Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * This file contains common KASAN code.
4 : *
5 : * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 : * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 : *
8 : * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 : * Andrey Konovalov <andreyknvl@gmail.com>
10 : */
11 :
12 : #include <linux/export.h>
13 : #include <linux/init.h>
14 : #include <linux/kasan.h>
15 : #include <linux/kernel.h>
16 : #include <linux/linkage.h>
17 : #include <linux/memblock.h>
18 : #include <linux/memory.h>
19 : #include <linux/mm.h>
20 : #include <linux/module.h>
21 : #include <linux/printk.h>
22 : #include <linux/sched.h>
23 : #include <linux/sched/task_stack.h>
24 : #include <linux/slab.h>
25 : #include <linux/stacktrace.h>
26 : #include <linux/string.h>
27 : #include <linux/types.h>
28 : #include <linux/bug.h>
29 :
30 : #include "kasan.h"
31 : #include "../slab.h"
32 :
33 3443996 : depot_stack_handle_t kasan_save_stack(gfp_t flags)
34 : {
35 3443996 : unsigned long entries[KASAN_STACK_DEPTH];
36 3443996 : unsigned int nr_entries;
37 :
38 3443996 : nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
39 3449340 : nr_entries = filter_irq_stacks(entries, nr_entries);
40 3451479 : return stack_depot_save(entries, nr_entries, flags);
41 : }
42 :
43 2723744 : void kasan_set_track(struct kasan_track *track, gfp_t flags)
44 : {
45 1263736 : track->pid = current->pid;
46 2723744 : track->stack = kasan_save_stack(flags);
47 1461220 : }
48 :
49 : #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
50 74161 : void kasan_enable_current(void)
51 : {
52 74161 : current->kasan_depth++;
53 74161 : }
54 :
55 74161 : void kasan_disable_current(void)
56 : {
57 74161 : current->kasan_depth--;
58 74161 : }
59 : #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
60 :
61 10035 : void __kasan_unpoison_range(const void *address, size_t size)
62 : {
63 10035 : kasan_unpoison(address, size);
64 10035 : }
65 :
66 : #if CONFIG_KASAN_STACK
67 : /* Unpoison the entire stack for a task. */
68 10 : void kasan_unpoison_task_stack(struct task_struct *task)
69 : {
70 10 : void *base = task_stack_page(task);
71 :
72 10 : kasan_unpoison(base, THREAD_SIZE);
73 10 : }
74 :
75 : /* Unpoison the stack for the current task beyond a watermark sp value. */
76 0 : asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
77 : {
78 : /*
79 : * Calculate the task stack base address. Avoid using 'current'
80 : * because this function is called by early resume code which hasn't
81 : * yet set up the percpu register (%gs).
82 : */
83 0 : void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
84 :
85 0 : kasan_unpoison(base, watermark - base);
86 0 : }
87 : #endif /* CONFIG_KASAN_STACK */
88 :
89 : /*
90 : * Only allow cache merging when stack collection is disabled and no metadata
91 : * is present.
92 : */
93 0 : slab_flags_t __kasan_never_merge(void)
94 : {
95 0 : if (kasan_stack_collection_enabled())
96 0 : return SLAB_KASAN;
97 : return 0;
98 : }
99 :
100 195394 : void __kasan_alloc_pages(struct page *page, unsigned int order)
101 : {
102 195394 : u8 tag;
103 195394 : unsigned long i;
104 :
105 195394 : if (unlikely(PageHighMem(page)))
106 : return;
107 :
108 195394 : tag = kasan_random_tag();
109 195394 : for (i = 0; i < (1 << order); i++)
110 : page_kasan_tag_set(page + i, tag);
111 195394 : kasan_unpoison(page_address(page), PAGE_SIZE << order);
112 : }
113 :
114 150606 : void __kasan_free_pages(struct page *page, unsigned int order)
115 : {
116 150606 : if (likely(!PageHighMem(page)))
117 150606 : kasan_poison(page_address(page), PAGE_SIZE << order,
118 : KASAN_FREE_PAGE);
119 150555 : }
120 :
121 : /*
122 : * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
123 : * For larger allocations larger redzones are used.
124 : */
125 145 : static inline unsigned int optimal_redzone(unsigned int object_size)
126 : {
127 145 : return
128 145 : object_size <= 64 - 16 ? 16 :
129 : object_size <= 128 - 32 ? 32 :
130 : object_size <= 512 - 64 ? 64 :
131 : object_size <= 4096 - 128 ? 128 :
132 : object_size <= (1 << 14) - 256 ? 256 :
133 : object_size <= (1 << 15) - 512 ? 512 :
134 : object_size <= (1 << 16) - 1024 ? 1024 : 2048;
135 : }
136 :
137 145 : void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
138 : slab_flags_t *flags)
139 : {
140 145 : unsigned int ok_size;
141 145 : unsigned int optimal_size;
142 :
143 : /*
144 : * SLAB_KASAN is used to mark caches as ones that are sanitized by
145 : * KASAN. Currently this flag is used in two places:
146 : * 1. In slab_ksize() when calculating the size of the accessible
147 : * memory within the object.
148 : * 2. In slab_common.c to prevent merging of sanitized caches.
149 : */
150 145 : *flags |= SLAB_KASAN;
151 :
152 145 : if (!kasan_stack_collection_enabled())
153 : return;
154 :
155 145 : ok_size = *size;
156 :
157 : /* Add alloc meta into redzone. */
158 145 : cache->kasan_info.alloc_meta_offset = *size;
159 145 : *size += sizeof(struct kasan_alloc_meta);
160 :
161 : /*
162 : * If alloc meta doesn't fit, don't add it.
163 : * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
164 : * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
165 : * larger sizes.
166 : */
167 145 : if (*size > KMALLOC_MAX_SIZE) {
168 0 : cache->kasan_info.alloc_meta_offset = 0;
169 0 : *size = ok_size;
170 : /* Continue, since free meta might still fit. */
171 : }
172 :
173 : /* Only the generic mode uses free meta or flexible redzones. */
174 145 : if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) {
175 : cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
176 : return;
177 : }
178 :
179 : /*
180 : * Add free meta into redzone when it's not possible to store
181 : * it in the object. This is the case when:
182 : * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
183 : * be touched after it was freed, or
184 : * 2. Object has a constructor, which means it's expected to
185 : * retain its content until the next allocation, or
186 : * 3. Object is too small.
187 : * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
188 : */
189 145 : if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
190 128 : cache->object_size < sizeof(struct kasan_free_meta)) {
191 19 : ok_size = *size;
192 :
193 19 : cache->kasan_info.free_meta_offset = *size;
194 19 : *size += sizeof(struct kasan_free_meta);
195 :
196 : /* If free meta doesn't fit, don't add it. */
197 19 : if (*size > KMALLOC_MAX_SIZE) {
198 0 : cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
199 0 : *size = ok_size;
200 : }
201 : }
202 :
203 : /* Calculate size with optimal redzone. */
204 145 : optimal_size = cache->object_size + optimal_redzone(cache->object_size);
205 : /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
206 145 : if (optimal_size > KMALLOC_MAX_SIZE)
207 : optimal_size = KMALLOC_MAX_SIZE;
208 : /* Use optimal size if the size with added metas is not large enough. */
209 145 : if (*size < optimal_size)
210 121 : *size = optimal_size;
211 : }
212 :
213 26 : void __kasan_cache_create_kmalloc(struct kmem_cache *cache)
214 : {
215 26 : cache->kasan_info.is_kmalloc = true;
216 26 : }
217 :
218 0 : size_t __kasan_metadata_size(struct kmem_cache *cache)
219 : {
220 0 : if (!kasan_stack_collection_enabled())
221 : return 0;
222 0 : return (cache->kasan_info.alloc_meta_offset ?
223 0 : sizeof(struct kasan_alloc_meta) : 0) +
224 0 : (cache->kasan_info.free_meta_offset ?
225 0 : sizeof(struct kasan_free_meta) : 0);
226 : }
227 :
228 2675649 : struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
229 : const void *object)
230 : {
231 727345 : if (!cache->kasan_info.alloc_meta_offset)
232 : return NULL;
233 2675649 : return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset;
234 : }
235 :
236 : #ifdef CONFIG_KASAN_GENERIC
237 2521771 : struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
238 : const void *object)
239 : {
240 2521771 : BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
241 2521771 : if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
242 : return NULL;
243 2521771 : return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset;
244 : }
245 : #endif
246 :
247 28183 : void __kasan_poison_slab(struct page *page)
248 : {
249 28183 : unsigned long i;
250 :
251 131833 : for (i = 0; i < compound_nr(page); i++)
252 103650 : page_kasan_tag_reset(page + i);
253 28183 : kasan_poison(page_address(page), page_size(page),
254 : KASAN_KMALLOC_REDZONE);
255 28183 : }
256 :
257 21341 : void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
258 : {
259 21341 : kasan_unpoison(object, cache->object_size);
260 21341 : }
261 :
262 20697 : void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
263 : {
264 20697 : kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
265 : KASAN_KMALLOC_REDZONE);
266 20698 : }
267 :
268 : /*
269 : * This function assigns a tag to an object considering the following:
270 : * 1. A cache might have a constructor, which might save a pointer to a slab
271 : * object somewhere (e.g. in the object itself). We preassign a tag for
272 : * each object in caches with constructors during slab creation and reuse
273 : * the same tag each time a particular object is allocated.
274 : * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
275 : * accessed after being freed. We preassign tags for objects in these
276 : * caches as well.
277 : * 3. For SLAB allocator we can't preassign tags randomly since the freelist
278 : * is stored as an array of indexes instead of a linked list. Assign tags
279 : * based on objects indexes, so that objects that are next to each other
280 : * get different tags.
281 : */
282 1961815 : static inline u8 assign_tag(struct kmem_cache *cache,
283 : const void *object, bool init)
284 : {
285 1961815 : if (IS_ENABLED(CONFIG_KASAN_GENERIC))
286 1961815 : return 0xff;
287 :
288 : /*
289 : * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
290 : * set, assign a tag when the object is being allocated (init == false).
291 : */
292 : if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
293 : return init ? KASAN_TAG_KERNEL : kasan_random_tag();
294 :
295 : /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
296 : #ifdef CONFIG_SLAB
297 : /* For SLAB assign tags based on the object index in the freelist. */
298 : return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
299 : #else
300 : /*
301 : * For SLUB assign a random tag during slab creation, otherwise reuse
302 : * the already assigned tag.
303 : */
304 : return init ? kasan_random_tag() : get_tag(object);
305 : #endif
306 : }
307 :
308 488296 : void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
309 : const void *object)
310 : {
311 488296 : struct kasan_alloc_meta *alloc_meta;
312 :
313 488296 : if (kasan_stack_collection_enabled()) {
314 488296 : alloc_meta = kasan_get_alloc_meta(cache, object);
315 488296 : if (alloc_meta)
316 488296 : __memset(alloc_meta, 0, sizeof(*alloc_meta));
317 : }
318 :
319 : /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
320 488300 : object = set_tag(object, assign_tag(cache, object, true));
321 :
322 488300 : return (void *)object;
323 : }
324 :
325 1306150 : static inline bool ____kasan_slab_free(struct kmem_cache *cache,
326 : void *object, unsigned long ip, bool quarantine)
327 : {
328 1306150 : u8 tag;
329 1306150 : void *tagged_object;
330 :
331 1306150 : tag = get_tag(object);
332 1306150 : tagged_object = object;
333 1306150 : object = kasan_reset_tag(object);
334 :
335 1306150 : if (is_kfence_address(object))
336 : return false;
337 :
338 1306150 : if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
339 : object)) {
340 0 : kasan_report_invalid_free(tagged_object, ip);
341 0 : return true;
342 : }
343 :
344 : /* RCU slabs could be legally used after free within the RCU period */
345 1306698 : if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
346 : return false;
347 :
348 1264548 : if (!kasan_byte_accessible(tagged_object)) {
349 0 : kasan_report_invalid_free(tagged_object, ip);
350 0 : return true;
351 : }
352 :
353 1264679 : kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
354 : KASAN_KMALLOC_FREE);
355 :
356 1264293 : if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
357 : return false;
358 :
359 1264109 : if (kasan_stack_collection_enabled())
360 1264109 : kasan_set_free_info(cache, object, tag);
361 :
362 1265369 : return kasan_quarantine_put(cache, object);
363 : }
364 :
365 1305955 : bool __kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
366 : {
367 1305955 : return ____kasan_slab_free(cache, object, ip, true);
368 : }
369 :
370 16 : static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip)
371 : {
372 16 : if (ptr != page_address(virt_to_head_page(ptr))) {
373 0 : kasan_report_invalid_free(ptr, ip);
374 0 : return true;
375 : }
376 :
377 16 : if (!kasan_byte_accessible(ptr)) {
378 0 : kasan_report_invalid_free(ptr, ip);
379 0 : return true;
380 : }
381 :
382 : /*
383 : * The object will be poisoned by kasan_free_pages() or
384 : * kasan_slab_free_mempool().
385 : */
386 :
387 : return false;
388 : }
389 :
390 16 : void __kasan_kfree_large(void *ptr, unsigned long ip)
391 : {
392 16 : ____kasan_kfree_large(ptr, ip);
393 16 : }
394 :
395 298 : void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
396 : {
397 298 : struct page *page;
398 :
399 298 : page = virt_to_head_page(ptr);
400 :
401 : /*
402 : * Even though this function is only called for kmem_cache_alloc and
403 : * kmalloc backed mempool allocations, those allocations can still be
404 : * !PageSlab() when the size provided to kmalloc is larger than
405 : * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
406 : */
407 298 : if (unlikely(!PageSlab(page))) {
408 0 : if (____kasan_kfree_large(ptr, ip))
409 : return;
410 0 : kasan_poison(ptr, page_size(page), KASAN_FREE_PAGE);
411 : } else {
412 298 : ____kasan_slab_free(page->slab_cache, ptr, ip, false);
413 : }
414 : }
415 :
416 1571650 : static void set_alloc_info(struct kmem_cache *cache, void *object,
417 : gfp_t flags, bool is_kmalloc)
418 : {
419 1571650 : struct kasan_alloc_meta *alloc_meta;
420 :
421 : /* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */
422 1571650 : if (cache->kasan_info.is_kmalloc && !is_kmalloc)
423 : return;
424 :
425 1460008 : alloc_meta = kasan_get_alloc_meta(cache, object);
426 1460008 : if (alloc_meta)
427 1460008 : kasan_set_track(&alloc_meta->alloc_track, flags);
428 : }
429 :
430 1473723 : void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
431 : void *object, gfp_t flags)
432 : {
433 1473723 : u8 tag;
434 1473723 : void *tagged_object;
435 :
436 1473723 : if (gfpflags_allow_blocking(flags))
437 1281649 : kasan_quarantine_reduce();
438 :
439 1473515 : if (unlikely(object == NULL))
440 : return NULL;
441 :
442 1473515 : if (is_kfence_address(object))
443 : return (void *)object;
444 :
445 : /*
446 : * Generate and assign random tag for tag-based modes.
447 : * Tag is ignored in set_tag() for the generic mode.
448 : */
449 1473515 : tag = assign_tag(cache, object, false);
450 1473515 : tagged_object = set_tag(object, tag);
451 :
452 : /*
453 : * Unpoison the whole object.
454 : * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.
455 : */
456 1473515 : kasan_unpoison(tagged_object, cache->object_size);
457 :
458 : /* Save alloc info (if possible) for non-kmalloc() allocations. */
459 1473238 : if (kasan_stack_collection_enabled())
460 1473238 : set_alloc_info(cache, (void *)object, flags, false);
461 :
462 1473238 : return tagged_object;
463 : }
464 :
465 98273 : static inline void *____kasan_kmalloc(struct kmem_cache *cache,
466 : const void *object, size_t size, gfp_t flags)
467 : {
468 98273 : unsigned long redzone_start;
469 98273 : unsigned long redzone_end;
470 :
471 98273 : if (gfpflags_allow_blocking(flags))
472 94252 : kasan_quarantine_reduce();
473 :
474 98272 : if (unlikely(object == NULL))
475 : return NULL;
476 :
477 98272 : if (is_kfence_address(kasan_reset_tag(object)))
478 : return (void *)object;
479 :
480 : /*
481 : * The object has already been unpoisoned by kasan_slab_alloc() for
482 : * kmalloc() or by kasan_krealloc() for krealloc().
483 : */
484 :
485 : /*
486 : * The redzone has byte-level precision for the generic mode.
487 : * Partially poison the last object granule to cover the unaligned
488 : * part of the redzone.
489 : */
490 98272 : if (IS_ENABLED(CONFIG_KASAN_GENERIC))
491 98272 : kasan_poison_last_granule((void *)object, size);
492 :
493 : /* Poison the aligned part of the redzone. */
494 98273 : redzone_start = round_up((unsigned long)(object + size),
495 : KASAN_GRANULE_SIZE);
496 98273 : redzone_end = round_up((unsigned long)(object + cache->object_size),
497 : KASAN_GRANULE_SIZE);
498 98273 : kasan_poison((void *)redzone_start, redzone_end - redzone_start,
499 : KASAN_KMALLOC_REDZONE);
500 :
501 : /*
502 : * Save alloc info (if possible) for kmalloc() allocations.
503 : * This also rewrites the alloc info when called from kasan_krealloc().
504 : */
505 98273 : if (kasan_stack_collection_enabled())
506 98273 : set_alloc_info(cache, (void *)object, flags, true);
507 :
508 : /* Keep the tag that was set by kasan_slab_alloc(). */
509 98273 : return (void *)object;
510 : }
511 :
512 98178 : void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
513 : size_t size, gfp_t flags)
514 : {
515 98178 : return ____kasan_kmalloc(cache, object, size, flags);
516 : }
517 : EXPORT_SYMBOL(__kasan_kmalloc);
518 :
519 27 : void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
520 : gfp_t flags)
521 : {
522 27 : unsigned long redzone_start;
523 27 : unsigned long redzone_end;
524 :
525 27 : if (gfpflags_allow_blocking(flags))
526 27 : kasan_quarantine_reduce();
527 :
528 27 : if (unlikely(ptr == NULL))
529 : return NULL;
530 :
531 : /*
532 : * The object has already been unpoisoned by kasan_alloc_pages() for
533 : * alloc_pages() or by kasan_krealloc() for krealloc().
534 : */
535 :
536 : /*
537 : * The redzone has byte-level precision for the generic mode.
538 : * Partially poison the last object granule to cover the unaligned
539 : * part of the redzone.
540 : */
541 27 : if (IS_ENABLED(CONFIG_KASAN_GENERIC))
542 27 : kasan_poison_last_granule(ptr, size);
543 :
544 : /* Poison the aligned part of the redzone. */
545 27 : redzone_start = round_up((unsigned long)(ptr + size),
546 : KASAN_GRANULE_SIZE);
547 27 : redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
548 27 : kasan_poison((void *)redzone_start, redzone_end - redzone_start,
549 : KASAN_PAGE_REDZONE);
550 :
551 27 : return (void *)ptr;
552 : }
553 :
554 92 : void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
555 : {
556 92 : struct page *page;
557 :
558 92 : if (unlikely(object == ZERO_SIZE_PTR))
559 : return (void *)object;
560 :
561 : /*
562 : * Unpoison the object's data.
563 : * Part of it might already have been unpoisoned, but it's unknown
564 : * how big that part is.
565 : */
566 92 : kasan_unpoison(object, size);
567 :
568 92 : page = virt_to_head_page(object);
569 :
570 : /* Piggy-back on kmalloc() instrumentation to poison the redzone. */
571 92 : if (unlikely(!PageSlab(page)))
572 0 : return __kasan_kmalloc_large(object, size, flags);
573 : else
574 92 : return ____kasan_kmalloc(page->slab_cache, object, size, flags);
575 : }
576 :
577 10255 : bool __kasan_check_byte(const void *address, unsigned long ip)
578 : {
579 10255 : if (!kasan_byte_accessible(address)) {
580 0 : kasan_report((unsigned long)address, 1, false, ip);
581 0 : return false;
582 : }
583 : return true;
584 : }
|