Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * mm/kmemleak.c
4 : *
5 : * Copyright (C) 2008 ARM Limited
6 : * Written by Catalin Marinas <catalin.marinas@arm.com>
7 : *
8 : * For more information on the algorithm and kmemleak usage, please see
9 : * Documentation/dev-tools/kmemleak.rst.
10 : *
11 : * Notes on locking
12 : * ----------------
13 : *
14 : * The following locks and mutexes are used by kmemleak:
15 : *
16 : * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17 : * accesses to the object_tree_root. The object_list is the main list
18 : * holding the metadata (struct kmemleak_object) for the allocated memory
19 : * blocks. The object_tree_root is a red black tree used to look-up
20 : * metadata based on a pointer to the corresponding memory block. The
21 : * kmemleak_object structures are added to the object_list and
22 : * object_tree_root in the create_object() function called from the
23 : * kmemleak_alloc() callback and removed in delete_object() called from the
24 : * kmemleak_free() callback
25 : * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
26 : * Accesses to the metadata (e.g. count) are protected by this lock. Note
27 : * that some members of this structure may be protected by other means
28 : * (atomic or kmemleak_lock). This lock is also held when scanning the
29 : * corresponding memory block to avoid the kernel freeing it via the
30 : * kmemleak_free() callback. This is less heavyweight than holding a global
31 : * lock like kmemleak_lock during scanning.
32 : * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 : * unreferenced objects at a time. The gray_list contains the objects which
34 : * are already referenced or marked as false positives and need to be
35 : * scanned. This list is only modified during a scanning episode when the
36 : * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 : * Note that the kmemleak_object.use_count is incremented when an object is
38 : * added to the gray_list and therefore cannot be freed. This mutex also
39 : * prevents multiple users of the "kmemleak" debugfs file together with
40 : * modifications to the memory scanning parameters including the scan_thread
41 : * pointer
42 : *
43 : * Locks and mutexes are acquired/nested in the following order:
44 : *
45 : * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46 : *
47 : * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48 : * regions.
49 : *
50 : * The kmemleak_object structures have a use_count incremented or decremented
51 : * using the get_object()/put_object() functions. When the use_count becomes
52 : * 0, this count can no longer be incremented and put_object() schedules the
53 : * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 : * function must be protected by rcu_read_lock() to avoid accessing a freed
55 : * structure.
56 : */
57 :
58 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 :
60 : #include <linux/init.h>
61 : #include <linux/kernel.h>
62 : #include <linux/list.h>
63 : #include <linux/sched/signal.h>
64 : #include <linux/sched/task.h>
65 : #include <linux/sched/task_stack.h>
66 : #include <linux/jiffies.h>
67 : #include <linux/delay.h>
68 : #include <linux/export.h>
69 : #include <linux/kthread.h>
70 : #include <linux/rbtree.h>
71 : #include <linux/fs.h>
72 : #include <linux/debugfs.h>
73 : #include <linux/seq_file.h>
74 : #include <linux/cpumask.h>
75 : #include <linux/spinlock.h>
76 : #include <linux/module.h>
77 : #include <linux/mutex.h>
78 : #include <linux/rcupdate.h>
79 : #include <linux/stacktrace.h>
80 : #include <linux/cache.h>
81 : #include <linux/percpu.h>
82 : #include <linux/memblock.h>
83 : #include <linux/pfn.h>
84 : #include <linux/mmzone.h>
85 : #include <linux/slab.h>
86 : #include <linux/thread_info.h>
87 : #include <linux/err.h>
88 : #include <linux/uaccess.h>
89 : #include <linux/string.h>
90 : #include <linux/nodemask.h>
91 : #include <linux/mm.h>
92 : #include <linux/workqueue.h>
93 : #include <linux/crc32.h>
94 :
95 : #include <asm/sections.h>
96 : #include <asm/processor.h>
97 : #include <linux/atomic.h>
98 :
99 : #include <linux/kasan.h>
100 : #include <linux/kmemleak.h>
101 : #include <linux/memory_hotplug.h>
102 :
103 : /*
104 : * Kmemleak configuration and common defines.
105 : */
106 : #define MAX_TRACE 16 /* stack trace length */
107 : #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
108 : #define SECS_FIRST_SCAN 60 /* delay before the first scan */
109 : #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
110 : #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
111 :
112 : #define BYTES_PER_POINTER sizeof(void *)
113 :
114 : /* GFP bitmask for kmemleak internal allocations */
115 : #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 : __GFP_NORETRY | __GFP_NOMEMALLOC | \
117 : __GFP_NOWARN)
118 :
119 : /* scanning area inside a memory block */
120 : struct kmemleak_scan_area {
121 : struct hlist_node node;
122 : unsigned long start;
123 : size_t size;
124 : };
125 :
126 : #define KMEMLEAK_GREY 0
127 : #define KMEMLEAK_BLACK -1
128 :
129 : /*
130 : * Structure holding the metadata for each allocated memory block.
131 : * Modifications to such objects should be made while holding the
132 : * object->lock. Insertions or deletions from object_list, gray_list or
133 : * rb_node are already protected by the corresponding locks or mutex (see
134 : * the notes on locking above). These objects are reference-counted
135 : * (use_count) and freed using the RCU mechanism.
136 : */
137 : struct kmemleak_object {
138 : raw_spinlock_t lock;
139 : unsigned int flags; /* object status flags */
140 : struct list_head object_list;
141 : struct list_head gray_list;
142 : struct rb_node rb_node;
143 : struct rcu_head rcu; /* object_list lockless traversal */
144 : /* object usage count; object freed when use_count == 0 */
145 : atomic_t use_count;
146 : unsigned long pointer;
147 : size_t size;
148 : /* pass surplus references to this pointer */
149 : unsigned long excess_ref;
150 : /* minimum number of a pointers found before it is considered leak */
151 : int min_count;
152 : /* the total number of pointers found pointing to this object */
153 : int count;
154 : /* checksum for detecting modified objects */
155 : u32 checksum;
156 : /* memory ranges to be scanned inside an object (empty for all) */
157 : struct hlist_head area_list;
158 : unsigned long trace[MAX_TRACE];
159 : unsigned int trace_len;
160 : unsigned long jiffies; /* creation timestamp */
161 : pid_t pid; /* pid of the current task */
162 : char comm[TASK_COMM_LEN]; /* executable name */
163 : };
164 :
165 : /* flag representing the memory block allocation status */
166 : #define OBJECT_ALLOCATED (1 << 0)
167 : /* flag set after the first reporting of an unreference object */
168 : #define OBJECT_REPORTED (1 << 1)
169 : /* flag set to not scan the object */
170 : #define OBJECT_NO_SCAN (1 << 2)
171 : /* flag set to fully scan the object when scan_area allocation failed */
172 : #define OBJECT_FULL_SCAN (1 << 3)
173 :
174 : #define HEX_PREFIX " "
175 : /* number of bytes to print per line; must be 16 or 32 */
176 : #define HEX_ROW_SIZE 16
177 : /* number of bytes to print at a time (1, 2, 4, 8) */
178 : #define HEX_GROUP_SIZE 1
179 : /* include ASCII after the hex output */
180 : #define HEX_ASCII 1
181 : /* max number of lines to be printed */
182 : #define HEX_MAX_LINES 2
183 :
184 : /* the list of all allocated objects */
185 : static LIST_HEAD(object_list);
186 : /* the list of gray-colored objects (see color_gray comment below) */
187 : static LIST_HEAD(gray_list);
188 : /* memory pool allocation */
189 : static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
190 : static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
191 : static LIST_HEAD(mem_pool_free_list);
192 : /* search tree for object boundaries */
193 : static struct rb_root object_tree_root = RB_ROOT;
194 : /* protecting the access to object_list and object_tree_root */
195 : static DEFINE_RAW_SPINLOCK(kmemleak_lock);
196 :
197 : /* allocation caches for kmemleak internal data */
198 : static struct kmem_cache *object_cache;
199 : static struct kmem_cache *scan_area_cache;
200 :
201 : /* set if tracing memory operations is enabled */
202 : static int kmemleak_enabled = 1;
203 : /* same as above but only for the kmemleak_free() callback */
204 : static int kmemleak_free_enabled = 1;
205 : /* set in the late_initcall if there were no errors */
206 : static int kmemleak_initialized;
207 : /* set if a kmemleak warning was issued */
208 : static int kmemleak_warning;
209 : /* set if a fatal kmemleak error has occurred */
210 : static int kmemleak_error;
211 :
212 : /* minimum and maximum address that may be valid pointers */
213 : static unsigned long min_addr = ULONG_MAX;
214 : static unsigned long max_addr;
215 :
216 : static struct task_struct *scan_thread;
217 : /* used to avoid reporting of recently allocated objects */
218 : static unsigned long jiffies_min_age;
219 : static unsigned long jiffies_last_scan;
220 : /* delay between automatic memory scannings */
221 : static signed long jiffies_scan_wait;
222 : /* enables or disables the task stacks scanning */
223 : static int kmemleak_stack_scan = 1;
224 : /* protects the memory scanning, parameters and debug/kmemleak file access */
225 : static DEFINE_MUTEX(scan_mutex);
226 : /* setting kmemleak=on, will set this var, skipping the disable */
227 : static int kmemleak_skip_disable;
228 : /* If there are leaks that can be reported */
229 : static bool kmemleak_found_leaks;
230 :
231 : static bool kmemleak_verbose;
232 : module_param_named(verbose, kmemleak_verbose, bool, 0600);
233 :
234 : static void kmemleak_disable(void);
235 :
236 : /*
237 : * Print a warning and dump the stack trace.
238 : */
239 : #define kmemleak_warn(x...) do { \
240 : pr_warn(x); \
241 : dump_stack(); \
242 : kmemleak_warning = 1; \
243 : } while (0)
244 :
245 : /*
246 : * Macro invoked when a serious kmemleak condition occurred and cannot be
247 : * recovered from. Kmemleak will be disabled and further allocation/freeing
248 : * tracing no longer available.
249 : */
250 : #define kmemleak_stop(x...) do { \
251 : kmemleak_warn(x); \
252 : kmemleak_disable(); \
253 : } while (0)
254 :
255 : #define warn_or_seq_printf(seq, fmt, ...) do { \
256 : if (seq) \
257 : seq_printf(seq, fmt, ##__VA_ARGS__); \
258 : else \
259 : pr_warn(fmt, ##__VA_ARGS__); \
260 : } while (0)
261 :
262 0 : static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
263 : int rowsize, int groupsize, const void *buf,
264 : size_t len, bool ascii)
265 : {
266 0 : if (seq)
267 0 : seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
268 : buf, len, ascii);
269 : else
270 0 : print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
271 : rowsize, groupsize, buf, len, ascii);
272 0 : }
273 :
274 : /*
275 : * Printing of the objects hex dump to the seq file. The number of lines to be
276 : * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
277 : * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
278 : * with the object->lock held.
279 : */
280 0 : static void hex_dump_object(struct seq_file *seq,
281 : struct kmemleak_object *object)
282 : {
283 0 : const u8 *ptr = (const u8 *)object->pointer;
284 0 : size_t len;
285 :
286 : /* limit the number of lines to HEX_MAX_LINES */
287 0 : len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
288 :
289 0 : warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
290 0 : kasan_disable_current();
291 0 : warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
292 : HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
293 0 : kasan_enable_current();
294 0 : }
295 :
296 : /*
297 : * Object colors, encoded with count and min_count:
298 : * - white - orphan object, not enough references to it (count < min_count)
299 : * - gray - not orphan, not marked as false positive (min_count == 0) or
300 : * sufficient references to it (count >= min_count)
301 : * - black - ignore, it doesn't contain references (e.g. text section)
302 : * (min_count == -1). No function defined for this color.
303 : * Newly created objects don't have any color assigned (object->count == -1)
304 : * before the next memory scan when they become white.
305 : */
306 0 : static bool color_white(const struct kmemleak_object *object)
307 : {
308 0 : return object->count != KMEMLEAK_BLACK &&
309 0 : object->count < object->min_count;
310 : }
311 :
312 0 : static bool color_gray(const struct kmemleak_object *object)
313 : {
314 0 : return object->min_count != KMEMLEAK_BLACK &&
315 0 : object->count >= object->min_count;
316 : }
317 :
318 : /*
319 : * Objects are considered unreferenced only if their color is white, they have
320 : * not be deleted and have a minimum age to avoid false positives caused by
321 : * pointers temporarily stored in CPU registers.
322 : */
323 0 : static bool unreferenced_object(struct kmemleak_object *object)
324 : {
325 0 : return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
326 0 : time_before_eq(object->jiffies + jiffies_min_age,
327 : jiffies_last_scan);
328 : }
329 :
330 : /*
331 : * Printing of the unreferenced objects information to the seq file. The
332 : * print_unreferenced function must be called with the object->lock held.
333 : */
334 0 : static void print_unreferenced(struct seq_file *seq,
335 : struct kmemleak_object *object)
336 : {
337 0 : int i;
338 0 : unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
339 :
340 0 : warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
341 : object->pointer, object->size);
342 0 : warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
343 : object->comm, object->pid, object->jiffies,
344 : msecs_age / 1000, msecs_age % 1000);
345 0 : hex_dump_object(seq, object);
346 0 : warn_or_seq_printf(seq, " backtrace:\n");
347 :
348 0 : for (i = 0; i < object->trace_len; i++) {
349 0 : void *ptr = (void *)object->trace[i];
350 0 : warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
351 : }
352 0 : }
353 :
354 : /*
355 : * Print the kmemleak_object information. This function is used mainly for
356 : * debugging special cases when kmemleak operations. It must be called with
357 : * the object->lock held.
358 : */
359 0 : static void dump_object_info(struct kmemleak_object *object)
360 : {
361 0 : pr_notice("Object 0x%08lx (size %zu):\n",
362 : object->pointer, object->size);
363 0 : pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
364 : object->comm, object->pid, object->jiffies);
365 0 : pr_notice(" min_count = %d\n", object->min_count);
366 0 : pr_notice(" count = %d\n", object->count);
367 0 : pr_notice(" flags = 0x%x\n", object->flags);
368 0 : pr_notice(" checksum = %u\n", object->checksum);
369 0 : pr_notice(" backtrace:\n");
370 0 : stack_trace_print(object->trace, object->trace_len, 4);
371 0 : }
372 :
373 : /*
374 : * Look-up a memory block metadata (kmemleak_object) in the object search
375 : * tree based on a pointer value. If alias is 0, only values pointing to the
376 : * beginning of the memory block are allowed. The kmemleak_lock must be held
377 : * when calling this function.
378 : */
379 665569 : static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
380 : {
381 665569 : struct rb_node *rb = object_tree_root.rb_node;
382 :
383 13068040 : while (rb) {
384 13068036 : struct kmemleak_object *object =
385 13068036 : rb_entry(rb, struct kmemleak_object, rb_node);
386 13068036 : if (ptr < object->pointer)
387 4380859 : rb = object->rb_node.rb_left;
388 8687177 : else if (object->pointer + object->size <= ptr)
389 8021612 : rb = object->rb_node.rb_right;
390 665565 : else if (object->pointer == ptr || alias)
391 : return object;
392 : else {
393 0 : kmemleak_warn("Found object by alias at 0x%08lx\n",
394 : ptr);
395 0 : dump_object_info(object);
396 0 : break;
397 : }
398 : }
399 : return NULL;
400 : }
401 :
402 : /*
403 : * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
404 : * that once an object's use_count reached 0, the RCU freeing was already
405 : * registered and the object should no longer be used. This function must be
406 : * called under the protection of rcu_read_lock().
407 : */
408 24416 : static int get_object(struct kmemleak_object *object)
409 : {
410 24416 : return atomic_inc_not_zero(&object->use_count);
411 : }
412 :
413 : /*
414 : * Memory pool allocation and freeing. kmemleak_lock must not be held.
415 : */
416 721259 : static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
417 : {
418 721259 : unsigned long flags;
419 721259 : struct kmemleak_object *object;
420 :
421 : /* try the slab allocator first */
422 721259 : if (object_cache) {
423 720724 : object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
424 720784 : if (object)
425 : return object;
426 : }
427 :
428 : /* slab allocation failed, try the memory pool */
429 535 : raw_spin_lock_irqsave(&kmemleak_lock, flags);
430 535 : object = list_first_entry_or_null(&mem_pool_free_list,
431 : typeof(*object), object_list);
432 3 : if (object)
433 3 : list_del(&object->object_list);
434 532 : else if (mem_pool_free_count)
435 532 : object = &mem_pool[--mem_pool_free_count];
436 : else
437 0 : pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
438 535 : raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
439 :
440 535 : return object;
441 : }
442 :
443 : /*
444 : * Return the object to either the slab allocator or the memory pool.
445 : */
446 640266 : static void mem_pool_free(struct kmemleak_object *object)
447 : {
448 640266 : unsigned long flags;
449 :
450 640266 : if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
451 640263 : kmem_cache_free(object_cache, object);
452 640263 : return;
453 : }
454 :
455 : /* add the object to the memory pool free list */
456 3 : raw_spin_lock_irqsave(&kmemleak_lock, flags);
457 3 : list_add(&object->object_list, &mem_pool_free_list);
458 3 : raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
459 : }
460 :
461 : /*
462 : * RCU callback to free a kmemleak_object.
463 : */
464 638691 : static void free_object_rcu(struct rcu_head *rcu)
465 : {
466 638691 : struct hlist_node *tmp;
467 638691 : struct kmemleak_scan_area *area;
468 638691 : struct kmemleak_object *object =
469 638691 : container_of(rcu, struct kmemleak_object, rcu);
470 :
471 : /*
472 : * Once use_count is 0 (guaranteed by put_object), there is no other
473 : * code accessing this object, hence no need for locking.
474 : */
475 1292624 : hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
476 12148 : hlist_del(&area->node);
477 12148 : kmem_cache_free(scan_area_cache, area);
478 : }
479 640238 : mem_pool_free(object);
480 639560 : }
481 :
482 : /*
483 : * Decrement the object use_count. Once the count is 0, free the object using
484 : * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
485 : * delete_object() path, the delayed RCU freeing ensures that there is no
486 : * recursive call to the kernel allocator. Lock-less RCU object_list traversal
487 : * is also possible.
488 : */
489 665432 : static void put_object(struct kmemleak_object *object)
490 : {
491 1330981 : if (!atomic_dec_and_test(&object->use_count))
492 : return;
493 :
494 : /* should only get here after delete_object was called */
495 641141 : WARN_ON(object->flags & OBJECT_ALLOCATED);
496 :
497 : /*
498 : * It may be too early for the RCU callbacks, however, there is no
499 : * concurrent object_list traversal when !object_cache and all objects
500 : * came from the memory pool. Free the object directly.
501 : */
502 641141 : if (object_cache)
503 641138 : call_rcu(&object->rcu, free_object_rcu);
504 : else
505 3 : free_object_rcu(&object->rcu);
506 : }
507 :
508 : /*
509 : * Look up an object in the object search tree and increase its use_count.
510 : */
511 24406 : static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
512 : {
513 24406 : unsigned long flags;
514 24406 : struct kmemleak_object *object;
515 :
516 24406 : rcu_read_lock();
517 24406 : raw_spin_lock_irqsave(&kmemleak_lock, flags);
518 24406 : object = lookup_object(ptr, alias);
519 24406 : raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
520 :
521 : /* check whether the object is still available */
522 24406 : if (object && !get_object(object))
523 0 : object = NULL;
524 24406 : rcu_read_unlock();
525 :
526 24406 : return object;
527 : }
528 :
529 : /*
530 : * Remove an object from the object_tree_root and object_list. Must be called
531 : * with the kmemleak_lock held _if_ kmemleak is still enabled.
532 : */
533 641147 : static void __remove_object(struct kmemleak_object *object)
534 : {
535 641147 : rb_erase(&object->rb_node, &object_tree_root);
536 641147 : list_del_rcu(&object->object_list);
537 641147 : }
538 :
539 : /*
540 : * Look up an object in the object search tree and remove it from both
541 : * object_tree_root and object_list. The returned object's use_count should be
542 : * at least 1, as initially set by create_object().
543 : */
544 640997 : static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
545 : {
546 640997 : unsigned long flags;
547 640997 : struct kmemleak_object *object;
548 :
549 640997 : raw_spin_lock_irqsave(&kmemleak_lock, flags);
550 641151 : object = lookup_object(ptr, alias);
551 641151 : if (object)
552 641147 : __remove_object(object);
553 641151 : raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
554 :
555 641145 : return object;
556 : }
557 :
558 : /*
559 : * Save stack trace to the given array of MAX_TRACE size.
560 : */
561 720971 : static int __save_stack_trace(unsigned long *trace)
562 : {
563 720971 : return stack_trace_save(trace, MAX_TRACE, 2);
564 : }
565 :
566 : /*
567 : * Create the metadata (struct kmemleak_object) corresponding to an allocated
568 : * memory block and add it to the object_list and object_tree_root.
569 : */
570 721229 : static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
571 : int min_count, gfp_t gfp)
572 : {
573 721229 : unsigned long flags;
574 721229 : struct kmemleak_object *object, *parent;
575 721229 : struct rb_node **link, *rb_parent;
576 721229 : unsigned long untagged_ptr;
577 :
578 721229 : object = mem_pool_alloc(gfp);
579 721284 : if (!object) {
580 0 : pr_warn("Cannot allocate a kmemleak_object structure\n");
581 0 : kmemleak_disable();
582 0 : return NULL;
583 : }
584 :
585 721284 : INIT_LIST_HEAD(&object->object_list);
586 721284 : INIT_LIST_HEAD(&object->gray_list);
587 721284 : INIT_HLIST_HEAD(&object->area_list);
588 721284 : raw_spin_lock_init(&object->lock);
589 721126 : atomic_set(&object->use_count, 1);
590 720971 : object->flags = OBJECT_ALLOCATED;
591 720971 : object->pointer = ptr;
592 720971 : object->size = size;
593 720971 : object->excess_ref = 0;
594 720971 : object->min_count = min_count;
595 720971 : object->count = 0; /* white color initially */
596 720971 : object->jiffies = jiffies;
597 720971 : object->checksum = 0;
598 :
599 : /* task information */
600 720971 : if (in_irq()) {
601 0 : object->pid = 0;
602 0 : strncpy(object->comm, "hardirq", sizeof(object->comm));
603 720971 : } else if (in_serving_softirq()) {
604 1609 : object->pid = 0;
605 1609 : strncpy(object->comm, "softirq", sizeof(object->comm));
606 : } else {
607 719362 : object->pid = current->pid;
608 : /*
609 : * There is a small chance of a race with set_task_comm(),
610 : * however using get_task_comm() here may cause locking
611 : * dependency issues with current->alloc_lock. In the worst
612 : * case, the command line is not correct.
613 : */
614 719362 : strncpy(object->comm, current->comm, sizeof(object->comm));
615 : }
616 :
617 : /* kernel backtrace */
618 720971 : object->trace_len = __save_stack_trace(object->trace);
619 :
620 721223 : raw_spin_lock_irqsave(&kmemleak_lock, flags);
621 :
622 721449 : untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
623 721449 : min_addr = min(min_addr, untagged_ptr);
624 721449 : max_addr = max(max_addr, untagged_ptr + size);
625 721449 : link = &object_tree_root.rb_node;
626 721449 : rb_parent = NULL;
627 15960215 : while (*link) {
628 15238766 : rb_parent = *link;
629 15238766 : parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
630 15238766 : if (ptr + size <= parent->pointer)
631 5005027 : link = &parent->rb_node.rb_left;
632 10233739 : else if (parent->pointer + parent->size <= ptr)
633 10233739 : link = &parent->rb_node.rb_right;
634 : else {
635 0 : kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
636 : ptr);
637 : /*
638 : * No need for parent->lock here since "parent" cannot
639 : * be freed while the kmemleak_lock is held.
640 : */
641 0 : dump_object_info(parent);
642 0 : kmem_cache_free(object_cache, object);
643 0 : object = NULL;
644 0 : goto out;
645 : }
646 : }
647 721449 : rb_link_node(&object->rb_node, rb_parent, link);
648 721449 : rb_insert_color(&object->rb_node, &object_tree_root);
649 :
650 721449 : list_add_tail_rcu(&object->object_list, &object_list);
651 721449 : out:
652 721449 : raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
653 721449 : return object;
654 : }
655 :
656 : /*
657 : * Mark the object as not allocated and schedule RCU freeing via put_object().
658 : */
659 641140 : static void __delete_object(struct kmemleak_object *object)
660 : {
661 641140 : unsigned long flags;
662 :
663 641140 : WARN_ON(!(object->flags & OBJECT_ALLOCATED));
664 641140 : WARN_ON(atomic_read(&object->use_count) < 1);
665 :
666 : /*
667 : * Locking here also ensures that the corresponding memory block
668 : * cannot be freed when it is being scanned.
669 : */
670 641140 : raw_spin_lock_irqsave(&object->lock, flags);
671 641131 : object->flags &= ~OBJECT_ALLOCATED;
672 641131 : raw_spin_unlock_irqrestore(&object->lock, flags);
673 641035 : put_object(object);
674 640816 : }
675 :
676 : /*
677 : * Look up the metadata (struct kmemleak_object) corresponding to ptr and
678 : * delete it.
679 : */
680 640996 : static void delete_object_full(unsigned long ptr)
681 : {
682 640996 : struct kmemleak_object *object;
683 :
684 640996 : object = find_and_remove_object(ptr, 0);
685 641139 : if (!object) {
686 : #ifdef DEBUG
687 : kmemleak_warn("Freeing unknown object at 0x%08lx\n",
688 : ptr);
689 : #endif
690 : return;
691 : }
692 641139 : __delete_object(object);
693 : }
694 :
695 : /*
696 : * Look up the metadata (struct kmemleak_object) corresponding to ptr and
697 : * delete it. If the memory block is partially freed, the function may create
698 : * additional metadata for the remaining parts of the block.
699 : */
700 6 : static void delete_object_part(unsigned long ptr, size_t size)
701 : {
702 6 : struct kmemleak_object *object;
703 6 : unsigned long start, end;
704 :
705 6 : object = find_and_remove_object(ptr, 1);
706 6 : if (!object) {
707 : #ifdef DEBUG
708 : kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
709 : ptr, size);
710 : #endif
711 : return;
712 : }
713 :
714 : /*
715 : * Create one or two objects that may result from the memory block
716 : * split. Note that partial freeing is only done by free_bootmem() and
717 : * this happens before kmemleak_init() is called.
718 : */
719 2 : start = object->pointer;
720 2 : end = object->pointer + object->size;
721 2 : if (ptr > start)
722 0 : create_object(start, ptr - start, object->min_count,
723 : GFP_KERNEL);
724 2 : if (ptr + size < end)
725 0 : create_object(ptr + size, end - ptr - size, object->min_count,
726 : GFP_KERNEL);
727 :
728 2 : __delete_object(object);
729 : }
730 :
731 2 : static void __paint_it(struct kmemleak_object *object, int color)
732 : {
733 2 : object->min_count = color;
734 2 : if (color == KMEMLEAK_BLACK)
735 1 : object->flags |= OBJECT_NO_SCAN;
736 0 : }
737 :
738 2 : static void paint_it(struct kmemleak_object *object, int color)
739 : {
740 2 : unsigned long flags;
741 :
742 2 : raw_spin_lock_irqsave(&object->lock, flags);
743 2 : __paint_it(object, color);
744 2 : raw_spin_unlock_irqrestore(&object->lock, flags);
745 2 : }
746 :
747 2 : static void paint_ptr(unsigned long ptr, int color)
748 : {
749 2 : struct kmemleak_object *object;
750 :
751 2 : object = find_and_get_object(ptr, 0);
752 2 : if (!object) {
753 0 : kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
754 : ptr,
755 : (color == KMEMLEAK_GREY) ? "Grey" :
756 : (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
757 0 : return;
758 : }
759 2 : paint_it(object, color);
760 2 : put_object(object);
761 : }
762 :
763 : /*
764 : * Mark an object permanently as gray-colored so that it can no longer be
765 : * reported as a leak. This is used in general to mark a false positive.
766 : */
767 1 : static void make_gray_object(unsigned long ptr)
768 : {
769 1 : paint_ptr(ptr, KMEMLEAK_GREY);
770 1 : }
771 :
772 : /*
773 : * Mark the object as black-colored so that it is ignored from scans and
774 : * reporting.
775 : */
776 1 : static void make_black_object(unsigned long ptr)
777 : {
778 1 : paint_ptr(ptr, KMEMLEAK_BLACK);
779 1 : }
780 :
781 : /*
782 : * Add a scanning area to the object. If at least one such area is added,
783 : * kmemleak will only scan these ranges rather than the whole memory block.
784 : */
785 12194 : static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
786 : {
787 12194 : unsigned long flags;
788 12194 : struct kmemleak_object *object;
789 12194 : struct kmemleak_scan_area *area = NULL;
790 :
791 12194 : object = find_and_get_object(ptr, 1);
792 12194 : if (!object) {
793 0 : kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
794 : ptr);
795 0 : return;
796 : }
797 :
798 12194 : if (scan_area_cache)
799 12194 : area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
800 :
801 12194 : raw_spin_lock_irqsave(&object->lock, flags);
802 12194 : if (!area) {
803 0 : pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
804 : /* mark the object for full scan to avoid false positives */
805 0 : object->flags |= OBJECT_FULL_SCAN;
806 0 : goto out_unlock;
807 : }
808 12194 : if (size == SIZE_MAX) {
809 12194 : size = object->pointer + object->size - ptr;
810 0 : } else if (ptr + size > object->pointer + object->size) {
811 0 : kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
812 0 : dump_object_info(object);
813 0 : kmem_cache_free(scan_area_cache, area);
814 0 : goto out_unlock;
815 : }
816 :
817 12194 : INIT_HLIST_NODE(&area->node);
818 12194 : area->start = ptr;
819 12194 : area->size = size;
820 :
821 12194 : hlist_add_head(&area->node, &object->area_list);
822 12194 : out_unlock:
823 12194 : raw_spin_unlock_irqrestore(&object->lock, flags);
824 12194 : put_object(object);
825 : }
826 :
827 : /*
828 : * Any surplus references (object already gray) to 'ptr' are passed to
829 : * 'excess_ref'. This is used in the vmalloc() case where a pointer to
830 : * vm_struct may be used as an alternative reference to the vmalloc'ed object
831 : * (see free_thread_stack()).
832 : */
833 12191 : static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
834 : {
835 12191 : unsigned long flags;
836 12191 : struct kmemleak_object *object;
837 :
838 12191 : object = find_and_get_object(ptr, 0);
839 12191 : if (!object) {
840 0 : kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
841 : ptr);
842 0 : return;
843 : }
844 :
845 12191 : raw_spin_lock_irqsave(&object->lock, flags);
846 12191 : object->excess_ref = excess_ref;
847 12191 : raw_spin_unlock_irqrestore(&object->lock, flags);
848 12191 : put_object(object);
849 : }
850 :
851 : /*
852 : * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
853 : * pointer. Such object will not be scanned by kmemleak but references to it
854 : * are searched.
855 : */
856 0 : static void object_no_scan(unsigned long ptr)
857 : {
858 0 : unsigned long flags;
859 0 : struct kmemleak_object *object;
860 :
861 0 : object = find_and_get_object(ptr, 0);
862 0 : if (!object) {
863 0 : kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
864 0 : return;
865 : }
866 :
867 0 : raw_spin_lock_irqsave(&object->lock, flags);
868 0 : object->flags |= OBJECT_NO_SCAN;
869 0 : raw_spin_unlock_irqrestore(&object->lock, flags);
870 0 : put_object(object);
871 : }
872 :
873 : /**
874 : * kmemleak_alloc - register a newly allocated object
875 : * @ptr: pointer to beginning of the object
876 : * @size: size of the object
877 : * @min_count: minimum number of references to this object. If during memory
878 : * scanning a number of references less than @min_count is found,
879 : * the object is reported as a memory leak. If @min_count is 0,
880 : * the object is never reported as a leak. If @min_count is -1,
881 : * the object is ignored (not scanned and not reported as a leak)
882 : * @gfp: kmalloc() flags used for kmemleak internal memory allocations
883 : *
884 : * This function is called from the kernel allocators when a new object
885 : * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
886 : */
887 700495 : void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
888 : gfp_t gfp)
889 : {
890 700495 : pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
891 :
892 700495 : if (kmemleak_enabled && ptr && !IS_ERR(ptr))
893 700506 : create_object((unsigned long)ptr, size, min_count, gfp);
894 700652 : }
895 : EXPORT_SYMBOL_GPL(kmemleak_alloc);
896 :
897 : /**
898 : * kmemleak_alloc_percpu - register a newly allocated __percpu object
899 : * @ptr: __percpu pointer to beginning of the object
900 : * @size: size of the object
901 : * @gfp: flags used for kmemleak internal memory allocations
902 : *
903 : * This function is called from the kernel percpu allocator when a new object
904 : * (memory block) is allocated (alloc_percpu).
905 : */
906 2175 : void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
907 : gfp_t gfp)
908 : {
909 2175 : unsigned int cpu;
910 :
911 2175 : pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
912 :
913 : /*
914 : * Percpu allocations are only scanned and not reported as leaks
915 : * (min_count is set to 0).
916 : */
917 2175 : if (kmemleak_enabled && ptr && !IS_ERR(ptr))
918 10875 : for_each_possible_cpu(cpu)
919 8700 : create_object((unsigned long)per_cpu_ptr(ptr, cpu),
920 : size, 0, gfp);
921 2175 : }
922 : EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
923 :
924 : /**
925 : * kmemleak_vmalloc - register a newly vmalloc'ed object
926 : * @area: pointer to vm_struct
927 : * @size: size of the object
928 : * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
929 : *
930 : * This function is called from the vmalloc() kernel allocator when a new
931 : * object (memory block) is allocated.
932 : */
933 12225 : void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
934 : {
935 12225 : pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
936 :
937 : /*
938 : * A min_count = 2 is needed because vm_struct contains a reference to
939 : * the virtual address of the vmalloc'ed block.
940 : */
941 12225 : if (kmemleak_enabled) {
942 12225 : create_object((unsigned long)area->addr, size, 2, gfp);
943 12225 : object_set_excess_ref((unsigned long)area,
944 12225 : (unsigned long)area->addr);
945 : }
946 12225 : }
947 : EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
948 :
949 : /**
950 : * kmemleak_free - unregister a previously registered object
951 : * @ptr: pointer to beginning of the object
952 : *
953 : * This function is called from the kernel allocators when an object (memory
954 : * block) is freed (kmem_cache_free, kfree, vfree etc.).
955 : */
956 634752 : void __ref kmemleak_free(const void *ptr)
957 : {
958 634752 : pr_debug("%s(0x%p)\n", __func__, ptr);
959 :
960 634752 : if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
961 634757 : delete_object_full((unsigned long)ptr);
962 634579 : }
963 : EXPORT_SYMBOL_GPL(kmemleak_free);
964 :
965 : /**
966 : * kmemleak_free_part - partially unregister a previously registered object
967 : * @ptr: pointer to the beginning or inside the object. This also
968 : * represents the start of the range to be freed
969 : * @size: size to be unregistered
970 : *
971 : * This function is called when only a part of a memory block is freed
972 : * (usually from the bootmem allocator).
973 : */
974 6 : void __ref kmemleak_free_part(const void *ptr, size_t size)
975 : {
976 6 : pr_debug("%s(0x%p)\n", __func__, ptr);
977 :
978 6 : if (kmemleak_enabled && ptr && !IS_ERR(ptr))
979 6 : delete_object_part((unsigned long)ptr, size);
980 6 : }
981 : EXPORT_SYMBOL_GPL(kmemleak_free_part);
982 :
983 : /**
984 : * kmemleak_free_percpu - unregister a previously registered __percpu object
985 : * @ptr: __percpu pointer to beginning of the object
986 : *
987 : * This function is called from the kernel percpu allocator when an object
988 : * (memory block) is freed (free_percpu).
989 : */
990 1564 : void __ref kmemleak_free_percpu(const void __percpu *ptr)
991 : {
992 1564 : unsigned int cpu;
993 :
994 1564 : pr_debug("%s(0x%p)\n", __func__, ptr);
995 :
996 1564 : if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
997 7820 : for_each_possible_cpu(cpu)
998 6256 : delete_object_full((unsigned long)per_cpu_ptr(ptr,
999 : cpu));
1000 1564 : }
1001 : EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1002 :
1003 : /**
1004 : * kmemleak_update_trace - update object allocation stack trace
1005 : * @ptr: pointer to beginning of the object
1006 : *
1007 : * Override the object allocation stack trace for cases where the actual
1008 : * allocation place is not always useful.
1009 : */
1010 0 : void __ref kmemleak_update_trace(const void *ptr)
1011 : {
1012 0 : struct kmemleak_object *object;
1013 0 : unsigned long flags;
1014 :
1015 0 : pr_debug("%s(0x%p)\n", __func__, ptr);
1016 :
1017 0 : if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1018 : return;
1019 :
1020 0 : object = find_and_get_object((unsigned long)ptr, 1);
1021 0 : if (!object) {
1022 : #ifdef DEBUG
1023 : kmemleak_warn("Updating stack trace for unknown object at %p\n",
1024 : ptr);
1025 : #endif
1026 : return;
1027 : }
1028 :
1029 0 : raw_spin_lock_irqsave(&object->lock, flags);
1030 0 : object->trace_len = __save_stack_trace(object->trace);
1031 0 : raw_spin_unlock_irqrestore(&object->lock, flags);
1032 :
1033 0 : put_object(object);
1034 : }
1035 : EXPORT_SYMBOL(kmemleak_update_trace);
1036 :
1037 : /**
1038 : * kmemleak_not_leak - mark an allocated object as false positive
1039 : * @ptr: pointer to beginning of the object
1040 : *
1041 : * Calling this function on an object will cause the memory block to no longer
1042 : * be reported as leak and always be scanned.
1043 : */
1044 1 : void __ref kmemleak_not_leak(const void *ptr)
1045 : {
1046 1 : pr_debug("%s(0x%p)\n", __func__, ptr);
1047 :
1048 1 : if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1049 1 : make_gray_object((unsigned long)ptr);
1050 1 : }
1051 : EXPORT_SYMBOL(kmemleak_not_leak);
1052 :
1053 : /**
1054 : * kmemleak_ignore - ignore an allocated object
1055 : * @ptr: pointer to beginning of the object
1056 : *
1057 : * Calling this function on an object will cause the memory block to be
1058 : * ignored (not scanned and not reported as a leak). This is usually done when
1059 : * it is known that the corresponding block is not a leak and does not contain
1060 : * any references to other allocated memory blocks.
1061 : */
1062 1 : void __ref kmemleak_ignore(const void *ptr)
1063 : {
1064 1 : pr_debug("%s(0x%p)\n", __func__, ptr);
1065 :
1066 1 : if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067 1 : make_black_object((unsigned long)ptr);
1068 1 : }
1069 : EXPORT_SYMBOL(kmemleak_ignore);
1070 :
1071 : /**
1072 : * kmemleak_scan_area - limit the range to be scanned in an allocated object
1073 : * @ptr: pointer to beginning or inside the object. This also
1074 : * represents the start of the scan area
1075 : * @size: size of the scan area
1076 : * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1077 : *
1078 : * This function is used when it is known that only certain parts of an object
1079 : * contain references to other objects. Kmemleak will only scan these areas
1080 : * reducing the number false negatives.
1081 : */
1082 12220 : void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1083 : {
1084 12220 : pr_debug("%s(0x%p)\n", __func__, ptr);
1085 :
1086 12220 : if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1087 12220 : add_scan_area((unsigned long)ptr, size, gfp);
1088 12220 : }
1089 : EXPORT_SYMBOL(kmemleak_scan_area);
1090 :
1091 : /**
1092 : * kmemleak_no_scan - do not scan an allocated object
1093 : * @ptr: pointer to beginning of the object
1094 : *
1095 : * This function notifies kmemleak not to scan the given memory block. Useful
1096 : * in situations where it is known that the given object does not contain any
1097 : * references to other objects. Kmemleak will not scan such objects reducing
1098 : * the number of false negatives.
1099 : */
1100 0 : void __ref kmemleak_no_scan(const void *ptr)
1101 : {
1102 0 : pr_debug("%s(0x%p)\n", __func__, ptr);
1103 :
1104 0 : if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1105 0 : object_no_scan((unsigned long)ptr);
1106 0 : }
1107 : EXPORT_SYMBOL(kmemleak_no_scan);
1108 :
1109 : /**
1110 : * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1111 : * address argument
1112 : * @phys: physical address of the object
1113 : * @size: size of the object
1114 : * @min_count: minimum number of references to this object.
1115 : * See kmemleak_alloc()
1116 : * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1117 : */
1118 362 : void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1119 : gfp_t gfp)
1120 : {
1121 362 : if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1122 362 : kmemleak_alloc(__va(phys), size, min_count, gfp);
1123 362 : }
1124 : EXPORT_SYMBOL(kmemleak_alloc_phys);
1125 :
1126 : /**
1127 : * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1128 : * physical address argument
1129 : * @phys: physical address if the beginning or inside an object. This
1130 : * also represents the start of the range to be freed
1131 : * @size: size to be unregistered
1132 : */
1133 6 : void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1134 : {
1135 6 : if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1136 6 : kmemleak_free_part(__va(phys), size);
1137 6 : }
1138 : EXPORT_SYMBOL(kmemleak_free_part_phys);
1139 :
1140 : /**
1141 : * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1142 : * address argument
1143 : * @phys: physical address of the object
1144 : */
1145 0 : void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1146 : {
1147 0 : if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1148 0 : kmemleak_not_leak(__va(phys));
1149 0 : }
1150 : EXPORT_SYMBOL(kmemleak_not_leak_phys);
1151 :
1152 : /**
1153 : * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1154 : * address argument
1155 : * @phys: physical address of the object
1156 : */
1157 0 : void __ref kmemleak_ignore_phys(phys_addr_t phys)
1158 : {
1159 0 : if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1160 0 : kmemleak_ignore(__va(phys));
1161 0 : }
1162 : EXPORT_SYMBOL(kmemleak_ignore_phys);
1163 :
1164 : /*
1165 : * Update an object's checksum and return true if it was modified.
1166 : */
1167 0 : static bool update_checksum(struct kmemleak_object *object)
1168 : {
1169 0 : u32 old_csum = object->checksum;
1170 :
1171 0 : kasan_disable_current();
1172 0 : kcsan_disable_current();
1173 0 : object->checksum = crc32(0, (void *)object->pointer, object->size);
1174 0 : kasan_enable_current();
1175 0 : kcsan_enable_current();
1176 :
1177 0 : return object->checksum != old_csum;
1178 : }
1179 :
1180 : /*
1181 : * Update an object's references. object->lock must be held by the caller.
1182 : */
1183 0 : static void update_refs(struct kmemleak_object *object)
1184 : {
1185 0 : if (!color_white(object)) {
1186 : /* non-orphan, ignored or new */
1187 : return;
1188 : }
1189 :
1190 : /*
1191 : * Increase the object's reference count (number of pointers to the
1192 : * memory block). If this count reaches the required minimum, the
1193 : * object's color will become gray and it will be added to the
1194 : * gray_list.
1195 : */
1196 0 : object->count++;
1197 0 : if (color_gray(object)) {
1198 : /* put_object() called when removing from gray_list */
1199 0 : WARN_ON(!get_object(object));
1200 0 : list_add_tail(&object->gray_list, &gray_list);
1201 : }
1202 : }
1203 :
1204 : /*
1205 : * Memory scanning is a long process and it needs to be interruptable. This
1206 : * function checks whether such interrupt condition occurred.
1207 : */
1208 0 : static int scan_should_stop(void)
1209 : {
1210 0 : if (!kmemleak_enabled)
1211 : return 1;
1212 :
1213 : /*
1214 : * This function may be called from either process or kthread context,
1215 : * hence the need to check for both stop conditions.
1216 : */
1217 0 : if (current->mm)
1218 0 : return signal_pending(current);
1219 : else
1220 0 : return kthread_should_stop();
1221 :
1222 : return 0;
1223 : }
1224 :
1225 : /*
1226 : * Scan a memory block (exclusive range) for valid pointers and add those
1227 : * found to the gray list.
1228 : */
1229 0 : static void scan_block(void *_start, void *_end,
1230 : struct kmemleak_object *scanned)
1231 : {
1232 0 : unsigned long *ptr;
1233 0 : unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1234 0 : unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1235 0 : unsigned long flags;
1236 0 : unsigned long untagged_ptr;
1237 :
1238 0 : raw_spin_lock_irqsave(&kmemleak_lock, flags);
1239 0 : for (ptr = start; ptr < end; ptr++) {
1240 0 : struct kmemleak_object *object;
1241 0 : unsigned long pointer;
1242 0 : unsigned long excess_ref;
1243 :
1244 0 : if (scan_should_stop())
1245 : break;
1246 :
1247 0 : kasan_disable_current();
1248 0 : pointer = *ptr;
1249 0 : kasan_enable_current();
1250 :
1251 0 : untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1252 0 : if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1253 0 : continue;
1254 :
1255 : /*
1256 : * No need for get_object() here since we hold kmemleak_lock.
1257 : * object->use_count cannot be dropped to 0 while the object
1258 : * is still present in object_tree_root and object_list
1259 : * (with updates protected by kmemleak_lock).
1260 : */
1261 0 : object = lookup_object(pointer, 1);
1262 0 : if (!object)
1263 0 : continue;
1264 0 : if (object == scanned)
1265 : /* self referenced, ignore */
1266 0 : continue;
1267 :
1268 : /*
1269 : * Avoid the lockdep recursive warning on object->lock being
1270 : * previously acquired in scan_object(). These locks are
1271 : * enclosed by scan_mutex.
1272 : */
1273 0 : raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1274 : /* only pass surplus references (object already gray) */
1275 0 : if (color_gray(object)) {
1276 0 : excess_ref = object->excess_ref;
1277 : /* no need for update_refs() if object already gray */
1278 : } else {
1279 0 : excess_ref = 0;
1280 0 : update_refs(object);
1281 : }
1282 0 : raw_spin_unlock(&object->lock);
1283 :
1284 0 : if (excess_ref) {
1285 0 : object = lookup_object(excess_ref, 0);
1286 0 : if (!object)
1287 0 : continue;
1288 0 : if (object == scanned)
1289 : /* circular reference, ignore */
1290 0 : continue;
1291 0 : raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1292 0 : update_refs(object);
1293 0 : raw_spin_unlock(&object->lock);
1294 : }
1295 : }
1296 0 : raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1297 0 : }
1298 :
1299 : /*
1300 : * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1301 : */
1302 : #ifdef CONFIG_SMP
1303 0 : static void scan_large_block(void *start, void *end)
1304 : {
1305 0 : void *next;
1306 :
1307 0 : while (start < end) {
1308 0 : next = min(start + MAX_SCAN_SIZE, end);
1309 0 : scan_block(start, next, NULL);
1310 0 : start = next;
1311 0 : cond_resched();
1312 : }
1313 0 : }
1314 : #endif
1315 :
1316 : /*
1317 : * Scan a memory block corresponding to a kmemleak_object. A condition is
1318 : * that object->use_count >= 1.
1319 : */
1320 0 : static void scan_object(struct kmemleak_object *object)
1321 : {
1322 0 : struct kmemleak_scan_area *area;
1323 0 : unsigned long flags;
1324 :
1325 : /*
1326 : * Once the object->lock is acquired, the corresponding memory block
1327 : * cannot be freed (the same lock is acquired in delete_object).
1328 : */
1329 0 : raw_spin_lock_irqsave(&object->lock, flags);
1330 0 : if (object->flags & OBJECT_NO_SCAN)
1331 0 : goto out;
1332 0 : if (!(object->flags & OBJECT_ALLOCATED))
1333 : /* already freed object */
1334 0 : goto out;
1335 0 : if (hlist_empty(&object->area_list) ||
1336 0 : object->flags & OBJECT_FULL_SCAN) {
1337 0 : void *start = (void *)object->pointer;
1338 0 : void *end = (void *)(object->pointer + object->size);
1339 0 : void *next;
1340 :
1341 0 : do {
1342 0 : next = min(start + MAX_SCAN_SIZE, end);
1343 0 : scan_block(start, next, object);
1344 :
1345 0 : start = next;
1346 0 : if (start >= end)
1347 : break;
1348 :
1349 0 : raw_spin_unlock_irqrestore(&object->lock, flags);
1350 0 : cond_resched();
1351 0 : raw_spin_lock_irqsave(&object->lock, flags);
1352 0 : } while (object->flags & OBJECT_ALLOCATED);
1353 : } else
1354 0 : hlist_for_each_entry(area, &object->area_list, node)
1355 0 : scan_block((void *)area->start,
1356 0 : (void *)(area->start + area->size),
1357 : object);
1358 0 : out:
1359 0 : raw_spin_unlock_irqrestore(&object->lock, flags);
1360 0 : }
1361 :
1362 : /*
1363 : * Scan the objects already referenced (gray objects). More objects will be
1364 : * referenced and, if there are no memory leaks, all the objects are scanned.
1365 : */
1366 0 : static void scan_gray_list(void)
1367 : {
1368 0 : struct kmemleak_object *object, *tmp;
1369 :
1370 : /*
1371 : * The list traversal is safe for both tail additions and removals
1372 : * from inside the loop. The kmemleak objects cannot be freed from
1373 : * outside the loop because their use_count was incremented.
1374 : */
1375 0 : object = list_entry(gray_list.next, typeof(*object), gray_list);
1376 0 : while (&object->gray_list != &gray_list) {
1377 0 : cond_resched();
1378 :
1379 : /* may add new objects to the list */
1380 0 : if (!scan_should_stop())
1381 0 : scan_object(object);
1382 :
1383 0 : tmp = list_entry(object->gray_list.next, typeof(*object),
1384 : gray_list);
1385 :
1386 : /* remove the object from the list and release it */
1387 0 : list_del(&object->gray_list);
1388 0 : put_object(object);
1389 :
1390 0 : object = tmp;
1391 : }
1392 0 : WARN_ON(!list_empty(&gray_list));
1393 0 : }
1394 :
1395 : /*
1396 : * Scan data sections and all the referenced memory blocks allocated via the
1397 : * kernel's standard allocators. This function must be called with the
1398 : * scan_mutex held.
1399 : */
1400 0 : static void kmemleak_scan(void)
1401 : {
1402 0 : unsigned long flags;
1403 0 : struct kmemleak_object *object;
1404 0 : int i;
1405 0 : int new_leaks = 0;
1406 :
1407 0 : jiffies_last_scan = jiffies;
1408 :
1409 : /* prepare the kmemleak_object's */
1410 0 : rcu_read_lock();
1411 0 : list_for_each_entry_rcu(object, &object_list, object_list) {
1412 0 : raw_spin_lock_irqsave(&object->lock, flags);
1413 : #ifdef DEBUG
1414 : /*
1415 : * With a few exceptions there should be a maximum of
1416 : * 1 reference to any object at this point.
1417 : */
1418 : if (atomic_read(&object->use_count) > 1) {
1419 : pr_debug("object->use_count = %d\n",
1420 : atomic_read(&object->use_count));
1421 : dump_object_info(object);
1422 : }
1423 : #endif
1424 : /* reset the reference count (whiten the object) */
1425 0 : object->count = 0;
1426 0 : if (color_gray(object) && get_object(object))
1427 0 : list_add_tail(&object->gray_list, &gray_list);
1428 :
1429 0 : raw_spin_unlock_irqrestore(&object->lock, flags);
1430 : }
1431 0 : rcu_read_unlock();
1432 :
1433 : #ifdef CONFIG_SMP
1434 : /* per-cpu sections scanning */
1435 0 : for_each_possible_cpu(i)
1436 0 : scan_large_block(__per_cpu_start + per_cpu_offset(i),
1437 0 : __per_cpu_end + per_cpu_offset(i));
1438 : #endif
1439 :
1440 : /*
1441 : * Struct page scanning for each node.
1442 : */
1443 0 : get_online_mems();
1444 0 : for_each_online_node(i) {
1445 0 : unsigned long start_pfn = node_start_pfn(i);
1446 0 : unsigned long end_pfn = node_end_pfn(i);
1447 0 : unsigned long pfn;
1448 :
1449 0 : for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1450 0 : struct page *page = pfn_to_online_page(pfn);
1451 :
1452 0 : if (!page)
1453 0 : continue;
1454 :
1455 : /* only scan pages belonging to this node */
1456 0 : if (page_to_nid(page) != i)
1457 0 : continue;
1458 : /* only scan if page is in use */
1459 0 : if (page_count(page) == 0)
1460 0 : continue;
1461 0 : scan_block(page, page + 1, NULL);
1462 0 : if (!(pfn & 63))
1463 0 : cond_resched();
1464 : }
1465 : }
1466 0 : put_online_mems();
1467 :
1468 : /*
1469 : * Scanning the task stacks (may introduce false negatives).
1470 : */
1471 0 : if (kmemleak_stack_scan) {
1472 0 : struct task_struct *p, *g;
1473 :
1474 0 : rcu_read_lock();
1475 0 : for_each_process_thread(g, p) {
1476 0 : void *stack = try_get_task_stack(p);
1477 0 : if (stack) {
1478 0 : scan_block(stack, stack + THREAD_SIZE, NULL);
1479 0 : put_task_stack(p);
1480 : }
1481 : }
1482 0 : rcu_read_unlock();
1483 : }
1484 :
1485 : /*
1486 : * Scan the objects already referenced from the sections scanned
1487 : * above.
1488 : */
1489 0 : scan_gray_list();
1490 :
1491 : /*
1492 : * Check for new or unreferenced objects modified since the previous
1493 : * scan and color them gray until the next scan.
1494 : */
1495 0 : rcu_read_lock();
1496 0 : list_for_each_entry_rcu(object, &object_list, object_list) {
1497 0 : raw_spin_lock_irqsave(&object->lock, flags);
1498 0 : if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1499 0 : && update_checksum(object) && get_object(object)) {
1500 : /* color it gray temporarily */
1501 0 : object->count = object->min_count;
1502 0 : list_add_tail(&object->gray_list, &gray_list);
1503 : }
1504 0 : raw_spin_unlock_irqrestore(&object->lock, flags);
1505 : }
1506 0 : rcu_read_unlock();
1507 :
1508 : /*
1509 : * Re-scan the gray list for modified unreferenced objects.
1510 : */
1511 0 : scan_gray_list();
1512 :
1513 : /*
1514 : * If scanning was stopped do not report any new unreferenced objects.
1515 : */
1516 0 : if (scan_should_stop())
1517 : return;
1518 :
1519 : /*
1520 : * Scanning result reporting.
1521 : */
1522 0 : rcu_read_lock();
1523 0 : list_for_each_entry_rcu(object, &object_list, object_list) {
1524 0 : raw_spin_lock_irqsave(&object->lock, flags);
1525 0 : if (unreferenced_object(object) &&
1526 0 : !(object->flags & OBJECT_REPORTED)) {
1527 0 : object->flags |= OBJECT_REPORTED;
1528 :
1529 0 : if (kmemleak_verbose)
1530 0 : print_unreferenced(NULL, object);
1531 :
1532 0 : new_leaks++;
1533 : }
1534 0 : raw_spin_unlock_irqrestore(&object->lock, flags);
1535 : }
1536 0 : rcu_read_unlock();
1537 :
1538 0 : if (new_leaks) {
1539 0 : kmemleak_found_leaks = true;
1540 :
1541 0 : pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1542 : new_leaks);
1543 : }
1544 :
1545 : }
1546 :
1547 : /*
1548 : * Thread function performing automatic memory scanning. Unreferenced objects
1549 : * at the end of a memory scan are reported but only the first time.
1550 : */
1551 0 : static int kmemleak_scan_thread(void *arg)
1552 : {
1553 0 : static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1554 :
1555 0 : pr_info("Automatic memory scanning thread started\n");
1556 0 : set_user_nice(current, 10);
1557 :
1558 : /*
1559 : * Wait before the first scan to allow the system to fully initialize.
1560 : */
1561 0 : if (first_run) {
1562 0 : signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1563 0 : first_run = 0;
1564 0 : while (timeout && !kthread_should_stop())
1565 0 : timeout = schedule_timeout_interruptible(timeout);
1566 : }
1567 :
1568 0 : while (!kthread_should_stop()) {
1569 0 : signed long timeout = jiffies_scan_wait;
1570 :
1571 0 : mutex_lock(&scan_mutex);
1572 0 : kmemleak_scan();
1573 0 : mutex_unlock(&scan_mutex);
1574 :
1575 : /* wait before the next scan */
1576 0 : while (timeout && !kthread_should_stop())
1577 0 : timeout = schedule_timeout_interruptible(timeout);
1578 : }
1579 :
1580 0 : pr_info("Automatic memory scanning thread ended\n");
1581 :
1582 0 : return 0;
1583 : }
1584 :
1585 : /*
1586 : * Start the automatic memory scanning thread. This function must be called
1587 : * with the scan_mutex held.
1588 : */
1589 0 : static void start_scan_thread(void)
1590 : {
1591 0 : if (scan_thread)
1592 : return;
1593 0 : scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1594 0 : if (IS_ERR(scan_thread)) {
1595 0 : pr_warn("Failed to create the scan thread\n");
1596 0 : scan_thread = NULL;
1597 : }
1598 : }
1599 :
1600 : /*
1601 : * Stop the automatic memory scanning thread.
1602 : */
1603 0 : static void stop_scan_thread(void)
1604 : {
1605 0 : if (scan_thread) {
1606 0 : kthread_stop(scan_thread);
1607 0 : scan_thread = NULL;
1608 : }
1609 0 : }
1610 :
1611 : /*
1612 : * Iterate over the object_list and return the first valid object at or after
1613 : * the required position with its use_count incremented. The function triggers
1614 : * a memory scanning when the pos argument points to the first position.
1615 : */
1616 0 : static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1617 : {
1618 0 : struct kmemleak_object *object;
1619 0 : loff_t n = *pos;
1620 0 : int err;
1621 :
1622 0 : err = mutex_lock_interruptible(&scan_mutex);
1623 0 : if (err < 0)
1624 0 : return ERR_PTR(err);
1625 :
1626 0 : rcu_read_lock();
1627 0 : list_for_each_entry_rcu(object, &object_list, object_list) {
1628 0 : if (n-- > 0)
1629 0 : continue;
1630 0 : if (get_object(object))
1631 0 : goto out;
1632 : }
1633 : object = NULL;
1634 : out:
1635 : return object;
1636 : }
1637 :
1638 : /*
1639 : * Return the next object in the object_list. The function decrements the
1640 : * use_count of the previous object and increases that of the next one.
1641 : */
1642 0 : static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1643 : {
1644 0 : struct kmemleak_object *prev_obj = v;
1645 0 : struct kmemleak_object *next_obj = NULL;
1646 0 : struct kmemleak_object *obj = prev_obj;
1647 :
1648 0 : ++(*pos);
1649 :
1650 0 : list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1651 0 : if (get_object(obj)) {
1652 : next_obj = obj;
1653 : break;
1654 : }
1655 : }
1656 :
1657 0 : put_object(prev_obj);
1658 0 : return next_obj;
1659 : }
1660 :
1661 : /*
1662 : * Decrement the use_count of the last object required, if any.
1663 : */
1664 0 : static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1665 : {
1666 0 : if (!IS_ERR(v)) {
1667 : /*
1668 : * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1669 : * waiting was interrupted, so only release it if !IS_ERR.
1670 : */
1671 0 : rcu_read_unlock();
1672 0 : mutex_unlock(&scan_mutex);
1673 0 : if (v)
1674 0 : put_object(v);
1675 : }
1676 0 : }
1677 :
1678 : /*
1679 : * Print the information for an unreferenced object to the seq file.
1680 : */
1681 0 : static int kmemleak_seq_show(struct seq_file *seq, void *v)
1682 : {
1683 0 : struct kmemleak_object *object = v;
1684 0 : unsigned long flags;
1685 :
1686 0 : raw_spin_lock_irqsave(&object->lock, flags);
1687 0 : if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1688 0 : print_unreferenced(seq, object);
1689 0 : raw_spin_unlock_irqrestore(&object->lock, flags);
1690 0 : return 0;
1691 : }
1692 :
1693 : static const struct seq_operations kmemleak_seq_ops = {
1694 : .start = kmemleak_seq_start,
1695 : .next = kmemleak_seq_next,
1696 : .stop = kmemleak_seq_stop,
1697 : .show = kmemleak_seq_show,
1698 : };
1699 :
1700 0 : static int kmemleak_open(struct inode *inode, struct file *file)
1701 : {
1702 0 : return seq_open(file, &kmemleak_seq_ops);
1703 : }
1704 :
1705 0 : static int dump_str_object_info(const char *str)
1706 : {
1707 0 : unsigned long flags;
1708 0 : struct kmemleak_object *object;
1709 0 : unsigned long addr;
1710 :
1711 0 : if (kstrtoul(str, 0, &addr))
1712 : return -EINVAL;
1713 0 : object = find_and_get_object(addr, 0);
1714 0 : if (!object) {
1715 0 : pr_info("Unknown object at 0x%08lx\n", addr);
1716 0 : return -EINVAL;
1717 : }
1718 :
1719 0 : raw_spin_lock_irqsave(&object->lock, flags);
1720 0 : dump_object_info(object);
1721 0 : raw_spin_unlock_irqrestore(&object->lock, flags);
1722 :
1723 0 : put_object(object);
1724 0 : return 0;
1725 : }
1726 :
1727 : /*
1728 : * We use grey instead of black to ensure we can do future scans on the same
1729 : * objects. If we did not do future scans these black objects could
1730 : * potentially contain references to newly allocated objects in the future and
1731 : * we'd end up with false positives.
1732 : */
1733 0 : static void kmemleak_clear(void)
1734 : {
1735 0 : struct kmemleak_object *object;
1736 0 : unsigned long flags;
1737 :
1738 0 : rcu_read_lock();
1739 0 : list_for_each_entry_rcu(object, &object_list, object_list) {
1740 0 : raw_spin_lock_irqsave(&object->lock, flags);
1741 0 : if ((object->flags & OBJECT_REPORTED) &&
1742 0 : unreferenced_object(object))
1743 0 : __paint_it(object, KMEMLEAK_GREY);
1744 0 : raw_spin_unlock_irqrestore(&object->lock, flags);
1745 : }
1746 0 : rcu_read_unlock();
1747 :
1748 0 : kmemleak_found_leaks = false;
1749 0 : }
1750 :
1751 : static void __kmemleak_do_cleanup(void);
1752 :
1753 : /*
1754 : * File write operation to configure kmemleak at run-time. The following
1755 : * commands can be written to the /sys/kernel/debug/kmemleak file:
1756 : * off - disable kmemleak (irreversible)
1757 : * stack=on - enable the task stacks scanning
1758 : * stack=off - disable the tasks stacks scanning
1759 : * scan=on - start the automatic memory scanning thread
1760 : * scan=off - stop the automatic memory scanning thread
1761 : * scan=... - set the automatic memory scanning period in seconds (0 to
1762 : * disable it)
1763 : * scan - trigger a memory scan
1764 : * clear - mark all current reported unreferenced kmemleak objects as
1765 : * grey to ignore printing them, or free all kmemleak objects
1766 : * if kmemleak has been disabled.
1767 : * dump=... - dump information about the object found at the given address
1768 : */
1769 0 : static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1770 : size_t size, loff_t *ppos)
1771 : {
1772 0 : char buf[64];
1773 0 : int buf_size;
1774 0 : int ret;
1775 :
1776 0 : buf_size = min(size, (sizeof(buf) - 1));
1777 0 : if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1778 : return -EFAULT;
1779 0 : buf[buf_size] = 0;
1780 :
1781 0 : ret = mutex_lock_interruptible(&scan_mutex);
1782 0 : if (ret < 0)
1783 0 : return ret;
1784 :
1785 0 : if (strncmp(buf, "clear", 5) == 0) {
1786 0 : if (kmemleak_enabled)
1787 0 : kmemleak_clear();
1788 : else
1789 0 : __kmemleak_do_cleanup();
1790 0 : goto out;
1791 : }
1792 :
1793 0 : if (!kmemleak_enabled) {
1794 0 : ret = -EPERM;
1795 0 : goto out;
1796 : }
1797 :
1798 0 : if (strncmp(buf, "off", 3) == 0)
1799 0 : kmemleak_disable();
1800 0 : else if (strncmp(buf, "stack=on", 8) == 0)
1801 0 : kmemleak_stack_scan = 1;
1802 0 : else if (strncmp(buf, "stack=off", 9) == 0)
1803 0 : kmemleak_stack_scan = 0;
1804 0 : else if (strncmp(buf, "scan=on", 7) == 0)
1805 0 : start_scan_thread();
1806 0 : else if (strncmp(buf, "scan=off", 8) == 0)
1807 0 : stop_scan_thread();
1808 0 : else if (strncmp(buf, "scan=", 5) == 0) {
1809 0 : unsigned long secs;
1810 :
1811 0 : ret = kstrtoul(buf + 5, 0, &secs);
1812 0 : if (ret < 0)
1813 0 : goto out;
1814 0 : stop_scan_thread();
1815 0 : if (secs) {
1816 0 : jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1817 0 : start_scan_thread();
1818 : }
1819 0 : } else if (strncmp(buf, "scan", 4) == 0)
1820 0 : kmemleak_scan();
1821 0 : else if (strncmp(buf, "dump=", 5) == 0)
1822 0 : ret = dump_str_object_info(buf + 5);
1823 : else
1824 : ret = -EINVAL;
1825 :
1826 0 : out:
1827 0 : mutex_unlock(&scan_mutex);
1828 0 : if (ret < 0)
1829 0 : return ret;
1830 :
1831 : /* ignore the rest of the buffer, only one command at a time */
1832 0 : *ppos += size;
1833 0 : return size;
1834 : }
1835 :
1836 : static const struct file_operations kmemleak_fops = {
1837 : .owner = THIS_MODULE,
1838 : .open = kmemleak_open,
1839 : .read = seq_read,
1840 : .write = kmemleak_write,
1841 : .llseek = seq_lseek,
1842 : .release = seq_release,
1843 : };
1844 :
1845 0 : static void __kmemleak_do_cleanup(void)
1846 : {
1847 0 : struct kmemleak_object *object, *tmp;
1848 :
1849 : /*
1850 : * Kmemleak has already been disabled, no need for RCU list traversal
1851 : * or kmemleak_lock held.
1852 : */
1853 0 : list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1854 0 : __remove_object(object);
1855 0 : __delete_object(object);
1856 : }
1857 0 : }
1858 :
1859 : /*
1860 : * Stop the memory scanning thread and free the kmemleak internal objects if
1861 : * no previous scan thread (otherwise, kmemleak may still have some useful
1862 : * information on memory leaks).
1863 : */
1864 0 : static void kmemleak_do_cleanup(struct work_struct *work)
1865 : {
1866 0 : stop_scan_thread();
1867 :
1868 0 : mutex_lock(&scan_mutex);
1869 : /*
1870 : * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1871 : * longer track object freeing. Ordering of the scan thread stopping and
1872 : * the memory accesses below is guaranteed by the kthread_stop()
1873 : * function.
1874 : */
1875 0 : kmemleak_free_enabled = 0;
1876 0 : mutex_unlock(&scan_mutex);
1877 :
1878 0 : if (!kmemleak_found_leaks)
1879 0 : __kmemleak_do_cleanup();
1880 : else
1881 0 : pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1882 0 : }
1883 :
1884 : static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1885 :
1886 : /*
1887 : * Disable kmemleak. No memory allocation/freeing will be traced once this
1888 : * function is called. Disabling kmemleak is an irreversible operation.
1889 : */
1890 0 : static void kmemleak_disable(void)
1891 : {
1892 : /* atomically check whether it was already invoked */
1893 0 : if (cmpxchg(&kmemleak_error, 0, 1))
1894 : return;
1895 :
1896 : /* stop any memory operation tracing */
1897 0 : kmemleak_enabled = 0;
1898 :
1899 : /* check whether it is too early for a kernel thread */
1900 0 : if (kmemleak_initialized)
1901 0 : schedule_work(&cleanup_work);
1902 : else
1903 0 : kmemleak_free_enabled = 0;
1904 :
1905 0 : pr_info("Kernel memory leak detector disabled\n");
1906 : }
1907 :
1908 : /*
1909 : * Allow boot-time kmemleak disabling (enabled by default).
1910 : */
1911 0 : static int __init kmemleak_boot_config(char *str)
1912 : {
1913 0 : if (!str)
1914 : return -EINVAL;
1915 0 : if (strcmp(str, "off") == 0)
1916 0 : kmemleak_disable();
1917 0 : else if (strcmp(str, "on") == 0)
1918 0 : kmemleak_skip_disable = 1;
1919 : else
1920 : return -EINVAL;
1921 : return 0;
1922 : }
1923 : early_param("kmemleak", kmemleak_boot_config);
1924 :
1925 : /*
1926 : * Kmemleak initialization.
1927 : */
1928 1 : void __init kmemleak_init(void)
1929 : {
1930 : #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1931 : if (!kmemleak_skip_disable) {
1932 : kmemleak_disable();
1933 : return;
1934 : }
1935 : #endif
1936 :
1937 1 : if (kmemleak_error)
1938 : return;
1939 :
1940 1 : jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1941 1 : jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1942 :
1943 1 : object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1944 1 : scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1945 :
1946 : /* register the data/bss sections */
1947 1 : create_object((unsigned long)_sdata, _edata - _sdata,
1948 : KMEMLEAK_GREY, GFP_ATOMIC);
1949 1 : create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1950 : KMEMLEAK_GREY, GFP_ATOMIC);
1951 : /* only register .data..ro_after_init if not within .data */
1952 1 : if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1953 1 : create_object((unsigned long)__start_ro_after_init,
1954 1 : __end_ro_after_init - __start_ro_after_init,
1955 : KMEMLEAK_GREY, GFP_ATOMIC);
1956 : }
1957 :
1958 : /*
1959 : * Late initialization function.
1960 : */
1961 1 : static int __init kmemleak_late_init(void)
1962 : {
1963 1 : kmemleak_initialized = 1;
1964 :
1965 1 : debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1966 :
1967 1 : if (kmemleak_error) {
1968 : /*
1969 : * Some error occurred and kmemleak was disabled. There is a
1970 : * small chance that kmemleak_disable() was called immediately
1971 : * after setting kmemleak_initialized and we may end up with
1972 : * two clean-up threads but serialized by scan_mutex.
1973 : */
1974 0 : schedule_work(&cleanup_work);
1975 0 : return -ENOMEM;
1976 : }
1977 :
1978 1 : if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1979 : mutex_lock(&scan_mutex);
1980 : start_scan_thread();
1981 : mutex_unlock(&scan_mutex);
1982 : }
1983 :
1984 1 : pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1985 : mem_pool_free_count);
1986 :
1987 1 : return 0;
1988 : }
1989 : late_initcall(kmemleak_late_init);
|