LCOV - code coverage report
Current view: top level - lib - sort.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 48 63 76.2 %
Date: 2021-04-22 12:43:58 Functions: 4 4 100.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * A fast, small, non-recursive O(n log n) sort for the Linux kernel
       4             :  *
       5             :  * This performs n*log2(n) + 0.37*n + o(n) comparisons on average,
       6             :  * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case.
       7             :  *
       8             :  * Glibc qsort() manages n*log2(n) - 1.26*n for random inputs (1.63*n
       9             :  * better) at the expense of stack usage and much larger code to avoid
      10             :  * quicksort's O(n^2) worst case.
      11             :  */
      12             : 
      13             : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      14             : 
      15             : #include <linux/types.h>
      16             : #include <linux/export.h>
      17             : #include <linux/sort.h>
      18             : 
      19             : /**
      20             :  * is_aligned - is this pointer & size okay for word-wide copying?
      21             :  * @base: pointer to data
      22             :  * @size: size of each element
      23             :  * @align: required alignment (typically 4 or 8)
      24             :  *
      25             :  * Returns true if elements can be copied using word loads and stores.
      26             :  * The size must be a multiple of the alignment, and the base address must
      27             :  * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
      28             :  *
      29             :  * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
      30             :  * to "if ((a | b) & mask)", so we do that by hand.
      31             :  */
      32             : __attribute_const__ __always_inline
      33           4 : static bool is_aligned(const void *base, size_t size, unsigned char align)
      34             : {
      35           4 :         unsigned char lsbits = (unsigned char)size;
      36             : 
      37           4 :         (void)base;
      38             : #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
      39             :         lsbits |= (unsigned char)(uintptr_t)base;
      40             : #endif
      41           4 :         return (lsbits & (align - 1)) == 0;
      42             : }
      43             : 
      44             : /**
      45             :  * swap_words_32 - swap two elements in 32-bit chunks
      46             :  * @a: pointer to the first element to swap
      47             :  * @b: pointer to the second element to swap
      48             :  * @n: element size (must be a multiple of 4)
      49             :  *
      50             :  * Exchange the two objects in memory.  This exploits base+index addressing,
      51             :  * which basically all CPUs have, to minimize loop overhead computations.
      52             :  *
      53             :  * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
      54             :  * bottom of the loop, even though the zero flag is stil valid from the
      55             :  * subtract (since the intervening mov instructions don't alter the flags).
      56             :  * Gcc 8.1.0 doesn't have that problem.
      57             :  */
      58             : static void swap_words_32(void *a, void *b, size_t n)
      59             : {
      60           0 :         do {
      61           0 :                 u32 t = *(u32 *)(a + (n -= 4));
      62           0 :                 *(u32 *)(a + n) = *(u32 *)(b + n);
      63           0 :                 *(u32 *)(b + n) = t;
      64           0 :         } while (n);
      65             : }
      66             : 
      67             : /**
      68             :  * swap_words_64 - swap two elements in 64-bit chunks
      69             :  * @a: pointer to the first element to swap
      70             :  * @b: pointer to the second element to swap
      71             :  * @n: element size (must be a multiple of 8)
      72             :  *
      73             :  * Exchange the two objects in memory.  This exploits base+index
      74             :  * addressing, which basically all CPUs have, to minimize loop overhead
      75             :  * computations.
      76             :  *
      77             :  * We'd like to use 64-bit loads if possible.  If they're not, emulating
      78             :  * one requires base+index+4 addressing which x86 has but most other
      79             :  * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
      80             :  * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
      81             :  * x32 ABI).  Are there any cases the kernel needs to worry about?
      82             :  */
      83             : static void swap_words_64(void *a, void *b, size_t n)
      84             : {
      85          95 :         do {
      86             : #ifdef CONFIG_64BIT
      87          95 :                 u64 t = *(u64 *)(a + (n -= 8));
      88          95 :                 *(u64 *)(a + n) = *(u64 *)(b + n);
      89          95 :                 *(u64 *)(b + n) = t;
      90             : #else
      91             :                 /* Use two 32-bit transfers to avoid base+index+4 addressing */
      92             :                 u32 t = *(u32 *)(a + (n -= 4));
      93             :                 *(u32 *)(a + n) = *(u32 *)(b + n);
      94             :                 *(u32 *)(b + n) = t;
      95             : 
      96             :                 t = *(u32 *)(a + (n -= 4));
      97             :                 *(u32 *)(a + n) = *(u32 *)(b + n);
      98             :                 *(u32 *)(b + n) = t;
      99             : #endif
     100          95 :         } while (n);
     101             : }
     102             : 
     103             : /**
     104             :  * swap_bytes - swap two elements a byte at a time
     105             :  * @a: pointer to the first element to swap
     106             :  * @b: pointer to the second element to swap
     107             :  * @n: element size
     108             :  *
     109             :  * This is the fallback if alignment doesn't allow using larger chunks.
     110             :  */
     111             : static void swap_bytes(void *a, void *b, size_t n)
     112             : {
     113           0 :         do {
     114           0 :                 char t = ((char *)a)[--n];
     115           0 :                 ((char *)a)[n] = ((char *)b)[n];
     116           0 :                 ((char *)b)[n] = t;
     117           0 :         } while (n);
     118             : }
     119             : 
     120             : /*
     121             :  * The values are arbitrary as long as they can't be confused with
     122             :  * a pointer, but small integers make for the smallest compare
     123             :  * instructions.
     124             :  */
     125             : #define SWAP_WORDS_64 (swap_func_t)0
     126             : #define SWAP_WORDS_32 (swap_func_t)1
     127             : #define SWAP_BYTES    (swap_func_t)2
     128             : 
     129             : /*
     130             :  * The function pointer is last to make tail calls most efficient if the
     131             :  * compiler decides not to inline this function.
     132             :  */
     133        4633 : static void do_swap(void *a, void *b, size_t size, swap_func_t swap_func)
     134             : {
     135        4633 :         if (swap_func == SWAP_WORDS_64)
     136          95 :                 swap_words_64(a, b, size);
     137        4542 :         else if (swap_func == SWAP_WORDS_32)
     138           0 :                 swap_words_32(a, b, size);
     139        4542 :         else if (swap_func == SWAP_BYTES)
     140           0 :                 swap_bytes(a, b, size);
     141             :         else
     142        4542 :                 swap_func(a, b, (int)size);
     143        4633 : }
     144             : 
     145             : #define _CMP_WRAPPER ((cmp_r_func_t)0L)
     146             : 
     147        5081 : static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv)
     148             : {
     149        5081 :         if (cmp == _CMP_WRAPPER)
     150        5081 :                 return ((cmp_func_t)(priv))(a, b);
     151           0 :         return cmp(a, b, priv);
     152             : }
     153             : 
     154             : /**
     155             :  * parent - given the offset of the child, find the offset of the parent.
     156             :  * @i: the offset of the heap element whose parent is sought.  Non-zero.
     157             :  * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
     158             :  * @size: size of each element
     159             :  *
     160             :  * In terms of array indexes, the parent of element j = @i/@size is simply
     161             :  * (j-1)/2.  But when working in byte offsets, we can't use implicit
     162             :  * truncation of integer divides.
     163             :  *
     164             :  * Fortunately, we only need one bit of the quotient, not the full divide.
     165             :  * @size has a least significant bit.  That bit will be clear if @i is
     166             :  * an even multiple of @size, and set if it's an odd multiple.
     167             :  *
     168             :  * Logically, we're doing "if (i & lsbit) i -= size;", but since the
     169             :  * branch is unpredictable, it's done with a bit of clever branch-free
     170             :  * code instead.
     171             :  */
     172             : __attribute_const__ __always_inline
     173        4175 : static size_t parent(size_t i, unsigned int lsbit, size_t size)
     174             : {
     175        4175 :         i -= size;
     176        4175 :         i -= size & -(i & lsbit);
     177        4175 :         return i / 2;
     178             : }
     179             : 
     180             : /**
     181             :  * sort_r - sort an array of elements
     182             :  * @base: pointer to data to sort
     183             :  * @num: number of elements
     184             :  * @size: size of each element
     185             :  * @cmp_func: pointer to comparison function
     186             :  * @swap_func: pointer to swap function or NULL
     187             :  * @priv: third argument passed to comparison function
     188             :  *
     189             :  * This function does a heapsort on the given array.  You may provide
     190             :  * a swap_func function if you need to do something more than a memory
     191             :  * copy (e.g. fix up pointers or auxiliary data), but the built-in swap
     192             :  * avoids a slow retpoline and so is significantly faster.
     193             :  *
     194             :  * Sorting time is O(n log n) both on average and worst-case. While
     195             :  * quicksort is slightly faster on average, it suffers from exploitable
     196             :  * O(n*n) worst-case behavior and extra memory requirements that make
     197             :  * it less suitable for kernel use.
     198             :  */
     199          58 : void sort_r(void *base, size_t num, size_t size,
     200             :             cmp_r_func_t cmp_func,
     201             :             swap_func_t swap_func,
     202             :             const void *priv)
     203             : {
     204             :         /* pre-scale counters for performance */
     205          58 :         size_t n = num * size, a = (num/2) * size;
     206          58 :         const unsigned int lsbit = size & -size;  /* Used to find parent */
     207             : 
     208          58 :         if (!a)         /* num < 2 || size == 0 */
     209             :                 return;
     210             : 
     211           5 :         if (!swap_func) {
     212           4 :                 if (is_aligned(base, size, 8))
     213           5 :                         swap_func = SWAP_WORDS_64;
     214           0 :                 else if (is_aligned(base, size, 4))
     215             :                         swap_func = SWAP_WORDS_32;
     216             :                 else
     217           0 :                         swap_func = SWAP_BYTES;
     218             :         }
     219             : 
     220             :         /*
     221             :          * Loop invariants:
     222             :          * 1. elements [a,n) satisfy the heap property (compare greater than
     223             :          *    all of their children),
     224             :          * 2. elements [n,num*size) are sorted, and
     225             :          * 3. a <= b <= c <= d <= n (whenever they are valid).
     226             :          */
     227         841 :         for (;;) {
     228         841 :                 size_t b, c, d;
     229             : 
     230         841 :                 if (a)                  /* Building heap: sift down --a */
     231         280 :                         a -= size;
     232         561 :                 else if (n -= size)     /* Sorting: Extract root to --n */
     233         556 :                         do_swap(base, base + n, size, swap_func);
     234             :                 else                    /* Sort complete */
     235             :                         break;
     236             : 
     237             :                 /*
     238             :                  * Sift element at "a" down into heap.  This is the
     239             :                  * "bottom-up" variant, which significantly reduces
     240             :                  * calls to cmp_func(): we find the sift-down path all
     241             :                  * the way to the leaves (one compare per level), then
     242             :                  * backtrack to find where to insert the target element.
     243             :                  *
     244             :                  * Because elements tend to sift down close to the leaves,
     245             :                  * this uses fewer compares than doing two per level
     246             :                  * on the way down.  (A bit more than half as many on
     247             :                  * average, 3/4 worst-case.)
     248             :                  */
     249        4991 :                 for (b = a; c = 2*b + size, (d = c + size) < n;)
     250        4155 :                         b = do_cmp(base + c, base + d, cmp_func, priv) >= 0 ? c : d;
     251         836 :                 if (d == n)     /* Special case last leaf with no sibling */
     252          20 :                         b = c;
     253             : 
     254             :                 /* Now backtrack from "b" to the correct location for "a" */
     255         934 :                 while (b != a && do_cmp(base + a, base + b, cmp_func, priv) >= 0)
     256          98 :                         b = parent(b, lsbit, size);
     257         836 :                 c = b;                  /* Where "a" belongs */
     258        4913 :                 while (b != a) {        /* Shift it into place */
     259        4077 :                         b = parent(b, lsbit, size);
     260        4077 :                         do_swap(base + b, base + c, size, swap_func);
     261             :                 }
     262             :         }
     263             : }
     264             : EXPORT_SYMBOL(sort_r);
     265             : 
     266          58 : void sort(void *base, size_t num, size_t size,
     267             :           cmp_func_t cmp_func,
     268             :           swap_func_t swap_func)
     269             : {
     270          58 :         return sort_r(base, num, size, _CMP_WRAPPER, swap_func, cmp_func);
     271             : }
     272             : EXPORT_SYMBOL(sort);

Generated by: LCOV version 1.14