LCOV - code coverage report
Current view: top level - lib - sha1.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 100 100 100.0 %
Date: 2021-04-22 12:43:58 Functions: 2 2 100.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * SHA1 routine optimized to do word accesses rather than byte accesses,
       4             :  * and to avoid unnecessary copies into the context array.
       5             :  *
       6             :  * This was based on the git SHA1 implementation.
       7             :  */
       8             : 
       9             : #include <linux/kernel.h>
      10             : #include <linux/export.h>
      11             : #include <linux/bitops.h>
      12             : #include <crypto/sha1.h>
      13             : #include <asm/unaligned.h>
      14             : 
      15             : /*
      16             :  * If you have 32 registers or more, the compiler can (and should)
      17             :  * try to change the array[] accesses into registers. However, on
      18             :  * machines with less than ~25 registers, that won't really work,
      19             :  * and at least gcc will make an unholy mess of it.
      20             :  *
      21             :  * So to avoid that mess which just slows things down, we force
      22             :  * the stores to memory to actually happen (we might be better off
      23             :  * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
      24             :  * suggested by Artur Skawina - that will also make gcc unable to
      25             :  * try to do the silly "optimize away loads" part because it won't
      26             :  * see what the value will be).
      27             :  *
      28             :  * Ben Herrenschmidt reports that on PPC, the C version comes close
      29             :  * to the optimized asm with this (ie on PPC you don't want that
      30             :  * 'volatile', since there are lots of registers).
      31             :  *
      32             :  * On ARM we get the best code generation by forcing a full memory barrier
      33             :  * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
      34             :  * the stack frame size simply explode and performance goes down the drain.
      35             :  */
      36             : 
      37             : #ifdef CONFIG_X86
      38             :   #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
      39             : #elif defined(CONFIG_ARM)
      40             :   #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
      41             : #else
      42             :   #define setW(x, val) (W(x) = (val))
      43             : #endif
      44             : 
      45             : /* This "rolls" over the 512-bit array */
      46             : #define W(x) (array[(x)&15])
      47             : 
      48             : /*
      49             :  * Where do we get the source from? The first 16 iterations get it from
      50             :  * the input data, the next mix it from the 512-bit array.
      51             :  */
      52             : #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
      53             : #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
      54             : 
      55             : #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
      56             :         __u32 TEMP = input(t); setW(t, TEMP); \
      57             :         E += TEMP + rol32(A,5) + (fn) + (constant); \
      58             :         B = ror32(B, 2); } while (0)
      59             : 
      60             : #define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
      61             : #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
      62             : #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
      63             : #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
      64             : #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
      65             : 
      66             : /**
      67             :  * sha1_transform - single block SHA1 transform (deprecated)
      68             :  *
      69             :  * @digest: 160 bit digest to update
      70             :  * @data:   512 bits of data to hash
      71             :  * @array:  16 words of workspace (see note)
      72             :  *
      73             :  * This function executes SHA-1's internal compression function.  It updates the
      74             :  * 160-bit internal state (@digest) with a single 512-bit data block (@data).
      75             :  *
      76             :  * Don't use this function.  SHA-1 is no longer considered secure.  And even if
      77             :  * you do have to use SHA-1, this isn't the correct way to hash something with
      78             :  * SHA-1 as this doesn't handle padding and finalization.
      79             :  *
      80             :  * Note: If the hash is security sensitive, the caller should be sure
      81             :  * to clear the workspace. This is left to the caller to avoid
      82             :  * unnecessary clears between chained hashing operations.
      83             :  */
      84          40 : void sha1_transform(__u32 *digest, const char *data, __u32 *array)
      85             : {
      86          40 :         __u32 A, B, C, D, E;
      87             : 
      88          40 :         A = digest[0];
      89          40 :         B = digest[1];
      90          40 :         C = digest[2];
      91          40 :         D = digest[3];
      92          40 :         E = digest[4];
      93             : 
      94             :         /* Round 1 - iterations 0-16 take their input from 'data' */
      95          40 :         T_0_15( 0, A, B, C, D, E);
      96          40 :         T_0_15( 1, E, A, B, C, D);
      97          40 :         T_0_15( 2, D, E, A, B, C);
      98          40 :         T_0_15( 3, C, D, E, A, B);
      99          40 :         T_0_15( 4, B, C, D, E, A);
     100          40 :         T_0_15( 5, A, B, C, D, E);
     101          40 :         T_0_15( 6, E, A, B, C, D);
     102          40 :         T_0_15( 7, D, E, A, B, C);
     103          40 :         T_0_15( 8, C, D, E, A, B);
     104          40 :         T_0_15( 9, B, C, D, E, A);
     105          40 :         T_0_15(10, A, B, C, D, E);
     106          40 :         T_0_15(11, E, A, B, C, D);
     107          40 :         T_0_15(12, D, E, A, B, C);
     108          40 :         T_0_15(13, C, D, E, A, B);
     109          40 :         T_0_15(14, B, C, D, E, A);
     110          40 :         T_0_15(15, A, B, C, D, E);
     111             : 
     112             :         /* Round 1 - tail. Input from 512-bit mixing array */
     113          40 :         T_16_19(16, E, A, B, C, D);
     114          40 :         T_16_19(17, D, E, A, B, C);
     115          40 :         T_16_19(18, C, D, E, A, B);
     116          40 :         T_16_19(19, B, C, D, E, A);
     117             : 
     118             :         /* Round 2 */
     119          40 :         T_20_39(20, A, B, C, D, E);
     120          40 :         T_20_39(21, E, A, B, C, D);
     121          40 :         T_20_39(22, D, E, A, B, C);
     122          40 :         T_20_39(23, C, D, E, A, B);
     123          40 :         T_20_39(24, B, C, D, E, A);
     124          40 :         T_20_39(25, A, B, C, D, E);
     125          40 :         T_20_39(26, E, A, B, C, D);
     126          40 :         T_20_39(27, D, E, A, B, C);
     127          40 :         T_20_39(28, C, D, E, A, B);
     128          40 :         T_20_39(29, B, C, D, E, A);
     129          40 :         T_20_39(30, A, B, C, D, E);
     130          40 :         T_20_39(31, E, A, B, C, D);
     131          40 :         T_20_39(32, D, E, A, B, C);
     132          40 :         T_20_39(33, C, D, E, A, B);
     133          40 :         T_20_39(34, B, C, D, E, A);
     134          40 :         T_20_39(35, A, B, C, D, E);
     135          40 :         T_20_39(36, E, A, B, C, D);
     136          40 :         T_20_39(37, D, E, A, B, C);
     137          40 :         T_20_39(38, C, D, E, A, B);
     138          40 :         T_20_39(39, B, C, D, E, A);
     139             : 
     140             :         /* Round 3 */
     141          40 :         T_40_59(40, A, B, C, D, E);
     142          40 :         T_40_59(41, E, A, B, C, D);
     143          40 :         T_40_59(42, D, E, A, B, C);
     144          40 :         T_40_59(43, C, D, E, A, B);
     145          40 :         T_40_59(44, B, C, D, E, A);
     146          40 :         T_40_59(45, A, B, C, D, E);
     147          40 :         T_40_59(46, E, A, B, C, D);
     148          40 :         T_40_59(47, D, E, A, B, C);
     149          40 :         T_40_59(48, C, D, E, A, B);
     150          40 :         T_40_59(49, B, C, D, E, A);
     151          40 :         T_40_59(50, A, B, C, D, E);
     152          40 :         T_40_59(51, E, A, B, C, D);
     153          40 :         T_40_59(52, D, E, A, B, C);
     154          40 :         T_40_59(53, C, D, E, A, B);
     155          40 :         T_40_59(54, B, C, D, E, A);
     156          40 :         T_40_59(55, A, B, C, D, E);
     157          40 :         T_40_59(56, E, A, B, C, D);
     158          40 :         T_40_59(57, D, E, A, B, C);
     159          40 :         T_40_59(58, C, D, E, A, B);
     160          40 :         T_40_59(59, B, C, D, E, A);
     161             : 
     162             :         /* Round 4 */
     163          40 :         T_60_79(60, A, B, C, D, E);
     164          40 :         T_60_79(61, E, A, B, C, D);
     165          40 :         T_60_79(62, D, E, A, B, C);
     166          40 :         T_60_79(63, C, D, E, A, B);
     167          40 :         T_60_79(64, B, C, D, E, A);
     168          40 :         T_60_79(65, A, B, C, D, E);
     169          40 :         T_60_79(66, E, A, B, C, D);
     170          40 :         T_60_79(67, D, E, A, B, C);
     171          40 :         T_60_79(68, C, D, E, A, B);
     172          40 :         T_60_79(69, B, C, D, E, A);
     173          40 :         T_60_79(70, A, B, C, D, E);
     174          40 :         T_60_79(71, E, A, B, C, D);
     175          40 :         T_60_79(72, D, E, A, B, C);
     176          40 :         T_60_79(73, C, D, E, A, B);
     177          40 :         T_60_79(74, B, C, D, E, A);
     178          40 :         T_60_79(75, A, B, C, D, E);
     179          40 :         T_60_79(76, E, A, B, C, D);
     180          40 :         T_60_79(77, D, E, A, B, C);
     181          40 :         T_60_79(78, C, D, E, A, B);
     182          40 :         T_60_79(79, B, C, D, E, A);
     183             : 
     184          40 :         digest[0] += A;
     185          40 :         digest[1] += B;
     186          40 :         digest[2] += C;
     187          40 :         digest[3] += D;
     188          40 :         digest[4] += E;
     189          40 : }
     190             : EXPORT_SYMBOL(sha1_transform);
     191             : 
     192             : /**
     193             :  * sha1_init - initialize the vectors for a SHA1 digest
     194             :  * @buf: vector to initialize
     195             :  */
     196           5 : void sha1_init(__u32 *buf)
     197             : {
     198           5 :         buf[0] = 0x67452301;
     199           5 :         buf[1] = 0xefcdab89;
     200           5 :         buf[2] = 0x98badcfe;
     201           5 :         buf[3] = 0x10325476;
     202           5 :         buf[4] = 0xc3d2e1f0;
     203           5 : }
     204             : EXPORT_SYMBOL(sha1_init);

Generated by: LCOV version 1.14