LCOV - code coverage report
Current view: top level - mm - filemap.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 0 1432 0.0 %
Date: 2021-04-22 12:43:58 Functions: 0 92 0.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *      linux/mm/filemap.c
       4             :  *
       5             :  * Copyright (C) 1994-1999  Linus Torvalds
       6             :  */
       7             : 
       8             : /*
       9             :  * This file handles the generic file mmap semantics used by
      10             :  * most "normal" filesystems (but you don't /have/ to use this:
      11             :  * the NFS filesystem used to do this differently, for example)
      12             :  */
      13             : #include <linux/export.h>
      14             : #include <linux/compiler.h>
      15             : #include <linux/dax.h>
      16             : #include <linux/fs.h>
      17             : #include <linux/sched/signal.h>
      18             : #include <linux/uaccess.h>
      19             : #include <linux/capability.h>
      20             : #include <linux/kernel_stat.h>
      21             : #include <linux/gfp.h>
      22             : #include <linux/mm.h>
      23             : #include <linux/swap.h>
      24             : #include <linux/mman.h>
      25             : #include <linux/pagemap.h>
      26             : #include <linux/file.h>
      27             : #include <linux/uio.h>
      28             : #include <linux/error-injection.h>
      29             : #include <linux/hash.h>
      30             : #include <linux/writeback.h>
      31             : #include <linux/backing-dev.h>
      32             : #include <linux/pagevec.h>
      33             : #include <linux/blkdev.h>
      34             : #include <linux/security.h>
      35             : #include <linux/cpuset.h>
      36             : #include <linux/hugetlb.h>
      37             : #include <linux/memcontrol.h>
      38             : #include <linux/cleancache.h>
      39             : #include <linux/shmem_fs.h>
      40             : #include <linux/rmap.h>
      41             : #include <linux/delayacct.h>
      42             : #include <linux/psi.h>
      43             : #include <linux/ramfs.h>
      44             : #include <linux/page_idle.h>
      45             : #include <asm/pgalloc.h>
      46             : #include <asm/tlbflush.h>
      47             : #include "internal.h"
      48             : 
      49             : #define CREATE_TRACE_POINTS
      50             : #include <trace/events/filemap.h>
      51             : 
      52             : /*
      53             :  * FIXME: remove all knowledge of the buffer layer from the core VM
      54             :  */
      55             : #include <linux/buffer_head.h> /* for try_to_free_buffers */
      56             : 
      57             : #include <asm/mman.h>
      58             : 
      59             : /*
      60             :  * Shared mappings implemented 30.11.1994. It's not fully working yet,
      61             :  * though.
      62             :  *
      63             :  * Shared mappings now work. 15.8.1995  Bruno.
      64             :  *
      65             :  * finished 'unifying' the page and buffer cache and SMP-threaded the
      66             :  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
      67             :  *
      68             :  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
      69             :  */
      70             : 
      71             : /*
      72             :  * Lock ordering:
      73             :  *
      74             :  *  ->i_mmap_rwsem           (truncate_pagecache)
      75             :  *    ->private_lock         (__free_pte->__set_page_dirty_buffers)
      76             :  *      ->swap_lock          (exclusive_swap_page, others)
      77             :  *        ->i_pages lock
      78             :  *
      79             :  *  ->i_mutex
      80             :  *    ->i_mmap_rwsem         (truncate->unmap_mapping_range)
      81             :  *
      82             :  *  ->mmap_lock
      83             :  *    ->i_mmap_rwsem
      84             :  *      ->page_table_lock or pte_lock        (various, mainly in memory.c)
      85             :  *        ->i_pages lock     (arch-dependent flush_dcache_mmap_lock)
      86             :  *
      87             :  *  ->mmap_lock
      88             :  *    ->lock_page            (access_process_vm)
      89             :  *
      90             :  *  ->i_mutex                        (generic_perform_write)
      91             :  *    ->mmap_lock            (fault_in_pages_readable->do_page_fault)
      92             :  *
      93             :  *  bdi->wb.list_lock
      94             :  *    sb_lock                   (fs/fs-writeback.c)
      95             :  *    ->i_pages lock         (__sync_single_inode)
      96             :  *
      97             :  *  ->i_mmap_rwsem
      98             :  *    ->anon_vma.lock                (vma_adjust)
      99             :  *
     100             :  *  ->anon_vma.lock
     101             :  *    ->page_table_lock or pte_lock  (anon_vma_prepare and various)
     102             :  *
     103             :  *  ->page_table_lock or pte_lock
     104             :  *    ->swap_lock            (try_to_unmap_one)
     105             :  *    ->private_lock         (try_to_unmap_one)
     106             :  *    ->i_pages lock         (try_to_unmap_one)
     107             :  *    ->lruvec->lru_lock  (follow_page->mark_page_accessed)
     108             :  *    ->lruvec->lru_lock  (check_pte_range->isolate_lru_page)
     109             :  *    ->private_lock         (page_remove_rmap->set_page_dirty)
     110             :  *    ->i_pages lock         (page_remove_rmap->set_page_dirty)
     111             :  *    bdi.wb->list_lock              (page_remove_rmap->set_page_dirty)
     112             :  *    ->inode->i_lock             (page_remove_rmap->set_page_dirty)
     113             :  *    ->memcg->move_lock  (page_remove_rmap->lock_page_memcg)
     114             :  *    bdi.wb->list_lock              (zap_pte_range->set_page_dirty)
     115             :  *    ->inode->i_lock             (zap_pte_range->set_page_dirty)
     116             :  *    ->private_lock         (zap_pte_range->__set_page_dirty_buffers)
     117             :  *
     118             :  * ->i_mmap_rwsem
     119             :  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
     120             :  */
     121             : 
     122           0 : static void page_cache_delete(struct address_space *mapping,
     123             :                                    struct page *page, void *shadow)
     124             : {
     125           0 :         XA_STATE(xas, &mapping->i_pages, page->index);
     126           0 :         unsigned int nr = 1;
     127             : 
     128           0 :         mapping_set_update(&xas, mapping);
     129             : 
     130             :         /* hugetlb pages are represented by a single entry in the xarray */
     131           0 :         if (!PageHuge(page)) {
     132           0 :                 xas_set_order(&xas, page->index, compound_order(page));
     133           0 :                 nr = compound_nr(page);
     134             :         }
     135             : 
     136           0 :         VM_BUG_ON_PAGE(!PageLocked(page), page);
     137           0 :         VM_BUG_ON_PAGE(PageTail(page), page);
     138           0 :         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
     139             : 
     140           0 :         xas_store(&xas, shadow);
     141           0 :         xas_init_marks(&xas);
     142             : 
     143           0 :         page->mapping = NULL;
     144             :         /* Leave page->index set: truncation lookup relies upon it */
     145             : 
     146           0 :         if (shadow) {
     147           0 :                 mapping->nrexceptional += nr;
     148             :                 /*
     149             :                  * Make sure the nrexceptional update is committed before
     150             :                  * the nrpages update so that final truncate racing
     151             :                  * with reclaim does not see both counters 0 at the
     152             :                  * same time and miss a shadow entry.
     153             :                  */
     154           0 :                 smp_wmb();
     155             :         }
     156           0 :         mapping->nrpages -= nr;
     157           0 : }
     158             : 
     159           0 : static void unaccount_page_cache_page(struct address_space *mapping,
     160             :                                       struct page *page)
     161             : {
     162           0 :         int nr;
     163             : 
     164             :         /*
     165             :          * if we're uptodate, flush out into the cleancache, otherwise
     166             :          * invalidate any existing cleancache entries.  We can't leave
     167             :          * stale data around in the cleancache once our page is gone
     168             :          */
     169           0 :         if (PageUptodate(page) && PageMappedToDisk(page))
     170           0 :                 cleancache_put_page(page);
     171             :         else
     172           0 :                 cleancache_invalidate_page(mapping, page);
     173             : 
     174           0 :         VM_BUG_ON_PAGE(PageTail(page), page);
     175           0 :         VM_BUG_ON_PAGE(page_mapped(page), page);
     176           0 :         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
     177             :                 int mapcount;
     178             : 
     179             :                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
     180             :                          current->comm, page_to_pfn(page));
     181             :                 dump_page(page, "still mapped when deleted");
     182             :                 dump_stack();
     183             :                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
     184             : 
     185             :                 mapcount = page_mapcount(page);
     186             :                 if (mapping_exiting(mapping) &&
     187             :                     page_count(page) >= mapcount + 2) {
     188             :                         /*
     189             :                          * All vmas have already been torn down, so it's
     190             :                          * a good bet that actually the page is unmapped,
     191             :                          * and we'd prefer not to leak it: if we're wrong,
     192             :                          * some other bad page check should catch it later.
     193             :                          */
     194             :                         page_mapcount_reset(page);
     195             :                         page_ref_sub(page, mapcount);
     196             :                 }
     197             :         }
     198             : 
     199             :         /* hugetlb pages do not participate in page cache accounting. */
     200           0 :         if (PageHuge(page))
     201             :                 return;
     202             : 
     203           0 :         nr = thp_nr_pages(page);
     204             : 
     205           0 :         __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
     206           0 :         if (PageSwapBacked(page)) {
     207           0 :                 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
     208           0 :                 if (PageTransHuge(page))
     209           0 :                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
     210           0 :         } else if (PageTransHuge(page)) {
     211           0 :                 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
     212           0 :                 filemap_nr_thps_dec(mapping);
     213             :         }
     214             : 
     215             :         /*
     216             :          * At this point page must be either written or cleaned by
     217             :          * truncate.  Dirty page here signals a bug and loss of
     218             :          * unwritten data.
     219             :          *
     220             :          * This fixes dirty accounting after removing the page entirely
     221             :          * but leaves PageDirty set: it has no effect for truncated
     222             :          * page and anyway will be cleared before returning page into
     223             :          * buddy allocator.
     224             :          */
     225           0 :         if (WARN_ON_ONCE(PageDirty(page)))
     226           0 :                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
     227             : }
     228             : 
     229             : /*
     230             :  * Delete a page from the page cache and free it. Caller has to make
     231             :  * sure the page is locked and that nobody else uses it - or that usage
     232             :  * is safe.  The caller must hold the i_pages lock.
     233             :  */
     234           0 : void __delete_from_page_cache(struct page *page, void *shadow)
     235             : {
     236           0 :         struct address_space *mapping = page->mapping;
     237             : 
     238           0 :         trace_mm_filemap_delete_from_page_cache(page);
     239             : 
     240           0 :         unaccount_page_cache_page(mapping, page);
     241           0 :         page_cache_delete(mapping, page, shadow);
     242           0 : }
     243             : 
     244           0 : static void page_cache_free_page(struct address_space *mapping,
     245             :                                 struct page *page)
     246             : {
     247           0 :         void (*freepage)(struct page *);
     248             : 
     249           0 :         freepage = mapping->a_ops->freepage;
     250           0 :         if (freepage)
     251           0 :                 freepage(page);
     252             : 
     253           0 :         if (PageTransHuge(page) && !PageHuge(page)) {
     254           0 :                 page_ref_sub(page, thp_nr_pages(page));
     255           0 :                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
     256             :         } else {
     257           0 :                 put_page(page);
     258             :         }
     259           0 : }
     260             : 
     261             : /**
     262             :  * delete_from_page_cache - delete page from page cache
     263             :  * @page: the page which the kernel is trying to remove from page cache
     264             :  *
     265             :  * This must be called only on pages that have been verified to be in the page
     266             :  * cache and locked.  It will never put the page into the free list, the caller
     267             :  * has a reference on the page.
     268             :  */
     269           0 : void delete_from_page_cache(struct page *page)
     270             : {
     271           0 :         struct address_space *mapping = page_mapping(page);
     272           0 :         unsigned long flags;
     273             : 
     274           0 :         BUG_ON(!PageLocked(page));
     275           0 :         xa_lock_irqsave(&mapping->i_pages, flags);
     276           0 :         __delete_from_page_cache(page, NULL);
     277           0 :         xa_unlock_irqrestore(&mapping->i_pages, flags);
     278             : 
     279           0 :         page_cache_free_page(mapping, page);
     280           0 : }
     281             : EXPORT_SYMBOL(delete_from_page_cache);
     282             : 
     283             : /*
     284             :  * page_cache_delete_batch - delete several pages from page cache
     285             :  * @mapping: the mapping to which pages belong
     286             :  * @pvec: pagevec with pages to delete
     287             :  *
     288             :  * The function walks over mapping->i_pages and removes pages passed in @pvec
     289             :  * from the mapping. The function expects @pvec to be sorted by page index
     290             :  * and is optimised for it to be dense.
     291             :  * It tolerates holes in @pvec (mapping entries at those indices are not
     292             :  * modified). The function expects only THP head pages to be present in the
     293             :  * @pvec.
     294             :  *
     295             :  * The function expects the i_pages lock to be held.
     296             :  */
     297           0 : static void page_cache_delete_batch(struct address_space *mapping,
     298             :                              struct pagevec *pvec)
     299             : {
     300           0 :         XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
     301           0 :         int total_pages = 0;
     302           0 :         int i = 0;
     303           0 :         struct page *page;
     304             : 
     305           0 :         mapping_set_update(&xas, mapping);
     306           0 :         xas_for_each(&xas, page, ULONG_MAX) {
     307           0 :                 if (i >= pagevec_count(pvec))
     308             :                         break;
     309             : 
     310             :                 /* A swap/dax/shadow entry got inserted? Skip it. */
     311           0 :                 if (xa_is_value(page))
     312           0 :                         continue;
     313             :                 /*
     314             :                  * A page got inserted in our range? Skip it. We have our
     315             :                  * pages locked so they are protected from being removed.
     316             :                  * If we see a page whose index is higher than ours, it
     317             :                  * means our page has been removed, which shouldn't be
     318             :                  * possible because we're holding the PageLock.
     319             :                  */
     320           0 :                 if (page != pvec->pages[i]) {
     321           0 :                         VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
     322             :                                         page);
     323           0 :                         continue;
     324             :                 }
     325             : 
     326           0 :                 WARN_ON_ONCE(!PageLocked(page));
     327             : 
     328           0 :                 if (page->index == xas.xa_index)
     329           0 :                         page->mapping = NULL;
     330             :                 /* Leave page->index set: truncation lookup relies on it */
     331             : 
     332             :                 /*
     333             :                  * Move to the next page in the vector if this is a regular
     334             :                  * page or the index is of the last sub-page of this compound
     335             :                  * page.
     336             :                  */
     337           0 :                 if (page->index + compound_nr(page) - 1 == xas.xa_index)
     338           0 :                         i++;
     339           0 :                 xas_store(&xas, NULL);
     340           0 :                 total_pages++;
     341             :         }
     342           0 :         mapping->nrpages -= total_pages;
     343           0 : }
     344             : 
     345           0 : void delete_from_page_cache_batch(struct address_space *mapping,
     346             :                                   struct pagevec *pvec)
     347             : {
     348           0 :         int i;
     349           0 :         unsigned long flags;
     350             : 
     351           0 :         if (!pagevec_count(pvec))
     352             :                 return;
     353             : 
     354           0 :         xa_lock_irqsave(&mapping->i_pages, flags);
     355           0 :         for (i = 0; i < pagevec_count(pvec); i++) {
     356           0 :                 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
     357             : 
     358           0 :                 unaccount_page_cache_page(mapping, pvec->pages[i]);
     359             :         }
     360           0 :         page_cache_delete_batch(mapping, pvec);
     361           0 :         xa_unlock_irqrestore(&mapping->i_pages, flags);
     362             : 
     363           0 :         for (i = 0; i < pagevec_count(pvec); i++)
     364           0 :                 page_cache_free_page(mapping, pvec->pages[i]);
     365             : }
     366             : 
     367           0 : int filemap_check_errors(struct address_space *mapping)
     368             : {
     369           0 :         int ret = 0;
     370             :         /* Check for outstanding write errors */
     371           0 :         if (test_bit(AS_ENOSPC, &mapping->flags) &&
     372           0 :             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
     373           0 :                 ret = -ENOSPC;
     374           0 :         if (test_bit(AS_EIO, &mapping->flags) &&
     375           0 :             test_and_clear_bit(AS_EIO, &mapping->flags))
     376           0 :                 ret = -EIO;
     377           0 :         return ret;
     378             : }
     379             : EXPORT_SYMBOL(filemap_check_errors);
     380             : 
     381           0 : static int filemap_check_and_keep_errors(struct address_space *mapping)
     382             : {
     383             :         /* Check for outstanding write errors */
     384           0 :         if (test_bit(AS_EIO, &mapping->flags))
     385             :                 return -EIO;
     386           0 :         if (test_bit(AS_ENOSPC, &mapping->flags))
     387           0 :                 return -ENOSPC;
     388             :         return 0;
     389             : }
     390             : 
     391             : /**
     392             :  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
     393             :  * @mapping:    address space structure to write
     394             :  * @start:      offset in bytes where the range starts
     395             :  * @end:        offset in bytes where the range ends (inclusive)
     396             :  * @sync_mode:  enable synchronous operation
     397             :  *
     398             :  * Start writeback against all of a mapping's dirty pages that lie
     399             :  * within the byte offsets <start, end> inclusive.
     400             :  *
     401             :  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
     402             :  * opposed to a regular memory cleansing writeback.  The difference between
     403             :  * these two operations is that if a dirty page/buffer is encountered, it must
     404             :  * be waited upon, and not just skipped over.
     405             :  *
     406             :  * Return: %0 on success, negative error code otherwise.
     407             :  */
     408           0 : int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
     409             :                                 loff_t end, int sync_mode)
     410             : {
     411           0 :         int ret;
     412           0 :         struct writeback_control wbc = {
     413             :                 .sync_mode = sync_mode,
     414             :                 .nr_to_write = LONG_MAX,
     415             :                 .range_start = start,
     416             :                 .range_end = end,
     417             :         };
     418             : 
     419           0 :         if (!mapping_can_writeback(mapping) ||
     420           0 :             !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
     421             :                 return 0;
     422             : 
     423           0 :         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
     424           0 :         ret = do_writepages(mapping, &wbc);
     425           0 :         wbc_detach_inode(&wbc);
     426           0 :         return ret;
     427             : }
     428             : 
     429           0 : static inline int __filemap_fdatawrite(struct address_space *mapping,
     430             :         int sync_mode)
     431             : {
     432           0 :         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
     433             : }
     434             : 
     435           0 : int filemap_fdatawrite(struct address_space *mapping)
     436             : {
     437           0 :         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
     438             : }
     439             : EXPORT_SYMBOL(filemap_fdatawrite);
     440             : 
     441           0 : int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
     442             :                                 loff_t end)
     443             : {
     444           0 :         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
     445             : }
     446             : EXPORT_SYMBOL(filemap_fdatawrite_range);
     447             : 
     448             : /**
     449             :  * filemap_flush - mostly a non-blocking flush
     450             :  * @mapping:    target address_space
     451             :  *
     452             :  * This is a mostly non-blocking flush.  Not suitable for data-integrity
     453             :  * purposes - I/O may not be started against all dirty pages.
     454             :  *
     455             :  * Return: %0 on success, negative error code otherwise.
     456             :  */
     457           0 : int filemap_flush(struct address_space *mapping)
     458             : {
     459           0 :         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
     460             : }
     461             : EXPORT_SYMBOL(filemap_flush);
     462             : 
     463             : /**
     464             :  * filemap_range_has_page - check if a page exists in range.
     465             :  * @mapping:           address space within which to check
     466             :  * @start_byte:        offset in bytes where the range starts
     467             :  * @end_byte:          offset in bytes where the range ends (inclusive)
     468             :  *
     469             :  * Find at least one page in the range supplied, usually used to check if
     470             :  * direct writing in this range will trigger a writeback.
     471             :  *
     472             :  * Return: %true if at least one page exists in the specified range,
     473             :  * %false otherwise.
     474             :  */
     475           0 : bool filemap_range_has_page(struct address_space *mapping,
     476             :                            loff_t start_byte, loff_t end_byte)
     477             : {
     478           0 :         struct page *page;
     479           0 :         XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
     480           0 :         pgoff_t max = end_byte >> PAGE_SHIFT;
     481             : 
     482           0 :         if (end_byte < start_byte)
     483             :                 return false;
     484             : 
     485           0 :         rcu_read_lock();
     486           0 :         for (;;) {
     487           0 :                 page = xas_find(&xas, max);
     488           0 :                 if (xas_retry(&xas, page))
     489           0 :                         continue;
     490             :                 /* Shadow entries don't count */
     491           0 :                 if (xa_is_value(page))
     492           0 :                         continue;
     493             :                 /*
     494             :                  * We don't need to try to pin this page; we're about to
     495             :                  * release the RCU lock anyway.  It is enough to know that
     496             :                  * there was a page here recently.
     497             :                  */
     498           0 :                 break;
     499             :         }
     500           0 :         rcu_read_unlock();
     501             : 
     502           0 :         return page != NULL;
     503             : }
     504             : EXPORT_SYMBOL(filemap_range_has_page);
     505             : 
     506           0 : static void __filemap_fdatawait_range(struct address_space *mapping,
     507             :                                      loff_t start_byte, loff_t end_byte)
     508             : {
     509           0 :         pgoff_t index = start_byte >> PAGE_SHIFT;
     510           0 :         pgoff_t end = end_byte >> PAGE_SHIFT;
     511           0 :         struct pagevec pvec;
     512           0 :         int nr_pages;
     513             : 
     514           0 :         if (end_byte < start_byte)
     515           0 :                 return;
     516             : 
     517           0 :         pagevec_init(&pvec);
     518           0 :         while (index <= end) {
     519           0 :                 unsigned i;
     520             : 
     521           0 :                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
     522             :                                 end, PAGECACHE_TAG_WRITEBACK);
     523           0 :                 if (!nr_pages)
     524             :                         break;
     525             : 
     526           0 :                 for (i = 0; i < nr_pages; i++) {
     527           0 :                         struct page *page = pvec.pages[i];
     528             : 
     529           0 :                         wait_on_page_writeback(page);
     530           0 :                         ClearPageError(page);
     531             :                 }
     532           0 :                 pagevec_release(&pvec);
     533           0 :                 cond_resched();
     534             :         }
     535             : }
     536             : 
     537             : /**
     538             :  * filemap_fdatawait_range - wait for writeback to complete
     539             :  * @mapping:            address space structure to wait for
     540             :  * @start_byte:         offset in bytes where the range starts
     541             :  * @end_byte:           offset in bytes where the range ends (inclusive)
     542             :  *
     543             :  * Walk the list of under-writeback pages of the given address space
     544             :  * in the given range and wait for all of them.  Check error status of
     545             :  * the address space and return it.
     546             :  *
     547             :  * Since the error status of the address space is cleared by this function,
     548             :  * callers are responsible for checking the return value and handling and/or
     549             :  * reporting the error.
     550             :  *
     551             :  * Return: error status of the address space.
     552             :  */
     553           0 : int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
     554             :                             loff_t end_byte)
     555             : {
     556           0 :         __filemap_fdatawait_range(mapping, start_byte, end_byte);
     557           0 :         return filemap_check_errors(mapping);
     558             : }
     559             : EXPORT_SYMBOL(filemap_fdatawait_range);
     560             : 
     561             : /**
     562             :  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
     563             :  * @mapping:            address space structure to wait for
     564             :  * @start_byte:         offset in bytes where the range starts
     565             :  * @end_byte:           offset in bytes where the range ends (inclusive)
     566             :  *
     567             :  * Walk the list of under-writeback pages of the given address space in the
     568             :  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
     569             :  * this function does not clear error status of the address space.
     570             :  *
     571             :  * Use this function if callers don't handle errors themselves.  Expected
     572             :  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
     573             :  * fsfreeze(8)
     574             :  */
     575           0 : int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
     576             :                 loff_t start_byte, loff_t end_byte)
     577             : {
     578           0 :         __filemap_fdatawait_range(mapping, start_byte, end_byte);
     579           0 :         return filemap_check_and_keep_errors(mapping);
     580             : }
     581             : EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
     582             : 
     583             : /**
     584             :  * file_fdatawait_range - wait for writeback to complete
     585             :  * @file:               file pointing to address space structure to wait for
     586             :  * @start_byte:         offset in bytes where the range starts
     587             :  * @end_byte:           offset in bytes where the range ends (inclusive)
     588             :  *
     589             :  * Walk the list of under-writeback pages of the address space that file
     590             :  * refers to, in the given range and wait for all of them.  Check error
     591             :  * status of the address space vs. the file->f_wb_err cursor and return it.
     592             :  *
     593             :  * Since the error status of the file is advanced by this function,
     594             :  * callers are responsible for checking the return value and handling and/or
     595             :  * reporting the error.
     596             :  *
     597             :  * Return: error status of the address space vs. the file->f_wb_err cursor.
     598             :  */
     599           0 : int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
     600             : {
     601           0 :         struct address_space *mapping = file->f_mapping;
     602             : 
     603           0 :         __filemap_fdatawait_range(mapping, start_byte, end_byte);
     604           0 :         return file_check_and_advance_wb_err(file);
     605             : }
     606             : EXPORT_SYMBOL(file_fdatawait_range);
     607             : 
     608             : /**
     609             :  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
     610             :  * @mapping: address space structure to wait for
     611             :  *
     612             :  * Walk the list of under-writeback pages of the given address space
     613             :  * and wait for all of them.  Unlike filemap_fdatawait(), this function
     614             :  * does not clear error status of the address space.
     615             :  *
     616             :  * Use this function if callers don't handle errors themselves.  Expected
     617             :  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
     618             :  * fsfreeze(8)
     619             :  *
     620             :  * Return: error status of the address space.
     621             :  */
     622           0 : int filemap_fdatawait_keep_errors(struct address_space *mapping)
     623             : {
     624           0 :         __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
     625           0 :         return filemap_check_and_keep_errors(mapping);
     626             : }
     627             : EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
     628             : 
     629             : /* Returns true if writeback might be needed or already in progress. */
     630           0 : static bool mapping_needs_writeback(struct address_space *mapping)
     631             : {
     632           0 :         if (dax_mapping(mapping))
     633             :                 return mapping->nrexceptional;
     634             : 
     635           0 :         return mapping->nrpages;
     636             : }
     637             : 
     638             : /**
     639             :  * filemap_write_and_wait_range - write out & wait on a file range
     640             :  * @mapping:    the address_space for the pages
     641             :  * @lstart:     offset in bytes where the range starts
     642             :  * @lend:       offset in bytes where the range ends (inclusive)
     643             :  *
     644             :  * Write out and wait upon file offsets lstart->lend, inclusive.
     645             :  *
     646             :  * Note that @lend is inclusive (describes the last byte to be written) so
     647             :  * that this function can be used to write to the very end-of-file (end = -1).
     648             :  *
     649             :  * Return: error status of the address space.
     650             :  */
     651           0 : int filemap_write_and_wait_range(struct address_space *mapping,
     652             :                                  loff_t lstart, loff_t lend)
     653             : {
     654           0 :         int err = 0;
     655             : 
     656           0 :         if (mapping_needs_writeback(mapping)) {
     657           0 :                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
     658             :                                                  WB_SYNC_ALL);
     659             :                 /*
     660             :                  * Even if the above returned error, the pages may be
     661             :                  * written partially (e.g. -ENOSPC), so we wait for it.
     662             :                  * But the -EIO is special case, it may indicate the worst
     663             :                  * thing (e.g. bug) happened, so we avoid waiting for it.
     664             :                  */
     665           0 :                 if (err != -EIO) {
     666           0 :                         int err2 = filemap_fdatawait_range(mapping,
     667             :                                                 lstart, lend);
     668           0 :                         if (!err)
     669           0 :                                 err = err2;
     670             :                 } else {
     671             :                         /* Clear any previously stored errors */
     672           0 :                         filemap_check_errors(mapping);
     673             :                 }
     674             :         } else {
     675           0 :                 err = filemap_check_errors(mapping);
     676             :         }
     677           0 :         return err;
     678             : }
     679             : EXPORT_SYMBOL(filemap_write_and_wait_range);
     680             : 
     681           0 : void __filemap_set_wb_err(struct address_space *mapping, int err)
     682             : {
     683           0 :         errseq_t eseq = errseq_set(&mapping->wb_err, err);
     684             : 
     685           0 :         trace_filemap_set_wb_err(mapping, eseq);
     686           0 : }
     687             : EXPORT_SYMBOL(__filemap_set_wb_err);
     688             : 
     689             : /**
     690             :  * file_check_and_advance_wb_err - report wb error (if any) that was previously
     691             :  *                                 and advance wb_err to current one
     692             :  * @file: struct file on which the error is being reported
     693             :  *
     694             :  * When userland calls fsync (or something like nfsd does the equivalent), we
     695             :  * want to report any writeback errors that occurred since the last fsync (or
     696             :  * since the file was opened if there haven't been any).
     697             :  *
     698             :  * Grab the wb_err from the mapping. If it matches what we have in the file,
     699             :  * then just quickly return 0. The file is all caught up.
     700             :  *
     701             :  * If it doesn't match, then take the mapping value, set the "seen" flag in
     702             :  * it and try to swap it into place. If it works, or another task beat us
     703             :  * to it with the new value, then update the f_wb_err and return the error
     704             :  * portion. The error at this point must be reported via proper channels
     705             :  * (a'la fsync, or NFS COMMIT operation, etc.).
     706             :  *
     707             :  * While we handle mapping->wb_err with atomic operations, the f_wb_err
     708             :  * value is protected by the f_lock since we must ensure that it reflects
     709             :  * the latest value swapped in for this file descriptor.
     710             :  *
     711             :  * Return: %0 on success, negative error code otherwise.
     712             :  */
     713           0 : int file_check_and_advance_wb_err(struct file *file)
     714             : {
     715           0 :         int err = 0;
     716           0 :         errseq_t old = READ_ONCE(file->f_wb_err);
     717           0 :         struct address_space *mapping = file->f_mapping;
     718             : 
     719             :         /* Locklessly handle the common case where nothing has changed */
     720           0 :         if (errseq_check(&mapping->wb_err, old)) {
     721             :                 /* Something changed, must use slow path */
     722           0 :                 spin_lock(&file->f_lock);
     723           0 :                 old = file->f_wb_err;
     724           0 :                 err = errseq_check_and_advance(&mapping->wb_err,
     725             :                                                 &file->f_wb_err);
     726           0 :                 trace_file_check_and_advance_wb_err(file, old);
     727           0 :                 spin_unlock(&file->f_lock);
     728             :         }
     729             : 
     730             :         /*
     731             :          * We're mostly using this function as a drop in replacement for
     732             :          * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
     733             :          * that the legacy code would have had on these flags.
     734             :          */
     735           0 :         clear_bit(AS_EIO, &mapping->flags);
     736           0 :         clear_bit(AS_ENOSPC, &mapping->flags);
     737           0 :         return err;
     738             : }
     739             : EXPORT_SYMBOL(file_check_and_advance_wb_err);
     740             : 
     741             : /**
     742             :  * file_write_and_wait_range - write out & wait on a file range
     743             :  * @file:       file pointing to address_space with pages
     744             :  * @lstart:     offset in bytes where the range starts
     745             :  * @lend:       offset in bytes where the range ends (inclusive)
     746             :  *
     747             :  * Write out and wait upon file offsets lstart->lend, inclusive.
     748             :  *
     749             :  * Note that @lend is inclusive (describes the last byte to be written) so
     750             :  * that this function can be used to write to the very end-of-file (end = -1).
     751             :  *
     752             :  * After writing out and waiting on the data, we check and advance the
     753             :  * f_wb_err cursor to the latest value, and return any errors detected there.
     754             :  *
     755             :  * Return: %0 on success, negative error code otherwise.
     756             :  */
     757           0 : int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
     758             : {
     759           0 :         int err = 0, err2;
     760           0 :         struct address_space *mapping = file->f_mapping;
     761             : 
     762           0 :         if (mapping_needs_writeback(mapping)) {
     763           0 :                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
     764             :                                                  WB_SYNC_ALL);
     765             :                 /* See comment of filemap_write_and_wait() */
     766           0 :                 if (err != -EIO)
     767           0 :                         __filemap_fdatawait_range(mapping, lstart, lend);
     768             :         }
     769           0 :         err2 = file_check_and_advance_wb_err(file);
     770           0 :         if (!err)
     771           0 :                 err = err2;
     772           0 :         return err;
     773             : }
     774             : EXPORT_SYMBOL(file_write_and_wait_range);
     775             : 
     776             : /**
     777             :  * replace_page_cache_page - replace a pagecache page with a new one
     778             :  * @old:        page to be replaced
     779             :  * @new:        page to replace with
     780             :  *
     781             :  * This function replaces a page in the pagecache with a new one.  On
     782             :  * success it acquires the pagecache reference for the new page and
     783             :  * drops it for the old page.  Both the old and new pages must be
     784             :  * locked.  This function does not add the new page to the LRU, the
     785             :  * caller must do that.
     786             :  *
     787             :  * The remove + add is atomic.  This function cannot fail.
     788             :  */
     789           0 : void replace_page_cache_page(struct page *old, struct page *new)
     790             : {
     791           0 :         struct address_space *mapping = old->mapping;
     792           0 :         void (*freepage)(struct page *) = mapping->a_ops->freepage;
     793           0 :         pgoff_t offset = old->index;
     794           0 :         XA_STATE(xas, &mapping->i_pages, offset);
     795           0 :         unsigned long flags;
     796             : 
     797           0 :         VM_BUG_ON_PAGE(!PageLocked(old), old);
     798           0 :         VM_BUG_ON_PAGE(!PageLocked(new), new);
     799           0 :         VM_BUG_ON_PAGE(new->mapping, new);
     800             : 
     801           0 :         get_page(new);
     802           0 :         new->mapping = mapping;
     803           0 :         new->index = offset;
     804             : 
     805           0 :         mem_cgroup_migrate(old, new);
     806             : 
     807           0 :         xas_lock_irqsave(&xas, flags);
     808           0 :         xas_store(&xas, new);
     809             : 
     810           0 :         old->mapping = NULL;
     811             :         /* hugetlb pages do not participate in page cache accounting. */
     812           0 :         if (!PageHuge(old))
     813           0 :                 __dec_lruvec_page_state(old, NR_FILE_PAGES);
     814           0 :         if (!PageHuge(new))
     815           0 :                 __inc_lruvec_page_state(new, NR_FILE_PAGES);
     816           0 :         if (PageSwapBacked(old))
     817           0 :                 __dec_lruvec_page_state(old, NR_SHMEM);
     818           0 :         if (PageSwapBacked(new))
     819           0 :                 __inc_lruvec_page_state(new, NR_SHMEM);
     820           0 :         xas_unlock_irqrestore(&xas, flags);
     821           0 :         if (freepage)
     822           0 :                 freepage(old);
     823           0 :         put_page(old);
     824           0 : }
     825             : EXPORT_SYMBOL_GPL(replace_page_cache_page);
     826             : 
     827           0 : noinline int __add_to_page_cache_locked(struct page *page,
     828             :                                         struct address_space *mapping,
     829             :                                         pgoff_t offset, gfp_t gfp,
     830             :                                         void **shadowp)
     831             : {
     832           0 :         XA_STATE(xas, &mapping->i_pages, offset);
     833           0 :         int huge = PageHuge(page);
     834           0 :         int error;
     835           0 :         bool charged = false;
     836             : 
     837           0 :         VM_BUG_ON_PAGE(!PageLocked(page), page);
     838           0 :         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
     839           0 :         mapping_set_update(&xas, mapping);
     840             : 
     841           0 :         get_page(page);
     842           0 :         page->mapping = mapping;
     843           0 :         page->index = offset;
     844             : 
     845           0 :         if (!huge) {
     846           0 :                 error = mem_cgroup_charge(page, current->mm, gfp);
     847           0 :                 if (error)
     848             :                         goto error;
     849           0 :                 charged = true;
     850             :         }
     851             : 
     852           0 :         gfp &= GFP_RECLAIM_MASK;
     853             : 
     854           0 :         do {
     855           0 :                 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
     856           0 :                 void *entry, *old = NULL;
     857             : 
     858           0 :                 if (order > thp_order(page))
     859           0 :                         xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
     860             :                                         order, gfp);
     861           0 :                 xas_lock_irq(&xas);
     862           0 :                 xas_for_each_conflict(&xas, entry) {
     863           0 :                         old = entry;
     864           0 :                         if (!xa_is_value(entry)) {
     865           0 :                                 xas_set_err(&xas, -EEXIST);
     866           0 :                                 goto unlock;
     867             :                         }
     868             :                 }
     869             : 
     870           0 :                 if (old) {
     871           0 :                         if (shadowp)
     872           0 :                                 *shadowp = old;
     873             :                         /* entry may have been split before we acquired lock */
     874           0 :                         order = xa_get_order(xas.xa, xas.xa_index);
     875           0 :                         if (order > thp_order(page)) {
     876           0 :                                 xas_split(&xas, old, order);
     877           0 :                                 xas_reset(&xas);
     878             :                         }
     879             :                 }
     880             : 
     881           0 :                 xas_store(&xas, page);
     882           0 :                 if (xas_error(&xas))
     883           0 :                         goto unlock;
     884             : 
     885           0 :                 if (old)
     886           0 :                         mapping->nrexceptional--;
     887           0 :                 mapping->nrpages++;
     888             : 
     889             :                 /* hugetlb pages do not participate in page cache accounting */
     890           0 :                 if (!huge)
     891           0 :                         __inc_lruvec_page_state(page, NR_FILE_PAGES);
     892           0 : unlock:
     893           0 :                 xas_unlock_irq(&xas);
     894           0 :         } while (xas_nomem(&xas, gfp));
     895             : 
     896           0 :         if (xas_error(&xas)) {
     897           0 :                 error = xas_error(&xas);
     898           0 :                 if (charged)
     899           0 :                         mem_cgroup_uncharge(page);
     900           0 :                 goto error;
     901             :         }
     902             : 
     903           0 :         trace_mm_filemap_add_to_page_cache(page);
     904           0 :         return 0;
     905           0 : error:
     906           0 :         page->mapping = NULL;
     907             :         /* Leave page->index set: truncation relies upon it */
     908           0 :         put_page(page);
     909           0 :         return error;
     910             : }
     911             : ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
     912             : 
     913             : /**
     914             :  * add_to_page_cache_locked - add a locked page to the pagecache
     915             :  * @page:       page to add
     916             :  * @mapping:    the page's address_space
     917             :  * @offset:     page index
     918             :  * @gfp_mask:   page allocation mode
     919             :  *
     920             :  * This function is used to add a page to the pagecache. It must be locked.
     921             :  * This function does not add the page to the LRU.  The caller must do that.
     922             :  *
     923             :  * Return: %0 on success, negative error code otherwise.
     924             :  */
     925           0 : int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
     926             :                 pgoff_t offset, gfp_t gfp_mask)
     927             : {
     928           0 :         return __add_to_page_cache_locked(page, mapping, offset,
     929             :                                           gfp_mask, NULL);
     930             : }
     931             : EXPORT_SYMBOL(add_to_page_cache_locked);
     932             : 
     933           0 : int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
     934             :                                 pgoff_t offset, gfp_t gfp_mask)
     935             : {
     936           0 :         void *shadow = NULL;
     937           0 :         int ret;
     938             : 
     939           0 :         __SetPageLocked(page);
     940           0 :         ret = __add_to_page_cache_locked(page, mapping, offset,
     941             :                                          gfp_mask, &shadow);
     942           0 :         if (unlikely(ret))
     943           0 :                 __ClearPageLocked(page);
     944             :         else {
     945             :                 /*
     946             :                  * The page might have been evicted from cache only
     947             :                  * recently, in which case it should be activated like
     948             :                  * any other repeatedly accessed page.
     949             :                  * The exception is pages getting rewritten; evicting other
     950             :                  * data from the working set, only to cache data that will
     951             :                  * get overwritten with something else, is a waste of memory.
     952             :                  */
     953           0 :                 WARN_ON_ONCE(PageActive(page));
     954           0 :                 if (!(gfp_mask & __GFP_WRITE) && shadow)
     955           0 :                         workingset_refault(page, shadow);
     956           0 :                 lru_cache_add(page);
     957             :         }
     958           0 :         return ret;
     959             : }
     960             : EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
     961             : 
     962             : #ifdef CONFIG_NUMA
     963           0 : struct page *__page_cache_alloc(gfp_t gfp)
     964             : {
     965           0 :         int n;
     966           0 :         struct page *page;
     967             : 
     968           0 :         if (cpuset_do_page_mem_spread()) {
     969             :                 unsigned int cpuset_mems_cookie;
     970             :                 do {
     971             :                         cpuset_mems_cookie = read_mems_allowed_begin();
     972             :                         n = cpuset_mem_spread_node();
     973             :                         page = __alloc_pages_node(n, gfp, 0);
     974             :                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
     975             : 
     976             :                 return page;
     977             :         }
     978           0 :         return alloc_pages(gfp, 0);
     979             : }
     980             : EXPORT_SYMBOL(__page_cache_alloc);
     981             : #endif
     982             : 
     983             : /*
     984             :  * In order to wait for pages to become available there must be
     985             :  * waitqueues associated with pages. By using a hash table of
     986             :  * waitqueues where the bucket discipline is to maintain all
     987             :  * waiters on the same queue and wake all when any of the pages
     988             :  * become available, and for the woken contexts to check to be
     989             :  * sure the appropriate page became available, this saves space
     990             :  * at a cost of "thundering herd" phenomena during rare hash
     991             :  * collisions.
     992             :  */
     993             : #define PAGE_WAIT_TABLE_BITS 8
     994             : #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
     995             : static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
     996             : 
     997           0 : static wait_queue_head_t *page_waitqueue(struct page *page)
     998             : {
     999           0 :         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
    1000             : }
    1001             : 
    1002           0 : void __init pagecache_init(void)
    1003             : {
    1004           0 :         int i;
    1005             : 
    1006           0 :         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
    1007           0 :                 init_waitqueue_head(&page_wait_table[i]);
    1008             : 
    1009           0 :         page_writeback_init();
    1010           0 : }
    1011             : 
    1012             : /*
    1013             :  * The page wait code treats the "wait->flags" somewhat unusually, because
    1014             :  * we have multiple different kinds of waits, not just the usual "exclusive"
    1015             :  * one.
    1016             :  *
    1017             :  * We have:
    1018             :  *
    1019             :  *  (a) no special bits set:
    1020             :  *
    1021             :  *      We're just waiting for the bit to be released, and when a waker
    1022             :  *      calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
    1023             :  *      and remove it from the wait queue.
    1024             :  *
    1025             :  *      Simple and straightforward.
    1026             :  *
    1027             :  *  (b) WQ_FLAG_EXCLUSIVE:
    1028             :  *
    1029             :  *      The waiter is waiting to get the lock, and only one waiter should
    1030             :  *      be woken up to avoid any thundering herd behavior. We'll set the
    1031             :  *      WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
    1032             :  *
    1033             :  *      This is the traditional exclusive wait.
    1034             :  *
    1035             :  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
    1036             :  *
    1037             :  *      The waiter is waiting to get the bit, and additionally wants the
    1038             :  *      lock to be transferred to it for fair lock behavior. If the lock
    1039             :  *      cannot be taken, we stop walking the wait queue without waking
    1040             :  *      the waiter.
    1041             :  *
    1042             :  *      This is the "fair lock handoff" case, and in addition to setting
    1043             :  *      WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
    1044             :  *      that it now has the lock.
    1045             :  */
    1046           0 : static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
    1047             : {
    1048           0 :         unsigned int flags;
    1049           0 :         struct wait_page_key *key = arg;
    1050           0 :         struct wait_page_queue *wait_page
    1051           0 :                 = container_of(wait, struct wait_page_queue, wait);
    1052             : 
    1053           0 :         if (!wake_page_match(wait_page, key))
    1054           0 :                 return 0;
    1055             : 
    1056             :         /*
    1057             :          * If it's a lock handoff wait, we get the bit for it, and
    1058             :          * stop walking (and do not wake it up) if we can't.
    1059             :          */
    1060           0 :         flags = wait->flags;
    1061           0 :         if (flags & WQ_FLAG_EXCLUSIVE) {
    1062           0 :                 if (test_bit(key->bit_nr, &key->page->flags))
    1063             :                         return -1;
    1064           0 :                 if (flags & WQ_FLAG_CUSTOM) {
    1065           0 :                         if (test_and_set_bit(key->bit_nr, &key->page->flags))
    1066             :                                 return -1;
    1067           0 :                         flags |= WQ_FLAG_DONE;
    1068             :                 }
    1069             :         }
    1070             : 
    1071             :         /*
    1072             :          * We are holding the wait-queue lock, but the waiter that
    1073             :          * is waiting for this will be checking the flags without
    1074             :          * any locking.
    1075             :          *
    1076             :          * So update the flags atomically, and wake up the waiter
    1077             :          * afterwards to avoid any races. This store-release pairs
    1078             :          * with the load-acquire in wait_on_page_bit_common().
    1079             :          */
    1080           0 :         smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
    1081           0 :         wake_up_state(wait->private, mode);
    1082             : 
    1083             :         /*
    1084             :          * Ok, we have successfully done what we're waiting for,
    1085             :          * and we can unconditionally remove the wait entry.
    1086             :          *
    1087             :          * Note that this pairs with the "finish_wait()" in the
    1088             :          * waiter, and has to be the absolute last thing we do.
    1089             :          * After this list_del_init(&wait->entry) the wait entry
    1090             :          * might be de-allocated and the process might even have
    1091             :          * exited.
    1092             :          */
    1093           0 :         list_del_init_careful(&wait->entry);
    1094           0 :         return (flags & WQ_FLAG_EXCLUSIVE) != 0;
    1095             : }
    1096             : 
    1097           0 : static void wake_up_page_bit(struct page *page, int bit_nr)
    1098             : {
    1099           0 :         wait_queue_head_t *q = page_waitqueue(page);
    1100           0 :         struct wait_page_key key;
    1101           0 :         unsigned long flags;
    1102           0 :         wait_queue_entry_t bookmark;
    1103             : 
    1104           0 :         key.page = page;
    1105           0 :         key.bit_nr = bit_nr;
    1106           0 :         key.page_match = 0;
    1107             : 
    1108           0 :         bookmark.flags = 0;
    1109           0 :         bookmark.private = NULL;
    1110           0 :         bookmark.func = NULL;
    1111           0 :         INIT_LIST_HEAD(&bookmark.entry);
    1112             : 
    1113           0 :         spin_lock_irqsave(&q->lock, flags);
    1114           0 :         __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
    1115             : 
    1116           0 :         while (bookmark.flags & WQ_FLAG_BOOKMARK) {
    1117             :                 /*
    1118             :                  * Take a breather from holding the lock,
    1119             :                  * allow pages that finish wake up asynchronously
    1120             :                  * to acquire the lock and remove themselves
    1121             :                  * from wait queue
    1122             :                  */
    1123           0 :                 spin_unlock_irqrestore(&q->lock, flags);
    1124           0 :                 cpu_relax();
    1125           0 :                 spin_lock_irqsave(&q->lock, flags);
    1126           0 :                 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
    1127             :         }
    1128             : 
    1129             :         /*
    1130             :          * It is possible for other pages to have collided on the waitqueue
    1131             :          * hash, so in that case check for a page match. That prevents a long-
    1132             :          * term waiter
    1133             :          *
    1134             :          * It is still possible to miss a case here, when we woke page waiters
    1135             :          * and removed them from the waitqueue, but there are still other
    1136             :          * page waiters.
    1137             :          */
    1138           0 :         if (!waitqueue_active(q) || !key.page_match) {
    1139           0 :                 ClearPageWaiters(page);
    1140             :                 /*
    1141             :                  * It's possible to miss clearing Waiters here, when we woke
    1142             :                  * our page waiters, but the hashed waitqueue has waiters for
    1143             :                  * other pages on it.
    1144             :                  *
    1145             :                  * That's okay, it's a rare case. The next waker will clear it.
    1146             :                  */
    1147             :         }
    1148           0 :         spin_unlock_irqrestore(&q->lock, flags);
    1149           0 : }
    1150             : 
    1151           0 : static void wake_up_page(struct page *page, int bit)
    1152             : {
    1153           0 :         if (!PageWaiters(page))
    1154             :                 return;
    1155           0 :         wake_up_page_bit(page, bit);
    1156             : }
    1157             : 
    1158             : /*
    1159             :  * A choice of three behaviors for wait_on_page_bit_common():
    1160             :  */
    1161             : enum behavior {
    1162             :         EXCLUSIVE,      /* Hold ref to page and take the bit when woken, like
    1163             :                          * __lock_page() waiting on then setting PG_locked.
    1164             :                          */
    1165             :         SHARED,         /* Hold ref to page and check the bit when woken, like
    1166             :                          * wait_on_page_writeback() waiting on PG_writeback.
    1167             :                          */
    1168             :         DROP,           /* Drop ref to page before wait, no check when woken,
    1169             :                          * like put_and_wait_on_page_locked() on PG_locked.
    1170             :                          */
    1171             : };
    1172             : 
    1173             : /*
    1174             :  * Attempt to check (or get) the page bit, and mark us done
    1175             :  * if successful.
    1176             :  */
    1177           0 : static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
    1178             :                                         struct wait_queue_entry *wait)
    1179             : {
    1180           0 :         if (wait->flags & WQ_FLAG_EXCLUSIVE) {
    1181           0 :                 if (test_and_set_bit(bit_nr, &page->flags))
    1182             :                         return false;
    1183           0 :         } else if (test_bit(bit_nr, &page->flags))
    1184             :                 return false;
    1185             : 
    1186           0 :         wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
    1187           0 :         return true;
    1188             : }
    1189             : 
    1190             : /* How many times do we accept lock stealing from under a waiter? */
    1191             : int sysctl_page_lock_unfairness = 5;
    1192             : 
    1193           0 : static inline int wait_on_page_bit_common(wait_queue_head_t *q,
    1194             :         struct page *page, int bit_nr, int state, enum behavior behavior)
    1195             : {
    1196           0 :         int unfairness = sysctl_page_lock_unfairness;
    1197           0 :         struct wait_page_queue wait_page;
    1198           0 :         wait_queue_entry_t *wait = &wait_page.wait;
    1199           0 :         bool thrashing = false;
    1200           0 :         bool delayacct = false;
    1201           0 :         unsigned long pflags;
    1202             : 
    1203           0 :         if (bit_nr == PG_locked &&
    1204           0 :             !PageUptodate(page) && PageWorkingset(page)) {
    1205           0 :                 if (!PageSwapBacked(page)) {
    1206           0 :                         delayacct_thrashing_start();
    1207           0 :                         delayacct = true;
    1208             :                 }
    1209           0 :                 psi_memstall_enter(&pflags);
    1210             :                 thrashing = true;
    1211             :         }
    1212             : 
    1213           0 :         init_wait(wait);
    1214           0 :         wait->func = wake_page_function;
    1215           0 :         wait_page.page = page;
    1216           0 :         wait_page.bit_nr = bit_nr;
    1217             : 
    1218           0 : repeat:
    1219           0 :         wait->flags = 0;
    1220           0 :         if (behavior == EXCLUSIVE) {
    1221           0 :                 wait->flags = WQ_FLAG_EXCLUSIVE;
    1222           0 :                 if (--unfairness < 0)
    1223           0 :                         wait->flags |= WQ_FLAG_CUSTOM;
    1224             :         }
    1225             : 
    1226             :         /*
    1227             :          * Do one last check whether we can get the
    1228             :          * page bit synchronously.
    1229             :          *
    1230             :          * Do the SetPageWaiters() marking before that
    1231             :          * to let any waker we _just_ missed know they
    1232             :          * need to wake us up (otherwise they'll never
    1233             :          * even go to the slow case that looks at the
    1234             :          * page queue), and add ourselves to the wait
    1235             :          * queue if we need to sleep.
    1236             :          *
    1237             :          * This part needs to be done under the queue
    1238             :          * lock to avoid races.
    1239             :          */
    1240           0 :         spin_lock_irq(&q->lock);
    1241           0 :         SetPageWaiters(page);
    1242           0 :         if (!trylock_page_bit_common(page, bit_nr, wait))
    1243           0 :                 __add_wait_queue_entry_tail(q, wait);
    1244           0 :         spin_unlock_irq(&q->lock);
    1245             : 
    1246             :         /*
    1247             :          * From now on, all the logic will be based on
    1248             :          * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
    1249             :          * see whether the page bit testing has already
    1250             :          * been done by the wake function.
    1251             :          *
    1252             :          * We can drop our reference to the page.
    1253             :          */
    1254           0 :         if (behavior == DROP)
    1255           0 :                 put_page(page);
    1256             : 
    1257             :         /*
    1258             :          * Note that until the "finish_wait()", or until
    1259             :          * we see the WQ_FLAG_WOKEN flag, we need to
    1260             :          * be very careful with the 'wait->flags', because
    1261             :          * we may race with a waker that sets them.
    1262             :          */
    1263           0 :         for (;;) {
    1264           0 :                 unsigned int flags;
    1265             : 
    1266           0 :                 set_current_state(state);
    1267             : 
    1268             :                 /* Loop until we've been woken or interrupted */
    1269           0 :                 flags = smp_load_acquire(&wait->flags);
    1270           0 :                 if (!(flags & WQ_FLAG_WOKEN)) {
    1271           0 :                         if (signal_pending_state(state, current))
    1272             :                                 break;
    1273             : 
    1274           0 :                         io_schedule();
    1275           0 :                         continue;
    1276             :                 }
    1277             : 
    1278             :                 /* If we were non-exclusive, we're done */
    1279           0 :                 if (behavior != EXCLUSIVE)
    1280             :                         break;
    1281             : 
    1282             :                 /* If the waker got the lock for us, we're done */
    1283           0 :                 if (flags & WQ_FLAG_DONE)
    1284             :                         break;
    1285             : 
    1286             :                 /*
    1287             :                  * Otherwise, if we're getting the lock, we need to
    1288             :                  * try to get it ourselves.
    1289             :                  *
    1290             :                  * And if that fails, we'll have to retry this all.
    1291             :                  */
    1292           0 :                 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
    1293           0 :                         goto repeat;
    1294             : 
    1295           0 :                 wait->flags |= WQ_FLAG_DONE;
    1296           0 :                 break;
    1297             :         }
    1298             : 
    1299             :         /*
    1300             :          * If a signal happened, this 'finish_wait()' may remove the last
    1301             :          * waiter from the wait-queues, but the PageWaiters bit will remain
    1302             :          * set. That's ok. The next wakeup will take care of it, and trying
    1303             :          * to do it here would be difficult and prone to races.
    1304             :          */
    1305           0 :         finish_wait(q, wait);
    1306             : 
    1307           0 :         if (thrashing) {
    1308           0 :                 if (delayacct)
    1309           0 :                         delayacct_thrashing_end();
    1310           0 :                 psi_memstall_leave(&pflags);
    1311             :         }
    1312             : 
    1313             :         /*
    1314             :          * NOTE! The wait->flags weren't stable until we've done the
    1315             :          * 'finish_wait()', and we could have exited the loop above due
    1316             :          * to a signal, and had a wakeup event happen after the signal
    1317             :          * test but before the 'finish_wait()'.
    1318             :          *
    1319             :          * So only after the finish_wait() can we reliably determine
    1320             :          * if we got woken up or not, so we can now figure out the final
    1321             :          * return value based on that state without races.
    1322             :          *
    1323             :          * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
    1324             :          * waiter, but an exclusive one requires WQ_FLAG_DONE.
    1325             :          */
    1326           0 :         if (behavior == EXCLUSIVE)
    1327           0 :                 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
    1328             : 
    1329           0 :         return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
    1330             : }
    1331             : 
    1332           0 : void wait_on_page_bit(struct page *page, int bit_nr)
    1333             : {
    1334           0 :         wait_queue_head_t *q = page_waitqueue(page);
    1335           0 :         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
    1336           0 : }
    1337             : EXPORT_SYMBOL(wait_on_page_bit);
    1338             : 
    1339           0 : int wait_on_page_bit_killable(struct page *page, int bit_nr)
    1340             : {
    1341           0 :         wait_queue_head_t *q = page_waitqueue(page);
    1342           0 :         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
    1343             : }
    1344             : EXPORT_SYMBOL(wait_on_page_bit_killable);
    1345             : 
    1346             : /**
    1347             :  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
    1348             :  * @page: The page to wait for.
    1349             :  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
    1350             :  *
    1351             :  * The caller should hold a reference on @page.  They expect the page to
    1352             :  * become unlocked relatively soon, but do not wish to hold up migration
    1353             :  * (for example) by holding the reference while waiting for the page to
    1354             :  * come unlocked.  After this function returns, the caller should not
    1355             :  * dereference @page.
    1356             :  *
    1357             :  * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
    1358             :  */
    1359           0 : int put_and_wait_on_page_locked(struct page *page, int state)
    1360             : {
    1361           0 :         wait_queue_head_t *q;
    1362             : 
    1363           0 :         page = compound_head(page);
    1364           0 :         q = page_waitqueue(page);
    1365           0 :         return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
    1366             : }
    1367             : 
    1368             : /**
    1369             :  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
    1370             :  * @page: Page defining the wait queue of interest
    1371             :  * @waiter: Waiter to add to the queue
    1372             :  *
    1373             :  * Add an arbitrary @waiter to the wait queue for the nominated @page.
    1374             :  */
    1375           0 : void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
    1376             : {
    1377           0 :         wait_queue_head_t *q = page_waitqueue(page);
    1378           0 :         unsigned long flags;
    1379             : 
    1380           0 :         spin_lock_irqsave(&q->lock, flags);
    1381           0 :         __add_wait_queue_entry_tail(q, waiter);
    1382           0 :         SetPageWaiters(page);
    1383           0 :         spin_unlock_irqrestore(&q->lock, flags);
    1384           0 : }
    1385             : EXPORT_SYMBOL_GPL(add_page_wait_queue);
    1386             : 
    1387             : #ifndef clear_bit_unlock_is_negative_byte
    1388             : 
    1389             : /*
    1390             :  * PG_waiters is the high bit in the same byte as PG_lock.
    1391             :  *
    1392             :  * On x86 (and on many other architectures), we can clear PG_lock and
    1393             :  * test the sign bit at the same time. But if the architecture does
    1394             :  * not support that special operation, we just do this all by hand
    1395             :  * instead.
    1396             :  *
    1397             :  * The read of PG_waiters has to be after (or concurrently with) PG_locked
    1398             :  * being cleared, but a memory barrier should be unnecessary since it is
    1399             :  * in the same byte as PG_locked.
    1400             :  */
    1401             : static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
    1402             : {
    1403             :         clear_bit_unlock(nr, mem);
    1404             :         /* smp_mb__after_atomic(); */
    1405             :         return test_bit(PG_waiters, mem);
    1406             : }
    1407             : 
    1408             : #endif
    1409             : 
    1410             : /**
    1411             :  * unlock_page - unlock a locked page
    1412             :  * @page: the page
    1413             :  *
    1414             :  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
    1415             :  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
    1416             :  * mechanism between PageLocked pages and PageWriteback pages is shared.
    1417             :  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
    1418             :  *
    1419             :  * Note that this depends on PG_waiters being the sign bit in the byte
    1420             :  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
    1421             :  * clear the PG_locked bit and test PG_waiters at the same time fairly
    1422             :  * portably (architectures that do LL/SC can test any bit, while x86 can
    1423             :  * test the sign bit).
    1424             :  */
    1425           0 : void unlock_page(struct page *page)
    1426             : {
    1427           0 :         BUILD_BUG_ON(PG_waiters != 7);
    1428           0 :         page = compound_head(page);
    1429           0 :         VM_BUG_ON_PAGE(!PageLocked(page), page);
    1430           0 :         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
    1431           0 :                 wake_up_page_bit(page, PG_locked);
    1432           0 : }
    1433             : EXPORT_SYMBOL(unlock_page);
    1434             : 
    1435             : /**
    1436             :  * end_page_writeback - end writeback against a page
    1437             :  * @page: the page
    1438             :  */
    1439           0 : void end_page_writeback(struct page *page)
    1440             : {
    1441             :         /*
    1442             :          * TestClearPageReclaim could be used here but it is an atomic
    1443             :          * operation and overkill in this particular case. Failing to
    1444             :          * shuffle a page marked for immediate reclaim is too mild to
    1445             :          * justify taking an atomic operation penalty at the end of
    1446             :          * ever page writeback.
    1447             :          */
    1448           0 :         if (PageReclaim(page)) {
    1449           0 :                 ClearPageReclaim(page);
    1450           0 :                 rotate_reclaimable_page(page);
    1451             :         }
    1452             : 
    1453             :         /*
    1454             :          * Writeback does not hold a page reference of its own, relying
    1455             :          * on truncation to wait for the clearing of PG_writeback.
    1456             :          * But here we must make sure that the page is not freed and
    1457             :          * reused before the wake_up_page().
    1458             :          */
    1459           0 :         get_page(page);
    1460           0 :         if (!test_clear_page_writeback(page))
    1461           0 :                 BUG();
    1462             : 
    1463           0 :         smp_mb__after_atomic();
    1464           0 :         wake_up_page(page, PG_writeback);
    1465           0 :         put_page(page);
    1466           0 : }
    1467             : EXPORT_SYMBOL(end_page_writeback);
    1468             : 
    1469             : /*
    1470             :  * After completing I/O on a page, call this routine to update the page
    1471             :  * flags appropriately
    1472             :  */
    1473           0 : void page_endio(struct page *page, bool is_write, int err)
    1474             : {
    1475           0 :         if (!is_write) {
    1476           0 :                 if (!err) {
    1477           0 :                         SetPageUptodate(page);
    1478             :                 } else {
    1479           0 :                         ClearPageUptodate(page);
    1480           0 :                         SetPageError(page);
    1481             :                 }
    1482           0 :                 unlock_page(page);
    1483             :         } else {
    1484           0 :                 if (err) {
    1485           0 :                         struct address_space *mapping;
    1486             : 
    1487           0 :                         SetPageError(page);
    1488           0 :                         mapping = page_mapping(page);
    1489           0 :                         if (mapping)
    1490           0 :                                 mapping_set_error(mapping, err);
    1491             :                 }
    1492           0 :                 end_page_writeback(page);
    1493             :         }
    1494           0 : }
    1495             : EXPORT_SYMBOL_GPL(page_endio);
    1496             : 
    1497             : /**
    1498             :  * __lock_page - get a lock on the page, assuming we need to sleep to get it
    1499             :  * @__page: the page to lock
    1500             :  */
    1501           0 : void __lock_page(struct page *__page)
    1502             : {
    1503           0 :         struct page *page = compound_head(__page);
    1504           0 :         wait_queue_head_t *q = page_waitqueue(page);
    1505           0 :         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
    1506             :                                 EXCLUSIVE);
    1507           0 : }
    1508             : EXPORT_SYMBOL(__lock_page);
    1509             : 
    1510           0 : int __lock_page_killable(struct page *__page)
    1511             : {
    1512           0 :         struct page *page = compound_head(__page);
    1513           0 :         wait_queue_head_t *q = page_waitqueue(page);
    1514           0 :         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
    1515             :                                         EXCLUSIVE);
    1516             : }
    1517             : EXPORT_SYMBOL_GPL(__lock_page_killable);
    1518             : 
    1519           0 : int __lock_page_async(struct page *page, struct wait_page_queue *wait)
    1520             : {
    1521           0 :         struct wait_queue_head *q = page_waitqueue(page);
    1522           0 :         int ret = 0;
    1523             : 
    1524           0 :         wait->page = page;
    1525           0 :         wait->bit_nr = PG_locked;
    1526             : 
    1527           0 :         spin_lock_irq(&q->lock);
    1528           0 :         __add_wait_queue_entry_tail(q, &wait->wait);
    1529           0 :         SetPageWaiters(page);
    1530           0 :         ret = !trylock_page(page);
    1531             :         /*
    1532             :          * If we were successful now, we know we're still on the
    1533             :          * waitqueue as we're still under the lock. This means it's
    1534             :          * safe to remove and return success, we know the callback
    1535             :          * isn't going to trigger.
    1536             :          */
    1537           0 :         if (!ret)
    1538           0 :                 __remove_wait_queue(q, &wait->wait);
    1539             :         else
    1540             :                 ret = -EIOCBQUEUED;
    1541           0 :         spin_unlock_irq(&q->lock);
    1542           0 :         return ret;
    1543             : }
    1544             : 
    1545             : /*
    1546             :  * Return values:
    1547             :  * 1 - page is locked; mmap_lock is still held.
    1548             :  * 0 - page is not locked.
    1549             :  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
    1550             :  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
    1551             :  *     which case mmap_lock is still held.
    1552             :  *
    1553             :  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
    1554             :  * with the page locked and the mmap_lock unperturbed.
    1555             :  */
    1556           0 : int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
    1557             :                          unsigned int flags)
    1558             : {
    1559           0 :         if (fault_flag_allow_retry_first(flags)) {
    1560             :                 /*
    1561             :                  * CAUTION! In this case, mmap_lock is not released
    1562             :                  * even though return 0.
    1563             :                  */
    1564           0 :                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
    1565             :                         return 0;
    1566             : 
    1567           0 :                 mmap_read_unlock(mm);
    1568           0 :                 if (flags & FAULT_FLAG_KILLABLE)
    1569           0 :                         wait_on_page_locked_killable(page);
    1570             :                 else
    1571           0 :                         wait_on_page_locked(page);
    1572           0 :                 return 0;
    1573             :         }
    1574           0 :         if (flags & FAULT_FLAG_KILLABLE) {
    1575           0 :                 int ret;
    1576             : 
    1577           0 :                 ret = __lock_page_killable(page);
    1578           0 :                 if (ret) {
    1579           0 :                         mmap_read_unlock(mm);
    1580           0 :                         return 0;
    1581             :                 }
    1582             :         } else {
    1583           0 :                 __lock_page(page);
    1584             :         }
    1585             :         return 1;
    1586             : 
    1587             : }
    1588             : 
    1589             : /**
    1590             :  * page_cache_next_miss() - Find the next gap in the page cache.
    1591             :  * @mapping: Mapping.
    1592             :  * @index: Index.
    1593             :  * @max_scan: Maximum range to search.
    1594             :  *
    1595             :  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
    1596             :  * gap with the lowest index.
    1597             :  *
    1598             :  * This function may be called under the rcu_read_lock.  However, this will
    1599             :  * not atomically search a snapshot of the cache at a single point in time.
    1600             :  * For example, if a gap is created at index 5, then subsequently a gap is
    1601             :  * created at index 10, page_cache_next_miss covering both indices may
    1602             :  * return 10 if called under the rcu_read_lock.
    1603             :  *
    1604             :  * Return: The index of the gap if found, otherwise an index outside the
    1605             :  * range specified (in which case 'return - index >= max_scan' will be true).
    1606             :  * In the rare case of index wrap-around, 0 will be returned.
    1607             :  */
    1608           0 : pgoff_t page_cache_next_miss(struct address_space *mapping,
    1609             :                              pgoff_t index, unsigned long max_scan)
    1610             : {
    1611           0 :         XA_STATE(xas, &mapping->i_pages, index);
    1612             : 
    1613           0 :         while (max_scan--) {
    1614           0 :                 void *entry = xas_next(&xas);
    1615           0 :                 if (!entry || xa_is_value(entry))
    1616             :                         break;
    1617           0 :                 if (xas.xa_index == 0)
    1618             :                         break;
    1619             :         }
    1620             : 
    1621           0 :         return xas.xa_index;
    1622             : }
    1623             : EXPORT_SYMBOL(page_cache_next_miss);
    1624             : 
    1625             : /**
    1626             :  * page_cache_prev_miss() - Find the previous gap in the page cache.
    1627             :  * @mapping: Mapping.
    1628             :  * @index: Index.
    1629             :  * @max_scan: Maximum range to search.
    1630             :  *
    1631             :  * Search the range [max(index - max_scan + 1, 0), index] for the
    1632             :  * gap with the highest index.
    1633             :  *
    1634             :  * This function may be called under the rcu_read_lock.  However, this will
    1635             :  * not atomically search a snapshot of the cache at a single point in time.
    1636             :  * For example, if a gap is created at index 10, then subsequently a gap is
    1637             :  * created at index 5, page_cache_prev_miss() covering both indices may
    1638             :  * return 5 if called under the rcu_read_lock.
    1639             :  *
    1640             :  * Return: The index of the gap if found, otherwise an index outside the
    1641             :  * range specified (in which case 'index - return >= max_scan' will be true).
    1642             :  * In the rare case of wrap-around, ULONG_MAX will be returned.
    1643             :  */
    1644           0 : pgoff_t page_cache_prev_miss(struct address_space *mapping,
    1645             :                              pgoff_t index, unsigned long max_scan)
    1646             : {
    1647           0 :         XA_STATE(xas, &mapping->i_pages, index);
    1648             : 
    1649           0 :         while (max_scan--) {
    1650           0 :                 void *entry = xas_prev(&xas);
    1651           0 :                 if (!entry || xa_is_value(entry))
    1652             :                         break;
    1653           0 :                 if (xas.xa_index == ULONG_MAX)
    1654             :                         break;
    1655             :         }
    1656             : 
    1657           0 :         return xas.xa_index;
    1658             : }
    1659             : EXPORT_SYMBOL(page_cache_prev_miss);
    1660             : 
    1661             : /*
    1662             :  * mapping_get_entry - Get a page cache entry.
    1663             :  * @mapping: the address_space to search
    1664             :  * @index: The page cache index.
    1665             :  *
    1666             :  * Looks up the page cache slot at @mapping & @offset.  If there is a
    1667             :  * page cache page, the head page is returned with an increased refcount.
    1668             :  *
    1669             :  * If the slot holds a shadow entry of a previously evicted page, or a
    1670             :  * swap entry from shmem/tmpfs, it is returned.
    1671             :  *
    1672             :  * Return: The head page or shadow entry, %NULL if nothing is found.
    1673             :  */
    1674           0 : static struct page *mapping_get_entry(struct address_space *mapping,
    1675             :                 pgoff_t index)
    1676             : {
    1677           0 :         XA_STATE(xas, &mapping->i_pages, index);
    1678           0 :         struct page *page;
    1679             : 
    1680           0 :         rcu_read_lock();
    1681             : repeat:
    1682           0 :         xas_reset(&xas);
    1683           0 :         page = xas_load(&xas);
    1684           0 :         if (xas_retry(&xas, page))
    1685           0 :                 goto repeat;
    1686             :         /*
    1687             :          * A shadow entry of a recently evicted page, or a swap entry from
    1688             :          * shmem/tmpfs.  Return it without attempting to raise page count.
    1689             :          */
    1690           0 :         if (!page || xa_is_value(page))
    1691           0 :                 goto out;
    1692             : 
    1693           0 :         if (!page_cache_get_speculative(page))
    1694           0 :                 goto repeat;
    1695             : 
    1696             :         /*
    1697             :          * Has the page moved or been split?
    1698             :          * This is part of the lockless pagecache protocol. See
    1699             :          * include/linux/pagemap.h for details.
    1700             :          */
    1701           0 :         if (unlikely(page != xas_reload(&xas))) {
    1702           0 :                 put_page(page);
    1703           0 :                 goto repeat;
    1704             :         }
    1705           0 : out:
    1706           0 :         rcu_read_unlock();
    1707             : 
    1708           0 :         return page;
    1709             : }
    1710             : 
    1711             : /**
    1712             :  * pagecache_get_page - Find and get a reference to a page.
    1713             :  * @mapping: The address_space to search.
    1714             :  * @index: The page index.
    1715             :  * @fgp_flags: %FGP flags modify how the page is returned.
    1716             :  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
    1717             :  *
    1718             :  * Looks up the page cache entry at @mapping & @index.
    1719             :  *
    1720             :  * @fgp_flags can be zero or more of these flags:
    1721             :  *
    1722             :  * * %FGP_ACCESSED - The page will be marked accessed.
    1723             :  * * %FGP_LOCK - The page is returned locked.
    1724             :  * * %FGP_HEAD - If the page is present and a THP, return the head page
    1725             :  *   rather than the exact page specified by the index.
    1726             :  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
    1727             :  *   instead of allocating a new page to replace it.
    1728             :  * * %FGP_CREAT - If no page is present then a new page is allocated using
    1729             :  *   @gfp_mask and added to the page cache and the VM's LRU list.
    1730             :  *   The page is returned locked and with an increased refcount.
    1731             :  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
    1732             :  *   page is already in cache.  If the page was allocated, unlock it before
    1733             :  *   returning so the caller can do the same dance.
    1734             :  * * %FGP_WRITE - The page will be written
    1735             :  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
    1736             :  * * %FGP_NOWAIT - Don't get blocked by page lock
    1737             :  *
    1738             :  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
    1739             :  * if the %GFP flags specified for %FGP_CREAT are atomic.
    1740             :  *
    1741             :  * If there is a page cache page, it is returned with an increased refcount.
    1742             :  *
    1743             :  * Return: The found page or %NULL otherwise.
    1744             :  */
    1745           0 : struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
    1746             :                 int fgp_flags, gfp_t gfp_mask)
    1747             : {
    1748           0 :         struct page *page;
    1749             : 
    1750             : repeat:
    1751           0 :         page = mapping_get_entry(mapping, index);
    1752           0 :         if (xa_is_value(page)) {
    1753           0 :                 if (fgp_flags & FGP_ENTRY)
    1754           0 :                         return page;
    1755             :                 page = NULL;
    1756             :         }
    1757           0 :         if (!page)
    1758           0 :                 goto no_page;
    1759             : 
    1760           0 :         if (fgp_flags & FGP_LOCK) {
    1761           0 :                 if (fgp_flags & FGP_NOWAIT) {
    1762           0 :                         if (!trylock_page(page)) {
    1763           0 :                                 put_page(page);
    1764           0 :                                 return NULL;
    1765             :                         }
    1766             :                 } else {
    1767           0 :                         lock_page(page);
    1768             :                 }
    1769             : 
    1770             :                 /* Has the page been truncated? */
    1771           0 :                 if (unlikely(page->mapping != mapping)) {
    1772           0 :                         unlock_page(page);
    1773           0 :                         put_page(page);
    1774           0 :                         goto repeat;
    1775             :                 }
    1776           0 :                 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
    1777             :         }
    1778             : 
    1779           0 :         if (fgp_flags & FGP_ACCESSED)
    1780           0 :                 mark_page_accessed(page);
    1781             :         else if (fgp_flags & FGP_WRITE) {
    1782             :                 /* Clear idle flag for buffer write */
    1783           0 :                 if (page_is_idle(page))
    1784           0 :                         clear_page_idle(page);
    1785             :         }
    1786           0 :         if (!(fgp_flags & FGP_HEAD))
    1787           0 :                 page = find_subpage(page, index);
    1788             : 
    1789           0 : no_page:
    1790           0 :         if (!page && (fgp_flags & FGP_CREAT)) {
    1791           0 :                 int err;
    1792           0 :                 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
    1793           0 :                         gfp_mask |= __GFP_WRITE;
    1794           0 :                 if (fgp_flags & FGP_NOFS)
    1795           0 :                         gfp_mask &= ~__GFP_FS;
    1796             : 
    1797           0 :                 page = __page_cache_alloc(gfp_mask);
    1798           0 :                 if (!page)
    1799             :                         return NULL;
    1800             : 
    1801           0 :                 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
    1802           0 :                         fgp_flags |= FGP_LOCK;
    1803             : 
    1804             :                 /* Init accessed so avoid atomic mark_page_accessed later */
    1805           0 :                 if (fgp_flags & FGP_ACCESSED)
    1806           0 :                         __SetPageReferenced(page);
    1807             : 
    1808           0 :                 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
    1809           0 :                 if (unlikely(err)) {
    1810           0 :                         put_page(page);
    1811           0 :                         page = NULL;
    1812           0 :                         if (err == -EEXIST)
    1813           0 :                                 goto repeat;
    1814             :                 }
    1815             : 
    1816             :                 /*
    1817             :                  * add_to_page_cache_lru locks the page, and for mmap we expect
    1818             :                  * an unlocked page.
    1819             :                  */
    1820           0 :                 if (page && (fgp_flags & FGP_FOR_MMAP))
    1821           0 :                         unlock_page(page);
    1822             :         }
    1823             : 
    1824             :         return page;
    1825             : }
    1826             : EXPORT_SYMBOL(pagecache_get_page);
    1827             : 
    1828           0 : static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
    1829             :                 xa_mark_t mark)
    1830             : {
    1831           0 :         struct page *page;
    1832             : 
    1833             : retry:
    1834           0 :         if (mark == XA_PRESENT)
    1835           0 :                 page = xas_find(xas, max);
    1836             :         else
    1837           0 :                 page = xas_find_marked(xas, max, mark);
    1838             : 
    1839           0 :         if (xas_retry(xas, page))
    1840           0 :                 goto retry;
    1841             :         /*
    1842             :          * A shadow entry of a recently evicted page, a swap
    1843             :          * entry from shmem/tmpfs or a DAX entry.  Return it
    1844             :          * without attempting to raise page count.
    1845             :          */
    1846           0 :         if (!page || xa_is_value(page))
    1847           0 :                 return page;
    1848             : 
    1849           0 :         if (!page_cache_get_speculative(page))
    1850           0 :                 goto reset;
    1851             : 
    1852             :         /* Has the page moved or been split? */
    1853           0 :         if (unlikely(page != xas_reload(xas))) {
    1854           0 :                 put_page(page);
    1855           0 :                 goto reset;
    1856             :         }
    1857             : 
    1858             :         return page;
    1859           0 : reset:
    1860           0 :         xas_reset(xas);
    1861           0 :         goto retry;
    1862             : }
    1863             : 
    1864             : /**
    1865             :  * find_get_entries - gang pagecache lookup
    1866             :  * @mapping:    The address_space to search
    1867             :  * @start:      The starting page cache index
    1868             :  * @end:        The final page index (inclusive).
    1869             :  * @pvec:       Where the resulting entries are placed.
    1870             :  * @indices:    The cache indices corresponding to the entries in @entries
    1871             :  *
    1872             :  * find_get_entries() will search for and return a batch of entries in
    1873             :  * the mapping.  The entries are placed in @pvec.  find_get_entries()
    1874             :  * takes a reference on any actual pages it returns.
    1875             :  *
    1876             :  * The search returns a group of mapping-contiguous page cache entries
    1877             :  * with ascending indexes.  There may be holes in the indices due to
    1878             :  * not-present pages.
    1879             :  *
    1880             :  * Any shadow entries of evicted pages, or swap entries from
    1881             :  * shmem/tmpfs, are included in the returned array.
    1882             :  *
    1883             :  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
    1884             :  * stops at that page: the caller is likely to have a better way to handle
    1885             :  * the compound page as a whole, and then skip its extent, than repeatedly
    1886             :  * calling find_get_entries() to return all its tails.
    1887             :  *
    1888             :  * Return: the number of pages and shadow entries which were found.
    1889             :  */
    1890           0 : unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
    1891             :                 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
    1892             : {
    1893           0 :         XA_STATE(xas, &mapping->i_pages, start);
    1894           0 :         struct page *page;
    1895           0 :         unsigned int ret = 0;
    1896           0 :         unsigned nr_entries = PAGEVEC_SIZE;
    1897             : 
    1898           0 :         rcu_read_lock();
    1899           0 :         while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
    1900             :                 /*
    1901             :                  * Terminate early on finding a THP, to allow the caller to
    1902             :                  * handle it all at once; but continue if this is hugetlbfs.
    1903             :                  */
    1904           0 :                 if (!xa_is_value(page) && PageTransHuge(page) &&
    1905           0 :                                 !PageHuge(page)) {
    1906           0 :                         page = find_subpage(page, xas.xa_index);
    1907           0 :                         nr_entries = ret + 1;
    1908             :                 }
    1909             : 
    1910           0 :                 indices[ret] = xas.xa_index;
    1911           0 :                 pvec->pages[ret] = page;
    1912           0 :                 if (++ret == nr_entries)
    1913             :                         break;
    1914             :         }
    1915           0 :         rcu_read_unlock();
    1916             : 
    1917           0 :         pvec->nr = ret;
    1918           0 :         return ret;
    1919             : }
    1920             : 
    1921             : /**
    1922             :  * find_lock_entries - Find a batch of pagecache entries.
    1923             :  * @mapping:    The address_space to search.
    1924             :  * @start:      The starting page cache index.
    1925             :  * @end:        The final page index (inclusive).
    1926             :  * @pvec:       Where the resulting entries are placed.
    1927             :  * @indices:    The cache indices of the entries in @pvec.
    1928             :  *
    1929             :  * find_lock_entries() will return a batch of entries from @mapping.
    1930             :  * Swap, shadow and DAX entries are included.  Pages are returned
    1931             :  * locked and with an incremented refcount.  Pages which are locked by
    1932             :  * somebody else or under writeback are skipped.  Only the head page of
    1933             :  * a THP is returned.  Pages which are partially outside the range are
    1934             :  * not returned.
    1935             :  *
    1936             :  * The entries have ascending indexes.  The indices may not be consecutive
    1937             :  * due to not-present entries, THP pages, pages which could not be locked
    1938             :  * or pages under writeback.
    1939             :  *
    1940             :  * Return: The number of entries which were found.
    1941             :  */
    1942           0 : unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
    1943             :                 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
    1944             : {
    1945           0 :         XA_STATE(xas, &mapping->i_pages, start);
    1946           0 :         struct page *page;
    1947             : 
    1948           0 :         rcu_read_lock();
    1949           0 :         while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
    1950           0 :                 if (!xa_is_value(page)) {
    1951           0 :                         if (page->index < start)
    1952           0 :                                 goto put;
    1953           0 :                         VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
    1954           0 :                         if (page->index + thp_nr_pages(page) - 1 > end)
    1955           0 :                                 goto put;
    1956           0 :                         if (!trylock_page(page))
    1957           0 :                                 goto put;
    1958           0 :                         if (page->mapping != mapping || PageWriteback(page))
    1959           0 :                                 goto unlock;
    1960           0 :                         VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
    1961             :                                         page);
    1962             :                 }
    1963           0 :                 indices[pvec->nr] = xas.xa_index;
    1964           0 :                 if (!pagevec_add(pvec, page))
    1965             :                         break;
    1966           0 :                 goto next;
    1967           0 : unlock:
    1968           0 :                 unlock_page(page);
    1969           0 : put:
    1970           0 :                 put_page(page);
    1971           0 : next:
    1972           0 :                 if (!xa_is_value(page) && PageTransHuge(page))
    1973           0 :                         xas_set(&xas, page->index + thp_nr_pages(page));
    1974             :         }
    1975           0 :         rcu_read_unlock();
    1976             : 
    1977           0 :         return pagevec_count(pvec);
    1978             : }
    1979             : 
    1980             : /**
    1981             :  * find_get_pages_range - gang pagecache lookup
    1982             :  * @mapping:    The address_space to search
    1983             :  * @start:      The starting page index
    1984             :  * @end:        The final page index (inclusive)
    1985             :  * @nr_pages:   The maximum number of pages
    1986             :  * @pages:      Where the resulting pages are placed
    1987             :  *
    1988             :  * find_get_pages_range() will search for and return a group of up to @nr_pages
    1989             :  * pages in the mapping starting at index @start and up to index @end
    1990             :  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
    1991             :  * a reference against the returned pages.
    1992             :  *
    1993             :  * The search returns a group of mapping-contiguous pages with ascending
    1994             :  * indexes.  There may be holes in the indices due to not-present pages.
    1995             :  * We also update @start to index the next page for the traversal.
    1996             :  *
    1997             :  * Return: the number of pages which were found. If this number is
    1998             :  * smaller than @nr_pages, the end of specified range has been
    1999             :  * reached.
    2000             :  */
    2001           0 : unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
    2002             :                               pgoff_t end, unsigned int nr_pages,
    2003             :                               struct page **pages)
    2004             : {
    2005           0 :         XA_STATE(xas, &mapping->i_pages, *start);
    2006           0 :         struct page *page;
    2007           0 :         unsigned ret = 0;
    2008             : 
    2009           0 :         if (unlikely(!nr_pages))
    2010             :                 return 0;
    2011             : 
    2012           0 :         rcu_read_lock();
    2013           0 :         while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
    2014             :                 /* Skip over shadow, swap and DAX entries */
    2015           0 :                 if (xa_is_value(page))
    2016           0 :                         continue;
    2017             : 
    2018           0 :                 pages[ret] = find_subpage(page, xas.xa_index);
    2019           0 :                 if (++ret == nr_pages) {
    2020           0 :                         *start = xas.xa_index + 1;
    2021           0 :                         goto out;
    2022             :                 }
    2023             :         }
    2024             : 
    2025             :         /*
    2026             :          * We come here when there is no page beyond @end. We take care to not
    2027             :          * overflow the index @start as it confuses some of the callers. This
    2028             :          * breaks the iteration when there is a page at index -1 but that is
    2029             :          * already broken anyway.
    2030             :          */
    2031           0 :         if (end == (pgoff_t)-1)
    2032           0 :                 *start = (pgoff_t)-1;
    2033             :         else
    2034           0 :                 *start = end + 1;
    2035           0 : out:
    2036           0 :         rcu_read_unlock();
    2037             : 
    2038           0 :         return ret;
    2039             : }
    2040             : 
    2041             : /**
    2042             :  * find_get_pages_contig - gang contiguous pagecache lookup
    2043             :  * @mapping:    The address_space to search
    2044             :  * @index:      The starting page index
    2045             :  * @nr_pages:   The maximum number of pages
    2046             :  * @pages:      Where the resulting pages are placed
    2047             :  *
    2048             :  * find_get_pages_contig() works exactly like find_get_pages(), except
    2049             :  * that the returned number of pages are guaranteed to be contiguous.
    2050             :  *
    2051             :  * Return: the number of pages which were found.
    2052             :  */
    2053           0 : unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
    2054             :                                unsigned int nr_pages, struct page **pages)
    2055             : {
    2056           0 :         XA_STATE(xas, &mapping->i_pages, index);
    2057           0 :         struct page *page;
    2058           0 :         unsigned int ret = 0;
    2059             : 
    2060           0 :         if (unlikely(!nr_pages))
    2061             :                 return 0;
    2062             : 
    2063           0 :         rcu_read_lock();
    2064           0 :         for (page = xas_load(&xas); page; page = xas_next(&xas)) {
    2065           0 :                 if (xas_retry(&xas, page))
    2066           0 :                         continue;
    2067             :                 /*
    2068             :                  * If the entry has been swapped out, we can stop looking.
    2069             :                  * No current caller is looking for DAX entries.
    2070             :                  */
    2071           0 :                 if (xa_is_value(page))
    2072             :                         break;
    2073             : 
    2074           0 :                 if (!page_cache_get_speculative(page))
    2075           0 :                         goto retry;
    2076             : 
    2077             :                 /* Has the page moved or been split? */
    2078           0 :                 if (unlikely(page != xas_reload(&xas)))
    2079           0 :                         goto put_page;
    2080             : 
    2081           0 :                 pages[ret] = find_subpage(page, xas.xa_index);
    2082           0 :                 if (++ret == nr_pages)
    2083             :                         break;
    2084           0 :                 continue;
    2085           0 : put_page:
    2086           0 :                 put_page(page);
    2087           0 : retry:
    2088           0 :                 xas_reset(&xas);
    2089             :         }
    2090           0 :         rcu_read_unlock();
    2091           0 :         return ret;
    2092             : }
    2093             : EXPORT_SYMBOL(find_get_pages_contig);
    2094             : 
    2095             : /**
    2096             :  * find_get_pages_range_tag - Find and return head pages matching @tag.
    2097             :  * @mapping:    the address_space to search
    2098             :  * @index:      the starting page index
    2099             :  * @end:        The final page index (inclusive)
    2100             :  * @tag:        the tag index
    2101             :  * @nr_pages:   the maximum number of pages
    2102             :  * @pages:      where the resulting pages are placed
    2103             :  *
    2104             :  * Like find_get_pages(), except we only return head pages which are tagged
    2105             :  * with @tag.  @index is updated to the index immediately after the last
    2106             :  * page we return, ready for the next iteration.
    2107             :  *
    2108             :  * Return: the number of pages which were found.
    2109             :  */
    2110           0 : unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
    2111             :                         pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
    2112             :                         struct page **pages)
    2113             : {
    2114           0 :         XA_STATE(xas, &mapping->i_pages, *index);
    2115           0 :         struct page *page;
    2116           0 :         unsigned ret = 0;
    2117             : 
    2118           0 :         if (unlikely(!nr_pages))
    2119             :                 return 0;
    2120             : 
    2121           0 :         rcu_read_lock();
    2122           0 :         while ((page = find_get_entry(&xas, end, tag))) {
    2123             :                 /*
    2124             :                  * Shadow entries should never be tagged, but this iteration
    2125             :                  * is lockless so there is a window for page reclaim to evict
    2126             :                  * a page we saw tagged.  Skip over it.
    2127             :                  */
    2128           0 :                 if (xa_is_value(page))
    2129           0 :                         continue;
    2130             : 
    2131           0 :                 pages[ret] = page;
    2132           0 :                 if (++ret == nr_pages) {
    2133           0 :                         *index = page->index + thp_nr_pages(page);
    2134           0 :                         goto out;
    2135             :                 }
    2136             :         }
    2137             : 
    2138             :         /*
    2139             :          * We come here when we got to @end. We take care to not overflow the
    2140             :          * index @index as it confuses some of the callers. This breaks the
    2141             :          * iteration when there is a page at index -1 but that is already
    2142             :          * broken anyway.
    2143             :          */
    2144           0 :         if (end == (pgoff_t)-1)
    2145           0 :                 *index = (pgoff_t)-1;
    2146             :         else
    2147           0 :                 *index = end + 1;
    2148           0 : out:
    2149           0 :         rcu_read_unlock();
    2150             : 
    2151           0 :         return ret;
    2152             : }
    2153             : EXPORT_SYMBOL(find_get_pages_range_tag);
    2154             : 
    2155             : /*
    2156             :  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
    2157             :  * a _large_ part of the i/o request. Imagine the worst scenario:
    2158             :  *
    2159             :  *      ---R__________________________________________B__________
    2160             :  *         ^ reading here                             ^ bad block(assume 4k)
    2161             :  *
    2162             :  * read(R) => miss => readahead(R...B) => media error => frustrating retries
    2163             :  * => failing the whole request => read(R) => read(R+1) =>
    2164             :  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
    2165             :  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
    2166             :  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
    2167             :  *
    2168             :  * It is going insane. Fix it by quickly scaling down the readahead size.
    2169             :  */
    2170           0 : static void shrink_readahead_size_eio(struct file_ra_state *ra)
    2171             : {
    2172           0 :         ra->ra_pages /= 4;
    2173             : }
    2174             : 
    2175             : /*
    2176             :  * filemap_get_read_batch - Get a batch of pages for read
    2177             :  *
    2178             :  * Get a batch of pages which represent a contiguous range of bytes
    2179             :  * in the file.  No tail pages will be returned.  If @index is in the
    2180             :  * middle of a THP, the entire THP will be returned.  The last page in
    2181             :  * the batch may have Readahead set or be not Uptodate so that the
    2182             :  * caller can take the appropriate action.
    2183             :  */
    2184           0 : static void filemap_get_read_batch(struct address_space *mapping,
    2185             :                 pgoff_t index, pgoff_t max, struct pagevec *pvec)
    2186             : {
    2187           0 :         XA_STATE(xas, &mapping->i_pages, index);
    2188           0 :         struct page *head;
    2189             : 
    2190           0 :         rcu_read_lock();
    2191           0 :         for (head = xas_load(&xas); head; head = xas_next(&xas)) {
    2192           0 :                 if (xas_retry(&xas, head))
    2193           0 :                         continue;
    2194           0 :                 if (xas.xa_index > max || xa_is_value(head))
    2195             :                         break;
    2196           0 :                 if (!page_cache_get_speculative(head))
    2197           0 :                         goto retry;
    2198             : 
    2199             :                 /* Has the page moved or been split? */
    2200           0 :                 if (unlikely(head != xas_reload(&xas)))
    2201           0 :                         goto put_page;
    2202             : 
    2203           0 :                 if (!pagevec_add(pvec, head))
    2204             :                         break;
    2205           0 :                 if (!PageUptodate(head))
    2206             :                         break;
    2207           0 :                 if (PageReadahead(head))
    2208             :                         break;
    2209           0 :                 xas.xa_index = head->index + thp_nr_pages(head) - 1;
    2210           0 :                 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
    2211           0 :                 continue;
    2212           0 : put_page:
    2213           0 :                 put_page(head);
    2214           0 : retry:
    2215           0 :                 xas_reset(&xas);
    2216             :         }
    2217           0 :         rcu_read_unlock();
    2218           0 : }
    2219             : 
    2220           0 : static int filemap_read_page(struct file *file, struct address_space *mapping,
    2221             :                 struct page *page)
    2222             : {
    2223           0 :         int error;
    2224             : 
    2225             :         /*
    2226             :          * A previous I/O error may have been due to temporary failures,
    2227             :          * eg. multipath errors.  PG_error will be set again if readpage
    2228             :          * fails.
    2229             :          */
    2230           0 :         ClearPageError(page);
    2231             :         /* Start the actual read. The read will unlock the page. */
    2232           0 :         error = mapping->a_ops->readpage(file, page);
    2233           0 :         if (error)
    2234             :                 return error;
    2235             : 
    2236           0 :         error = wait_on_page_locked_killable(page);
    2237           0 :         if (error)
    2238             :                 return error;
    2239           0 :         if (PageUptodate(page))
    2240             :                 return 0;
    2241           0 :         if (!page->mapping)  /* page truncated */
    2242             :                 return AOP_TRUNCATED_PAGE;
    2243           0 :         shrink_readahead_size_eio(&file->f_ra);
    2244           0 :         return -EIO;
    2245             : }
    2246             : 
    2247           0 : static bool filemap_range_uptodate(struct address_space *mapping,
    2248             :                 loff_t pos, struct iov_iter *iter, struct page *page)
    2249             : {
    2250           0 :         int count;
    2251             : 
    2252           0 :         if (PageUptodate(page))
    2253             :                 return true;
    2254             :         /* pipes can't handle partially uptodate pages */
    2255           0 :         if (iov_iter_is_pipe(iter))
    2256             :                 return false;
    2257           0 :         if (!mapping->a_ops->is_partially_uptodate)
    2258             :                 return false;
    2259           0 :         if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
    2260             :                 return false;
    2261             : 
    2262           0 :         count = iter->count;
    2263           0 :         if (page_offset(page) > pos) {
    2264           0 :                 count -= page_offset(page) - pos;
    2265           0 :                 pos = 0;
    2266             :         } else {
    2267           0 :                 pos -= page_offset(page);
    2268             :         }
    2269             : 
    2270           0 :         return mapping->a_ops->is_partially_uptodate(page, pos, count);
    2271             : }
    2272             : 
    2273           0 : static int filemap_update_page(struct kiocb *iocb,
    2274             :                 struct address_space *mapping, struct iov_iter *iter,
    2275             :                 struct page *page)
    2276             : {
    2277           0 :         int error;
    2278             : 
    2279           0 :         if (!trylock_page(page)) {
    2280           0 :                 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
    2281             :                         return -EAGAIN;
    2282           0 :                 if (!(iocb->ki_flags & IOCB_WAITQ)) {
    2283           0 :                         put_and_wait_on_page_locked(page, TASK_KILLABLE);
    2284           0 :                         return AOP_TRUNCATED_PAGE;
    2285             :                 }
    2286           0 :                 error = __lock_page_async(page, iocb->ki_waitq);
    2287           0 :                 if (error)
    2288             :                         return error;
    2289             :         }
    2290             : 
    2291           0 :         if (!page->mapping)
    2292           0 :                 goto truncated;
    2293             : 
    2294           0 :         error = 0;
    2295           0 :         if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
    2296           0 :                 goto unlock;
    2297             : 
    2298           0 :         error = -EAGAIN;
    2299           0 :         if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
    2300           0 :                 goto unlock;
    2301             : 
    2302           0 :         error = filemap_read_page(iocb->ki_filp, mapping, page);
    2303           0 :         if (error == AOP_TRUNCATED_PAGE)
    2304           0 :                 put_page(page);
    2305             :         return error;
    2306           0 : truncated:
    2307           0 :         unlock_page(page);
    2308           0 :         put_page(page);
    2309           0 :         return AOP_TRUNCATED_PAGE;
    2310           0 : unlock:
    2311           0 :         unlock_page(page);
    2312           0 :         return error;
    2313             : }
    2314             : 
    2315           0 : static int filemap_create_page(struct file *file,
    2316             :                 struct address_space *mapping, pgoff_t index,
    2317             :                 struct pagevec *pvec)
    2318             : {
    2319           0 :         struct page *page;
    2320           0 :         int error;
    2321             : 
    2322           0 :         page = page_cache_alloc(mapping);
    2323           0 :         if (!page)
    2324             :                 return -ENOMEM;
    2325             : 
    2326           0 :         error = add_to_page_cache_lru(page, mapping, index,
    2327             :                         mapping_gfp_constraint(mapping, GFP_KERNEL));
    2328           0 :         if (error == -EEXIST)
    2329             :                 error = AOP_TRUNCATED_PAGE;
    2330           0 :         if (error)
    2331           0 :                 goto error;
    2332             : 
    2333           0 :         error = filemap_read_page(file, mapping, page);
    2334           0 :         if (error)
    2335           0 :                 goto error;
    2336             : 
    2337           0 :         pagevec_add(pvec, page);
    2338           0 :         return 0;
    2339           0 : error:
    2340           0 :         put_page(page);
    2341           0 :         return error;
    2342             : }
    2343             : 
    2344           0 : static int filemap_readahead(struct kiocb *iocb, struct file *file,
    2345             :                 struct address_space *mapping, struct page *page,
    2346             :                 pgoff_t last_index)
    2347             : {
    2348           0 :         if (iocb->ki_flags & IOCB_NOIO)
    2349             :                 return -EAGAIN;
    2350           0 :         page_cache_async_readahead(mapping, &file->f_ra, file, page,
    2351           0 :                         page->index, last_index - page->index);
    2352           0 :         return 0;
    2353             : }
    2354             : 
    2355           0 : static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
    2356             :                 struct pagevec *pvec)
    2357             : {
    2358           0 :         struct file *filp = iocb->ki_filp;
    2359           0 :         struct address_space *mapping = filp->f_mapping;
    2360           0 :         struct file_ra_state *ra = &filp->f_ra;
    2361           0 :         pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
    2362           0 :         pgoff_t last_index;
    2363           0 :         struct page *page;
    2364           0 :         int err = 0;
    2365             : 
    2366           0 :         last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
    2367             : retry:
    2368           0 :         if (fatal_signal_pending(current))
    2369             :                 return -EINTR;
    2370             : 
    2371           0 :         filemap_get_read_batch(mapping, index, last_index, pvec);
    2372           0 :         if (!pagevec_count(pvec)) {
    2373           0 :                 if (iocb->ki_flags & IOCB_NOIO)
    2374             :                         return -EAGAIN;
    2375           0 :                 page_cache_sync_readahead(mapping, ra, filp, index,
    2376             :                                 last_index - index);
    2377           0 :                 filemap_get_read_batch(mapping, index, last_index, pvec);
    2378             :         }
    2379           0 :         if (!pagevec_count(pvec)) {
    2380           0 :                 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
    2381             :                         return -EAGAIN;
    2382           0 :                 err = filemap_create_page(filp, mapping,
    2383           0 :                                 iocb->ki_pos >> PAGE_SHIFT, pvec);
    2384           0 :                 if (err == AOP_TRUNCATED_PAGE)
    2385           0 :                         goto retry;
    2386           0 :                 return err;
    2387             :         }
    2388             : 
    2389           0 :         page = pvec->pages[pagevec_count(pvec) - 1];
    2390           0 :         if (PageReadahead(page)) {
    2391           0 :                 err = filemap_readahead(iocb, filp, mapping, page, last_index);
    2392           0 :                 if (err)
    2393           0 :                         goto err;
    2394             :         }
    2395           0 :         if (!PageUptodate(page)) {
    2396           0 :                 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
    2397           0 :                         iocb->ki_flags |= IOCB_NOWAIT;
    2398           0 :                 err = filemap_update_page(iocb, mapping, iter, page);
    2399           0 :                 if (err)
    2400           0 :                         goto err;
    2401             :         }
    2402             : 
    2403             :         return 0;
    2404           0 : err:
    2405           0 :         if (err < 0)
    2406           0 :                 put_page(page);
    2407           0 :         if (likely(--pvec->nr))
    2408             :                 return 0;
    2409           0 :         if (err == AOP_TRUNCATED_PAGE)
    2410           0 :                 goto retry;
    2411             :         return err;
    2412             : }
    2413             : 
    2414             : /**
    2415             :  * filemap_read - Read data from the page cache.
    2416             :  * @iocb: The iocb to read.
    2417             :  * @iter: Destination for the data.
    2418             :  * @already_read: Number of bytes already read by the caller.
    2419             :  *
    2420             :  * Copies data from the page cache.  If the data is not currently present,
    2421             :  * uses the readahead and readpage address_space operations to fetch it.
    2422             :  *
    2423             :  * Return: Total number of bytes copied, including those already read by
    2424             :  * the caller.  If an error happens before any bytes are copied, returns
    2425             :  * a negative error number.
    2426             :  */
    2427           0 : ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
    2428             :                 ssize_t already_read)
    2429             : {
    2430           0 :         struct file *filp = iocb->ki_filp;
    2431           0 :         struct file_ra_state *ra = &filp->f_ra;
    2432           0 :         struct address_space *mapping = filp->f_mapping;
    2433           0 :         struct inode *inode = mapping->host;
    2434           0 :         struct pagevec pvec;
    2435           0 :         int i, error = 0;
    2436           0 :         bool writably_mapped;
    2437           0 :         loff_t isize, end_offset;
    2438             : 
    2439           0 :         if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
    2440             :                 return 0;
    2441           0 :         if (unlikely(!iov_iter_count(iter)))
    2442             :                 return 0;
    2443             : 
    2444           0 :         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
    2445           0 :         pagevec_init(&pvec);
    2446             : 
    2447           0 :         do {
    2448           0 :                 cond_resched();
    2449             : 
    2450             :                 /*
    2451             :                  * If we've already successfully copied some data, then we
    2452             :                  * can no longer safely return -EIOCBQUEUED. Hence mark
    2453             :                  * an async read NOWAIT at that point.
    2454             :                  */
    2455           0 :                 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
    2456           0 :                         iocb->ki_flags |= IOCB_NOWAIT;
    2457             : 
    2458           0 :                 error = filemap_get_pages(iocb, iter, &pvec);
    2459           0 :                 if (error < 0)
    2460             :                         break;
    2461             : 
    2462             :                 /*
    2463             :                  * i_size must be checked after we know the pages are Uptodate.
    2464             :                  *
    2465             :                  * Checking i_size after the check allows us to calculate
    2466             :                  * the correct value for "nr", which means the zero-filled
    2467             :                  * part of the page is not copied back to userspace (unless
    2468             :                  * another truncate extends the file - this is desired though).
    2469             :                  */
    2470           0 :                 isize = i_size_read(inode);
    2471           0 :                 if (unlikely(iocb->ki_pos >= isize))
    2472           0 :                         goto put_pages;
    2473           0 :                 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
    2474             : 
    2475             :                 /*
    2476             :                  * Once we start copying data, we don't want to be touching any
    2477             :                  * cachelines that might be contended:
    2478             :                  */
    2479           0 :                 writably_mapped = mapping_writably_mapped(mapping);
    2480             : 
    2481             :                 /*
    2482             :                  * When a sequential read accesses a page several times, only
    2483             :                  * mark it as accessed the first time.
    2484             :                  */
    2485           0 :                 if (iocb->ki_pos >> PAGE_SHIFT !=
    2486           0 :                     ra->prev_pos >> PAGE_SHIFT)
    2487           0 :                         mark_page_accessed(pvec.pages[0]);
    2488             : 
    2489           0 :                 for (i = 0; i < pagevec_count(&pvec); i++) {
    2490           0 :                         struct page *page = pvec.pages[i];
    2491           0 :                         size_t page_size = thp_size(page);
    2492           0 :                         size_t offset = iocb->ki_pos & (page_size - 1);
    2493           0 :                         size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
    2494             :                                              page_size - offset);
    2495           0 :                         size_t copied;
    2496             : 
    2497           0 :                         if (end_offset < page_offset(page))
    2498             :                                 break;
    2499           0 :                         if (i > 0)
    2500           0 :                                 mark_page_accessed(page);
    2501             :                         /*
    2502             :                          * If users can be writing to this page using arbitrary
    2503             :                          * virtual addresses, take care about potential aliasing
    2504             :                          * before reading the page on the kernel side.
    2505             :                          */
    2506           0 :                         if (writably_mapped) {
    2507             :                                 int j;
    2508             : 
    2509           0 :                                 for (j = 0; j < thp_nr_pages(page); j++)
    2510           0 :                                         flush_dcache_page(page + j);
    2511             :                         }
    2512             : 
    2513           0 :                         copied = copy_page_to_iter(page, offset, bytes, iter);
    2514             : 
    2515           0 :                         already_read += copied;
    2516           0 :                         iocb->ki_pos += copied;
    2517           0 :                         ra->prev_pos = iocb->ki_pos;
    2518             : 
    2519           0 :                         if (copied < bytes) {
    2520             :                                 error = -EFAULT;
    2521             :                                 break;
    2522             :                         }
    2523             :                 }
    2524           0 : put_pages:
    2525           0 :                 for (i = 0; i < pagevec_count(&pvec); i++)
    2526           0 :                         put_page(pvec.pages[i]);
    2527           0 :                 pagevec_reinit(&pvec);
    2528           0 :         } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
    2529             : 
    2530           0 :         file_accessed(filp);
    2531             : 
    2532           0 :         return already_read ? already_read : error;
    2533             : }
    2534             : EXPORT_SYMBOL_GPL(filemap_read);
    2535             : 
    2536             : /**
    2537             :  * generic_file_read_iter - generic filesystem read routine
    2538             :  * @iocb:       kernel I/O control block
    2539             :  * @iter:       destination for the data read
    2540             :  *
    2541             :  * This is the "read_iter()" routine for all filesystems
    2542             :  * that can use the page cache directly.
    2543             :  *
    2544             :  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
    2545             :  * be returned when no data can be read without waiting for I/O requests
    2546             :  * to complete; it doesn't prevent readahead.
    2547             :  *
    2548             :  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
    2549             :  * requests shall be made for the read or for readahead.  When no data
    2550             :  * can be read, -EAGAIN shall be returned.  When readahead would be
    2551             :  * triggered, a partial, possibly empty read shall be returned.
    2552             :  *
    2553             :  * Return:
    2554             :  * * number of bytes copied, even for partial reads
    2555             :  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
    2556             :  */
    2557             : ssize_t
    2558           0 : generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
    2559             : {
    2560           0 :         size_t count = iov_iter_count(iter);
    2561           0 :         ssize_t retval = 0;
    2562             : 
    2563           0 :         if (!count)
    2564             :                 return 0; /* skip atime */
    2565             : 
    2566           0 :         if (iocb->ki_flags & IOCB_DIRECT) {
    2567           0 :                 struct file *file = iocb->ki_filp;
    2568           0 :                 struct address_space *mapping = file->f_mapping;
    2569           0 :                 struct inode *inode = mapping->host;
    2570           0 :                 loff_t size;
    2571             : 
    2572           0 :                 size = i_size_read(inode);
    2573           0 :                 if (iocb->ki_flags & IOCB_NOWAIT) {
    2574           0 :                         if (filemap_range_has_page(mapping, iocb->ki_pos,
    2575           0 :                                                    iocb->ki_pos + count - 1))
    2576             :                                 return -EAGAIN;
    2577             :                 } else {
    2578           0 :                         retval = filemap_write_and_wait_range(mapping,
    2579             :                                                 iocb->ki_pos,
    2580           0 :                                                 iocb->ki_pos + count - 1);
    2581           0 :                         if (retval < 0)
    2582             :                                 return retval;
    2583             :                 }
    2584             : 
    2585           0 :                 file_accessed(file);
    2586             : 
    2587           0 :                 retval = mapping->a_ops->direct_IO(iocb, iter);
    2588           0 :                 if (retval >= 0) {
    2589           0 :                         iocb->ki_pos += retval;
    2590           0 :                         count -= retval;
    2591             :                 }
    2592           0 :                 if (retval != -EIOCBQUEUED)
    2593           0 :                         iov_iter_revert(iter, count - iov_iter_count(iter));
    2594             : 
    2595             :                 /*
    2596             :                  * Btrfs can have a short DIO read if we encounter
    2597             :                  * compressed extents, so if there was an error, or if
    2598             :                  * we've already read everything we wanted to, or if
    2599             :                  * there was a short read because we hit EOF, go ahead
    2600             :                  * and return.  Otherwise fallthrough to buffered io for
    2601             :                  * the rest of the read.  Buffered reads will not work for
    2602             :                  * DAX files, so don't bother trying.
    2603             :                  */
    2604           0 :                 if (retval < 0 || !count || iocb->ki_pos >= size ||
    2605             :                     IS_DAX(inode))
    2606             :                         return retval;
    2607             :         }
    2608             : 
    2609           0 :         return filemap_read(iocb, iter, retval);
    2610             : }
    2611             : EXPORT_SYMBOL(generic_file_read_iter);
    2612             : 
    2613           0 : static inline loff_t page_seek_hole_data(struct xa_state *xas,
    2614             :                 struct address_space *mapping, struct page *page,
    2615             :                 loff_t start, loff_t end, bool seek_data)
    2616             : {
    2617           0 :         const struct address_space_operations *ops = mapping->a_ops;
    2618           0 :         size_t offset, bsz = i_blocksize(mapping->host);
    2619             : 
    2620           0 :         if (xa_is_value(page) || PageUptodate(page))
    2621           0 :                 return seek_data ? start : end;
    2622           0 :         if (!ops->is_partially_uptodate)
    2623           0 :                 return seek_data ? end : start;
    2624             : 
    2625           0 :         xas_pause(xas);
    2626           0 :         rcu_read_unlock();
    2627           0 :         lock_page(page);
    2628           0 :         if (unlikely(page->mapping != mapping))
    2629           0 :                 goto unlock;
    2630             : 
    2631           0 :         offset = offset_in_thp(page, start) & ~(bsz - 1);
    2632             : 
    2633           0 :         do {
    2634           0 :                 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
    2635             :                         break;
    2636           0 :                 start = (start + bsz) & ~(bsz - 1);
    2637           0 :                 offset += bsz;
    2638           0 :         } while (offset < thp_size(page));
    2639           0 : unlock:
    2640           0 :         unlock_page(page);
    2641           0 :         rcu_read_lock();
    2642             :         return start;
    2643             : }
    2644             : 
    2645             : static inline
    2646           0 : unsigned int seek_page_size(struct xa_state *xas, struct page *page)
    2647             : {
    2648           0 :         if (xa_is_value(page))
    2649           0 :                 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
    2650           0 :         return thp_size(page);
    2651             : }
    2652             : 
    2653             : /**
    2654             :  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
    2655             :  * @mapping: Address space to search.
    2656             :  * @start: First byte to consider.
    2657             :  * @end: Limit of search (exclusive).
    2658             :  * @whence: Either SEEK_HOLE or SEEK_DATA.
    2659             :  *
    2660             :  * If the page cache knows which blocks contain holes and which blocks
    2661             :  * contain data, your filesystem can use this function to implement
    2662             :  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
    2663             :  * entirely memory-based such as tmpfs, and filesystems which support
    2664             :  * unwritten extents.
    2665             :  *
    2666             :  * Return: The requested offset on successs, or -ENXIO if @whence specifies
    2667             :  * SEEK_DATA and there is no data after @start.  There is an implicit hole
    2668             :  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
    2669             :  * and @end contain data.
    2670             :  */
    2671           0 : loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
    2672             :                 loff_t end, int whence)
    2673             : {
    2674           0 :         XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
    2675           0 :         pgoff_t max = (end - 1) / PAGE_SIZE;
    2676           0 :         bool seek_data = (whence == SEEK_DATA);
    2677           0 :         struct page *page;
    2678             : 
    2679           0 :         if (end <= start)
    2680             :                 return -ENXIO;
    2681             : 
    2682           0 :         rcu_read_lock();
    2683           0 :         while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
    2684           0 :                 loff_t pos = xas.xa_index * PAGE_SIZE;
    2685             : 
    2686           0 :                 if (start < pos) {
    2687           0 :                         if (!seek_data)
    2688           0 :                                 goto unlock;
    2689             :                         start = pos;
    2690             :                 }
    2691             : 
    2692           0 :                 pos += seek_page_size(&xas, page);
    2693           0 :                 start = page_seek_hole_data(&xas, mapping, page, start, pos,
    2694             :                                 seek_data);
    2695           0 :                 if (start < pos)
    2696           0 :                         goto unlock;
    2697           0 :                 if (!xa_is_value(page))
    2698           0 :                         put_page(page);
    2699             :         }
    2700           0 :         rcu_read_unlock();
    2701             : 
    2702           0 :         if (seek_data)
    2703             :                 return -ENXIO;
    2704           0 :         goto out;
    2705             : 
    2706           0 : unlock:
    2707           0 :         rcu_read_unlock();
    2708           0 :         if (!xa_is_value(page))
    2709           0 :                 put_page(page);
    2710           0 : out:
    2711           0 :         if (start > end)
    2712             :                 return end;
    2713             :         return start;
    2714             : }
    2715             : 
    2716             : #ifdef CONFIG_MMU
    2717             : #define MMAP_LOTSAMISS  (100)
    2718             : /*
    2719             :  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
    2720             :  * @vmf - the vm_fault for this fault.
    2721             :  * @page - the page to lock.
    2722             :  * @fpin - the pointer to the file we may pin (or is already pinned).
    2723             :  *
    2724             :  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
    2725             :  * It differs in that it actually returns the page locked if it returns 1 and 0
    2726             :  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
    2727             :  * will point to the pinned file and needs to be fput()'ed at a later point.
    2728             :  */
    2729           0 : static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
    2730             :                                      struct file **fpin)
    2731             : {
    2732           0 :         if (trylock_page(page))
    2733             :                 return 1;
    2734             : 
    2735             :         /*
    2736             :          * NOTE! This will make us return with VM_FAULT_RETRY, but with
    2737             :          * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
    2738             :          * is supposed to work. We have way too many special cases..
    2739             :          */
    2740           0 :         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
    2741             :                 return 0;
    2742             : 
    2743           0 :         *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
    2744           0 :         if (vmf->flags & FAULT_FLAG_KILLABLE) {
    2745           0 :                 if (__lock_page_killable(page)) {
    2746             :                         /*
    2747             :                          * We didn't have the right flags to drop the mmap_lock,
    2748             :                          * but all fault_handlers only check for fatal signals
    2749             :                          * if we return VM_FAULT_RETRY, so we need to drop the
    2750             :                          * mmap_lock here and return 0 if we don't have a fpin.
    2751             :                          */
    2752           0 :                         if (*fpin == NULL)
    2753           0 :                                 mmap_read_unlock(vmf->vma->vm_mm);
    2754           0 :                         return 0;
    2755             :                 }
    2756             :         } else
    2757           0 :                 __lock_page(page);
    2758             :         return 1;
    2759             : }
    2760             : 
    2761             : 
    2762             : /*
    2763             :  * Synchronous readahead happens when we don't even find a page in the page
    2764             :  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
    2765             :  * to drop the mmap sem we return the file that was pinned in order for us to do
    2766             :  * that.  If we didn't pin a file then we return NULL.  The file that is
    2767             :  * returned needs to be fput()'ed when we're done with it.
    2768             :  */
    2769           0 : static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
    2770             : {
    2771           0 :         struct file *file = vmf->vma->vm_file;
    2772           0 :         struct file_ra_state *ra = &file->f_ra;
    2773           0 :         struct address_space *mapping = file->f_mapping;
    2774           0 :         DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
    2775           0 :         struct file *fpin = NULL;
    2776           0 :         unsigned int mmap_miss;
    2777             : 
    2778             :         /* If we don't want any read-ahead, don't bother */
    2779           0 :         if (vmf->vma->vm_flags & VM_RAND_READ)
    2780             :                 return fpin;
    2781           0 :         if (!ra->ra_pages)
    2782             :                 return fpin;
    2783             : 
    2784           0 :         if (vmf->vma->vm_flags & VM_SEQ_READ) {
    2785           0 :                 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
    2786           0 :                 page_cache_sync_ra(&ractl, ra, ra->ra_pages);
    2787           0 :                 return fpin;
    2788             :         }
    2789             : 
    2790             :         /* Avoid banging the cache line if not needed */
    2791           0 :         mmap_miss = READ_ONCE(ra->mmap_miss);
    2792           0 :         if (mmap_miss < MMAP_LOTSAMISS * 10)
    2793           0 :                 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
    2794             : 
    2795             :         /*
    2796             :          * Do we miss much more than hit in this file? If so,
    2797             :          * stop bothering with read-ahead. It will only hurt.
    2798             :          */
    2799           0 :         if (mmap_miss > MMAP_LOTSAMISS)
    2800             :                 return fpin;
    2801             : 
    2802             :         /*
    2803             :          * mmap read-around
    2804             :          */
    2805           0 :         fpin = maybe_unlock_mmap_for_io(vmf, fpin);
    2806           0 :         ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
    2807           0 :         ra->size = ra->ra_pages;
    2808           0 :         ra->async_size = ra->ra_pages / 4;
    2809           0 :         ractl._index = ra->start;
    2810           0 :         do_page_cache_ra(&ractl, ra->size, ra->async_size);
    2811           0 :         return fpin;
    2812             : }
    2813             : 
    2814             : /*
    2815             :  * Asynchronous readahead happens when we find the page and PG_readahead,
    2816             :  * so we want to possibly extend the readahead further.  We return the file that
    2817             :  * was pinned if we have to drop the mmap_lock in order to do IO.
    2818             :  */
    2819           0 : static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
    2820             :                                             struct page *page)
    2821             : {
    2822           0 :         struct file *file = vmf->vma->vm_file;
    2823           0 :         struct file_ra_state *ra = &file->f_ra;
    2824           0 :         struct address_space *mapping = file->f_mapping;
    2825           0 :         struct file *fpin = NULL;
    2826           0 :         unsigned int mmap_miss;
    2827           0 :         pgoff_t offset = vmf->pgoff;
    2828             : 
    2829             :         /* If we don't want any read-ahead, don't bother */
    2830           0 :         if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
    2831             :                 return fpin;
    2832           0 :         mmap_miss = READ_ONCE(ra->mmap_miss);
    2833           0 :         if (mmap_miss)
    2834           0 :                 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
    2835           0 :         if (PageReadahead(page)) {
    2836           0 :                 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
    2837           0 :                 page_cache_async_readahead(mapping, ra, file,
    2838           0 :                                            page, offset, ra->ra_pages);
    2839             :         }
    2840             :         return fpin;
    2841             : }
    2842             : 
    2843             : /**
    2844             :  * filemap_fault - read in file data for page fault handling
    2845             :  * @vmf:        struct vm_fault containing details of the fault
    2846             :  *
    2847             :  * filemap_fault() is invoked via the vma operations vector for a
    2848             :  * mapped memory region to read in file data during a page fault.
    2849             :  *
    2850             :  * The goto's are kind of ugly, but this streamlines the normal case of having
    2851             :  * it in the page cache, and handles the special cases reasonably without
    2852             :  * having a lot of duplicated code.
    2853             :  *
    2854             :  * vma->vm_mm->mmap_lock must be held on entry.
    2855             :  *
    2856             :  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
    2857             :  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
    2858             :  *
    2859             :  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
    2860             :  * has not been released.
    2861             :  *
    2862             :  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
    2863             :  *
    2864             :  * Return: bitwise-OR of %VM_FAULT_ codes.
    2865             :  */
    2866           0 : vm_fault_t filemap_fault(struct vm_fault *vmf)
    2867             : {
    2868           0 :         int error;
    2869           0 :         struct file *file = vmf->vma->vm_file;
    2870           0 :         struct file *fpin = NULL;
    2871           0 :         struct address_space *mapping = file->f_mapping;
    2872           0 :         struct file_ra_state *ra = &file->f_ra;
    2873           0 :         struct inode *inode = mapping->host;
    2874           0 :         pgoff_t offset = vmf->pgoff;
    2875           0 :         pgoff_t max_off;
    2876           0 :         struct page *page;
    2877           0 :         vm_fault_t ret = 0;
    2878             : 
    2879           0 :         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
    2880           0 :         if (unlikely(offset >= max_off))
    2881             :                 return VM_FAULT_SIGBUS;
    2882             : 
    2883             :         /*
    2884             :          * Do we have something in the page cache already?
    2885             :          */
    2886           0 :         page = find_get_page(mapping, offset);
    2887           0 :         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
    2888             :                 /*
    2889             :                  * We found the page, so try async readahead before
    2890             :                  * waiting for the lock.
    2891             :                  */
    2892           0 :                 fpin = do_async_mmap_readahead(vmf, page);
    2893           0 :         } else if (!page) {
    2894             :                 /* No page in the page cache at all */
    2895           0 :                 count_vm_event(PGMAJFAULT);
    2896           0 :                 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
    2897           0 :                 ret = VM_FAULT_MAJOR;
    2898           0 :                 fpin = do_sync_mmap_readahead(vmf);
    2899           0 : retry_find:
    2900           0 :                 page = pagecache_get_page(mapping, offset,
    2901             :                                           FGP_CREAT|FGP_FOR_MMAP,
    2902             :                                           vmf->gfp_mask);
    2903           0 :                 if (!page) {
    2904           0 :                         if (fpin)
    2905           0 :                                 goto out_retry;
    2906             :                         return VM_FAULT_OOM;
    2907             :                 }
    2908             :         }
    2909             : 
    2910           0 :         if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
    2911           0 :                 goto out_retry;
    2912             : 
    2913             :         /* Did it get truncated? */
    2914           0 :         if (unlikely(compound_head(page)->mapping != mapping)) {
    2915           0 :                 unlock_page(page);
    2916           0 :                 put_page(page);
    2917           0 :                 goto retry_find;
    2918             :         }
    2919           0 :         VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
    2920             : 
    2921             :         /*
    2922             :          * We have a locked page in the page cache, now we need to check
    2923             :          * that it's up-to-date. If not, it is going to be due to an error.
    2924             :          */
    2925           0 :         if (unlikely(!PageUptodate(page)))
    2926           0 :                 goto page_not_uptodate;
    2927             : 
    2928             :         /*
    2929             :          * We've made it this far and we had to drop our mmap_lock, now is the
    2930             :          * time to return to the upper layer and have it re-find the vma and
    2931             :          * redo the fault.
    2932             :          */
    2933           0 :         if (fpin) {
    2934           0 :                 unlock_page(page);
    2935           0 :                 goto out_retry;
    2936             :         }
    2937             : 
    2938             :         /*
    2939             :          * Found the page and have a reference on it.
    2940             :          * We must recheck i_size under page lock.
    2941             :          */
    2942           0 :         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
    2943           0 :         if (unlikely(offset >= max_off)) {
    2944           0 :                 unlock_page(page);
    2945           0 :                 put_page(page);
    2946           0 :                 return VM_FAULT_SIGBUS;
    2947             :         }
    2948             : 
    2949           0 :         vmf->page = page;
    2950           0 :         return ret | VM_FAULT_LOCKED;
    2951             : 
    2952           0 : page_not_uptodate:
    2953             :         /*
    2954             :          * Umm, take care of errors if the page isn't up-to-date.
    2955             :          * Try to re-read it _once_. We do this synchronously,
    2956             :          * because there really aren't any performance issues here
    2957             :          * and we need to check for errors.
    2958             :          */
    2959           0 :         ClearPageError(page);
    2960           0 :         fpin = maybe_unlock_mmap_for_io(vmf, fpin);
    2961           0 :         error = mapping->a_ops->readpage(file, page);
    2962           0 :         if (!error) {
    2963           0 :                 wait_on_page_locked(page);
    2964           0 :                 if (!PageUptodate(page))
    2965           0 :                         error = -EIO;
    2966             :         }
    2967           0 :         if (fpin)
    2968           0 :                 goto out_retry;
    2969           0 :         put_page(page);
    2970             : 
    2971           0 :         if (!error || error == AOP_TRUNCATED_PAGE)
    2972           0 :                 goto retry_find;
    2973             : 
    2974           0 :         shrink_readahead_size_eio(ra);
    2975           0 :         return VM_FAULT_SIGBUS;
    2976             : 
    2977           0 : out_retry:
    2978             :         /*
    2979             :          * We dropped the mmap_lock, we need to return to the fault handler to
    2980             :          * re-find the vma and come back and find our hopefully still populated
    2981             :          * page.
    2982             :          */
    2983           0 :         if (page)
    2984           0 :                 put_page(page);
    2985           0 :         if (fpin)
    2986           0 :                 fput(fpin);
    2987           0 :         return ret | VM_FAULT_RETRY;
    2988             : }
    2989             : EXPORT_SYMBOL(filemap_fault);
    2990             : 
    2991           0 : static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
    2992             : {
    2993           0 :         struct mm_struct *mm = vmf->vma->vm_mm;
    2994             : 
    2995             :         /* Huge page is mapped? No need to proceed. */
    2996           0 :         if (pmd_trans_huge(*vmf->pmd)) {
    2997           0 :                 unlock_page(page);
    2998           0 :                 put_page(page);
    2999           0 :                 return true;
    3000             :         }
    3001             : 
    3002           0 :         if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
    3003           0 :             vm_fault_t ret = do_set_pmd(vmf, page);
    3004           0 :             if (!ret) {
    3005             :                     /* The page is mapped successfully, reference consumed. */
    3006           0 :                     unlock_page(page);
    3007           0 :                     return true;
    3008             :             }
    3009             :         }
    3010             : 
    3011           0 :         if (pmd_none(*vmf->pmd)) {
    3012           0 :                 vmf->ptl = pmd_lock(mm, vmf->pmd);
    3013           0 :                 if (likely(pmd_none(*vmf->pmd))) {
    3014           0 :                         mm_inc_nr_ptes(mm);
    3015           0 :                         pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
    3016           0 :                         vmf->prealloc_pte = NULL;
    3017             :                 }
    3018           0 :                 spin_unlock(vmf->ptl);
    3019             :         }
    3020             : 
    3021             :         /* See comment in handle_pte_fault() */
    3022           0 :         if (pmd_devmap_trans_unstable(vmf->pmd)) {
    3023           0 :                 unlock_page(page);
    3024           0 :                 put_page(page);
    3025           0 :                 return true;
    3026             :         }
    3027             : 
    3028             :         return false;
    3029             : }
    3030             : 
    3031           0 : static struct page *next_uptodate_page(struct page *page,
    3032             :                                        struct address_space *mapping,
    3033             :                                        struct xa_state *xas, pgoff_t end_pgoff)
    3034             : {
    3035           0 :         unsigned long max_idx;
    3036             : 
    3037           0 :         do {
    3038           0 :                 if (!page)
    3039             :                         return NULL;
    3040           0 :                 if (xas_retry(xas, page))
    3041           0 :                         continue;
    3042           0 :                 if (xa_is_value(page))
    3043           0 :                         continue;
    3044           0 :                 if (PageLocked(page))
    3045           0 :                         continue;
    3046           0 :                 if (!page_cache_get_speculative(page))
    3047           0 :                         continue;
    3048             :                 /* Has the page moved or been split? */
    3049           0 :                 if (unlikely(page != xas_reload(xas)))
    3050           0 :                         goto skip;
    3051           0 :                 if (!PageUptodate(page) || PageReadahead(page))
    3052           0 :                         goto skip;
    3053           0 :                 if (PageHWPoison(page))
    3054             :                         goto skip;
    3055           0 :                 if (!trylock_page(page))
    3056           0 :                         goto skip;
    3057           0 :                 if (page->mapping != mapping)
    3058           0 :                         goto unlock;
    3059           0 :                 if (!PageUptodate(page))
    3060           0 :                         goto unlock;
    3061           0 :                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
    3062           0 :                 if (xas->xa_index >= max_idx)
    3063           0 :                         goto unlock;
    3064             :                 return page;
    3065           0 : unlock:
    3066           0 :                 unlock_page(page);
    3067           0 : skip:
    3068           0 :                 put_page(page);
    3069           0 :         } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
    3070             : 
    3071             :         return NULL;
    3072             : }
    3073             : 
    3074           0 : static inline struct page *first_map_page(struct address_space *mapping,
    3075             :                                           struct xa_state *xas,
    3076             :                                           pgoff_t end_pgoff)
    3077             : {
    3078           0 :         return next_uptodate_page(xas_find(xas, end_pgoff),
    3079             :                                   mapping, xas, end_pgoff);
    3080             : }
    3081             : 
    3082           0 : static inline struct page *next_map_page(struct address_space *mapping,
    3083             :                                          struct xa_state *xas,
    3084             :                                          pgoff_t end_pgoff)
    3085             : {
    3086           0 :         return next_uptodate_page(xas_next_entry(xas, end_pgoff),
    3087             :                                   mapping, xas, end_pgoff);
    3088             : }
    3089             : 
    3090           0 : vm_fault_t filemap_map_pages(struct vm_fault *vmf,
    3091             :                              pgoff_t start_pgoff, pgoff_t end_pgoff)
    3092             : {
    3093           0 :         struct vm_area_struct *vma = vmf->vma;
    3094           0 :         struct file *file = vma->vm_file;
    3095           0 :         struct address_space *mapping = file->f_mapping;
    3096           0 :         pgoff_t last_pgoff = start_pgoff;
    3097           0 :         unsigned long addr;
    3098           0 :         XA_STATE(xas, &mapping->i_pages, start_pgoff);
    3099           0 :         struct page *head, *page;
    3100           0 :         unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
    3101           0 :         vm_fault_t ret = 0;
    3102             : 
    3103           0 :         rcu_read_lock();
    3104           0 :         head = first_map_page(mapping, &xas, end_pgoff);
    3105           0 :         if (!head)
    3106           0 :                 goto out;
    3107             : 
    3108           0 :         if (filemap_map_pmd(vmf, head)) {
    3109           0 :                 ret = VM_FAULT_NOPAGE;
    3110           0 :                 goto out;
    3111             :         }
    3112             : 
    3113           0 :         addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
    3114           0 :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
    3115           0 :         do {
    3116           0 :                 page = find_subpage(head, xas.xa_index);
    3117           0 :                 if (PageHWPoison(page))
    3118             :                         goto unlock;
    3119             : 
    3120           0 :                 if (mmap_miss > 0)
    3121           0 :                         mmap_miss--;
    3122             : 
    3123           0 :                 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
    3124           0 :                 vmf->pte += xas.xa_index - last_pgoff;
    3125           0 :                 last_pgoff = xas.xa_index;
    3126             : 
    3127           0 :                 if (!pte_none(*vmf->pte))
    3128           0 :                         goto unlock;
    3129             : 
    3130             :                 /* We're about to handle the fault */
    3131           0 :                 if (vmf->address == addr)
    3132           0 :                         ret = VM_FAULT_NOPAGE;
    3133             : 
    3134           0 :                 do_set_pte(vmf, page, addr);
    3135             :                 /* no need to invalidate: a not-present page won't be cached */
    3136           0 :                 update_mmu_cache(vma, addr, vmf->pte);
    3137           0 :                 unlock_page(head);
    3138           0 :                 continue;
    3139           0 : unlock:
    3140           0 :                 unlock_page(head);
    3141           0 :                 put_page(head);
    3142           0 :         } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
    3143           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3144           0 : out:
    3145           0 :         rcu_read_unlock();
    3146           0 :         WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
    3147           0 :         return ret;
    3148             : }
    3149             : EXPORT_SYMBOL(filemap_map_pages);
    3150             : 
    3151           0 : vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
    3152             : {
    3153           0 :         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
    3154           0 :         struct page *page = vmf->page;
    3155           0 :         vm_fault_t ret = VM_FAULT_LOCKED;
    3156             : 
    3157           0 :         sb_start_pagefault(mapping->host->i_sb);
    3158           0 :         file_update_time(vmf->vma->vm_file);
    3159           0 :         lock_page(page);
    3160           0 :         if (page->mapping != mapping) {
    3161           0 :                 unlock_page(page);
    3162           0 :                 ret = VM_FAULT_NOPAGE;
    3163           0 :                 goto out;
    3164             :         }
    3165             :         /*
    3166             :          * We mark the page dirty already here so that when freeze is in
    3167             :          * progress, we are guaranteed that writeback during freezing will
    3168             :          * see the dirty page and writeprotect it again.
    3169             :          */
    3170           0 :         set_page_dirty(page);
    3171           0 :         wait_for_stable_page(page);
    3172           0 : out:
    3173           0 :         sb_end_pagefault(mapping->host->i_sb);
    3174           0 :         return ret;
    3175             : }
    3176             : 
    3177             : const struct vm_operations_struct generic_file_vm_ops = {
    3178             :         .fault          = filemap_fault,
    3179             :         .map_pages      = filemap_map_pages,
    3180             :         .page_mkwrite   = filemap_page_mkwrite,
    3181             : };
    3182             : 
    3183             : /* This is used for a general mmap of a disk file */
    3184             : 
    3185           0 : int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
    3186             : {
    3187           0 :         struct address_space *mapping = file->f_mapping;
    3188             : 
    3189           0 :         if (!mapping->a_ops->readpage)
    3190             :                 return -ENOEXEC;
    3191           0 :         file_accessed(file);
    3192           0 :         vma->vm_ops = &generic_file_vm_ops;
    3193           0 :         return 0;
    3194             : }
    3195             : 
    3196             : /*
    3197             :  * This is for filesystems which do not implement ->writepage.
    3198             :  */
    3199           0 : int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
    3200             : {
    3201           0 :         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
    3202             :                 return -EINVAL;
    3203           0 :         return generic_file_mmap(file, vma);
    3204             : }
    3205             : #else
    3206             : vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
    3207             : {
    3208             :         return VM_FAULT_SIGBUS;
    3209             : }
    3210             : int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
    3211             : {
    3212             :         return -ENOSYS;
    3213             : }
    3214             : int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
    3215             : {
    3216             :         return -ENOSYS;
    3217             : }
    3218             : #endif /* CONFIG_MMU */
    3219             : 
    3220             : EXPORT_SYMBOL(filemap_page_mkwrite);
    3221             : EXPORT_SYMBOL(generic_file_mmap);
    3222             : EXPORT_SYMBOL(generic_file_readonly_mmap);
    3223             : 
    3224           0 : static struct page *wait_on_page_read(struct page *page)
    3225             : {
    3226           0 :         if (!IS_ERR(page)) {
    3227           0 :                 wait_on_page_locked(page);
    3228           0 :                 if (!PageUptodate(page)) {
    3229           0 :                         put_page(page);
    3230           0 :                         page = ERR_PTR(-EIO);
    3231             :                 }
    3232             :         }
    3233           0 :         return page;
    3234             : }
    3235             : 
    3236           0 : static struct page *do_read_cache_page(struct address_space *mapping,
    3237             :                                 pgoff_t index,
    3238             :                                 int (*filler)(void *, struct page *),
    3239             :                                 void *data,
    3240             :                                 gfp_t gfp)
    3241             : {
    3242           0 :         struct page *page;
    3243           0 :         int err;
    3244             : repeat:
    3245           0 :         page = find_get_page(mapping, index);
    3246           0 :         if (!page) {
    3247           0 :                 page = __page_cache_alloc(gfp);
    3248           0 :                 if (!page)
    3249           0 :                         return ERR_PTR(-ENOMEM);
    3250           0 :                 err = add_to_page_cache_lru(page, mapping, index, gfp);
    3251           0 :                 if (unlikely(err)) {
    3252           0 :                         put_page(page);
    3253           0 :                         if (err == -EEXIST)
    3254           0 :                                 goto repeat;
    3255             :                         /* Presumably ENOMEM for xarray node */
    3256           0 :                         return ERR_PTR(err);
    3257             :                 }
    3258             : 
    3259           0 : filler:
    3260           0 :                 if (filler)
    3261           0 :                         err = filler(data, page);
    3262             :                 else
    3263           0 :                         err = mapping->a_ops->readpage(data, page);
    3264             : 
    3265           0 :                 if (err < 0) {
    3266           0 :                         put_page(page);
    3267           0 :                         return ERR_PTR(err);
    3268             :                 }
    3269             : 
    3270           0 :                 page = wait_on_page_read(page);
    3271           0 :                 if (IS_ERR(page))
    3272             :                         return page;
    3273           0 :                 goto out;
    3274             :         }
    3275           0 :         if (PageUptodate(page))
    3276           0 :                 goto out;
    3277             : 
    3278             :         /*
    3279             :          * Page is not up to date and may be locked due to one of the following
    3280             :          * case a: Page is being filled and the page lock is held
    3281             :          * case b: Read/write error clearing the page uptodate status
    3282             :          * case c: Truncation in progress (page locked)
    3283             :          * case d: Reclaim in progress
    3284             :          *
    3285             :          * Case a, the page will be up to date when the page is unlocked.
    3286             :          *    There is no need to serialise on the page lock here as the page
    3287             :          *    is pinned so the lock gives no additional protection. Even if the
    3288             :          *    page is truncated, the data is still valid if PageUptodate as
    3289             :          *    it's a race vs truncate race.
    3290             :          * Case b, the page will not be up to date
    3291             :          * Case c, the page may be truncated but in itself, the data may still
    3292             :          *    be valid after IO completes as it's a read vs truncate race. The
    3293             :          *    operation must restart if the page is not uptodate on unlock but
    3294             :          *    otherwise serialising on page lock to stabilise the mapping gives
    3295             :          *    no additional guarantees to the caller as the page lock is
    3296             :          *    released before return.
    3297             :          * Case d, similar to truncation. If reclaim holds the page lock, it
    3298             :          *    will be a race with remove_mapping that determines if the mapping
    3299             :          *    is valid on unlock but otherwise the data is valid and there is
    3300             :          *    no need to serialise with page lock.
    3301             :          *
    3302             :          * As the page lock gives no additional guarantee, we optimistically
    3303             :          * wait on the page to be unlocked and check if it's up to date and
    3304             :          * use the page if it is. Otherwise, the page lock is required to
    3305             :          * distinguish between the different cases. The motivation is that we
    3306             :          * avoid spurious serialisations and wakeups when multiple processes
    3307             :          * wait on the same page for IO to complete.
    3308             :          */
    3309           0 :         wait_on_page_locked(page);
    3310           0 :         if (PageUptodate(page))
    3311           0 :                 goto out;
    3312             : 
    3313             :         /* Distinguish between all the cases under the safety of the lock */
    3314           0 :         lock_page(page);
    3315             : 
    3316             :         /* Case c or d, restart the operation */
    3317           0 :         if (!page->mapping) {
    3318           0 :                 unlock_page(page);
    3319           0 :                 put_page(page);
    3320           0 :                 goto repeat;
    3321             :         }
    3322             : 
    3323             :         /* Someone else locked and filled the page in a very small window */
    3324           0 :         if (PageUptodate(page)) {
    3325           0 :                 unlock_page(page);
    3326           0 :                 goto out;
    3327             :         }
    3328             : 
    3329             :         /*
    3330             :          * A previous I/O error may have been due to temporary
    3331             :          * failures.
    3332             :          * Clear page error before actual read, PG_error will be
    3333             :          * set again if read page fails.
    3334             :          */
    3335           0 :         ClearPageError(page);
    3336           0 :         goto filler;
    3337             : 
    3338           0 : out:
    3339           0 :         mark_page_accessed(page);
    3340           0 :         return page;
    3341             : }
    3342             : 
    3343             : /**
    3344             :  * read_cache_page - read into page cache, fill it if needed
    3345             :  * @mapping:    the page's address_space
    3346             :  * @index:      the page index
    3347             :  * @filler:     function to perform the read
    3348             :  * @data:       first arg to filler(data, page) function, often left as NULL
    3349             :  *
    3350             :  * Read into the page cache. If a page already exists, and PageUptodate() is
    3351             :  * not set, try to fill the page and wait for it to become unlocked.
    3352             :  *
    3353             :  * If the page does not get brought uptodate, return -EIO.
    3354             :  *
    3355             :  * Return: up to date page on success, ERR_PTR() on failure.
    3356             :  */
    3357           0 : struct page *read_cache_page(struct address_space *mapping,
    3358             :                                 pgoff_t index,
    3359             :                                 int (*filler)(void *, struct page *),
    3360             :                                 void *data)
    3361             : {
    3362           0 :         return do_read_cache_page(mapping, index, filler, data,
    3363             :                         mapping_gfp_mask(mapping));
    3364             : }
    3365             : EXPORT_SYMBOL(read_cache_page);
    3366             : 
    3367             : /**
    3368             :  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
    3369             :  * @mapping:    the page's address_space
    3370             :  * @index:      the page index
    3371             :  * @gfp:        the page allocator flags to use if allocating
    3372             :  *
    3373             :  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
    3374             :  * any new page allocations done using the specified allocation flags.
    3375             :  *
    3376             :  * If the page does not get brought uptodate, return -EIO.
    3377             :  *
    3378             :  * Return: up to date page on success, ERR_PTR() on failure.
    3379             :  */
    3380           0 : struct page *read_cache_page_gfp(struct address_space *mapping,
    3381             :                                 pgoff_t index,
    3382             :                                 gfp_t gfp)
    3383             : {
    3384           0 :         return do_read_cache_page(mapping, index, NULL, NULL, gfp);
    3385             : }
    3386             : EXPORT_SYMBOL(read_cache_page_gfp);
    3387             : 
    3388           0 : int pagecache_write_begin(struct file *file, struct address_space *mapping,
    3389             :                                 loff_t pos, unsigned len, unsigned flags,
    3390             :                                 struct page **pagep, void **fsdata)
    3391             : {
    3392           0 :         const struct address_space_operations *aops = mapping->a_ops;
    3393             : 
    3394           0 :         return aops->write_begin(file, mapping, pos, len, flags,
    3395             :                                                         pagep, fsdata);
    3396             : }
    3397             : EXPORT_SYMBOL(pagecache_write_begin);
    3398             : 
    3399           0 : int pagecache_write_end(struct file *file, struct address_space *mapping,
    3400             :                                 loff_t pos, unsigned len, unsigned copied,
    3401             :                                 struct page *page, void *fsdata)
    3402             : {
    3403           0 :         const struct address_space_operations *aops = mapping->a_ops;
    3404             : 
    3405           0 :         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
    3406             : }
    3407             : EXPORT_SYMBOL(pagecache_write_end);
    3408             : 
    3409             : /*
    3410             :  * Warn about a page cache invalidation failure during a direct I/O write.
    3411             :  */
    3412           0 : void dio_warn_stale_pagecache(struct file *filp)
    3413             : {
    3414           0 :         static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
    3415           0 :         char pathname[128];
    3416           0 :         char *path;
    3417             : 
    3418           0 :         errseq_set(&filp->f_mapping->wb_err, -EIO);
    3419           0 :         if (__ratelimit(&_rs)) {
    3420           0 :                 path = file_path(filp, pathname, sizeof(pathname));
    3421           0 :                 if (IS_ERR(path))
    3422           0 :                         path = "(unknown)";
    3423           0 :                 pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
    3424           0 :                 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
    3425             :                         current->comm);
    3426             :         }
    3427           0 : }
    3428             : 
    3429             : ssize_t
    3430           0 : generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
    3431             : {
    3432           0 :         struct file     *file = iocb->ki_filp;
    3433           0 :         struct address_space *mapping = file->f_mapping;
    3434           0 :         struct inode    *inode = mapping->host;
    3435           0 :         loff_t          pos = iocb->ki_pos;
    3436           0 :         ssize_t         written;
    3437           0 :         size_t          write_len;
    3438           0 :         pgoff_t         end;
    3439             : 
    3440           0 :         write_len = iov_iter_count(from);
    3441           0 :         end = (pos + write_len - 1) >> PAGE_SHIFT;
    3442             : 
    3443           0 :         if (iocb->ki_flags & IOCB_NOWAIT) {
    3444             :                 /* If there are pages to writeback, return */
    3445           0 :                 if (filemap_range_has_page(file->f_mapping, pos,
    3446             :                                            pos + write_len - 1))
    3447             :                         return -EAGAIN;
    3448             :         } else {
    3449           0 :                 written = filemap_write_and_wait_range(mapping, pos,
    3450             :                                                         pos + write_len - 1);
    3451           0 :                 if (written)
    3452           0 :                         goto out;
    3453             :         }
    3454             : 
    3455             :         /*
    3456             :          * After a write we want buffered reads to be sure to go to disk to get
    3457             :          * the new data.  We invalidate clean cached page from the region we're
    3458             :          * about to write.  We do this *before* the write so that we can return
    3459             :          * without clobbering -EIOCBQUEUED from ->direct_IO().
    3460             :          */
    3461           0 :         written = invalidate_inode_pages2_range(mapping,
    3462           0 :                                         pos >> PAGE_SHIFT, end);
    3463             :         /*
    3464             :          * If a page can not be invalidated, return 0 to fall back
    3465             :          * to buffered write.
    3466             :          */
    3467           0 :         if (written) {
    3468           0 :                 if (written == -EBUSY)
    3469             :                         return 0;
    3470           0 :                 goto out;
    3471             :         }
    3472             : 
    3473           0 :         written = mapping->a_ops->direct_IO(iocb, from);
    3474             : 
    3475             :         /*
    3476             :          * Finally, try again to invalidate clean pages which might have been
    3477             :          * cached by non-direct readahead, or faulted in by get_user_pages()
    3478             :          * if the source of the write was an mmap'ed region of the file
    3479             :          * we're writing.  Either one is a pretty crazy thing to do,
    3480             :          * so we don't support it 100%.  If this invalidation
    3481             :          * fails, tough, the write still worked...
    3482             :          *
    3483             :          * Most of the time we do not need this since dio_complete() will do
    3484             :          * the invalidation for us. However there are some file systems that
    3485             :          * do not end up with dio_complete() being called, so let's not break
    3486             :          * them by removing it completely.
    3487             :          *
    3488             :          * Noticeable example is a blkdev_direct_IO().
    3489             :          *
    3490             :          * Skip invalidation for async writes or if mapping has no pages.
    3491             :          */
    3492           0 :         if (written > 0 && mapping->nrpages &&
    3493           0 :             invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
    3494           0 :                 dio_warn_stale_pagecache(file);
    3495             : 
    3496           0 :         if (written > 0) {
    3497           0 :                 pos += written;
    3498           0 :                 write_len -= written;
    3499           0 :                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
    3500           0 :                         i_size_write(inode, pos);
    3501           0 :                         mark_inode_dirty(inode);
    3502             :                 }
    3503           0 :                 iocb->ki_pos = pos;
    3504             :         }
    3505           0 :         if (written != -EIOCBQUEUED)
    3506           0 :                 iov_iter_revert(from, write_len - iov_iter_count(from));
    3507           0 : out:
    3508             :         return written;
    3509             : }
    3510             : EXPORT_SYMBOL(generic_file_direct_write);
    3511             : 
    3512             : /*
    3513             :  * Find or create a page at the given pagecache position. Return the locked
    3514             :  * page. This function is specifically for buffered writes.
    3515             :  */
    3516           0 : struct page *grab_cache_page_write_begin(struct address_space *mapping,
    3517             :                                         pgoff_t index, unsigned flags)
    3518             : {
    3519           0 :         struct page *page;
    3520           0 :         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
    3521             : 
    3522           0 :         if (flags & AOP_FLAG_NOFS)
    3523           0 :                 fgp_flags |= FGP_NOFS;
    3524             : 
    3525           0 :         page = pagecache_get_page(mapping, index, fgp_flags,
    3526             :                         mapping_gfp_mask(mapping));
    3527           0 :         if (page)
    3528           0 :                 wait_for_stable_page(page);
    3529             : 
    3530           0 :         return page;
    3531             : }
    3532             : EXPORT_SYMBOL(grab_cache_page_write_begin);
    3533             : 
    3534           0 : ssize_t generic_perform_write(struct file *file,
    3535             :                                 struct iov_iter *i, loff_t pos)
    3536             : {
    3537           0 :         struct address_space *mapping = file->f_mapping;
    3538           0 :         const struct address_space_operations *a_ops = mapping->a_ops;
    3539           0 :         long status = 0;
    3540           0 :         ssize_t written = 0;
    3541           0 :         unsigned int flags = 0;
    3542             : 
    3543           0 :         do {
    3544           0 :                 struct page *page;
    3545           0 :                 unsigned long offset;   /* Offset into pagecache page */
    3546           0 :                 unsigned long bytes;    /* Bytes to write to page */
    3547           0 :                 size_t copied;          /* Bytes copied from user */
    3548           0 :                 void *fsdata;
    3549             : 
    3550           0 :                 offset = (pos & (PAGE_SIZE - 1));
    3551           0 :                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
    3552             :                                                 iov_iter_count(i));
    3553             : 
    3554           0 : again:
    3555             :                 /*
    3556             :                  * Bring in the user page that we will copy from _first_.
    3557             :                  * Otherwise there's a nasty deadlock on copying from the
    3558             :                  * same page as we're writing to, without it being marked
    3559             :                  * up-to-date.
    3560             :                  *
    3561             :                  * Not only is this an optimisation, but it is also required
    3562             :                  * to check that the address is actually valid, when atomic
    3563             :                  * usercopies are used, below.
    3564             :                  */
    3565           0 :                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
    3566             :                         status = -EFAULT;
    3567           0 :                         break;
    3568             :                 }
    3569             : 
    3570           0 :                 if (fatal_signal_pending(current)) {
    3571             :                         status = -EINTR;
    3572             :                         break;
    3573             :                 }
    3574             : 
    3575           0 :                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
    3576             :                                                 &page, &fsdata);
    3577           0 :                 if (unlikely(status < 0))
    3578             :                         break;
    3579             : 
    3580           0 :                 if (mapping_writably_mapped(mapping))
    3581           0 :                         flush_dcache_page(page);
    3582             : 
    3583           0 :                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
    3584           0 :                 flush_dcache_page(page);
    3585             : 
    3586           0 :                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
    3587             :                                                 page, fsdata);
    3588           0 :                 if (unlikely(status < 0))
    3589             :                         break;
    3590           0 :                 copied = status;
    3591             : 
    3592           0 :                 cond_resched();
    3593             : 
    3594           0 :                 iov_iter_advance(i, copied);
    3595           0 :                 if (unlikely(copied == 0)) {
    3596             :                         /*
    3597             :                          * If we were unable to copy any data at all, we must
    3598             :                          * fall back to a single segment length write.
    3599             :                          *
    3600             :                          * If we didn't fallback here, we could livelock
    3601             :                          * because not all segments in the iov can be copied at
    3602             :                          * once without a pagefault.
    3603             :                          */
    3604           0 :                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
    3605             :                                                 iov_iter_single_seg_count(i));
    3606           0 :                         goto again;
    3607             :                 }
    3608           0 :                 pos += copied;
    3609           0 :                 written += copied;
    3610             : 
    3611           0 :                 balance_dirty_pages_ratelimited(mapping);
    3612           0 :         } while (iov_iter_count(i));
    3613             : 
    3614           0 :         return written ? written : status;
    3615             : }
    3616             : EXPORT_SYMBOL(generic_perform_write);
    3617             : 
    3618             : /**
    3619             :  * __generic_file_write_iter - write data to a file
    3620             :  * @iocb:       IO state structure (file, offset, etc.)
    3621             :  * @from:       iov_iter with data to write
    3622             :  *
    3623             :  * This function does all the work needed for actually writing data to a
    3624             :  * file. It does all basic checks, removes SUID from the file, updates
    3625             :  * modification times and calls proper subroutines depending on whether we
    3626             :  * do direct IO or a standard buffered write.
    3627             :  *
    3628             :  * It expects i_mutex to be grabbed unless we work on a block device or similar
    3629             :  * object which does not need locking at all.
    3630             :  *
    3631             :  * This function does *not* take care of syncing data in case of O_SYNC write.
    3632             :  * A caller has to handle it. This is mainly due to the fact that we want to
    3633             :  * avoid syncing under i_mutex.
    3634             :  *
    3635             :  * Return:
    3636             :  * * number of bytes written, even for truncated writes
    3637             :  * * negative error code if no data has been written at all
    3638             :  */
    3639           0 : ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
    3640             : {
    3641           0 :         struct file *file = iocb->ki_filp;
    3642           0 :         struct address_space * mapping = file->f_mapping;
    3643           0 :         struct inode    *inode = mapping->host;
    3644           0 :         ssize_t         written = 0;
    3645           0 :         ssize_t         err;
    3646           0 :         ssize_t         status;
    3647             : 
    3648             :         /* We can write back this queue in page reclaim */
    3649           0 :         current->backing_dev_info = inode_to_bdi(inode);
    3650           0 :         err = file_remove_privs(file);
    3651           0 :         if (err)
    3652           0 :                 goto out;
    3653             : 
    3654           0 :         err = file_update_time(file);
    3655           0 :         if (err)
    3656           0 :                 goto out;
    3657             : 
    3658           0 :         if (iocb->ki_flags & IOCB_DIRECT) {
    3659           0 :                 loff_t pos, endbyte;
    3660             : 
    3661           0 :                 written = generic_file_direct_write(iocb, from);
    3662             :                 /*
    3663             :                  * If the write stopped short of completing, fall back to
    3664             :                  * buffered writes.  Some filesystems do this for writes to
    3665             :                  * holes, for example.  For DAX files, a buffered write will
    3666             :                  * not succeed (even if it did, DAX does not handle dirty
    3667             :                  * page-cache pages correctly).
    3668             :                  */
    3669           0 :                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
    3670           0 :                         goto out;
    3671             : 
    3672           0 :                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
    3673             :                 /*
    3674             :                  * If generic_perform_write() returned a synchronous error
    3675             :                  * then we want to return the number of bytes which were
    3676             :                  * direct-written, or the error code if that was zero.  Note
    3677             :                  * that this differs from normal direct-io semantics, which
    3678             :                  * will return -EFOO even if some bytes were written.
    3679             :                  */
    3680           0 :                 if (unlikely(status < 0)) {
    3681           0 :                         err = status;
    3682           0 :                         goto out;
    3683             :                 }
    3684             :                 /*
    3685             :                  * We need to ensure that the page cache pages are written to
    3686             :                  * disk and invalidated to preserve the expected O_DIRECT
    3687             :                  * semantics.
    3688             :                  */
    3689           0 :                 endbyte = pos + status - 1;
    3690           0 :                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
    3691           0 :                 if (err == 0) {
    3692           0 :                         iocb->ki_pos = endbyte + 1;
    3693           0 :                         written += status;
    3694           0 :                         invalidate_mapping_pages(mapping,
    3695           0 :                                                  pos >> PAGE_SHIFT,
    3696           0 :                                                  endbyte >> PAGE_SHIFT);
    3697             :                 } else {
    3698             :                         /*
    3699             :                          * We don't know how much we wrote, so just return
    3700             :                          * the number of bytes which were direct-written
    3701             :                          */
    3702             :                 }
    3703             :         } else {
    3704           0 :                 written = generic_perform_write(file, from, iocb->ki_pos);
    3705           0 :                 if (likely(written > 0))
    3706           0 :                         iocb->ki_pos += written;
    3707             :         }
    3708           0 : out:
    3709           0 :         current->backing_dev_info = NULL;
    3710           0 :         return written ? written : err;
    3711             : }
    3712             : EXPORT_SYMBOL(__generic_file_write_iter);
    3713             : 
    3714             : /**
    3715             :  * generic_file_write_iter - write data to a file
    3716             :  * @iocb:       IO state structure
    3717             :  * @from:       iov_iter with data to write
    3718             :  *
    3719             :  * This is a wrapper around __generic_file_write_iter() to be used by most
    3720             :  * filesystems. It takes care of syncing the file in case of O_SYNC file
    3721             :  * and acquires i_mutex as needed.
    3722             :  * Return:
    3723             :  * * negative error code if no data has been written at all of
    3724             :  *   vfs_fsync_range() failed for a synchronous write
    3725             :  * * number of bytes written, even for truncated writes
    3726             :  */
    3727           0 : ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
    3728             : {
    3729           0 :         struct file *file = iocb->ki_filp;
    3730           0 :         struct inode *inode = file->f_mapping->host;
    3731           0 :         ssize_t ret;
    3732             : 
    3733           0 :         inode_lock(inode);
    3734           0 :         ret = generic_write_checks(iocb, from);
    3735           0 :         if (ret > 0)
    3736           0 :                 ret = __generic_file_write_iter(iocb, from);
    3737           0 :         inode_unlock(inode);
    3738             : 
    3739           0 :         if (ret > 0)
    3740           0 :                 ret = generic_write_sync(iocb, ret);
    3741           0 :         return ret;
    3742             : }
    3743             : EXPORT_SYMBOL(generic_file_write_iter);
    3744             : 
    3745             : /**
    3746             :  * try_to_release_page() - release old fs-specific metadata on a page
    3747             :  *
    3748             :  * @page: the page which the kernel is trying to free
    3749             :  * @gfp_mask: memory allocation flags (and I/O mode)
    3750             :  *
    3751             :  * The address_space is to try to release any data against the page
    3752             :  * (presumably at page->private).
    3753             :  *
    3754             :  * This may also be called if PG_fscache is set on a page, indicating that the
    3755             :  * page is known to the local caching routines.
    3756             :  *
    3757             :  * The @gfp_mask argument specifies whether I/O may be performed to release
    3758             :  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
    3759             :  *
    3760             :  * Return: %1 if the release was successful, otherwise return zero.
    3761             :  */
    3762           0 : int try_to_release_page(struct page *page, gfp_t gfp_mask)
    3763             : {
    3764           0 :         struct address_space * const mapping = page->mapping;
    3765             : 
    3766           0 :         BUG_ON(!PageLocked(page));
    3767           0 :         if (PageWriteback(page))
    3768             :                 return 0;
    3769             : 
    3770           0 :         if (mapping && mapping->a_ops->releasepage)
    3771           0 :                 return mapping->a_ops->releasepage(page, gfp_mask);
    3772           0 :         return try_to_free_buffers(page);
    3773             : }
    3774             : 
    3775             : EXPORT_SYMBOL(try_to_release_page);

Generated by: LCOV version 1.14