Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0 2 : /** 3 : * lib/minmax.c: windowed min/max tracker 4 : * 5 : * Kathleen Nichols' algorithm for tracking the minimum (or maximum) 6 : * value of a data stream over some fixed time interval. (E.g., 7 : * the minimum RTT over the past five minutes.) It uses constant 8 : * space and constant time per update yet almost always delivers 9 : * the same minimum as an implementation that has to keep all the 10 : * data in the window. 11 : * 12 : * The algorithm keeps track of the best, 2nd best & 3rd best min 13 : * values, maintaining an invariant that the measurement time of 14 : * the n'th best >= n-1'th best. It also makes sure that the three 15 : * values are widely separated in the time window since that bounds 16 : * the worse case error when that data is monotonically increasing 17 : * over the window. 18 : * 19 : * Upon getting a new min, we can forget everything earlier because 20 : * it has no value - the new min is <= everything else in the window 21 : * by definition and it's the most recent. So we restart fresh on 22 : * every new min and overwrites 2nd & 3rd choices. The same property 23 : * holds for 2nd & 3rd best. 24 : */ 25 : #include <linux/module.h> 26 : #include <linux/win_minmax.h> 27 : 28 : /* As time advances, update the 1st, 2nd, and 3rd choices. */ 29 238 : static u32 minmax_subwin_update(struct minmax *m, u32 win, 30 : const struct minmax_sample *val) 31 : { 32 238 : u32 dt = val->t - m->s[0].t; 33 : 34 238 : if (unlikely(dt > win)) { 35 : /* 36 : * Passed entire window without a new val so make 2nd 37 : * choice the new val & 3rd choice the new 2nd choice. 38 : * we may have to iterate this since our 2nd choice 39 : * may also be outside the window (we checked on entry 40 : * that the third choice was in the window). 41 : */ 42 0 : m->s[0] = m->s[1]; 43 0 : m->s[1] = m->s[2]; 44 0 : m->s[2] = *val; 45 0 : if (unlikely(val->t - m->s[0].t > win)) { 46 0 : m->s[0] = m->s[1]; 47 0 : m->s[1] = m->s[2]; 48 0 : m->s[2] = *val; 49 : } 50 238 : } else if (unlikely(m->s[1].t == m->s[0].t) && dt > win/4) { 51 : /* 52 : * We've passed a quarter of the window without a new val 53 : * so take a 2nd choice from the 2nd quarter of the window. 54 : */ 55 0 : m->s[2] = m->s[1] = *val; 56 238 : } else if (unlikely(m->s[2].t == m->s[1].t) && dt > win/2) { 57 : /* 58 : * We've passed half the window without finding a new val 59 : * so take a 3rd choice from the last half of the window 60 : */ 61 0 : m->s[2] = *val; 62 : } 63 238 : return m->s[0].v; 64 : } 65 : 66 : /* Check if new measurement updates the 1st, 2nd or 3rd choice max. */ 67 0 : u32 minmax_running_max(struct minmax *m, u32 win, u32 t, u32 meas) 68 : { 69 0 : struct minmax_sample val = { .t = t, .v = meas }; 70 : 71 0 : if (unlikely(val.v >= m->s[0].v) || /* found new max? */ 72 0 : unlikely(val.t - m->s[2].t > win)) /* nothing left in window? */ 73 0 : return minmax_reset(m, t, meas); /* forget earlier samples */ 74 : 75 0 : if (unlikely(val.v >= m->s[1].v)) 76 0 : m->s[2] = m->s[1] = val; 77 0 : else if (unlikely(val.v >= m->s[2].v)) 78 0 : m->s[2] = val; 79 : 80 0 : return minmax_subwin_update(m, win, &val); 81 : } 82 : EXPORT_SYMBOL(minmax_running_max); 83 : 84 : /* Check if new measurement updates the 1st, 2nd or 3rd choice min. */ 85 257 : u32 minmax_running_min(struct minmax *m, u32 win, u32 t, u32 meas) 86 : { 87 257 : struct minmax_sample val = { .t = t, .v = meas }; 88 : 89 257 : if (unlikely(val.v <= m->s[0].v) || /* found new min? */ 90 238 : unlikely(val.t - m->s[2].t > win)) /* nothing left in window? */ 91 19 : return minmax_reset(m, t, meas); /* forget earlier samples */ 92 : 93 238 : if (unlikely(val.v <= m->s[1].v)) 94 0 : m->s[2] = m->s[1] = val; 95 238 : else if (unlikely(val.v <= m->s[2].v)) 96 0 : m->s[2] = val; 97 : 98 238 : return minmax_subwin_update(m, win, &val); 99 : }