Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * Copyright (C) 2009 Red Hat, Inc.
4 : */
5 :
6 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 :
8 : #include <linux/mm.h>
9 : #include <linux/sched.h>
10 : #include <linux/sched/coredump.h>
11 : #include <linux/sched/numa_balancing.h>
12 : #include <linux/highmem.h>
13 : #include <linux/hugetlb.h>
14 : #include <linux/mmu_notifier.h>
15 : #include <linux/rmap.h>
16 : #include <linux/swap.h>
17 : #include <linux/shrinker.h>
18 : #include <linux/mm_inline.h>
19 : #include <linux/swapops.h>
20 : #include <linux/dax.h>
21 : #include <linux/khugepaged.h>
22 : #include <linux/freezer.h>
23 : #include <linux/pfn_t.h>
24 : #include <linux/mman.h>
25 : #include <linux/memremap.h>
26 : #include <linux/pagemap.h>
27 : #include <linux/debugfs.h>
28 : #include <linux/migrate.h>
29 : #include <linux/hashtable.h>
30 : #include <linux/userfaultfd_k.h>
31 : #include <linux/page_idle.h>
32 : #include <linux/shmem_fs.h>
33 : #include <linux/oom.h>
34 : #include <linux/numa.h>
35 : #include <linux/page_owner.h>
36 :
37 : #include <asm/tlb.h>
38 : #include <asm/pgalloc.h>
39 : #include "internal.h"
40 :
41 : /*
42 : * By default, transparent hugepage support is disabled in order to avoid
43 : * risking an increased memory footprint for applications that are not
44 : * guaranteed to benefit from it. When transparent hugepage support is
45 : * enabled, it is for all mappings, and khugepaged scans all mappings.
46 : * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 : * for all hugepage allocations.
48 : */
49 : unsigned long transparent_hugepage_flags __read_mostly =
50 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 : (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 : #endif
53 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 : (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 : #endif
56 : (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 : (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 : (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 :
60 : static struct shrinker deferred_split_shrinker;
61 :
62 : static atomic_t huge_zero_refcount;
63 : struct page *huge_zero_page __read_mostly;
64 :
65 0 : bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 : {
67 : /* The addr is used to check if the vma size fits */
68 0 : unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 :
70 0 : if (!transhuge_vma_suitable(vma, addr))
71 : return false;
72 0 : if (vma_is_anonymous(vma))
73 0 : return __transparent_hugepage_enabled(vma);
74 0 : if (vma_is_shmem(vma))
75 0 : return shmem_huge_enabled(vma);
76 :
77 : return false;
78 : }
79 :
80 0 : static struct page *get_huge_zero_page(void)
81 : {
82 0 : struct page *zero_page;
83 0 : retry:
84 0 : if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 0 : return READ_ONCE(huge_zero_page);
86 :
87 0 : zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 : HPAGE_PMD_ORDER);
89 0 : if (!zero_page) {
90 0 : count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 0 : return NULL;
92 : }
93 0 : count_vm_event(THP_ZERO_PAGE_ALLOC);
94 0 : preempt_disable();
95 0 : if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 0 : preempt_enable();
97 0 : __free_pages(zero_page, compound_order(zero_page));
98 0 : goto retry;
99 : }
100 :
101 : /* We take additional reference here. It will be put back by shrinker */
102 0 : atomic_set(&huge_zero_refcount, 2);
103 0 : preempt_enable();
104 0 : return READ_ONCE(huge_zero_page);
105 : }
106 :
107 0 : static void put_huge_zero_page(void)
108 : {
109 : /*
110 : * Counter should never go to zero here. Only shrinker can put
111 : * last reference.
112 : */
113 0 : BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 0 : }
115 :
116 0 : struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 : {
118 0 : if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 0 : return READ_ONCE(huge_zero_page);
120 :
121 0 : if (!get_huge_zero_page())
122 : return NULL;
123 :
124 0 : if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 0 : put_huge_zero_page();
126 :
127 0 : return READ_ONCE(huge_zero_page);
128 : }
129 :
130 3976 : void mm_put_huge_zero_page(struct mm_struct *mm)
131 : {
132 3976 : if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 0 : put_huge_zero_page();
134 3976 : }
135 :
136 0 : static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 : struct shrink_control *sc)
138 : {
139 : /* we can free zero page only if last reference remains */
140 0 : return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 : }
142 :
143 0 : static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 : struct shrink_control *sc)
145 : {
146 0 : if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 0 : struct page *zero_page = xchg(&huge_zero_page, NULL);
148 0 : BUG_ON(zero_page == NULL);
149 0 : __free_pages(zero_page, compound_order(zero_page));
150 0 : return HPAGE_PMD_NR;
151 : }
152 :
153 : return 0;
154 : }
155 :
156 : static struct shrinker huge_zero_page_shrinker = {
157 : .count_objects = shrink_huge_zero_page_count,
158 : .scan_objects = shrink_huge_zero_page_scan,
159 : .seeks = DEFAULT_SEEKS,
160 : };
161 :
162 : #ifdef CONFIG_SYSFS
163 0 : static ssize_t enabled_show(struct kobject *kobj,
164 : struct kobj_attribute *attr, char *buf)
165 : {
166 0 : const char *output;
167 :
168 0 : if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
169 : output = "[always] madvise never";
170 0 : else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
171 : &transparent_hugepage_flags))
172 : output = "always [madvise] never";
173 : else
174 0 : output = "always madvise [never]";
175 :
176 0 : return sysfs_emit(buf, "%s\n", output);
177 : }
178 :
179 0 : static ssize_t enabled_store(struct kobject *kobj,
180 : struct kobj_attribute *attr,
181 : const char *buf, size_t count)
182 : {
183 0 : ssize_t ret = count;
184 :
185 0 : if (sysfs_streq(buf, "always")) {
186 0 : clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 0 : set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 0 : } else if (sysfs_streq(buf, "madvise")) {
189 0 : clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 0 : set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 0 : } else if (sysfs_streq(buf, "never")) {
192 0 : clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
193 0 : clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
194 : } else
195 : ret = -EINVAL;
196 :
197 0 : if (ret > 0) {
198 0 : int err = start_stop_khugepaged();
199 0 : if (err)
200 0 : ret = err;
201 : }
202 0 : return ret;
203 : }
204 : static struct kobj_attribute enabled_attr =
205 : __ATTR(enabled, 0644, enabled_show, enabled_store);
206 :
207 0 : ssize_t single_hugepage_flag_show(struct kobject *kobj,
208 : struct kobj_attribute *attr, char *buf,
209 : enum transparent_hugepage_flag flag)
210 : {
211 0 : return sysfs_emit(buf, "%d\n",
212 0 : !!test_bit(flag, &transparent_hugepage_flags));
213 : }
214 :
215 0 : ssize_t single_hugepage_flag_store(struct kobject *kobj,
216 : struct kobj_attribute *attr,
217 : const char *buf, size_t count,
218 : enum transparent_hugepage_flag flag)
219 : {
220 0 : unsigned long value;
221 0 : int ret;
222 :
223 0 : ret = kstrtoul(buf, 10, &value);
224 0 : if (ret < 0)
225 0 : return ret;
226 0 : if (value > 1)
227 : return -EINVAL;
228 :
229 0 : if (value)
230 0 : set_bit(flag, &transparent_hugepage_flags);
231 : else
232 0 : clear_bit(flag, &transparent_hugepage_flags);
233 :
234 0 : return count;
235 : }
236 :
237 0 : static ssize_t defrag_show(struct kobject *kobj,
238 : struct kobj_attribute *attr, char *buf)
239 : {
240 0 : const char *output;
241 :
242 0 : if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
243 : &transparent_hugepage_flags))
244 : output = "[always] defer defer+madvise madvise never";
245 0 : else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
246 : &transparent_hugepage_flags))
247 : output = "always [defer] defer+madvise madvise never";
248 0 : else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
249 : &transparent_hugepage_flags))
250 : output = "always defer [defer+madvise] madvise never";
251 0 : else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
252 : &transparent_hugepage_flags))
253 : output = "always defer defer+madvise [madvise] never";
254 : else
255 0 : output = "always defer defer+madvise madvise [never]";
256 :
257 0 : return sysfs_emit(buf, "%s\n", output);
258 : }
259 :
260 0 : static ssize_t defrag_store(struct kobject *kobj,
261 : struct kobj_attribute *attr,
262 : const char *buf, size_t count)
263 : {
264 0 : if (sysfs_streq(buf, "always")) {
265 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 0 : set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269 0 : } else if (sysfs_streq(buf, "defer+madvise")) {
270 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 0 : set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 0 : } else if (sysfs_streq(buf, "defer")) {
275 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 0 : set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 0 : } else if (sysfs_streq(buf, "madvise")) {
280 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
282 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
283 0 : set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284 0 : } else if (sysfs_streq(buf, "never")) {
285 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
287 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 0 : clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
289 : } else
290 : return -EINVAL;
291 :
292 0 : return count;
293 : }
294 : static struct kobj_attribute defrag_attr =
295 : __ATTR(defrag, 0644, defrag_show, defrag_store);
296 :
297 0 : static ssize_t use_zero_page_show(struct kobject *kobj,
298 : struct kobj_attribute *attr, char *buf)
299 : {
300 0 : return single_hugepage_flag_show(kobj, attr, buf,
301 : TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 : }
303 0 : static ssize_t use_zero_page_store(struct kobject *kobj,
304 : struct kobj_attribute *attr, const char *buf, size_t count)
305 : {
306 0 : return single_hugepage_flag_store(kobj, attr, buf, count,
307 : TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
308 : }
309 : static struct kobj_attribute use_zero_page_attr =
310 : __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
311 :
312 0 : static ssize_t hpage_pmd_size_show(struct kobject *kobj,
313 : struct kobj_attribute *attr, char *buf)
314 : {
315 0 : return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
316 : }
317 : static struct kobj_attribute hpage_pmd_size_attr =
318 : __ATTR_RO(hpage_pmd_size);
319 :
320 : static struct attribute *hugepage_attr[] = {
321 : &enabled_attr.attr,
322 : &defrag_attr.attr,
323 : &use_zero_page_attr.attr,
324 : &hpage_pmd_size_attr.attr,
325 : #ifdef CONFIG_SHMEM
326 : &shmem_enabled_attr.attr,
327 : #endif
328 : NULL,
329 : };
330 :
331 : static const struct attribute_group hugepage_attr_group = {
332 : .attrs = hugepage_attr,
333 : };
334 :
335 1 : static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 : {
337 1 : int err;
338 :
339 1 : *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 1 : if (unlikely(!*hugepage_kobj)) {
341 0 : pr_err("failed to create transparent hugepage kobject\n");
342 0 : return -ENOMEM;
343 : }
344 :
345 1 : err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 1 : if (err) {
347 0 : pr_err("failed to register transparent hugepage group\n");
348 0 : goto delete_obj;
349 : }
350 :
351 1 : err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 1 : if (err) {
353 0 : pr_err("failed to register transparent hugepage group\n");
354 0 : goto remove_hp_group;
355 : }
356 :
357 : return 0;
358 :
359 0 : remove_hp_group:
360 0 : sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 0 : delete_obj:
362 0 : kobject_put(*hugepage_kobj);
363 0 : return err;
364 : }
365 :
366 0 : static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 : {
368 0 : sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 0 : sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 0 : kobject_put(hugepage_kobj);
371 0 : }
372 : #else
373 : static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 : {
375 : return 0;
376 : }
377 :
378 : static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 : {
380 : }
381 : #endif /* CONFIG_SYSFS */
382 :
383 1 : static int __init hugepage_init(void)
384 : {
385 1 : int err;
386 1 : struct kobject *hugepage_kobj;
387 :
388 1 : if (!has_transparent_hugepage()) {
389 : /*
390 : * Hardware doesn't support hugepages, hence disable
391 : * DAX PMD support.
392 : */
393 : transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
394 : return -EINVAL;
395 : }
396 :
397 : /*
398 : * hugepages can't be allocated by the buddy allocator
399 : */
400 1 : MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
401 : /*
402 : * we use page->mapping and page->index in second tail page
403 : * as list_head: assuming THP order >= 2
404 : */
405 1 : MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
406 :
407 1 : err = hugepage_init_sysfs(&hugepage_kobj);
408 1 : if (err)
409 0 : goto err_sysfs;
410 :
411 1 : err = khugepaged_init();
412 1 : if (err)
413 0 : goto err_slab;
414 :
415 1 : err = register_shrinker(&huge_zero_page_shrinker);
416 1 : if (err)
417 0 : goto err_hzp_shrinker;
418 1 : err = register_shrinker(&deferred_split_shrinker);
419 1 : if (err)
420 0 : goto err_split_shrinker;
421 :
422 : /*
423 : * By default disable transparent hugepages on smaller systems,
424 : * where the extra memory used could hurt more than TLB overhead
425 : * is likely to save. The admin can still enable it through /sys.
426 : */
427 1 : if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
428 0 : transparent_hugepage_flags = 0;
429 0 : return 0;
430 : }
431 :
432 1 : err = start_stop_khugepaged();
433 1 : if (err)
434 0 : goto err_khugepaged;
435 :
436 : return 0;
437 0 : err_khugepaged:
438 0 : unregister_shrinker(&deferred_split_shrinker);
439 0 : err_split_shrinker:
440 0 : unregister_shrinker(&huge_zero_page_shrinker);
441 0 : err_hzp_shrinker:
442 0 : khugepaged_destroy();
443 0 : err_slab:
444 0 : hugepage_exit_sysfs(hugepage_kobj);
445 : err_sysfs:
446 : return err;
447 : }
448 : subsys_initcall(hugepage_init);
449 :
450 0 : static int __init setup_transparent_hugepage(char *str)
451 : {
452 0 : int ret = 0;
453 0 : if (!str)
454 0 : goto out;
455 0 : if (!strcmp(str, "always")) {
456 0 : set_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 : &transparent_hugepage_flags);
458 0 : clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 : &transparent_hugepage_flags);
460 0 : ret = 1;
461 0 : } else if (!strcmp(str, "madvise")) {
462 0 : clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 : &transparent_hugepage_flags);
464 0 : set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 : &transparent_hugepage_flags);
466 0 : ret = 1;
467 0 : } else if (!strcmp(str, "never")) {
468 0 : clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 : &transparent_hugepage_flags);
470 0 : clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 : &transparent_hugepage_flags);
472 0 : ret = 1;
473 : }
474 0 : out:
475 0 : if (!ret)
476 0 : pr_warn("transparent_hugepage= cannot parse, ignored\n");
477 0 : return ret;
478 : }
479 : __setup("transparent_hugepage=", setup_transparent_hugepage);
480 :
481 19 : pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
482 : {
483 19 : if (likely(vma->vm_flags & VM_WRITE))
484 19 : pmd = pmd_mkwrite(pmd);
485 19 : return pmd;
486 : }
487 :
488 : #ifdef CONFIG_MEMCG
489 : static inline struct deferred_split *get_deferred_split_queue(struct page *page)
490 : {
491 : struct mem_cgroup *memcg = page_memcg(compound_head(page));
492 : struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
493 :
494 : if (memcg)
495 : return &memcg->deferred_split_queue;
496 : else
497 : return &pgdat->deferred_split_queue;
498 : }
499 : #else
500 18 : static inline struct deferred_split *get_deferred_split_queue(struct page *page)
501 : {
502 18 : struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
503 :
504 18 : return &pgdat->deferred_split_queue;
505 : }
506 : #endif
507 :
508 19 : void prep_transhuge_page(struct page *page)
509 : {
510 : /*
511 : * we use page->mapping and page->indexlru in second tail page
512 : * as list_head: assuming THP order >= 2
513 : */
514 :
515 2 : INIT_LIST_HEAD(page_deferred_list(page));
516 19 : set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
517 2 : }
518 :
519 0 : bool is_transparent_hugepage(struct page *page)
520 : {
521 0 : if (!PageCompound(page))
522 : return false;
523 :
524 0 : page = compound_head(page);
525 0 : return is_huge_zero_page(page) ||
526 0 : page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
527 : }
528 : EXPORT_SYMBOL_GPL(is_transparent_hugepage);
529 :
530 : static unsigned long __thp_get_unmapped_area(struct file *filp,
531 : unsigned long addr, unsigned long len,
532 : loff_t off, unsigned long flags, unsigned long size)
533 : {
534 : loff_t off_end = off + len;
535 : loff_t off_align = round_up(off, size);
536 : unsigned long len_pad, ret;
537 :
538 : if (off_end <= off_align || (off_end - off_align) < size)
539 : return 0;
540 :
541 : len_pad = len + size;
542 : if (len_pad < len || (off + len_pad) < off)
543 : return 0;
544 :
545 : ret = current->mm->get_unmapped_area(filp, addr, len_pad,
546 : off >> PAGE_SHIFT, flags);
547 :
548 : /*
549 : * The failure might be due to length padding. The caller will retry
550 : * without the padding.
551 : */
552 : if (IS_ERR_VALUE(ret))
553 : return 0;
554 :
555 : /*
556 : * Do not try to align to THP boundary if allocation at the address
557 : * hint succeeds.
558 : */
559 : if (ret == addr)
560 : return addr;
561 :
562 : ret += (off - ret) & (size - 1);
563 : return ret;
564 : }
565 :
566 25596 : unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
567 : unsigned long len, unsigned long pgoff, unsigned long flags)
568 : {
569 25596 : unsigned long ret;
570 25596 : loff_t off = (loff_t)pgoff << PAGE_SHIFT;
571 :
572 25596 : if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
573 25596 : goto out;
574 :
575 : ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
576 : if (ret)
577 : return ret;
578 25596 : out:
579 25596 : return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
580 : }
581 : EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
582 :
583 17 : static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
584 : struct page *page, gfp_t gfp)
585 : {
586 17 : struct vm_area_struct *vma = vmf->vma;
587 17 : pgtable_t pgtable;
588 17 : unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
589 17 : vm_fault_t ret = 0;
590 :
591 34 : VM_BUG_ON_PAGE(!PageCompound(page), page);
592 :
593 17 : if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
594 : put_page(page);
595 : count_vm_event(THP_FAULT_FALLBACK);
596 : count_vm_event(THP_FAULT_FALLBACK_CHARGE);
597 : return VM_FAULT_FALLBACK;
598 : }
599 17 : cgroup_throttle_swaprate(page, gfp);
600 :
601 17 : pgtable = pte_alloc_one(vma->vm_mm);
602 17 : if (unlikely(!pgtable)) {
603 0 : ret = VM_FAULT_OOM;
604 0 : goto release;
605 : }
606 :
607 17 : clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
608 : /*
609 : * The memory barrier inside __SetPageUptodate makes sure that
610 : * clear_huge_page writes become visible before the set_pmd_at()
611 : * write.
612 : */
613 17 : __SetPageUptodate(page);
614 :
615 17 : vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
616 17 : if (unlikely(!pmd_none(*vmf->pmd))) {
617 0 : goto unlock_release;
618 : } else {
619 17 : pmd_t entry;
620 :
621 17 : ret = check_stable_address_space(vma->vm_mm);
622 17 : if (ret)
623 0 : goto unlock_release;
624 :
625 : /* Deliver the page fault to userland */
626 17 : if (userfaultfd_missing(vma)) {
627 : vm_fault_t ret2;
628 :
629 : spin_unlock(vmf->ptl);
630 : put_page(page);
631 : pte_free(vma->vm_mm, pgtable);
632 : ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
633 : VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
634 : return ret2;
635 : }
636 :
637 17 : entry = mk_huge_pmd(page, vma->vm_page_prot);
638 17 : entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
639 17 : page_add_new_anon_rmap(page, vma, haddr, true);
640 17 : lru_cache_add_inactive_or_unevictable(page, vma);
641 17 : pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
642 17 : set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
643 17 : update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
644 17 : add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
645 17 : mm_inc_nr_ptes(vma->vm_mm);
646 17 : spin_unlock(vmf->ptl);
647 17 : count_vm_event(THP_FAULT_ALLOC);
648 17 : count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
649 : }
650 :
651 17 : return 0;
652 0 : unlock_release:
653 0 : spin_unlock(vmf->ptl);
654 0 : release:
655 0 : if (pgtable)
656 0 : pte_free(vma->vm_mm, pgtable);
657 0 : put_page(page);
658 0 : return ret;
659 :
660 : }
661 :
662 : /*
663 : * always: directly stall for all thp allocations
664 : * defer: wake kswapd and fail if not immediately available
665 : * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
666 : * fail if not immediately available
667 : * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
668 : * available
669 : * never: never stall for any thp allocation
670 : */
671 17 : gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
672 : {
673 17 : const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
674 :
675 : /* Always do synchronous compaction */
676 17 : if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
677 0 : return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
678 :
679 : /* Kick kcompactd and fail quickly */
680 17 : if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
681 : return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
682 :
683 : /* Synchronous compaction if madvised, otherwise kick kcompactd */
684 17 : if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
685 0 : return GFP_TRANSHUGE_LIGHT |
686 : (vma_madvised ? __GFP_DIRECT_RECLAIM :
687 : __GFP_KSWAPD_RECLAIM);
688 :
689 : /* Only do synchronous compaction if madvised */
690 17 : if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
691 17 : return GFP_TRANSHUGE_LIGHT |
692 : (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
693 :
694 : return GFP_TRANSHUGE_LIGHT;
695 : }
696 :
697 : /* Caller must hold page table lock. */
698 0 : static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
699 : struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
700 : struct page *zero_page)
701 : {
702 0 : pmd_t entry;
703 0 : if (!pmd_none(*pmd))
704 0 : return;
705 0 : entry = mk_pmd(zero_page, vma->vm_page_prot);
706 0 : entry = pmd_mkhuge(entry);
707 0 : if (pgtable)
708 0 : pgtable_trans_huge_deposit(mm, pmd, pgtable);
709 0 : set_pmd_at(mm, haddr, pmd, entry);
710 0 : mm_inc_nr_ptes(mm);
711 : }
712 :
713 1114 : vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
714 : {
715 1114 : struct vm_area_struct *vma = vmf->vma;
716 1114 : gfp_t gfp;
717 1114 : struct page *page;
718 1114 : unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
719 :
720 1114 : if (!transhuge_vma_suitable(vma, haddr))
721 : return VM_FAULT_FALLBACK;
722 17 : if (unlikely(anon_vma_prepare(vma)))
723 : return VM_FAULT_OOM;
724 17 : if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
725 : return VM_FAULT_OOM;
726 17 : if (!(vmf->flags & FAULT_FLAG_WRITE) &&
727 0 : !mm_forbids_zeropage(vma->vm_mm) &&
728 0 : transparent_hugepage_use_zero_page()) {
729 0 : pgtable_t pgtable;
730 0 : struct page *zero_page;
731 0 : vm_fault_t ret;
732 0 : pgtable = pte_alloc_one(vma->vm_mm);
733 0 : if (unlikely(!pgtable))
734 : return VM_FAULT_OOM;
735 0 : zero_page = mm_get_huge_zero_page(vma->vm_mm);
736 0 : if (unlikely(!zero_page)) {
737 0 : pte_free(vma->vm_mm, pgtable);
738 0 : count_vm_event(THP_FAULT_FALLBACK);
739 0 : return VM_FAULT_FALLBACK;
740 : }
741 0 : vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
742 0 : ret = 0;
743 0 : if (pmd_none(*vmf->pmd)) {
744 0 : ret = check_stable_address_space(vma->vm_mm);
745 0 : if (ret) {
746 0 : spin_unlock(vmf->ptl);
747 0 : pte_free(vma->vm_mm, pgtable);
748 0 : } else if (userfaultfd_missing(vma)) {
749 : spin_unlock(vmf->ptl);
750 : pte_free(vma->vm_mm, pgtable);
751 : ret = handle_userfault(vmf, VM_UFFD_MISSING);
752 : VM_BUG_ON(ret & VM_FAULT_FALLBACK);
753 : } else {
754 0 : set_huge_zero_page(pgtable, vma->vm_mm, vma,
755 : haddr, vmf->pmd, zero_page);
756 0 : update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
757 0 : spin_unlock(vmf->ptl);
758 : }
759 : } else {
760 0 : spin_unlock(vmf->ptl);
761 0 : pte_free(vma->vm_mm, pgtable);
762 : }
763 0 : return ret;
764 : }
765 17 : gfp = vma_thp_gfp_mask(vma);
766 17 : page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
767 17 : if (unlikely(!page)) {
768 0 : count_vm_event(THP_FAULT_FALLBACK);
769 0 : return VM_FAULT_FALLBACK;
770 : }
771 17 : prep_transhuge_page(page);
772 17 : return __do_huge_pmd_anonymous_page(vmf, page, gfp);
773 : }
774 :
775 0 : static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
776 : pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
777 : pgtable_t pgtable)
778 : {
779 0 : struct mm_struct *mm = vma->vm_mm;
780 0 : pmd_t entry;
781 0 : spinlock_t *ptl;
782 :
783 0 : ptl = pmd_lock(mm, pmd);
784 0 : if (!pmd_none(*pmd)) {
785 0 : if (write) {
786 0 : if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
787 0 : WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
788 0 : goto out_unlock;
789 : }
790 0 : entry = pmd_mkyoung(*pmd);
791 0 : entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
792 0 : if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
793 0 : update_mmu_cache_pmd(vma, addr, pmd);
794 : }
795 :
796 0 : goto out_unlock;
797 : }
798 :
799 0 : entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
800 0 : if (pfn_t_devmap(pfn))
801 0 : entry = pmd_mkdevmap(entry);
802 0 : if (write) {
803 0 : entry = pmd_mkyoung(pmd_mkdirty(entry));
804 0 : entry = maybe_pmd_mkwrite(entry, vma);
805 : }
806 :
807 0 : if (pgtable) {
808 0 : pgtable_trans_huge_deposit(mm, pmd, pgtable);
809 0 : mm_inc_nr_ptes(mm);
810 0 : pgtable = NULL;
811 : }
812 :
813 0 : set_pmd_at(mm, addr, pmd, entry);
814 0 : update_mmu_cache_pmd(vma, addr, pmd);
815 :
816 0 : out_unlock:
817 0 : spin_unlock(ptl);
818 0 : if (pgtable)
819 0 : pte_free(mm, pgtable);
820 0 : }
821 :
822 : /**
823 : * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
824 : * @vmf: Structure describing the fault
825 : * @pfn: pfn to insert
826 : * @pgprot: page protection to use
827 : * @write: whether it's a write fault
828 : *
829 : * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
830 : * also consult the vmf_insert_mixed_prot() documentation when
831 : * @pgprot != @vmf->vma->vm_page_prot.
832 : *
833 : * Return: vm_fault_t value.
834 : */
835 0 : vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
836 : pgprot_t pgprot, bool write)
837 : {
838 0 : unsigned long addr = vmf->address & PMD_MASK;
839 0 : struct vm_area_struct *vma = vmf->vma;
840 0 : pgtable_t pgtable = NULL;
841 :
842 : /*
843 : * If we had pmd_special, we could avoid all these restrictions,
844 : * but we need to be consistent with PTEs and architectures that
845 : * can't support a 'special' bit.
846 : */
847 0 : BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
848 : !pfn_t_devmap(pfn));
849 0 : BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
850 : (VM_PFNMAP|VM_MIXEDMAP));
851 0 : BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
852 :
853 0 : if (addr < vma->vm_start || addr >= vma->vm_end)
854 : return VM_FAULT_SIGBUS;
855 :
856 0 : if (arch_needs_pgtable_deposit()) {
857 : pgtable = pte_alloc_one(vma->vm_mm);
858 : if (!pgtable)
859 : return VM_FAULT_OOM;
860 : }
861 :
862 0 : track_pfn_insert(vma, &pgprot, pfn);
863 :
864 0 : insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
865 0 : return VM_FAULT_NOPAGE;
866 : }
867 : EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
868 :
869 : #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
870 0 : static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
871 : {
872 0 : if (likely(vma->vm_flags & VM_WRITE))
873 0 : pud = pud_mkwrite(pud);
874 0 : return pud;
875 : }
876 :
877 0 : static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
878 : pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
879 : {
880 0 : struct mm_struct *mm = vma->vm_mm;
881 0 : pud_t entry;
882 0 : spinlock_t *ptl;
883 :
884 0 : ptl = pud_lock(mm, pud);
885 0 : if (!pud_none(*pud)) {
886 0 : if (write) {
887 0 : if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
888 0 : WARN_ON_ONCE(!is_huge_zero_pud(*pud));
889 0 : goto out_unlock;
890 : }
891 0 : entry = pud_mkyoung(*pud);
892 0 : entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
893 0 : if (pudp_set_access_flags(vma, addr, pud, entry, 1))
894 0 : update_mmu_cache_pud(vma, addr, pud);
895 : }
896 0 : goto out_unlock;
897 : }
898 :
899 0 : entry = pud_mkhuge(pfn_t_pud(pfn, prot));
900 0 : if (pfn_t_devmap(pfn))
901 0 : entry = pud_mkdevmap(entry);
902 0 : if (write) {
903 0 : entry = pud_mkyoung(pud_mkdirty(entry));
904 0 : entry = maybe_pud_mkwrite(entry, vma);
905 : }
906 0 : set_pud_at(mm, addr, pud, entry);
907 0 : update_mmu_cache_pud(vma, addr, pud);
908 :
909 0 : out_unlock:
910 0 : spin_unlock(ptl);
911 0 : }
912 :
913 : /**
914 : * vmf_insert_pfn_pud_prot - insert a pud size pfn
915 : * @vmf: Structure describing the fault
916 : * @pfn: pfn to insert
917 : * @pgprot: page protection to use
918 : * @write: whether it's a write fault
919 : *
920 : * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
921 : * also consult the vmf_insert_mixed_prot() documentation when
922 : * @pgprot != @vmf->vma->vm_page_prot.
923 : *
924 : * Return: vm_fault_t value.
925 : */
926 0 : vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
927 : pgprot_t pgprot, bool write)
928 : {
929 0 : unsigned long addr = vmf->address & PUD_MASK;
930 0 : struct vm_area_struct *vma = vmf->vma;
931 :
932 : /*
933 : * If we had pud_special, we could avoid all these restrictions,
934 : * but we need to be consistent with PTEs and architectures that
935 : * can't support a 'special' bit.
936 : */
937 0 : BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
938 : !pfn_t_devmap(pfn));
939 0 : BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
940 : (VM_PFNMAP|VM_MIXEDMAP));
941 0 : BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
942 :
943 0 : if (addr < vma->vm_start || addr >= vma->vm_end)
944 : return VM_FAULT_SIGBUS;
945 :
946 0 : track_pfn_insert(vma, &pgprot, pfn);
947 :
948 0 : insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
949 0 : return VM_FAULT_NOPAGE;
950 : }
951 : EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
952 : #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
953 :
954 0 : static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
955 : pmd_t *pmd, int flags)
956 : {
957 0 : pmd_t _pmd;
958 :
959 0 : _pmd = pmd_mkyoung(*pmd);
960 0 : if (flags & FOLL_WRITE)
961 0 : _pmd = pmd_mkdirty(_pmd);
962 0 : if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
963 : pmd, _pmd, flags & FOLL_WRITE))
964 0 : update_mmu_cache_pmd(vma, addr, pmd);
965 0 : }
966 :
967 0 : struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
968 : pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
969 : {
970 0 : unsigned long pfn = pmd_pfn(*pmd);
971 0 : struct mm_struct *mm = vma->vm_mm;
972 0 : struct page *page;
973 :
974 0 : assert_spin_locked(pmd_lockptr(mm, pmd));
975 :
976 : /*
977 : * When we COW a devmap PMD entry, we split it into PTEs, so we should
978 : * not be in this function with `flags & FOLL_COW` set.
979 : */
980 0 : WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
981 :
982 : /* FOLL_GET and FOLL_PIN are mutually exclusive. */
983 0 : if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
984 : (FOLL_PIN | FOLL_GET)))
985 : return NULL;
986 :
987 0 : if (flags & FOLL_WRITE && !pmd_write(*pmd))
988 : return NULL;
989 :
990 0 : if (pmd_present(*pmd) && pmd_devmap(*pmd))
991 : /* pass */;
992 : else
993 : return NULL;
994 :
995 0 : if (flags & FOLL_TOUCH)
996 0 : touch_pmd(vma, addr, pmd, flags);
997 :
998 : /*
999 : * device mapped pages can only be returned if the
1000 : * caller will manage the page reference count.
1001 : */
1002 0 : if (!(flags & (FOLL_GET | FOLL_PIN)))
1003 0 : return ERR_PTR(-EEXIST);
1004 :
1005 0 : pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1006 0 : *pgmap = get_dev_pagemap(pfn, *pgmap);
1007 0 : if (!*pgmap)
1008 0 : return ERR_PTR(-EFAULT);
1009 : page = pfn_to_page(pfn);
1010 : if (!try_grab_page(page, flags))
1011 : page = ERR_PTR(-ENOMEM);
1012 :
1013 : return page;
1014 : }
1015 :
1016 1 : int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1017 : pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1018 : struct vm_area_struct *vma)
1019 : {
1020 1 : spinlock_t *dst_ptl, *src_ptl;
1021 1 : struct page *src_page;
1022 1 : pmd_t pmd;
1023 1 : pgtable_t pgtable = NULL;
1024 1 : int ret = -ENOMEM;
1025 :
1026 : /* Skip if can be re-fill on fault */
1027 1 : if (!vma_is_anonymous(vma))
1028 : return 0;
1029 :
1030 1 : pgtable = pte_alloc_one(dst_mm);
1031 1 : if (unlikely(!pgtable))
1032 0 : goto out;
1033 :
1034 1 : dst_ptl = pmd_lock(dst_mm, dst_pmd);
1035 1 : src_ptl = pmd_lockptr(src_mm, src_pmd);
1036 1 : spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1037 :
1038 1 : ret = -EAGAIN;
1039 1 : pmd = *src_pmd;
1040 :
1041 : /*
1042 : * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1043 : * does not have the VM_UFFD_WP, which means that the uffd
1044 : * fork event is not enabled.
1045 : */
1046 1 : if (!(vma->vm_flags & VM_UFFD_WP))
1047 1 : pmd = pmd_clear_uffd_wp(pmd);
1048 :
1049 : #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1050 1 : if (unlikely(is_swap_pmd(pmd))) {
1051 0 : swp_entry_t entry = pmd_to_swp_entry(pmd);
1052 :
1053 0 : VM_BUG_ON(!is_pmd_migration_entry(pmd));
1054 0 : if (is_write_migration_entry(entry)) {
1055 0 : make_migration_entry_read(&entry);
1056 0 : pmd = swp_entry_to_pmd(entry);
1057 0 : if (pmd_swp_soft_dirty(*src_pmd))
1058 : pmd = pmd_swp_mksoft_dirty(pmd);
1059 0 : set_pmd_at(src_mm, addr, src_pmd, pmd);
1060 : }
1061 0 : add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1062 0 : mm_inc_nr_ptes(dst_mm);
1063 0 : pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1064 0 : set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1065 0 : ret = 0;
1066 0 : goto out_unlock;
1067 : }
1068 : #endif
1069 :
1070 1 : if (unlikely(!pmd_trans_huge(pmd))) {
1071 0 : pte_free(dst_mm, pgtable);
1072 0 : goto out_unlock;
1073 : }
1074 : /*
1075 : * When page table lock is held, the huge zero pmd should not be
1076 : * under splitting since we don't split the page itself, only pmd to
1077 : * a page table.
1078 : */
1079 1 : if (is_huge_zero_pmd(pmd)) {
1080 0 : struct page *zero_page;
1081 : /*
1082 : * get_huge_zero_page() will never allocate a new page here,
1083 : * since we already have a zero page to copy. It just takes a
1084 : * reference.
1085 : */
1086 0 : zero_page = mm_get_huge_zero_page(dst_mm);
1087 0 : set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1088 : zero_page);
1089 0 : ret = 0;
1090 0 : goto out_unlock;
1091 : }
1092 :
1093 1 : src_page = pmd_page(pmd);
1094 1 : VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1095 :
1096 : /*
1097 : * If this page is a potentially pinned page, split and retry the fault
1098 : * with smaller page size. Normally this should not happen because the
1099 : * userspace should use MADV_DONTFORK upon pinned regions. This is a
1100 : * best effort that the pinned pages won't be replaced by another
1101 : * random page during the coming copy-on-write.
1102 : */
1103 1 : if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
1104 0 : pte_free(dst_mm, pgtable);
1105 0 : spin_unlock(src_ptl);
1106 0 : spin_unlock(dst_ptl);
1107 0 : __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1108 0 : return -EAGAIN;
1109 : }
1110 :
1111 1 : get_page(src_page);
1112 1 : page_dup_rmap(src_page, true);
1113 1 : add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1114 1 : mm_inc_nr_ptes(dst_mm);
1115 1 : pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1116 :
1117 1 : pmdp_set_wrprotect(src_mm, addr, src_pmd);
1118 1 : pmd = pmd_mkold(pmd_wrprotect(pmd));
1119 1 : set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1120 :
1121 1 : ret = 0;
1122 1 : out_unlock:
1123 1 : spin_unlock(src_ptl);
1124 1 : spin_unlock(dst_ptl);
1125 : out:
1126 : return ret;
1127 : }
1128 :
1129 : #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1130 0 : static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1131 : pud_t *pud, int flags)
1132 : {
1133 0 : pud_t _pud;
1134 :
1135 0 : _pud = pud_mkyoung(*pud);
1136 0 : if (flags & FOLL_WRITE)
1137 0 : _pud = pud_mkdirty(_pud);
1138 0 : if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1139 : pud, _pud, flags & FOLL_WRITE))
1140 0 : update_mmu_cache_pud(vma, addr, pud);
1141 0 : }
1142 :
1143 0 : struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1144 : pud_t *pud, int flags, struct dev_pagemap **pgmap)
1145 : {
1146 0 : unsigned long pfn = pud_pfn(*pud);
1147 0 : struct mm_struct *mm = vma->vm_mm;
1148 0 : struct page *page;
1149 :
1150 0 : assert_spin_locked(pud_lockptr(mm, pud));
1151 :
1152 0 : if (flags & FOLL_WRITE && !pud_write(*pud))
1153 : return NULL;
1154 :
1155 : /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1156 0 : if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1157 : (FOLL_PIN | FOLL_GET)))
1158 : return NULL;
1159 :
1160 0 : if (pud_present(*pud) && pud_devmap(*pud))
1161 : /* pass */;
1162 : else
1163 : return NULL;
1164 :
1165 0 : if (flags & FOLL_TOUCH)
1166 0 : touch_pud(vma, addr, pud, flags);
1167 :
1168 : /*
1169 : * device mapped pages can only be returned if the
1170 : * caller will manage the page reference count.
1171 : *
1172 : * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1173 : */
1174 0 : if (!(flags & (FOLL_GET | FOLL_PIN)))
1175 0 : return ERR_PTR(-EEXIST);
1176 :
1177 0 : pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1178 0 : *pgmap = get_dev_pagemap(pfn, *pgmap);
1179 0 : if (!*pgmap)
1180 0 : return ERR_PTR(-EFAULT);
1181 : page = pfn_to_page(pfn);
1182 : if (!try_grab_page(page, flags))
1183 : page = ERR_PTR(-ENOMEM);
1184 :
1185 : return page;
1186 : }
1187 :
1188 0 : int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1189 : pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1190 : struct vm_area_struct *vma)
1191 : {
1192 0 : spinlock_t *dst_ptl, *src_ptl;
1193 0 : pud_t pud;
1194 0 : int ret;
1195 :
1196 0 : dst_ptl = pud_lock(dst_mm, dst_pud);
1197 0 : src_ptl = pud_lockptr(src_mm, src_pud);
1198 0 : spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1199 :
1200 0 : ret = -EAGAIN;
1201 0 : pud = *src_pud;
1202 0 : if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1203 0 : goto out_unlock;
1204 :
1205 : /*
1206 : * When page table lock is held, the huge zero pud should not be
1207 : * under splitting since we don't split the page itself, only pud to
1208 : * a page table.
1209 : */
1210 0 : if (is_huge_zero_pud(pud)) {
1211 : /* No huge zero pud yet */
1212 0 : }
1213 :
1214 : /* Please refer to comments in copy_huge_pmd() */
1215 0 : if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1216 0 : spin_unlock(src_ptl);
1217 0 : spin_unlock(dst_ptl);
1218 0 : __split_huge_pud(vma, src_pud, addr);
1219 0 : return -EAGAIN;
1220 : }
1221 :
1222 0 : pudp_set_wrprotect(src_mm, addr, src_pud);
1223 0 : pud = pud_mkold(pud_wrprotect(pud));
1224 0 : set_pud_at(dst_mm, addr, dst_pud, pud);
1225 :
1226 0 : ret = 0;
1227 0 : out_unlock:
1228 0 : spin_unlock(src_ptl);
1229 0 : spin_unlock(dst_ptl);
1230 0 : return ret;
1231 : }
1232 :
1233 0 : void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1234 : {
1235 0 : pud_t entry;
1236 0 : unsigned long haddr;
1237 0 : bool write = vmf->flags & FAULT_FLAG_WRITE;
1238 :
1239 0 : vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1240 0 : if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1241 0 : goto unlock;
1242 :
1243 0 : entry = pud_mkyoung(orig_pud);
1244 0 : if (write)
1245 0 : entry = pud_mkdirty(entry);
1246 0 : haddr = vmf->address & HPAGE_PUD_MASK;
1247 0 : if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1248 0 : update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1249 :
1250 0 : unlock:
1251 0 : spin_unlock(vmf->ptl);
1252 0 : }
1253 : #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1254 :
1255 0 : void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1256 : {
1257 0 : pmd_t entry;
1258 0 : unsigned long haddr;
1259 0 : bool write = vmf->flags & FAULT_FLAG_WRITE;
1260 :
1261 0 : vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1262 0 : if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1263 0 : goto unlock;
1264 :
1265 0 : entry = pmd_mkyoung(orig_pmd);
1266 0 : if (write)
1267 0 : entry = pmd_mkdirty(entry);
1268 0 : haddr = vmf->address & HPAGE_PMD_MASK;
1269 0 : if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1270 0 : update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1271 :
1272 0 : unlock:
1273 0 : spin_unlock(vmf->ptl);
1274 0 : }
1275 :
1276 2 : vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1277 : {
1278 2 : struct vm_area_struct *vma = vmf->vma;
1279 2 : struct page *page;
1280 2 : unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1281 :
1282 2 : vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1283 2 : VM_BUG_ON_VMA(!vma->anon_vma, vma);
1284 :
1285 2 : if (is_huge_zero_pmd(orig_pmd))
1286 0 : goto fallback;
1287 :
1288 2 : spin_lock(vmf->ptl);
1289 :
1290 2 : if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1291 0 : spin_unlock(vmf->ptl);
1292 0 : return 0;
1293 : }
1294 :
1295 2 : page = pmd_page(orig_pmd);
1296 6 : VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1297 :
1298 : /* Lock page for reuse_swap_page() */
1299 2 : if (!trylock_page(page)) {
1300 1 : get_page(page);
1301 1 : spin_unlock(vmf->ptl);
1302 1 : lock_page(page);
1303 1 : spin_lock(vmf->ptl);
1304 1 : if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1305 0 : spin_unlock(vmf->ptl);
1306 0 : unlock_page(page);
1307 0 : put_page(page);
1308 0 : return 0;
1309 : }
1310 1 : put_page(page);
1311 : }
1312 :
1313 : /*
1314 : * We can only reuse the page if nobody else maps the huge page or it's
1315 : * part.
1316 : */
1317 2 : if (reuse_swap_page(page, NULL)) {
1318 0 : pmd_t entry;
1319 0 : entry = pmd_mkyoung(orig_pmd);
1320 0 : entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1321 0 : if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1322 0 : update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1323 0 : unlock_page(page);
1324 0 : spin_unlock(vmf->ptl);
1325 0 : return VM_FAULT_WRITE;
1326 : }
1327 :
1328 2 : unlock_page(page);
1329 2 : spin_unlock(vmf->ptl);
1330 2 : fallback:
1331 2 : __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1332 2 : return VM_FAULT_FALLBACK;
1333 : }
1334 :
1335 : /*
1336 : * FOLL_FORCE can write to even unwritable pmd's, but only
1337 : * after we've gone through a COW cycle and they are dirty.
1338 : */
1339 0 : static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1340 : {
1341 0 : return pmd_write(pmd) ||
1342 0 : ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1343 : }
1344 :
1345 0 : struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1346 : unsigned long addr,
1347 : pmd_t *pmd,
1348 : unsigned int flags)
1349 : {
1350 0 : struct mm_struct *mm = vma->vm_mm;
1351 0 : struct page *page = NULL;
1352 :
1353 0 : assert_spin_locked(pmd_lockptr(mm, pmd));
1354 :
1355 0 : if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1356 0 : goto out;
1357 :
1358 : /* Avoid dumping huge zero page */
1359 0 : if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1360 0 : return ERR_PTR(-EFAULT);
1361 :
1362 : /* Full NUMA hinting faults to serialise migration in fault paths */
1363 0 : if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1364 : goto out;
1365 :
1366 0 : page = pmd_page(*pmd);
1367 0 : VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1368 :
1369 0 : if (!try_grab_page(page, flags))
1370 0 : return ERR_PTR(-ENOMEM);
1371 :
1372 0 : if (flags & FOLL_TOUCH)
1373 0 : touch_pmd(vma, addr, pmd, flags);
1374 :
1375 0 : if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1376 : /*
1377 : * We don't mlock() pte-mapped THPs. This way we can avoid
1378 : * leaking mlocked pages into non-VM_LOCKED VMAs.
1379 : *
1380 : * For anon THP:
1381 : *
1382 : * In most cases the pmd is the only mapping of the page as we
1383 : * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1384 : * writable private mappings in populate_vma_page_range().
1385 : *
1386 : * The only scenario when we have the page shared here is if we
1387 : * mlocking read-only mapping shared over fork(). We skip
1388 : * mlocking such pages.
1389 : *
1390 : * For file THP:
1391 : *
1392 : * We can expect PageDoubleMap() to be stable under page lock:
1393 : * for file pages we set it in page_add_file_rmap(), which
1394 : * requires page to be locked.
1395 : */
1396 :
1397 0 : if (PageAnon(page) && compound_mapcount(page) != 1)
1398 0 : goto skip_mlock;
1399 0 : if (PageDoubleMap(page) || !page->mapping)
1400 0 : goto skip_mlock;
1401 0 : if (!trylock_page(page))
1402 0 : goto skip_mlock;
1403 0 : if (page->mapping && !PageDoubleMap(page))
1404 0 : mlock_vma_page(page);
1405 0 : unlock_page(page);
1406 : }
1407 0 : skip_mlock:
1408 0 : page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1409 0 : VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1410 :
1411 0 : out:
1412 : return page;
1413 : }
1414 :
1415 : /* NUMA hinting page fault entry point for trans huge pmds */
1416 0 : vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1417 : {
1418 0 : struct vm_area_struct *vma = vmf->vma;
1419 0 : struct anon_vma *anon_vma = NULL;
1420 0 : struct page *page;
1421 0 : unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1422 0 : int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1423 0 : int target_nid, last_cpupid = -1;
1424 0 : bool page_locked;
1425 0 : bool migrated = false;
1426 0 : bool was_writable;
1427 0 : int flags = 0;
1428 :
1429 0 : vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1430 0 : if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1431 0 : goto out_unlock;
1432 :
1433 : /*
1434 : * If there are potential migrations, wait for completion and retry
1435 : * without disrupting NUMA hinting information. Do not relock and
1436 : * check_same as the page may no longer be mapped.
1437 : */
1438 0 : if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1439 : page = pmd_page(*vmf->pmd);
1440 : if (!get_page_unless_zero(page))
1441 : goto out_unlock;
1442 : spin_unlock(vmf->ptl);
1443 : put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1444 : goto out;
1445 : }
1446 :
1447 0 : page = pmd_page(pmd);
1448 0 : BUG_ON(is_huge_zero_page(page));
1449 0 : page_nid = page_to_nid(page);
1450 0 : last_cpupid = page_cpupid_last(page);
1451 0 : count_vm_numa_event(NUMA_HINT_FAULTS);
1452 0 : if (page_nid == this_nid) {
1453 : count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1454 : flags |= TNF_FAULT_LOCAL;
1455 : }
1456 :
1457 : /* See similar comment in do_numa_page for explanation */
1458 0 : if (!pmd_savedwrite(pmd))
1459 : flags |= TNF_NO_GROUP;
1460 :
1461 : /*
1462 : * Acquire the page lock to serialise THP migrations but avoid dropping
1463 : * page_table_lock if at all possible
1464 : */
1465 0 : page_locked = trylock_page(page);
1466 0 : target_nid = mpol_misplaced(page, vma, haddr);
1467 0 : if (target_nid == NUMA_NO_NODE) {
1468 : /* If the page was locked, there are no parallel migrations */
1469 0 : if (page_locked)
1470 0 : goto clear_pmdnuma;
1471 : }
1472 :
1473 : /* Migration could have started since the pmd_trans_migrating check */
1474 0 : if (!page_locked) {
1475 0 : page_nid = NUMA_NO_NODE;
1476 0 : if (!get_page_unless_zero(page))
1477 0 : goto out_unlock;
1478 0 : spin_unlock(vmf->ptl);
1479 0 : put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1480 0 : goto out;
1481 : }
1482 :
1483 : /*
1484 : * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1485 : * to serialises splits
1486 : */
1487 0 : get_page(page);
1488 0 : spin_unlock(vmf->ptl);
1489 0 : anon_vma = page_lock_anon_vma_read(page);
1490 :
1491 : /* Confirm the PMD did not change while page_table_lock was released */
1492 0 : spin_lock(vmf->ptl);
1493 0 : if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1494 0 : unlock_page(page);
1495 0 : put_page(page);
1496 0 : page_nid = NUMA_NO_NODE;
1497 0 : goto out_unlock;
1498 : }
1499 :
1500 : /* Bail if we fail to protect against THP splits for any reason */
1501 0 : if (unlikely(!anon_vma)) {
1502 0 : put_page(page);
1503 0 : page_nid = NUMA_NO_NODE;
1504 0 : goto clear_pmdnuma;
1505 : }
1506 :
1507 : /*
1508 : * Since we took the NUMA fault, we must have observed the !accessible
1509 : * bit. Make sure all other CPUs agree with that, to avoid them
1510 : * modifying the page we're about to migrate.
1511 : *
1512 : * Must be done under PTL such that we'll observe the relevant
1513 : * inc_tlb_flush_pending().
1514 : *
1515 : * We are not sure a pending tlb flush here is for a huge page
1516 : * mapping or not. Hence use the tlb range variant
1517 : */
1518 0 : if (mm_tlb_flush_pending(vma->vm_mm)) {
1519 0 : flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1520 : /*
1521 : * change_huge_pmd() released the pmd lock before
1522 : * invalidating the secondary MMUs sharing the primary
1523 : * MMU pagetables (with ->invalidate_range()). The
1524 : * mmu_notifier_invalidate_range_end() (which
1525 : * internally calls ->invalidate_range()) in
1526 : * change_pmd_range() will run after us, so we can't
1527 : * rely on it here and we need an explicit invalidate.
1528 : */
1529 0 : mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1530 : haddr + HPAGE_PMD_SIZE);
1531 : }
1532 :
1533 : /*
1534 : * Migrate the THP to the requested node, returns with page unlocked
1535 : * and access rights restored.
1536 : */
1537 0 : spin_unlock(vmf->ptl);
1538 :
1539 0 : migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1540 : vmf->pmd, pmd, vmf->address, page, target_nid);
1541 0 : if (migrated) {
1542 0 : flags |= TNF_MIGRATED;
1543 0 : page_nid = target_nid;
1544 : } else
1545 : flags |= TNF_MIGRATE_FAIL;
1546 :
1547 0 : goto out;
1548 0 : clear_pmdnuma:
1549 0 : BUG_ON(!PageLocked(page));
1550 0 : was_writable = pmd_savedwrite(pmd);
1551 0 : pmd = pmd_modify(pmd, vma->vm_page_prot);
1552 0 : pmd = pmd_mkyoung(pmd);
1553 0 : if (was_writable)
1554 0 : pmd = pmd_mkwrite(pmd);
1555 0 : set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1556 0 : update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1557 0 : unlock_page(page);
1558 0 : out_unlock:
1559 0 : spin_unlock(vmf->ptl);
1560 :
1561 0 : out:
1562 0 : if (anon_vma)
1563 0 : page_unlock_anon_vma_read(anon_vma);
1564 :
1565 0 : if (page_nid != NUMA_NO_NODE)
1566 0 : task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1567 : flags);
1568 :
1569 0 : return 0;
1570 : }
1571 :
1572 : /*
1573 : * Return true if we do MADV_FREE successfully on entire pmd page.
1574 : * Otherwise, return false.
1575 : */
1576 0 : bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1577 : pmd_t *pmd, unsigned long addr, unsigned long next)
1578 : {
1579 0 : spinlock_t *ptl;
1580 0 : pmd_t orig_pmd;
1581 0 : struct page *page;
1582 0 : struct mm_struct *mm = tlb->mm;
1583 0 : bool ret = false;
1584 :
1585 0 : tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1586 :
1587 0 : ptl = pmd_trans_huge_lock(pmd, vma);
1588 0 : if (!ptl)
1589 0 : goto out_unlocked;
1590 :
1591 0 : orig_pmd = *pmd;
1592 0 : if (is_huge_zero_pmd(orig_pmd))
1593 0 : goto out;
1594 :
1595 0 : if (unlikely(!pmd_present(orig_pmd))) {
1596 0 : VM_BUG_ON(thp_migration_supported() &&
1597 : !is_pmd_migration_entry(orig_pmd));
1598 0 : goto out;
1599 : }
1600 :
1601 0 : page = pmd_page(orig_pmd);
1602 : /*
1603 : * If other processes are mapping this page, we couldn't discard
1604 : * the page unless they all do MADV_FREE so let's skip the page.
1605 : */
1606 0 : if (page_mapcount(page) != 1)
1607 0 : goto out;
1608 :
1609 0 : if (!trylock_page(page))
1610 0 : goto out;
1611 :
1612 : /*
1613 : * If user want to discard part-pages of THP, split it so MADV_FREE
1614 : * will deactivate only them.
1615 : */
1616 0 : if (next - addr != HPAGE_PMD_SIZE) {
1617 0 : get_page(page);
1618 0 : spin_unlock(ptl);
1619 0 : split_huge_page(page);
1620 0 : unlock_page(page);
1621 0 : put_page(page);
1622 0 : goto out_unlocked;
1623 : }
1624 :
1625 0 : if (PageDirty(page))
1626 0 : ClearPageDirty(page);
1627 0 : unlock_page(page);
1628 :
1629 0 : if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1630 0 : pmdp_invalidate(vma, addr, pmd);
1631 0 : orig_pmd = pmd_mkold(orig_pmd);
1632 0 : orig_pmd = pmd_mkclean(orig_pmd);
1633 :
1634 0 : set_pmd_at(mm, addr, pmd, orig_pmd);
1635 0 : tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1636 : }
1637 :
1638 0 : mark_page_lazyfree(page);
1639 0 : ret = true;
1640 0 : out:
1641 0 : spin_unlock(ptl);
1642 0 : out_unlocked:
1643 0 : return ret;
1644 : }
1645 :
1646 17 : static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1647 : {
1648 17 : pgtable_t pgtable;
1649 :
1650 17 : pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1651 17 : pte_free(mm, pgtable);
1652 17 : mm_dec_nr_ptes(mm);
1653 17 : }
1654 :
1655 17 : int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1656 : pmd_t *pmd, unsigned long addr)
1657 : {
1658 17 : pmd_t orig_pmd;
1659 17 : spinlock_t *ptl;
1660 :
1661 17 : tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1662 :
1663 17 : ptl = __pmd_trans_huge_lock(pmd, vma);
1664 17 : if (!ptl)
1665 : return 0;
1666 : /*
1667 : * For architectures like ppc64 we look at deposited pgtable
1668 : * when calling pmdp_huge_get_and_clear. So do the
1669 : * pgtable_trans_huge_withdraw after finishing pmdp related
1670 : * operations.
1671 : */
1672 34 : orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1673 17 : tlb->fullmm);
1674 17 : tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1675 34 : if (vma_is_special_huge(vma)) {
1676 0 : if (arch_needs_pgtable_deposit())
1677 : zap_deposited_table(tlb->mm, pmd);
1678 0 : spin_unlock(ptl);
1679 0 : if (is_huge_zero_pmd(orig_pmd))
1680 0 : tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1681 17 : } else if (is_huge_zero_pmd(orig_pmd)) {
1682 0 : zap_deposited_table(tlb->mm, pmd);
1683 0 : spin_unlock(ptl);
1684 0 : tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1685 : } else {
1686 17 : struct page *page = NULL;
1687 17 : int flush_needed = 1;
1688 :
1689 17 : if (pmd_present(orig_pmd)) {
1690 17 : page = pmd_page(orig_pmd);
1691 17 : page_remove_rmap(page, true);
1692 17 : VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1693 17 : VM_BUG_ON_PAGE(!PageHead(page), page);
1694 0 : } else if (thp_migration_supported()) {
1695 0 : swp_entry_t entry;
1696 :
1697 0 : VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1698 0 : entry = pmd_to_swp_entry(orig_pmd);
1699 0 : page = pfn_to_page(swp_offset(entry));
1700 0 : flush_needed = 0;
1701 : } else
1702 : WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1703 :
1704 17 : if (PageAnon(page)) {
1705 17 : zap_deposited_table(tlb->mm, pmd);
1706 17 : add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1707 : } else {
1708 0 : if (arch_needs_pgtable_deposit())
1709 : zap_deposited_table(tlb->mm, pmd);
1710 0 : add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1711 : }
1712 :
1713 17 : spin_unlock(ptl);
1714 17 : if (flush_needed)
1715 17 : tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1716 : }
1717 : return 1;
1718 : }
1719 :
1720 : #ifndef pmd_move_must_withdraw
1721 0 : static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1722 : spinlock_t *old_pmd_ptl,
1723 : struct vm_area_struct *vma)
1724 : {
1725 : /*
1726 : * With split pmd lock we also need to move preallocated
1727 : * PTE page table if new_pmd is on different PMD page table.
1728 : *
1729 : * We also don't deposit and withdraw tables for file pages.
1730 : */
1731 0 : return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1732 : }
1733 : #endif
1734 :
1735 0 : static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1736 : {
1737 : #ifdef CONFIG_MEM_SOFT_DIRTY
1738 : if (unlikely(is_pmd_migration_entry(pmd)))
1739 : pmd = pmd_swp_mksoft_dirty(pmd);
1740 : else if (pmd_present(pmd))
1741 : pmd = pmd_mksoft_dirty(pmd);
1742 : #endif
1743 0 : return pmd;
1744 : }
1745 :
1746 0 : bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1747 : unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1748 : {
1749 0 : spinlock_t *old_ptl, *new_ptl;
1750 0 : pmd_t pmd;
1751 0 : struct mm_struct *mm = vma->vm_mm;
1752 0 : bool force_flush = false;
1753 :
1754 : /*
1755 : * The destination pmd shouldn't be established, free_pgtables()
1756 : * should have release it.
1757 : */
1758 0 : if (WARN_ON(!pmd_none(*new_pmd))) {
1759 0 : VM_BUG_ON(pmd_trans_huge(*new_pmd));
1760 : return false;
1761 : }
1762 :
1763 : /*
1764 : * We don't have to worry about the ordering of src and dst
1765 : * ptlocks because exclusive mmap_lock prevents deadlock.
1766 : */
1767 0 : old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1768 0 : if (old_ptl) {
1769 0 : new_ptl = pmd_lockptr(mm, new_pmd);
1770 0 : if (new_ptl != old_ptl)
1771 0 : spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1772 0 : pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1773 0 : if (pmd_present(pmd))
1774 0 : force_flush = true;
1775 0 : VM_BUG_ON(!pmd_none(*new_pmd));
1776 :
1777 0 : if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1778 0 : pgtable_t pgtable;
1779 0 : pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1780 0 : pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1781 : }
1782 0 : pmd = move_soft_dirty_pmd(pmd);
1783 0 : set_pmd_at(mm, new_addr, new_pmd, pmd);
1784 0 : if (force_flush)
1785 0 : flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1786 0 : if (new_ptl != old_ptl)
1787 0 : spin_unlock(new_ptl);
1788 0 : spin_unlock(old_ptl);
1789 0 : return true;
1790 : }
1791 : return false;
1792 : }
1793 :
1794 : /*
1795 : * Returns
1796 : * - 0 if PMD could not be locked
1797 : * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1798 : * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1799 : */
1800 0 : int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1801 : unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1802 : {
1803 0 : struct mm_struct *mm = vma->vm_mm;
1804 0 : spinlock_t *ptl;
1805 0 : pmd_t entry;
1806 0 : bool preserve_write;
1807 0 : int ret;
1808 0 : bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1809 0 : bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1810 0 : bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1811 :
1812 0 : ptl = __pmd_trans_huge_lock(pmd, vma);
1813 0 : if (!ptl)
1814 : return 0;
1815 :
1816 0 : preserve_write = prot_numa && pmd_write(*pmd);
1817 0 : ret = 1;
1818 :
1819 : #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1820 0 : if (is_swap_pmd(*pmd)) {
1821 0 : swp_entry_t entry = pmd_to_swp_entry(*pmd);
1822 :
1823 0 : VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1824 0 : if (is_write_migration_entry(entry)) {
1825 0 : pmd_t newpmd;
1826 : /*
1827 : * A protection check is difficult so
1828 : * just be safe and disable write
1829 : */
1830 0 : make_migration_entry_read(&entry);
1831 0 : newpmd = swp_entry_to_pmd(entry);
1832 0 : if (pmd_swp_soft_dirty(*pmd))
1833 : newpmd = pmd_swp_mksoft_dirty(newpmd);
1834 0 : set_pmd_at(mm, addr, pmd, newpmd);
1835 : }
1836 0 : goto unlock;
1837 : }
1838 : #endif
1839 :
1840 : /*
1841 : * Avoid trapping faults against the zero page. The read-only
1842 : * data is likely to be read-cached on the local CPU and
1843 : * local/remote hits to the zero page are not interesting.
1844 : */
1845 0 : if (prot_numa && is_huge_zero_pmd(*pmd))
1846 0 : goto unlock;
1847 :
1848 0 : if (prot_numa && pmd_protnone(*pmd))
1849 : goto unlock;
1850 :
1851 : /*
1852 : * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1853 : * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1854 : * which is also under mmap_read_lock(mm):
1855 : *
1856 : * CPU0: CPU1:
1857 : * change_huge_pmd(prot_numa=1)
1858 : * pmdp_huge_get_and_clear_notify()
1859 : * madvise_dontneed()
1860 : * zap_pmd_range()
1861 : * pmd_trans_huge(*pmd) == 0 (without ptl)
1862 : * // skip the pmd
1863 : * set_pmd_at();
1864 : * // pmd is re-established
1865 : *
1866 : * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1867 : * which may break userspace.
1868 : *
1869 : * pmdp_invalidate() is required to make sure we don't miss
1870 : * dirty/young flags set by hardware.
1871 : */
1872 0 : entry = pmdp_invalidate(vma, addr, pmd);
1873 :
1874 0 : entry = pmd_modify(entry, newprot);
1875 0 : if (preserve_write)
1876 0 : entry = pmd_mk_savedwrite(entry);
1877 0 : if (uffd_wp) {
1878 0 : entry = pmd_wrprotect(entry);
1879 0 : entry = pmd_mkuffd_wp(entry);
1880 : } else if (uffd_wp_resolve) {
1881 : /*
1882 : * Leave the write bit to be handled by PF interrupt
1883 : * handler, then things like COW could be properly
1884 : * handled.
1885 : */
1886 0 : entry = pmd_clear_uffd_wp(entry);
1887 : }
1888 0 : ret = HPAGE_PMD_NR;
1889 0 : set_pmd_at(mm, addr, pmd, entry);
1890 0 : BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1891 0 : unlock:
1892 0 : spin_unlock(ptl);
1893 0 : return ret;
1894 : }
1895 :
1896 : /*
1897 : * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1898 : *
1899 : * Note that if it returns page table lock pointer, this routine returns without
1900 : * unlocking page table lock. So callers must unlock it.
1901 : */
1902 17 : spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1903 : {
1904 17 : spinlock_t *ptl;
1905 17 : ptl = pmd_lock(vma->vm_mm, pmd);
1906 17 : if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1907 : pmd_devmap(*pmd)))
1908 : return ptl;
1909 0 : spin_unlock(ptl);
1910 0 : return NULL;
1911 : }
1912 :
1913 : /*
1914 : * Returns true if a given pud maps a thp, false otherwise.
1915 : *
1916 : * Note that if it returns true, this routine returns without unlocking page
1917 : * table lock. So callers must unlock it.
1918 : */
1919 0 : spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1920 : {
1921 0 : spinlock_t *ptl;
1922 :
1923 0 : ptl = pud_lock(vma->vm_mm, pud);
1924 0 : if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1925 : return ptl;
1926 0 : spin_unlock(ptl);
1927 0 : return NULL;
1928 : }
1929 :
1930 : #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1931 0 : int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1932 : pud_t *pud, unsigned long addr)
1933 : {
1934 0 : spinlock_t *ptl;
1935 :
1936 0 : ptl = __pud_trans_huge_lock(pud, vma);
1937 0 : if (!ptl)
1938 : return 0;
1939 : /*
1940 : * For architectures like ppc64 we look at deposited pgtable
1941 : * when calling pudp_huge_get_and_clear. So do the
1942 : * pgtable_trans_huge_withdraw after finishing pudp related
1943 : * operations.
1944 : */
1945 0 : pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1946 0 : tlb_remove_pud_tlb_entry(tlb, pud, addr);
1947 0 : if (vma_is_special_huge(vma)) {
1948 0 : spin_unlock(ptl);
1949 : /* No zero page support yet */
1950 : } else {
1951 : /* No support for anonymous PUD pages yet */
1952 0 : BUG();
1953 : }
1954 0 : return 1;
1955 : }
1956 :
1957 0 : static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1958 : unsigned long haddr)
1959 : {
1960 0 : VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1961 0 : VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1962 0 : VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1963 0 : VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1964 :
1965 0 : count_vm_event(THP_SPLIT_PUD);
1966 :
1967 0 : pudp_huge_clear_flush_notify(vma, haddr, pud);
1968 0 : }
1969 :
1970 2004 : void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1971 : unsigned long address)
1972 : {
1973 2004 : spinlock_t *ptl;
1974 2004 : struct mmu_notifier_range range;
1975 :
1976 2004 : mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1977 : address & HPAGE_PUD_MASK,
1978 : (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1979 2004 : mmu_notifier_invalidate_range_start(&range);
1980 2004 : ptl = pud_lock(vma->vm_mm, pud);
1981 2004 : if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1982 2004 : goto out;
1983 0 : __split_huge_pud_locked(vma, pud, range.start);
1984 :
1985 2004 : out:
1986 2004 : spin_unlock(ptl);
1987 : /*
1988 : * No need to double call mmu_notifier->invalidate_range() callback as
1989 : * the above pudp_huge_clear_flush_notify() did already call it.
1990 : */
1991 2004 : mmu_notifier_invalidate_range_only_end(&range);
1992 2004 : }
1993 : #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1994 :
1995 0 : static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1996 : unsigned long haddr, pmd_t *pmd)
1997 : {
1998 0 : struct mm_struct *mm = vma->vm_mm;
1999 0 : pgtable_t pgtable;
2000 0 : pmd_t _pmd;
2001 0 : int i;
2002 :
2003 : /*
2004 : * Leave pmd empty until pte is filled note that it is fine to delay
2005 : * notification until mmu_notifier_invalidate_range_end() as we are
2006 : * replacing a zero pmd write protected page with a zero pte write
2007 : * protected page.
2008 : *
2009 : * See Documentation/vm/mmu_notifier.rst
2010 : */
2011 0 : pmdp_huge_clear_flush(vma, haddr, pmd);
2012 :
2013 0 : pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2014 0 : pmd_populate(mm, &_pmd, pgtable);
2015 :
2016 0 : for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2017 0 : pte_t *pte, entry;
2018 0 : entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2019 0 : entry = pte_mkspecial(entry);
2020 0 : pte = pte_offset_map(&_pmd, haddr);
2021 0 : VM_BUG_ON(!pte_none(*pte));
2022 0 : set_pte_at(mm, haddr, pte, entry);
2023 0 : pte_unmap(pte);
2024 : }
2025 0 : smp_wmb(); /* make pte visible before pmd */
2026 0 : pmd_populate(mm, pmd, pgtable);
2027 0 : }
2028 :
2029 2 : static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2030 : unsigned long haddr, bool freeze)
2031 : {
2032 2 : struct mm_struct *mm = vma->vm_mm;
2033 2 : struct page *page;
2034 2 : pgtable_t pgtable;
2035 2 : pmd_t old_pmd, _pmd;
2036 2 : bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2037 2 : unsigned long addr;
2038 2 : int i;
2039 :
2040 2 : VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2041 2 : VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2042 2 : VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2043 2 : VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2044 : && !pmd_devmap(*pmd));
2045 :
2046 2 : count_vm_event(THP_SPLIT_PMD);
2047 :
2048 2 : if (!vma_is_anonymous(vma)) {
2049 0 : _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2050 : /*
2051 : * We are going to unmap this huge page. So
2052 : * just go ahead and zap it
2053 : */
2054 0 : if (arch_needs_pgtable_deposit())
2055 : zap_deposited_table(mm, pmd);
2056 0 : if (vma_is_special_huge(vma))
2057 0 : return;
2058 0 : page = pmd_page(_pmd);
2059 0 : if (!PageDirty(page) && pmd_dirty(_pmd))
2060 0 : set_page_dirty(page);
2061 0 : if (!PageReferenced(page) && pmd_young(_pmd))
2062 0 : SetPageReferenced(page);
2063 0 : page_remove_rmap(page, true);
2064 0 : put_page(page);
2065 0 : add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2066 0 : return;
2067 2 : } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2068 : /*
2069 : * FIXME: Do we want to invalidate secondary mmu by calling
2070 : * mmu_notifier_invalidate_range() see comments below inside
2071 : * __split_huge_pmd() ?
2072 : *
2073 : * We are going from a zero huge page write protected to zero
2074 : * small page also write protected so it does not seems useful
2075 : * to invalidate secondary mmu at this time.
2076 : */
2077 0 : return __split_huge_zero_page_pmd(vma, haddr, pmd);
2078 : }
2079 :
2080 : /*
2081 : * Up to this point the pmd is present and huge and userland has the
2082 : * whole access to the hugepage during the split (which happens in
2083 : * place). If we overwrite the pmd with the not-huge version pointing
2084 : * to the pte here (which of course we could if all CPUs were bug
2085 : * free), userland could trigger a small page size TLB miss on the
2086 : * small sized TLB while the hugepage TLB entry is still established in
2087 : * the huge TLB. Some CPU doesn't like that.
2088 : * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2089 : * 383 on page 105. Intel should be safe but is also warns that it's
2090 : * only safe if the permission and cache attributes of the two entries
2091 : * loaded in the two TLB is identical (which should be the case here).
2092 : * But it is generally safer to never allow small and huge TLB entries
2093 : * for the same virtual address to be loaded simultaneously. So instead
2094 : * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2095 : * current pmd notpresent (atomically because here the pmd_trans_huge
2096 : * must remain set at all times on the pmd until the split is complete
2097 : * for this pmd), then we flush the SMP TLB and finally we write the
2098 : * non-huge version of the pmd entry with pmd_populate.
2099 : */
2100 2 : old_pmd = pmdp_invalidate(vma, haddr, pmd);
2101 :
2102 2 : pmd_migration = is_pmd_migration_entry(old_pmd);
2103 2 : if (unlikely(pmd_migration)) {
2104 0 : swp_entry_t entry;
2105 :
2106 0 : entry = pmd_to_swp_entry(old_pmd);
2107 0 : page = pfn_to_page(swp_offset(entry));
2108 0 : write = is_write_migration_entry(entry);
2109 0 : young = false;
2110 0 : soft_dirty = pmd_swp_soft_dirty(old_pmd);
2111 0 : uffd_wp = pmd_swp_uffd_wp(old_pmd);
2112 : } else {
2113 2 : page = pmd_page(old_pmd);
2114 2 : if (pmd_dirty(old_pmd))
2115 2 : SetPageDirty(page);
2116 2 : write = pmd_write(old_pmd);
2117 2 : young = pmd_young(old_pmd);
2118 2 : soft_dirty = pmd_soft_dirty(old_pmd);
2119 2 : uffd_wp = pmd_uffd_wp(old_pmd);
2120 : }
2121 2 : VM_BUG_ON_PAGE(!page_count(page), page);
2122 2 : page_ref_add(page, HPAGE_PMD_NR - 1);
2123 :
2124 : /*
2125 : * Withdraw the table only after we mark the pmd entry invalid.
2126 : * This's critical for some architectures (Power).
2127 : */
2128 2 : pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2129 2 : pmd_populate(mm, &_pmd, pgtable);
2130 :
2131 1028 : for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2132 1024 : pte_t entry, *pte;
2133 : /*
2134 : * Note that NUMA hinting access restrictions are not
2135 : * transferred to avoid any possibility of altering
2136 : * permissions across VMAs.
2137 : */
2138 1024 : if (freeze || pmd_migration) {
2139 0 : swp_entry_t swp_entry;
2140 0 : swp_entry = make_migration_entry(page + i, write);
2141 0 : entry = swp_entry_to_pte(swp_entry);
2142 0 : if (soft_dirty)
2143 : entry = pte_swp_mksoft_dirty(entry);
2144 0 : if (uffd_wp)
2145 : entry = pte_swp_mkuffd_wp(entry);
2146 : } else {
2147 1024 : entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2148 1024 : entry = maybe_mkwrite(entry, vma);
2149 1024 : if (!write)
2150 1024 : entry = pte_wrprotect(entry);
2151 1024 : if (!young)
2152 512 : entry = pte_mkold(entry);
2153 : if (soft_dirty)
2154 : entry = pte_mksoft_dirty(entry);
2155 : if (uffd_wp)
2156 : entry = pte_mkuffd_wp(entry);
2157 : }
2158 1024 : pte = pte_offset_map(&_pmd, addr);
2159 1024 : BUG_ON(!pte_none(*pte));
2160 1024 : set_pte_at(mm, addr, pte, entry);
2161 1024 : if (!pmd_migration)
2162 1024 : atomic_inc(&page[i]._mapcount);
2163 1024 : pte_unmap(pte);
2164 : }
2165 :
2166 2 : if (!pmd_migration) {
2167 : /*
2168 : * Set PG_double_map before dropping compound_mapcount to avoid
2169 : * false-negative page_mapped().
2170 : */
2171 2 : if (compound_mapcount(page) > 1 &&
2172 1 : !TestSetPageDoubleMap(page)) {
2173 513 : for (i = 0; i < HPAGE_PMD_NR; i++)
2174 1024 : atomic_inc(&page[i]._mapcount);
2175 : }
2176 :
2177 2 : lock_page_memcg(page);
2178 4 : if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2179 : /* Last compound_mapcount is gone. */
2180 1 : __mod_lruvec_page_state(page, NR_ANON_THPS,
2181 : -HPAGE_PMD_NR);
2182 1 : if (TestClearPageDoubleMap(page)) {
2183 : /* No need in mapcount reference anymore */
2184 513 : for (i = 0; i < HPAGE_PMD_NR; i++)
2185 1024 : atomic_dec(&page[i]._mapcount);
2186 : }
2187 : }
2188 2 : unlock_page_memcg(page);
2189 : }
2190 :
2191 2 : smp_wmb(); /* make pte visible before pmd */
2192 2 : pmd_populate(mm, pmd, pgtable);
2193 :
2194 2 : if (freeze) {
2195 0 : for (i = 0; i < HPAGE_PMD_NR; i++) {
2196 0 : page_remove_rmap(page + i, false);
2197 0 : put_page(page + i);
2198 : }
2199 : }
2200 : }
2201 :
2202 90 : void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2203 : unsigned long address, bool freeze, struct page *page)
2204 : {
2205 90 : spinlock_t *ptl;
2206 90 : struct mmu_notifier_range range;
2207 90 : bool do_unlock_page = false;
2208 90 : pmd_t _pmd;
2209 :
2210 90 : mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2211 : address & HPAGE_PMD_MASK,
2212 : (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2213 90 : mmu_notifier_invalidate_range_start(&range);
2214 90 : ptl = pmd_lock(vma->vm_mm, pmd);
2215 :
2216 : /*
2217 : * If caller asks to setup a migration entries, we need a page to check
2218 : * pmd against. Otherwise we can end up replacing wrong page.
2219 : */
2220 90 : VM_BUG_ON(freeze && !page);
2221 90 : if (page) {
2222 0 : VM_WARN_ON_ONCE(!PageLocked(page));
2223 0 : if (page != pmd_page(*pmd))
2224 0 : goto out;
2225 : }
2226 :
2227 90 : repeat:
2228 90 : if (pmd_trans_huge(*pmd)) {
2229 2 : if (!page) {
2230 2 : page = pmd_page(*pmd);
2231 : /*
2232 : * An anonymous page must be locked, to ensure that a
2233 : * concurrent reuse_swap_page() sees stable mapcount;
2234 : * but reuse_swap_page() is not used on shmem or file,
2235 : * and page lock must not be taken when zap_pmd_range()
2236 : * calls __split_huge_pmd() while i_mmap_lock is held.
2237 : */
2238 2 : if (PageAnon(page)) {
2239 2 : if (unlikely(!trylock_page(page))) {
2240 0 : get_page(page);
2241 0 : _pmd = *pmd;
2242 0 : spin_unlock(ptl);
2243 0 : lock_page(page);
2244 0 : spin_lock(ptl);
2245 0 : if (unlikely(!pmd_same(*pmd, _pmd))) {
2246 0 : unlock_page(page);
2247 0 : put_page(page);
2248 0 : page = NULL;
2249 0 : goto repeat;
2250 : }
2251 0 : put_page(page);
2252 : }
2253 : do_unlock_page = true;
2254 : }
2255 : }
2256 4 : if (PageMlocked(page))
2257 0 : clear_page_mlock(page);
2258 88 : } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2259 88 : goto out;
2260 2 : __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2261 90 : out:
2262 90 : spin_unlock(ptl);
2263 90 : if (do_unlock_page)
2264 2 : unlock_page(page);
2265 : /*
2266 : * No need to double call mmu_notifier->invalidate_range() callback.
2267 : * They are 3 cases to consider inside __split_huge_pmd_locked():
2268 : * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2269 : * 2) __split_huge_zero_page_pmd() read only zero page and any write
2270 : * fault will trigger a flush_notify before pointing to a new page
2271 : * (it is fine if the secondary mmu keeps pointing to the old zero
2272 : * page in the meantime)
2273 : * 3) Split a huge pmd into pte pointing to the same page. No need
2274 : * to invalidate secondary tlb entry they are all still valid.
2275 : * any further changes to individual pte will notify. So no need
2276 : * to call mmu_notifier->invalidate_range()
2277 : */
2278 90 : mmu_notifier_invalidate_range_only_end(&range);
2279 90 : }
2280 :
2281 89 : void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2282 : bool freeze, struct page *page)
2283 : {
2284 89 : pgd_t *pgd;
2285 89 : p4d_t *p4d;
2286 89 : pud_t *pud;
2287 89 : pmd_t *pmd;
2288 :
2289 89 : pgd = pgd_offset(vma->vm_mm, address);
2290 89 : if (!pgd_present(*pgd))
2291 : return;
2292 :
2293 89 : p4d = p4d_offset(pgd, address);
2294 89 : if (!p4d_present(*p4d))
2295 : return;
2296 :
2297 88 : pud = pud_offset(p4d, address);
2298 176 : if (!pud_present(*pud))
2299 : return;
2300 :
2301 88 : pmd = pmd_offset(pud, address);
2302 :
2303 88 : __split_huge_pmd(vma, pmd, address, freeze, page);
2304 : }
2305 :
2306 31703 : void vma_adjust_trans_huge(struct vm_area_struct *vma,
2307 : unsigned long start,
2308 : unsigned long end,
2309 : long adjust_next)
2310 : {
2311 : /*
2312 : * If the new start address isn't hpage aligned and it could
2313 : * previously contain an hugepage: check if we need to split
2314 : * an huge pmd.
2315 : */
2316 31703 : if (start & ~HPAGE_PMD_MASK &&
2317 31594 : (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2318 1408 : (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2319 68 : split_huge_pmd_address(vma, start, false, NULL);
2320 :
2321 : /*
2322 : * If the new end address isn't hpage aligned and it could
2323 : * previously contain an hugepage: check if we need to split
2324 : * an huge pmd.
2325 : */
2326 31703 : if (end & ~HPAGE_PMD_MASK &&
2327 31636 : (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2328 4742 : (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2329 21 : split_huge_pmd_address(vma, end, false, NULL);
2330 :
2331 : /*
2332 : * If we're also updating the vma->vm_next->vm_start, if the new
2333 : * vm_next->vm_start isn't hpage aligned and it could previously
2334 : * contain an hugepage: check if we need to split an huge pmd.
2335 : */
2336 31703 : if (adjust_next > 0) {
2337 21 : struct vm_area_struct *next = vma->vm_next;
2338 21 : unsigned long nstart = next->vm_start;
2339 21 : nstart += adjust_next;
2340 21 : if (nstart & ~HPAGE_PMD_MASK &&
2341 21 : (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2342 0 : (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2343 0 : split_huge_pmd_address(next, nstart, false, NULL);
2344 : }
2345 31703 : }
2346 :
2347 0 : static void unmap_page(struct page *page)
2348 : {
2349 0 : enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2350 : TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2351 0 : bool unmap_success;
2352 :
2353 0 : VM_BUG_ON_PAGE(!PageHead(page), page);
2354 :
2355 0 : if (PageAnon(page))
2356 0 : ttu_flags |= TTU_SPLIT_FREEZE;
2357 :
2358 0 : unmap_success = try_to_unmap(page, ttu_flags);
2359 0 : VM_BUG_ON_PAGE(!unmap_success, page);
2360 0 : }
2361 :
2362 0 : static void remap_page(struct page *page, unsigned int nr)
2363 : {
2364 0 : int i;
2365 0 : if (PageTransHuge(page)) {
2366 0 : remove_migration_ptes(page, page, true);
2367 : } else {
2368 0 : for (i = 0; i < nr; i++)
2369 0 : remove_migration_ptes(page + i, page + i, true);
2370 : }
2371 0 : }
2372 :
2373 0 : static void lru_add_page_tail(struct page *head, struct page *tail,
2374 : struct lruvec *lruvec, struct list_head *list)
2375 : {
2376 0 : VM_BUG_ON_PAGE(!PageHead(head), head);
2377 0 : VM_BUG_ON_PAGE(PageCompound(tail), head);
2378 0 : VM_BUG_ON_PAGE(PageLRU(tail), head);
2379 0 : lockdep_assert_held(&lruvec->lru_lock);
2380 :
2381 0 : if (list) {
2382 : /* page reclaim is reclaiming a huge page */
2383 0 : VM_WARN_ON(PageLRU(head));
2384 0 : get_page(tail);
2385 0 : list_add_tail(&tail->lru, list);
2386 : } else {
2387 : /* head is still on lru (and we have it frozen) */
2388 0 : VM_WARN_ON(!PageLRU(head));
2389 0 : SetPageLRU(tail);
2390 0 : list_add_tail(&tail->lru, &head->lru);
2391 : }
2392 0 : }
2393 :
2394 0 : static void __split_huge_page_tail(struct page *head, int tail,
2395 : struct lruvec *lruvec, struct list_head *list)
2396 : {
2397 0 : struct page *page_tail = head + tail;
2398 :
2399 0 : VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2400 :
2401 : /*
2402 : * Clone page flags before unfreezing refcount.
2403 : *
2404 : * After successful get_page_unless_zero() might follow flags change,
2405 : * for example lock_page() which set PG_waiters.
2406 : */
2407 0 : page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2408 0 : page_tail->flags |= (head->flags &
2409 : ((1L << PG_referenced) |
2410 : (1L << PG_swapbacked) |
2411 : (1L << PG_swapcache) |
2412 : (1L << PG_mlocked) |
2413 : (1L << PG_uptodate) |
2414 : (1L << PG_active) |
2415 : (1L << PG_workingset) |
2416 : (1L << PG_locked) |
2417 : (1L << PG_unevictable) |
2418 : #ifdef CONFIG_64BIT
2419 : (1L << PG_arch_2) |
2420 : #endif
2421 : (1L << PG_dirty)));
2422 :
2423 : /* ->mapping in first tail page is compound_mapcount */
2424 0 : VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2425 : page_tail);
2426 0 : page_tail->mapping = head->mapping;
2427 0 : page_tail->index = head->index + tail;
2428 :
2429 : /* Page flags must be visible before we make the page non-compound. */
2430 0 : smp_wmb();
2431 :
2432 : /*
2433 : * Clear PageTail before unfreezing page refcount.
2434 : *
2435 : * After successful get_page_unless_zero() might follow put_page()
2436 : * which needs correct compound_head().
2437 : */
2438 0 : clear_compound_head(page_tail);
2439 :
2440 : /* Finally unfreeze refcount. Additional reference from page cache. */
2441 0 : page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2442 0 : PageSwapCache(head)));
2443 :
2444 0 : if (page_is_young(head))
2445 0 : set_page_young(page_tail);
2446 0 : if (page_is_idle(head))
2447 0 : set_page_idle(page_tail);
2448 :
2449 0 : page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2450 :
2451 : /*
2452 : * always add to the tail because some iterators expect new
2453 : * pages to show after the currently processed elements - e.g.
2454 : * migrate_pages
2455 : */
2456 0 : lru_add_page_tail(head, page_tail, lruvec, list);
2457 0 : }
2458 :
2459 0 : static void __split_huge_page(struct page *page, struct list_head *list,
2460 : pgoff_t end)
2461 : {
2462 0 : struct page *head = compound_head(page);
2463 0 : struct lruvec *lruvec;
2464 0 : struct address_space *swap_cache = NULL;
2465 0 : unsigned long offset = 0;
2466 0 : unsigned int nr = thp_nr_pages(head);
2467 0 : int i;
2468 :
2469 : /* complete memcg works before add pages to LRU */
2470 0 : split_page_memcg(head, nr);
2471 :
2472 0 : if (PageAnon(head) && PageSwapCache(head)) {
2473 : swp_entry_t entry = { .val = page_private(head) };
2474 :
2475 : offset = swp_offset(entry);
2476 : swap_cache = swap_address_space(entry);
2477 : xa_lock(&swap_cache->i_pages);
2478 : }
2479 :
2480 : /* lock lru list/PageCompound, ref freezed by page_ref_freeze */
2481 0 : lruvec = lock_page_lruvec(head);
2482 :
2483 0 : for (i = nr - 1; i >= 1; i--) {
2484 0 : __split_huge_page_tail(head, i, lruvec, list);
2485 : /* Some pages can be beyond i_size: drop them from page cache */
2486 0 : if (head[i].index >= end) {
2487 0 : ClearPageDirty(head + i);
2488 0 : __delete_from_page_cache(head + i, NULL);
2489 0 : if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2490 0 : shmem_uncharge(head->mapping->host, 1);
2491 0 : put_page(head + i);
2492 0 : } else if (!PageAnon(page)) {
2493 0 : __xa_store(&head->mapping->i_pages, head[i].index,
2494 : head + i, 0);
2495 : } else if (swap_cache) {
2496 : __xa_store(&swap_cache->i_pages, offset + i,
2497 : head + i, 0);
2498 : }
2499 : }
2500 :
2501 0 : ClearPageCompound(head);
2502 0 : unlock_page_lruvec(lruvec);
2503 : /* Caller disabled irqs, so they are still disabled here */
2504 :
2505 0 : split_page_owner(head, nr);
2506 :
2507 : /* See comment in __split_huge_page_tail() */
2508 0 : if (PageAnon(head)) {
2509 : /* Additional pin to swap cache */
2510 0 : if (PageSwapCache(head)) {
2511 : page_ref_add(head, 2);
2512 0 : xa_unlock(&swap_cache->i_pages);
2513 : } else {
2514 0 : page_ref_inc(head);
2515 : }
2516 : } else {
2517 : /* Additional pin to page cache */
2518 0 : page_ref_add(head, 2);
2519 0 : xa_unlock(&head->mapping->i_pages);
2520 : }
2521 0 : local_irq_enable();
2522 :
2523 0 : remap_page(head, nr);
2524 :
2525 0 : if (PageSwapCache(head)) {
2526 : swp_entry_t entry = { .val = page_private(head) };
2527 :
2528 : split_swap_cluster(entry);
2529 : }
2530 :
2531 0 : for (i = 0; i < nr; i++) {
2532 0 : struct page *subpage = head + i;
2533 0 : if (subpage == page)
2534 0 : continue;
2535 0 : unlock_page(subpage);
2536 :
2537 : /*
2538 : * Subpages may be freed if there wasn't any mapping
2539 : * like if add_to_swap() is running on a lru page that
2540 : * had its mapping zapped. And freeing these pages
2541 : * requires taking the lru_lock so we do the put_page
2542 : * of the tail pages after the split is complete.
2543 : */
2544 0 : put_page(subpage);
2545 : }
2546 0 : }
2547 :
2548 20 : int total_mapcount(struct page *page)
2549 : {
2550 20 : int i, compound, nr, ret;
2551 :
2552 20 : VM_BUG_ON_PAGE(PageTail(page), page);
2553 :
2554 40 : if (likely(!PageCompound(page)))
2555 20 : return atomic_read(&page->_mapcount) + 1;
2556 :
2557 0 : compound = compound_mapcount(page);
2558 0 : nr = compound_nr(page);
2559 0 : if (PageHuge(page))
2560 : return compound;
2561 0 : ret = compound;
2562 0 : for (i = 0; i < nr; i++)
2563 0 : ret += atomic_read(&page[i]._mapcount) + 1;
2564 : /* File pages has compound_mapcount included in _mapcount */
2565 0 : if (!PageAnon(page))
2566 0 : return ret - compound * nr;
2567 0 : if (PageDoubleMap(page))
2568 0 : ret -= nr;
2569 : return ret;
2570 : }
2571 :
2572 : /*
2573 : * This calculates accurately how many mappings a transparent hugepage
2574 : * has (unlike page_mapcount() which isn't fully accurate). This full
2575 : * accuracy is primarily needed to know if copy-on-write faults can
2576 : * reuse the page and change the mapping to read-write instead of
2577 : * copying them. At the same time this returns the total_mapcount too.
2578 : *
2579 : * The function returns the highest mapcount any one of the subpages
2580 : * has. If the return value is one, even if different processes are
2581 : * mapping different subpages of the transparent hugepage, they can
2582 : * all reuse it, because each process is reusing a different subpage.
2583 : *
2584 : * The total_mapcount is instead counting all virtual mappings of the
2585 : * subpages. If the total_mapcount is equal to "one", it tells the
2586 : * caller all mappings belong to the same "mm" and in turn the
2587 : * anon_vma of the transparent hugepage can become the vma->anon_vma
2588 : * local one as no other process may be mapping any of the subpages.
2589 : *
2590 : * It would be more accurate to replace page_mapcount() with
2591 : * page_trans_huge_mapcount(), however we only use
2592 : * page_trans_huge_mapcount() in the copy-on-write faults where we
2593 : * need full accuracy to avoid breaking page pinning, because
2594 : * page_trans_huge_mapcount() is slower than page_mapcount().
2595 : */
2596 2 : int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2597 : {
2598 2 : int i, ret, _total_mapcount, mapcount;
2599 :
2600 : /* hugetlbfs shouldn't call it */
2601 2 : VM_BUG_ON_PAGE(PageHuge(page), page);
2602 :
2603 2 : if (likely(!PageTransCompound(page))) {
2604 0 : mapcount = atomic_read(&page->_mapcount) + 1;
2605 0 : if (total_mapcount)
2606 0 : *total_mapcount = mapcount;
2607 0 : return mapcount;
2608 : }
2609 :
2610 2 : page = compound_head(page);
2611 :
2612 2 : _total_mapcount = ret = 0;
2613 2052 : for (i = 0; i < thp_nr_pages(page); i++) {
2614 1024 : mapcount = atomic_read(&page[i]._mapcount) + 1;
2615 1024 : ret = max(ret, mapcount);
2616 1024 : _total_mapcount += mapcount;
2617 : }
2618 2 : if (PageDoubleMap(page)) {
2619 1 : ret -= 1;
2620 2 : _total_mapcount -= thp_nr_pages(page);
2621 : }
2622 2 : mapcount = compound_mapcount(page);
2623 2 : ret += mapcount;
2624 2 : _total_mapcount += mapcount;
2625 2 : if (total_mapcount)
2626 0 : *total_mapcount = _total_mapcount;
2627 : return ret;
2628 : }
2629 :
2630 : /* Racy check whether the huge page can be split */
2631 0 : bool can_split_huge_page(struct page *page, int *pextra_pins)
2632 : {
2633 0 : int extra_pins;
2634 :
2635 : /* Additional pins from page cache */
2636 0 : if (PageAnon(page))
2637 0 : extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2638 : else
2639 0 : extra_pins = thp_nr_pages(page);
2640 0 : if (pextra_pins)
2641 0 : *pextra_pins = extra_pins;
2642 0 : return total_mapcount(page) == page_count(page) - extra_pins - 1;
2643 : }
2644 :
2645 : /*
2646 : * This function splits huge page into normal pages. @page can point to any
2647 : * subpage of huge page to split. Split doesn't change the position of @page.
2648 : *
2649 : * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2650 : * The huge page must be locked.
2651 : *
2652 : * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2653 : *
2654 : * Both head page and tail pages will inherit mapping, flags, and so on from
2655 : * the hugepage.
2656 : *
2657 : * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2658 : * they are not mapped.
2659 : *
2660 : * Returns 0 if the hugepage is split successfully.
2661 : * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2662 : * us.
2663 : */
2664 0 : int split_huge_page_to_list(struct page *page, struct list_head *list)
2665 : {
2666 0 : struct page *head = compound_head(page);
2667 0 : struct deferred_split *ds_queue = get_deferred_split_queue(head);
2668 0 : struct anon_vma *anon_vma = NULL;
2669 0 : struct address_space *mapping = NULL;
2670 0 : int count, mapcount, extra_pins, ret;
2671 0 : pgoff_t end;
2672 :
2673 0 : VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2674 0 : VM_BUG_ON_PAGE(!PageLocked(head), head);
2675 0 : VM_BUG_ON_PAGE(!PageCompound(head), head);
2676 :
2677 0 : if (PageWriteback(head))
2678 : return -EBUSY;
2679 :
2680 0 : if (PageAnon(head)) {
2681 : /*
2682 : * The caller does not necessarily hold an mmap_lock that would
2683 : * prevent the anon_vma disappearing so we first we take a
2684 : * reference to it and then lock the anon_vma for write. This
2685 : * is similar to page_lock_anon_vma_read except the write lock
2686 : * is taken to serialise against parallel split or collapse
2687 : * operations.
2688 : */
2689 0 : anon_vma = page_get_anon_vma(head);
2690 0 : if (!anon_vma) {
2691 0 : ret = -EBUSY;
2692 0 : goto out;
2693 : }
2694 0 : end = -1;
2695 0 : mapping = NULL;
2696 0 : anon_vma_lock_write(anon_vma);
2697 : } else {
2698 0 : mapping = head->mapping;
2699 :
2700 : /* Truncated ? */
2701 0 : if (!mapping) {
2702 0 : ret = -EBUSY;
2703 0 : goto out;
2704 : }
2705 :
2706 0 : anon_vma = NULL;
2707 0 : i_mmap_lock_read(mapping);
2708 :
2709 : /*
2710 : *__split_huge_page() may need to trim off pages beyond EOF:
2711 : * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2712 : * which cannot be nested inside the page tree lock. So note
2713 : * end now: i_size itself may be changed at any moment, but
2714 : * head page lock is good enough to serialize the trimming.
2715 : */
2716 0 : end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2717 : }
2718 :
2719 : /*
2720 : * Racy check if we can split the page, before unmap_page() will
2721 : * split PMDs
2722 : */
2723 0 : if (!can_split_huge_page(head, &extra_pins)) {
2724 0 : ret = -EBUSY;
2725 0 : goto out_unlock;
2726 : }
2727 :
2728 0 : unmap_page(head);
2729 0 : VM_BUG_ON_PAGE(compound_mapcount(head), head);
2730 :
2731 : /* block interrupt reentry in xa_lock and spinlock */
2732 0 : local_irq_disable();
2733 0 : if (mapping) {
2734 0 : XA_STATE(xas, &mapping->i_pages, page_index(head));
2735 :
2736 : /*
2737 : * Check if the head page is present in page cache.
2738 : * We assume all tail are present too, if head is there.
2739 : */
2740 0 : xa_lock(&mapping->i_pages);
2741 0 : if (xas_load(&xas) != head)
2742 0 : goto fail;
2743 : }
2744 :
2745 : /* Prevent deferred_split_scan() touching ->_refcount */
2746 0 : spin_lock(&ds_queue->split_queue_lock);
2747 0 : count = page_count(head);
2748 0 : mapcount = total_mapcount(head);
2749 0 : if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2750 0 : if (!list_empty(page_deferred_list(head))) {
2751 0 : ds_queue->split_queue_len--;
2752 0 : list_del(page_deferred_list(head));
2753 : }
2754 0 : spin_unlock(&ds_queue->split_queue_lock);
2755 0 : if (mapping) {
2756 0 : int nr = thp_nr_pages(head);
2757 :
2758 0 : if (PageSwapBacked(head))
2759 0 : __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2760 : -nr);
2761 : else
2762 0 : __mod_lruvec_page_state(head, NR_FILE_THPS,
2763 : -nr);
2764 : }
2765 :
2766 0 : __split_huge_page(page, list, end);
2767 0 : ret = 0;
2768 : } else {
2769 0 : if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2770 0 : pr_alert("total_mapcount: %u, page_count(): %u\n",
2771 : mapcount, count);
2772 0 : if (PageTail(page))
2773 0 : dump_page(head, NULL);
2774 0 : dump_page(page, "total_mapcount(head) > 0");
2775 0 : BUG();
2776 : }
2777 0 : spin_unlock(&ds_queue->split_queue_lock);
2778 0 : fail: if (mapping)
2779 0 : xa_unlock(&mapping->i_pages);
2780 0 : local_irq_enable();
2781 0 : remap_page(head, thp_nr_pages(head));
2782 0 : ret = -EBUSY;
2783 : }
2784 :
2785 0 : out_unlock:
2786 0 : if (anon_vma) {
2787 0 : anon_vma_unlock_write(anon_vma);
2788 0 : put_anon_vma(anon_vma);
2789 : }
2790 0 : if (mapping)
2791 0 : i_mmap_unlock_read(mapping);
2792 0 : out:
2793 0 : count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2794 0 : return ret;
2795 : }
2796 :
2797 17 : void free_transhuge_page(struct page *page)
2798 : {
2799 17 : struct deferred_split *ds_queue = get_deferred_split_queue(page);
2800 17 : unsigned long flags;
2801 :
2802 17 : spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2803 17 : if (!list_empty(page_deferred_list(page))) {
2804 0 : ds_queue->split_queue_len--;
2805 0 : list_del(page_deferred_list(page));
2806 : }
2807 17 : spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2808 17 : free_compound_page(page);
2809 17 : }
2810 :
2811 1 : void deferred_split_huge_page(struct page *page)
2812 : {
2813 1 : struct deferred_split *ds_queue = get_deferred_split_queue(page);
2814 : #ifdef CONFIG_MEMCG
2815 : struct mem_cgroup *memcg = page_memcg(compound_head(page));
2816 : #endif
2817 1 : unsigned long flags;
2818 :
2819 1 : VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2820 :
2821 : /*
2822 : * The try_to_unmap() in page reclaim path might reach here too,
2823 : * this may cause a race condition to corrupt deferred split queue.
2824 : * And, if page reclaim is already handling the same page, it is
2825 : * unnecessary to handle it again in shrinker.
2826 : *
2827 : * Check PageSwapCache to determine if the page is being
2828 : * handled by page reclaim since THP swap would add the page into
2829 : * swap cache before calling try_to_unmap().
2830 : */
2831 1 : if (PageSwapCache(page))
2832 : return;
2833 :
2834 1 : spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2835 1 : if (list_empty(page_deferred_list(page))) {
2836 1 : count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2837 1 : list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2838 1 : ds_queue->split_queue_len++;
2839 : #ifdef CONFIG_MEMCG
2840 : if (memcg)
2841 : memcg_set_shrinker_bit(memcg, page_to_nid(page),
2842 : deferred_split_shrinker.id);
2843 : #endif
2844 : }
2845 1 : spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2846 : }
2847 :
2848 0 : static unsigned long deferred_split_count(struct shrinker *shrink,
2849 : struct shrink_control *sc)
2850 : {
2851 0 : struct pglist_data *pgdata = NODE_DATA(sc->nid);
2852 0 : struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2853 :
2854 : #ifdef CONFIG_MEMCG
2855 : if (sc->memcg)
2856 : ds_queue = &sc->memcg->deferred_split_queue;
2857 : #endif
2858 0 : return READ_ONCE(ds_queue->split_queue_len);
2859 : }
2860 :
2861 0 : static unsigned long deferred_split_scan(struct shrinker *shrink,
2862 : struct shrink_control *sc)
2863 : {
2864 0 : struct pglist_data *pgdata = NODE_DATA(sc->nid);
2865 0 : struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2866 0 : unsigned long flags;
2867 0 : LIST_HEAD(list), *pos, *next;
2868 0 : struct page *page;
2869 0 : int split = 0;
2870 :
2871 : #ifdef CONFIG_MEMCG
2872 : if (sc->memcg)
2873 : ds_queue = &sc->memcg->deferred_split_queue;
2874 : #endif
2875 :
2876 0 : spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2877 : /* Take pin on all head pages to avoid freeing them under us */
2878 0 : list_for_each_safe(pos, next, &ds_queue->split_queue) {
2879 0 : page = list_entry((void *)pos, struct page, mapping);
2880 0 : page = compound_head(page);
2881 0 : if (get_page_unless_zero(page)) {
2882 0 : list_move(page_deferred_list(page), &list);
2883 : } else {
2884 : /* We lost race with put_compound_page() */
2885 0 : list_del_init(page_deferred_list(page));
2886 0 : ds_queue->split_queue_len--;
2887 : }
2888 0 : if (!--sc->nr_to_scan)
2889 : break;
2890 : }
2891 0 : spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2892 :
2893 0 : list_for_each_safe(pos, next, &list) {
2894 0 : page = list_entry((void *)pos, struct page, mapping);
2895 0 : if (!trylock_page(page))
2896 0 : goto next;
2897 : /* split_huge_page() removes page from list on success */
2898 0 : if (!split_huge_page(page))
2899 0 : split++;
2900 0 : unlock_page(page);
2901 0 : next:
2902 0 : put_page(page);
2903 : }
2904 :
2905 0 : spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2906 0 : list_splice_tail(&list, &ds_queue->split_queue);
2907 0 : spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2908 :
2909 : /*
2910 : * Stop shrinker if we didn't split any page, but the queue is empty.
2911 : * This can happen if pages were freed under us.
2912 : */
2913 0 : if (!split && list_empty(&ds_queue->split_queue))
2914 : return SHRINK_STOP;
2915 0 : return split;
2916 : }
2917 :
2918 : static struct shrinker deferred_split_shrinker = {
2919 : .count_objects = deferred_split_count,
2920 : .scan_objects = deferred_split_scan,
2921 : .seeks = DEFAULT_SEEKS,
2922 : .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2923 : SHRINKER_NONSLAB,
2924 : };
2925 :
2926 : #ifdef CONFIG_DEBUG_FS
2927 0 : static int split_huge_pages_set(void *data, u64 val)
2928 : {
2929 0 : struct zone *zone;
2930 0 : struct page *page;
2931 0 : unsigned long pfn, max_zone_pfn;
2932 0 : unsigned long total = 0, split = 0;
2933 :
2934 0 : if (val != 1)
2935 : return -EINVAL;
2936 :
2937 0 : for_each_populated_zone(zone) {
2938 0 : max_zone_pfn = zone_end_pfn(zone);
2939 0 : for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2940 0 : if (!pfn_valid(pfn))
2941 0 : continue;
2942 :
2943 0 : page = pfn_to_page(pfn);
2944 0 : if (!get_page_unless_zero(page))
2945 0 : continue;
2946 :
2947 0 : if (zone != page_zone(page))
2948 0 : goto next;
2949 :
2950 0 : if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2951 0 : goto next;
2952 :
2953 0 : total++;
2954 0 : lock_page(page);
2955 0 : if (!split_huge_page(page))
2956 0 : split++;
2957 0 : unlock_page(page);
2958 0 : next:
2959 0 : put_page(page);
2960 : }
2961 : }
2962 :
2963 0 : pr_info("%lu of %lu THP split\n", split, total);
2964 :
2965 0 : return 0;
2966 : }
2967 0 : DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2968 : "%llu\n");
2969 :
2970 1 : static int __init split_huge_pages_debugfs(void)
2971 : {
2972 1 : debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2973 : &split_huge_pages_fops);
2974 1 : return 0;
2975 : }
2976 : late_initcall(split_huge_pages_debugfs);
2977 : #endif
2978 :
2979 : #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2980 0 : void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2981 : struct page *page)
2982 : {
2983 0 : struct vm_area_struct *vma = pvmw->vma;
2984 0 : struct mm_struct *mm = vma->vm_mm;
2985 0 : unsigned long address = pvmw->address;
2986 0 : pmd_t pmdval;
2987 0 : swp_entry_t entry;
2988 0 : pmd_t pmdswp;
2989 :
2990 0 : if (!(pvmw->pmd && !pvmw->pte))
2991 0 : return;
2992 :
2993 0 : flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2994 0 : pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2995 0 : if (pmd_dirty(pmdval))
2996 0 : set_page_dirty(page);
2997 0 : entry = make_migration_entry(page, pmd_write(pmdval));
2998 0 : pmdswp = swp_entry_to_pmd(entry);
2999 0 : if (pmd_soft_dirty(pmdval))
3000 : pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3001 0 : set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3002 0 : page_remove_rmap(page, true);
3003 0 : put_page(page);
3004 : }
3005 :
3006 0 : void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3007 : {
3008 0 : struct vm_area_struct *vma = pvmw->vma;
3009 0 : struct mm_struct *mm = vma->vm_mm;
3010 0 : unsigned long address = pvmw->address;
3011 0 : unsigned long mmun_start = address & HPAGE_PMD_MASK;
3012 0 : pmd_t pmde;
3013 0 : swp_entry_t entry;
3014 :
3015 0 : if (!(pvmw->pmd && !pvmw->pte))
3016 0 : return;
3017 :
3018 0 : entry = pmd_to_swp_entry(*pvmw->pmd);
3019 0 : get_page(new);
3020 0 : pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3021 0 : if (pmd_swp_soft_dirty(*pvmw->pmd))
3022 : pmde = pmd_mksoft_dirty(pmde);
3023 0 : if (is_write_migration_entry(entry))
3024 0 : pmde = maybe_pmd_mkwrite(pmde, vma);
3025 :
3026 0 : flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3027 0 : if (PageAnon(new))
3028 0 : page_add_anon_rmap(new, vma, mmun_start, true);
3029 : else
3030 0 : page_add_file_rmap(new, true);
3031 0 : set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3032 0 : if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3033 0 : mlock_vma_page(new);
3034 0 : update_mmu_cache_pmd(vma, address, pvmw->pmd);
3035 : }
3036 : #endif
|