v0))
     468           0 :                 v0 = jiffies;
     469           1 :         if (!arch_get_random_long(&v1))
     470           0 :                 v1 = random_get_entropy();
     471           1 :         v2 = v0 ^ PRND_K0;
     472           1 :         v3 = v1 ^ PRND_K1;
     473             : 
     474           5 :         for_each_possible_cpu(i) {
     475           4 :                 struct siprand_state *state;
     476             : 
     477           4 :                 v3 ^= i;
     478           4 :                 PRND_SIPROUND(v0, v1, v2, v3);
     479           4 :                 PRND_SIPROUND(v0, v1, v2, v3);
     480           4 :                 v0 ^= i;
     481             : 
     482           4 :                 state = per_cpu_ptr(&net_rand_state, i);
     483           4 :                 state->v0 = v0;  state->v1 = v1;
     484           4 :                 state->v2 = v2;  state->v3 = v3;
     485             :         }
     486             : 
     487           1 :         return 0;
     488             : }
     489             : core_initcall(prandom_init_early);
     490             : 
     491             : 
     492             : /* Stronger reseeding when available, and periodically thereafter. */
     493             : static void prandom_reseed(struct timer_list *unused);
     494             : 
     495             : static DEFINE_TIMER(seed_timer, prandom_reseed);
     496             : 
     497           2 : static void prandom_reseed(struct timer_list *unused)
     498             : {
     499           2 :         unsigned long expires;
     500           2 :         int i;
     501             : 
     502             :         /*
     503             :          * Reinitialize each CPU's PRNG with 128 bits of key.
     504             :          * No locking on the CPUs, but then somewhat random results are,
     505             :          * well, expected.
     506             :          */
     507          12 :         for_each_possible_cpu(i) {
     508           8 :                 struct siprand_state *state;
     509           8 :                 unsigned long v0 = get_random_long(), v2 = v0 ^ PRND_K0;
     510           8 :                 unsigned long v1 = get_random_long(), v3 = v1 ^ PRND_K1;
     511             : #if BITS_PER_LONG == 32
     512             :                 int j;
     513             : 
     514             :                 /*
     515             :                  * On 32-bit machines, hash in two extra words to
     516             :                  * approximate 128-bit key length.  Not that the hash
     517             :                  * has that much security, but this prevents a trivial
     518             :                  * 64-bit brute force.
     519             :                  */
     520             :                 for (j = 0; j < 2; j++) {
     521             :                         unsigned long m = get_random_long();
     522             : 
     523             :                         v3 ^= m;
     524             :                         PRND_SIPROUND(v0, v1, v2, v3);
     525             :                         PRND_SIPROUND(v0, v1, v2, v3);
     526             :                         v0 ^= m;
     527             :                 }
     528             : #endif
     529             :                 /*
     530             :                  * Probably impossible in practice, but there is a
     531             :                  * theoretical risk that a race between this reseeding
     532             :                  * and the target CPU writing its state back could
     533             :                  * create the all-zero SipHash fixed point.
     534             :                  *
     535             :                  * To ensure that never happens, ensure the state
     536             :                  * we write contains no zero words.
     537             :                  */
     538           8 :                 state = per_cpu_ptr(&net_rand_state, i);
     539           8 :                 WRITE_ONCE(state->v0, v0 ? v0 : -1ul);
     540           8 :                 WRITE_ONCE(state->v1, v1 ? v1 : -1ul);
     541           8 :                 WRITE_ONCE(state->v2, v2 ? v2 : -1ul);
     542          10 :                 WRITE_ONCE(state->v3, v3 ? v3 : -1ul);
     543             :         }
     544             : 
     545             :         /* reseed every ~60 seconds, in [40 .. 80) interval with slack */
     546           2 :         expires = round_jiffies(jiffies + 40 * HZ + prandom_u32_max(40 * HZ));
     547           2 :         mod_timer(&seed_timer, expires);
     548           2 : }
     549             : 
     550             : /*
     551             :  * The random ready callback can be called from almost any interrupt.
     552             :  * To avoid worrying about whether it's safe to delay that interrupt
     553             :  * long enough to seed all CPUs, just schedule an immediate timer event.
     554             :  */
     555           1 : static void prandom_timer_start(struct random_ready_callback *unused)
     556             : {
     557           0 :         mod_timer(&seed_timer, jiffies);
     558           0 : }
     559             : 
     560             : #ifdef CONFIG_RANDOM32_SELFTEST
     561             : /* Principle: True 32-bit random numbers will all have 16 differing bits on
     562             :  * average. For each 32-bit number, there are 601M numbers differing by 16
     563             :  * bits, and 89% of the numbers differ by at least 12 bits. Note that more
     564             :  * than 16 differing bits also implies a correlation with inverted bits. Thus
     565             :  * we take 1024 random numbers and compare each of them to the other ones,
     566             :  * counting the deviation of correlated bits to 16. Constants report 32,
     567             :  * counters 32-log2(TEST_SIZE), and pure randoms, around 6 or lower. With the
     568             :  * u32 total, TEST_SIZE may be as large as 4096 samples.
     569             :  */
     570             : #define TEST_SIZE 1024
     571             : static int __init prandom32_state_selftest(void)
     572             : {
     573             :         unsigned int x, y, bits, samples;
     574             :         u32 xor, flip;
     575             :         u32 total;
     576             :         u32 *data;
     577             : 
     578             :         data = kmalloc(sizeof(*data) * TEST_SIZE, GFP_KERNEL);
     579             :         if (!data)
     580             :                 return 0;
     581             : 
     582             :         for (samples = 0; samples < TEST_SIZE; samples++)
     583             :                 data[samples] = prandom_u32();
     584             : 
     585             :         flip = total = 0;
     586             :         for (x = 0; x < samples; x++) {
     587             :                 for (y = 0; y < samples; y++) {
     588             :                         if (x == y)
     589             :                                 continue;
     590             :                         xor = data[x] ^ data[y];
     591             :                         flip |= xor;
     592             :                         bits = hweight32(xor);
     593             :                         total += (bits - 16) * (bits - 16);
     594             :                 }
     595             :         }
     596             : 
     597             :         /* We'll return the average deviation as 2*sqrt(corr/samples), which
     598             :          * is also sqrt(4*corr/samples) which provides a better resolution.
     599             :          */
     600             :         bits = int_sqrt(total / (samples * (samples - 1)) * 4);
     601             :         if (bits > 6)
     602             :                 pr_warn("prandom32: self test failed (at least %u bits"
     603             :                         " correlated, fixed_mask=%#x fixed_value=%#x\n",
     604             :                         bits, ~flip, data[0] & ~flip);
     605             :         else
     606             :                 pr_info("prandom32: self test passed (less than %u bits"
     607             :                         " correlated)\n",
     608             :                         bits+1);
     609             :         kfree(data);
     610             :         return 0;
     611             : }
     612             : core_initcall(prandom32_state_selftest);
     613             : #endif /*  CONFIG_RANDOM32_SELFTEST */
     614             : 
     615             : /*
     616             :  * Start periodic full reseeding as soon as strong
     617             :  * random numbers are available.
     618             :  */
     619           1 : static int __init prandom_init_late(void)
     620             : {
     621           1 :         static struct random_ready_callback random_ready = {
     622             :                 .func = prandom_timer_start
     623             :         };
     624           1 :         int ret = add_random_ready_callback(&random_ready);
     625             : 
     626           1 :         if (ret == -EALREADY) {
     627           1 :                 prandom_timer_start(&random_ready);
     628           1 :                 ret = 0;
     629             :         }
     630           1 :         return ret;
     631             : }
     632             : late_initcall(prandom_init_late);

Generated by: LCOV version 1.14