Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * linux/mm/madvise.c
4 : *
5 : * Copyright (C) 1999 Linus Torvalds
6 : * Copyright (C) 2002 Christoph Hellwig
7 : */
8 :
9 : #include <linux/mman.h>
10 : #include <linux/pagemap.h>
11 : #include <linux/syscalls.h>
12 : #include <linux/mempolicy.h>
13 : #include <linux/page-isolation.h>
14 : #include <linux/page_idle.h>
15 : #include <linux/userfaultfd_k.h>
16 : #include <linux/hugetlb.h>
17 : #include <linux/falloc.h>
18 : #include <linux/fadvise.h>
19 : #include <linux/sched.h>
20 : #include <linux/sched/mm.h>
21 : #include <linux/uio.h>
22 : #include <linux/ksm.h>
23 : #include <linux/fs.h>
24 : #include <linux/file.h>
25 : #include <linux/blkdev.h>
26 : #include <linux/backing-dev.h>
27 : #include <linux/pagewalk.h>
28 : #include <linux/swap.h>
29 : #include <linux/swapops.h>
30 : #include <linux/shmem_fs.h>
31 : #include <linux/mmu_notifier.h>
32 :
33 : #include <asm/tlb.h>
34 :
35 : #include "internal.h"
36 :
37 : struct madvise_walk_private {
38 : struct mmu_gather *tlb;
39 : bool pageout;
40 : };
41 :
42 : /*
43 : * Any behaviour which results in changes to the vma->vm_flags needs to
44 : * take mmap_lock for writing. Others, which simply traverse vmas, need
45 : * to only take it for reading.
46 : */
47 12 : static int madvise_need_mmap_write(int behavior)
48 : {
49 12 : switch (behavior) {
50 : case MADV_REMOVE:
51 : case MADV_WILLNEED:
52 : case MADV_DONTNEED:
53 : case MADV_COLD:
54 : case MADV_PAGEOUT:
55 : case MADV_FREE:
56 : return 0;
57 : default:
58 : /* be safe, default to 1. list exceptions explicitly */
59 10 : return 1;
60 : }
61 : }
62 :
63 : /*
64 : * We can potentially split a vm area into separate
65 : * areas, each area with its own behavior.
66 : */
67 10 : static long madvise_behavior(struct vm_area_struct *vma,
68 : struct vm_area_struct **prev,
69 : unsigned long start, unsigned long end, int behavior)
70 : {
71 10 : struct mm_struct *mm = vma->vm_mm;
72 10 : int error = 0;
73 10 : pgoff_t pgoff;
74 10 : unsigned long new_flags = vma->vm_flags;
75 :
76 10 : switch (behavior) {
77 0 : case MADV_NORMAL:
78 0 : new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
79 0 : break;
80 0 : case MADV_SEQUENTIAL:
81 0 : new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
82 0 : break;
83 0 : case MADV_RANDOM:
84 0 : new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
85 0 : break;
86 0 : case MADV_DONTFORK:
87 0 : new_flags |= VM_DONTCOPY;
88 0 : break;
89 10 : case MADV_DOFORK:
90 10 : if (vma->vm_flags & VM_IO) {
91 0 : error = -EINVAL;
92 0 : goto out;
93 : }
94 10 : new_flags &= ~VM_DONTCOPY;
95 10 : break;
96 0 : case MADV_WIPEONFORK:
97 : /* MADV_WIPEONFORK is only supported on anonymous memory. */
98 0 : if (vma->vm_file || vma->vm_flags & VM_SHARED) {
99 0 : error = -EINVAL;
100 0 : goto out;
101 : }
102 0 : new_flags |= VM_WIPEONFORK;
103 0 : break;
104 0 : case MADV_KEEPONFORK:
105 0 : new_flags &= ~VM_WIPEONFORK;
106 0 : break;
107 0 : case MADV_DONTDUMP:
108 0 : new_flags |= VM_DONTDUMP;
109 0 : break;
110 : case MADV_DODUMP:
111 0 : if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
112 0 : error = -EINVAL;
113 0 : goto out;
114 : }
115 0 : new_flags &= ~VM_DONTDUMP;
116 0 : break;
117 0 : case MADV_MERGEABLE:
118 : case MADV_UNMERGEABLE:
119 0 : error = ksm_madvise(vma, start, end, behavior, &new_flags);
120 0 : if (error)
121 0 : goto out_convert_errno;
122 : break;
123 0 : case MADV_HUGEPAGE:
124 : case MADV_NOHUGEPAGE:
125 0 : error = hugepage_madvise(vma, &new_flags, behavior);
126 0 : if (error)
127 0 : goto out_convert_errno;
128 : break;
129 : }
130 :
131 10 : if (new_flags == vma->vm_flags) {
132 10 : *prev = vma;
133 10 : goto out;
134 : }
135 :
136 0 : pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
137 0 : *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
138 : vma->vm_file, pgoff, vma_policy(vma),
139 : vma->vm_userfaultfd_ctx);
140 0 : if (*prev) {
141 0 : vma = *prev;
142 0 : goto success;
143 : }
144 :
145 0 : *prev = vma;
146 :
147 0 : if (start != vma->vm_start) {
148 0 : if (unlikely(mm->map_count >= sysctl_max_map_count)) {
149 0 : error = -ENOMEM;
150 0 : goto out;
151 : }
152 0 : error = __split_vma(mm, vma, start, 1);
153 0 : if (error)
154 0 : goto out_convert_errno;
155 : }
156 :
157 0 : if (end != vma->vm_end) {
158 0 : if (unlikely(mm->map_count >= sysctl_max_map_count)) {
159 0 : error = -ENOMEM;
160 0 : goto out;
161 : }
162 0 : error = __split_vma(mm, vma, end, 0);
163 0 : if (error)
164 0 : goto out_convert_errno;
165 : }
166 :
167 0 : success:
168 : /*
169 : * vm_flags is protected by the mmap_lock held in write mode.
170 : */
171 0 : vma->vm_flags = new_flags;
172 :
173 0 : out_convert_errno:
174 : /*
175 : * madvise() returns EAGAIN if kernel resources, such as
176 : * slab, are temporarily unavailable.
177 : */
178 0 : if (error == -ENOMEM)
179 0 : error = -EAGAIN;
180 0 : out:
181 10 : return error;
182 : }
183 :
184 : #ifdef CONFIG_SWAP
185 : static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
186 : unsigned long end, struct mm_walk *walk)
187 : {
188 : pte_t *orig_pte;
189 : struct vm_area_struct *vma = walk->private;
190 : unsigned long index;
191 :
192 : if (pmd_none_or_trans_huge_or_clear_bad(pmd))
193 : return 0;
194 :
195 : for (index = start; index != end; index += PAGE_SIZE) {
196 : pte_t pte;
197 : swp_entry_t entry;
198 : struct page *page;
199 : spinlock_t *ptl;
200 :
201 : orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
202 : pte = *(orig_pte + ((index - start) / PAGE_SIZE));
203 : pte_unmap_unlock(orig_pte, ptl);
204 :
205 : if (pte_present(pte) || pte_none(pte))
206 : continue;
207 : entry = pte_to_swp_entry(pte);
208 : if (unlikely(non_swap_entry(entry)))
209 : continue;
210 :
211 : page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
212 : vma, index, false);
213 : if (page)
214 : put_page(page);
215 : }
216 :
217 : return 0;
218 : }
219 :
220 : static const struct mm_walk_ops swapin_walk_ops = {
221 : .pmd_entry = swapin_walk_pmd_entry,
222 : };
223 :
224 : static void force_shm_swapin_readahead(struct vm_area_struct *vma,
225 : unsigned long start, unsigned long end,
226 : struct address_space *mapping)
227 : {
228 : XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
229 : pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
230 : struct page *page;
231 :
232 : rcu_read_lock();
233 : xas_for_each(&xas, page, end_index) {
234 : swp_entry_t swap;
235 :
236 : if (!xa_is_value(page))
237 : continue;
238 : xas_pause(&xas);
239 : rcu_read_unlock();
240 :
241 : swap = radix_to_swp_entry(page);
242 : page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
243 : NULL, 0, false);
244 : if (page)
245 : put_page(page);
246 :
247 : rcu_read_lock();
248 : }
249 : rcu_read_unlock();
250 :
251 : lru_add_drain(); /* Push any new pages onto the LRU now */
252 : }
253 : #endif /* CONFIG_SWAP */
254 :
255 : /*
256 : * Schedule all required I/O operations. Do not wait for completion.
257 : */
258 0 : static long madvise_willneed(struct vm_area_struct *vma,
259 : struct vm_area_struct **prev,
260 : unsigned long start, unsigned long end)
261 : {
262 0 : struct mm_struct *mm = vma->vm_mm;
263 0 : struct file *file = vma->vm_file;
264 0 : loff_t offset;
265 :
266 0 : *prev = vma;
267 : #ifdef CONFIG_SWAP
268 : if (!file) {
269 : walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
270 : lru_add_drain(); /* Push any new pages onto the LRU now */
271 : return 0;
272 : }
273 :
274 : if (shmem_mapping(file->f_mapping)) {
275 : force_shm_swapin_readahead(vma, start, end,
276 : file->f_mapping);
277 : return 0;
278 : }
279 : #else
280 0 : if (!file)
281 : return -EBADF;
282 : #endif
283 :
284 0 : if (IS_DAX(file_inode(file))) {
285 : /* no bad return value, but ignore advice */
286 : return 0;
287 : }
288 :
289 : /*
290 : * Filesystem's fadvise may need to take various locks. We need to
291 : * explicitly grab a reference because the vma (and hence the
292 : * vma's reference to the file) can go away as soon as we drop
293 : * mmap_lock.
294 : */
295 0 : *prev = NULL; /* tell sys_madvise we drop mmap_lock */
296 0 : get_file(file);
297 0 : offset = (loff_t)(start - vma->vm_start)
298 0 : + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
299 0 : mmap_read_unlock(mm);
300 0 : vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
301 0 : fput(file);
302 0 : mmap_read_lock(mm);
303 0 : return 0;
304 : }
305 :
306 0 : static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
307 : unsigned long addr, unsigned long end,
308 : struct mm_walk *walk)
309 : {
310 0 : struct madvise_walk_private *private = walk->private;
311 0 : struct mmu_gather *tlb = private->tlb;
312 0 : bool pageout = private->pageout;
313 0 : struct mm_struct *mm = tlb->mm;
314 0 : struct vm_area_struct *vma = walk->vma;
315 0 : pte_t *orig_pte, *pte, ptent;
316 0 : spinlock_t *ptl;
317 0 : struct page *page = NULL;
318 0 : LIST_HEAD(page_list);
319 :
320 0 : if (fatal_signal_pending(current))
321 : return -EINTR;
322 :
323 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 0 : if (pmd_trans_huge(*pmd)) {
325 0 : pmd_t orig_pmd;
326 0 : unsigned long next = pmd_addr_end(addr, end);
327 :
328 0 : tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
329 0 : ptl = pmd_trans_huge_lock(pmd, vma);
330 0 : if (!ptl)
331 0 : return 0;
332 :
333 0 : orig_pmd = *pmd;
334 0 : if (is_huge_zero_pmd(orig_pmd))
335 0 : goto huge_unlock;
336 :
337 0 : if (unlikely(!pmd_present(orig_pmd))) {
338 0 : VM_BUG_ON(thp_migration_supported() &&
339 : !is_pmd_migration_entry(orig_pmd));
340 0 : goto huge_unlock;
341 : }
342 :
343 0 : page = pmd_page(orig_pmd);
344 :
345 : /* Do not interfere with other mappings of this page */
346 0 : if (page_mapcount(page) != 1)
347 0 : goto huge_unlock;
348 :
349 0 : if (next - addr != HPAGE_PMD_SIZE) {
350 0 : int err;
351 :
352 0 : get_page(page);
353 0 : spin_unlock(ptl);
354 0 : lock_page(page);
355 0 : err = split_huge_page(page);
356 0 : unlock_page(page);
357 0 : put_page(page);
358 0 : if (!err)
359 0 : goto regular_page;
360 : return 0;
361 : }
362 :
363 0 : if (pmd_young(orig_pmd)) {
364 0 : pmdp_invalidate(vma, addr, pmd);
365 0 : orig_pmd = pmd_mkold(orig_pmd);
366 :
367 0 : set_pmd_at(mm, addr, pmd, orig_pmd);
368 0 : tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
369 : }
370 :
371 0 : ClearPageReferenced(page);
372 0 : test_and_clear_page_young(page);
373 0 : if (pageout) {
374 0 : if (!isolate_lru_page(page)) {
375 0 : if (PageUnevictable(page))
376 0 : putback_lru_page(page);
377 : else
378 0 : list_add(&page->lru, &page_list);
379 : }
380 : } else
381 0 : deactivate_page(page);
382 0 : huge_unlock:
383 0 : spin_unlock(ptl);
384 0 : if (pageout)
385 0 : reclaim_pages(&page_list);
386 0 : return 0;
387 : }
388 :
389 0 : regular_page:
390 0 : if (pmd_trans_unstable(pmd))
391 : return 0;
392 : #endif
393 0 : tlb_change_page_size(tlb, PAGE_SIZE);
394 0 : orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
395 0 : flush_tlb_batched_pending(mm);
396 0 : arch_enter_lazy_mmu_mode();
397 0 : for (; addr < end; pte++, addr += PAGE_SIZE) {
398 0 : ptent = *pte;
399 :
400 0 : if (pte_none(ptent))
401 0 : continue;
402 :
403 0 : if (!pte_present(ptent))
404 0 : continue;
405 :
406 0 : page = vm_normal_page(vma, addr, ptent);
407 0 : if (!page)
408 0 : continue;
409 :
410 : /*
411 : * Creating a THP page is expensive so split it only if we
412 : * are sure it's worth. Split it if we are only owner.
413 : */
414 0 : if (PageTransCompound(page)) {
415 0 : if (page_mapcount(page) != 1)
416 : break;
417 0 : get_page(page);
418 0 : if (!trylock_page(page)) {
419 0 : put_page(page);
420 0 : break;
421 : }
422 0 : pte_unmap_unlock(orig_pte, ptl);
423 0 : if (split_huge_page(page)) {
424 0 : unlock_page(page);
425 0 : put_page(page);
426 0 : pte_offset_map_lock(mm, pmd, addr, &ptl);
427 0 : break;
428 : }
429 0 : unlock_page(page);
430 0 : put_page(page);
431 0 : pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
432 0 : pte--;
433 0 : addr -= PAGE_SIZE;
434 0 : continue;
435 : }
436 :
437 : /* Do not interfere with other mappings of this page */
438 0 : if (page_mapcount(page) != 1)
439 0 : continue;
440 :
441 0 : VM_BUG_ON_PAGE(PageTransCompound(page), page);
442 :
443 0 : if (pte_young(ptent)) {
444 0 : ptent = ptep_get_and_clear_full(mm, addr, pte,
445 0 : tlb->fullmm);
446 0 : ptent = pte_mkold(ptent);
447 0 : set_pte_at(mm, addr, pte, ptent);
448 0 : tlb_remove_tlb_entry(tlb, pte, addr);
449 : }
450 :
451 : /*
452 : * We are deactivating a page for accelerating reclaiming.
453 : * VM couldn't reclaim the page unless we clear PG_young.
454 : * As a side effect, it makes confuse idle-page tracking
455 : * because they will miss recent referenced history.
456 : */
457 0 : ClearPageReferenced(page);
458 0 : test_and_clear_page_young(page);
459 0 : if (pageout) {
460 0 : if (!isolate_lru_page(page)) {
461 0 : if (PageUnevictable(page))
462 0 : putback_lru_page(page);
463 : else
464 0 : list_add(&page->lru, &page_list);
465 : }
466 : } else
467 0 : deactivate_page(page);
468 : }
469 :
470 0 : arch_leave_lazy_mmu_mode();
471 0 : pte_unmap_unlock(orig_pte, ptl);
472 0 : if (pageout)
473 0 : reclaim_pages(&page_list);
474 0 : cond_resched();
475 :
476 0 : return 0;
477 : }
478 :
479 : static const struct mm_walk_ops cold_walk_ops = {
480 : .pmd_entry = madvise_cold_or_pageout_pte_range,
481 : };
482 :
483 0 : static void madvise_cold_page_range(struct mmu_gather *tlb,
484 : struct vm_area_struct *vma,
485 : unsigned long addr, unsigned long end)
486 : {
487 0 : struct madvise_walk_private walk_private = {
488 : .pageout = false,
489 : .tlb = tlb,
490 : };
491 :
492 0 : tlb_start_vma(tlb, vma);
493 0 : walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
494 0 : tlb_end_vma(tlb, vma);
495 0 : }
496 :
497 0 : static long madvise_cold(struct vm_area_struct *vma,
498 : struct vm_area_struct **prev,
499 : unsigned long start_addr, unsigned long end_addr)
500 : {
501 0 : struct mm_struct *mm = vma->vm_mm;
502 0 : struct mmu_gather tlb;
503 :
504 0 : *prev = vma;
505 0 : if (!can_madv_lru_vma(vma))
506 : return -EINVAL;
507 :
508 0 : lru_add_drain();
509 0 : tlb_gather_mmu(&tlb, mm);
510 0 : madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
511 0 : tlb_finish_mmu(&tlb);
512 :
513 0 : return 0;
514 : }
515 :
516 0 : static void madvise_pageout_page_range(struct mmu_gather *tlb,
517 : struct vm_area_struct *vma,
518 : unsigned long addr, unsigned long end)
519 : {
520 0 : struct madvise_walk_private walk_private = {
521 : .pageout = true,
522 : .tlb = tlb,
523 : };
524 :
525 0 : tlb_start_vma(tlb, vma);
526 0 : walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
527 0 : tlb_end_vma(tlb, vma);
528 0 : }
529 :
530 0 : static inline bool can_do_pageout(struct vm_area_struct *vma)
531 : {
532 0 : if (vma_is_anonymous(vma))
533 : return true;
534 0 : if (!vma->vm_file)
535 : return false;
536 : /*
537 : * paging out pagecache only for non-anonymous mappings that correspond
538 : * to the files the calling process could (if tried) open for writing;
539 : * otherwise we'd be including shared non-exclusive mappings, which
540 : * opens a side channel.
541 : */
542 0 : return inode_owner_or_capable(&init_user_ns,
543 0 : file_inode(vma->vm_file)) ||
544 0 : file_permission(vma->vm_file, MAY_WRITE) == 0;
545 : }
546 :
547 0 : static long madvise_pageout(struct vm_area_struct *vma,
548 : struct vm_area_struct **prev,
549 : unsigned long start_addr, unsigned long end_addr)
550 : {
551 0 : struct mm_struct *mm = vma->vm_mm;
552 0 : struct mmu_gather tlb;
553 :
554 0 : *prev = vma;
555 0 : if (!can_madv_lru_vma(vma))
556 : return -EINVAL;
557 :
558 0 : if (!can_do_pageout(vma))
559 : return 0;
560 :
561 0 : lru_add_drain();
562 0 : tlb_gather_mmu(&tlb, mm);
563 0 : madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
564 0 : tlb_finish_mmu(&tlb);
565 :
566 0 : return 0;
567 : }
568 :
569 0 : static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
570 : unsigned long end, struct mm_walk *walk)
571 :
572 : {
573 0 : struct mmu_gather *tlb = walk->private;
574 0 : struct mm_struct *mm = tlb->mm;
575 0 : struct vm_area_struct *vma = walk->vma;
576 0 : spinlock_t *ptl;
577 0 : pte_t *orig_pte, *pte, ptent;
578 0 : struct page *page;
579 0 : int nr_swap = 0;
580 0 : unsigned long next;
581 :
582 0 : next = pmd_addr_end(addr, end);
583 0 : if (pmd_trans_huge(*pmd))
584 0 : if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
585 0 : goto next;
586 :
587 0 : if (pmd_trans_unstable(pmd))
588 : return 0;
589 :
590 0 : tlb_change_page_size(tlb, PAGE_SIZE);
591 0 : orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
592 0 : flush_tlb_batched_pending(mm);
593 0 : arch_enter_lazy_mmu_mode();
594 0 : for (; addr != end; pte++, addr += PAGE_SIZE) {
595 0 : ptent = *pte;
596 :
597 0 : if (pte_none(ptent))
598 0 : continue;
599 : /*
600 : * If the pte has swp_entry, just clear page table to
601 : * prevent swap-in which is more expensive rather than
602 : * (page allocation + zeroing).
603 : */
604 0 : if (!pte_present(ptent)) {
605 0 : swp_entry_t entry;
606 :
607 0 : entry = pte_to_swp_entry(ptent);
608 0 : if (non_swap_entry(entry))
609 0 : continue;
610 0 : nr_swap--;
611 0 : free_swap_and_cache(entry);
612 0 : pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
613 0 : continue;
614 : }
615 :
616 0 : page = vm_normal_page(vma, addr, ptent);
617 0 : if (!page)
618 0 : continue;
619 :
620 : /*
621 : * If pmd isn't transhuge but the page is THP and
622 : * is owned by only this process, split it and
623 : * deactivate all pages.
624 : */
625 0 : if (PageTransCompound(page)) {
626 0 : if (page_mapcount(page) != 1)
627 0 : goto out;
628 0 : get_page(page);
629 0 : if (!trylock_page(page)) {
630 0 : put_page(page);
631 0 : goto out;
632 : }
633 0 : pte_unmap_unlock(orig_pte, ptl);
634 0 : if (split_huge_page(page)) {
635 0 : unlock_page(page);
636 0 : put_page(page);
637 0 : pte_offset_map_lock(mm, pmd, addr, &ptl);
638 0 : goto out;
639 : }
640 0 : unlock_page(page);
641 0 : put_page(page);
642 0 : pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
643 0 : pte--;
644 0 : addr -= PAGE_SIZE;
645 0 : continue;
646 : }
647 :
648 0 : VM_BUG_ON_PAGE(PageTransCompound(page), page);
649 :
650 0 : if (PageSwapCache(page) || PageDirty(page)) {
651 0 : if (!trylock_page(page))
652 0 : continue;
653 : /*
654 : * If page is shared with others, we couldn't clear
655 : * PG_dirty of the page.
656 : */
657 0 : if (page_mapcount(page) != 1) {
658 0 : unlock_page(page);
659 0 : continue;
660 : }
661 :
662 0 : if (PageSwapCache(page) && !try_to_free_swap(page)) {
663 : unlock_page(page);
664 : continue;
665 : }
666 :
667 0 : ClearPageDirty(page);
668 0 : unlock_page(page);
669 : }
670 :
671 0 : if (pte_young(ptent) || pte_dirty(ptent)) {
672 : /*
673 : * Some of architecture(ex, PPC) don't update TLB
674 : * with set_pte_at and tlb_remove_tlb_entry so for
675 : * the portability, remap the pte with old|clean
676 : * after pte clearing.
677 : */
678 0 : ptent = ptep_get_and_clear_full(mm, addr, pte,
679 0 : tlb->fullmm);
680 :
681 0 : ptent = pte_mkold(ptent);
682 0 : ptent = pte_mkclean(ptent);
683 0 : set_pte_at(mm, addr, pte, ptent);
684 0 : tlb_remove_tlb_entry(tlb, pte, addr);
685 : }
686 0 : mark_page_lazyfree(page);
687 : }
688 0 : out:
689 0 : if (nr_swap) {
690 0 : if (current->mm == mm)
691 0 : sync_mm_rss(mm);
692 :
693 0 : add_mm_counter(mm, MM_SWAPENTS, nr_swap);
694 : }
695 0 : arch_leave_lazy_mmu_mode();
696 0 : pte_unmap_unlock(orig_pte, ptl);
697 0 : cond_resched();
698 : next:
699 : return 0;
700 : }
701 :
702 : static const struct mm_walk_ops madvise_free_walk_ops = {
703 : .pmd_entry = madvise_free_pte_range,
704 : };
705 :
706 0 : static int madvise_free_single_vma(struct vm_area_struct *vma,
707 : unsigned long start_addr, unsigned long end_addr)
708 : {
709 0 : struct mm_struct *mm = vma->vm_mm;
710 0 : struct mmu_notifier_range range;
711 0 : struct mmu_gather tlb;
712 :
713 : /* MADV_FREE works for only anon vma at the moment */
714 0 : if (!vma_is_anonymous(vma))
715 : return -EINVAL;
716 :
717 0 : range.start = max(vma->vm_start, start_addr);
718 0 : if (range.start >= vma->vm_end)
719 : return -EINVAL;
720 0 : range.end = min(vma->vm_end, end_addr);
721 0 : if (range.end <= vma->vm_start)
722 : return -EINVAL;
723 0 : mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
724 : range.start, range.end);
725 :
726 0 : lru_add_drain();
727 0 : tlb_gather_mmu(&tlb, mm);
728 0 : update_hiwater_rss(mm);
729 :
730 0 : mmu_notifier_invalidate_range_start(&range);
731 0 : tlb_start_vma(&tlb, vma);
732 0 : walk_page_range(vma->vm_mm, range.start, range.end,
733 : &madvise_free_walk_ops, &tlb);
734 0 : tlb_end_vma(&tlb, vma);
735 0 : mmu_notifier_invalidate_range_end(&range);
736 0 : tlb_finish_mmu(&tlb);
737 :
738 0 : return 0;
739 : }
740 :
741 : /*
742 : * Application no longer needs these pages. If the pages are dirty,
743 : * it's OK to just throw them away. The app will be more careful about
744 : * data it wants to keep. Be sure to free swap resources too. The
745 : * zap_page_range call sets things up for shrink_active_list to actually free
746 : * these pages later if no one else has touched them in the meantime,
747 : * although we could add these pages to a global reuse list for
748 : * shrink_active_list to pick up before reclaiming other pages.
749 : *
750 : * NB: This interface discards data rather than pushes it out to swap,
751 : * as some implementations do. This has performance implications for
752 : * applications like large transactional databases which want to discard
753 : * pages in anonymous maps after committing to backing store the data
754 : * that was kept in them. There is no reason to write this data out to
755 : * the swap area if the application is discarding it.
756 : *
757 : * An interface that causes the system to free clean pages and flush
758 : * dirty pages is already available as msync(MS_INVALIDATE).
759 : */
760 4 : static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
761 : unsigned long start, unsigned long end)
762 : {
763 4 : zap_page_range(vma, start, end - start);
764 4 : return 0;
765 : }
766 :
767 4 : static long madvise_dontneed_free(struct vm_area_struct *vma,
768 : struct vm_area_struct **prev,
769 : unsigned long start, unsigned long end,
770 : int behavior)
771 : {
772 4 : struct mm_struct *mm = vma->vm_mm;
773 :
774 4 : *prev = vma;
775 4 : if (!can_madv_lru_vma(vma))
776 : return -EINVAL;
777 :
778 4 : if (!userfaultfd_remove(vma, start, end)) {
779 : *prev = NULL; /* mmap_lock has been dropped, prev is stale */
780 :
781 : mmap_read_lock(mm);
782 : vma = find_vma(mm, start);
783 : if (!vma)
784 : return -ENOMEM;
785 : if (start < vma->vm_start) {
786 : /*
787 : * This "vma" under revalidation is the one
788 : * with the lowest vma->vm_start where start
789 : * is also < vma->vm_end. If start <
790 : * vma->vm_start it means an hole materialized
791 : * in the user address space within the
792 : * virtual range passed to MADV_DONTNEED
793 : * or MADV_FREE.
794 : */
795 : return -ENOMEM;
796 : }
797 : if (!can_madv_lru_vma(vma))
798 : return -EINVAL;
799 : if (end > vma->vm_end) {
800 : /*
801 : * Don't fail if end > vma->vm_end. If the old
802 : * vma was splitted while the mmap_lock was
803 : * released the effect of the concurrent
804 : * operation may not cause madvise() to
805 : * have an undefined result. There may be an
806 : * adjacent next vma that we'll walk
807 : * next. userfaultfd_remove() will generate an
808 : * UFFD_EVENT_REMOVE repetition on the
809 : * end-vma->vm_end range, but the manager can
810 : * handle a repetition fine.
811 : */
812 : end = vma->vm_end;
813 : }
814 : VM_WARN_ON(start >= end);
815 : }
816 :
817 4 : if (behavior == MADV_DONTNEED)
818 4 : return madvise_dontneed_single_vma(vma, start, end);
819 0 : else if (behavior == MADV_FREE)
820 0 : return madvise_free_single_vma(vma, start, end);
821 : else
822 : return -EINVAL;
823 : }
824 :
825 : /*
826 : * Application wants to free up the pages and associated backing store.
827 : * This is effectively punching a hole into the middle of a file.
828 : */
829 0 : static long madvise_remove(struct vm_area_struct *vma,
830 : struct vm_area_struct **prev,
831 : unsigned long start, unsigned long end)
832 : {
833 0 : loff_t offset;
834 0 : int error;
835 0 : struct file *f;
836 0 : struct mm_struct *mm = vma->vm_mm;
837 :
838 0 : *prev = NULL; /* tell sys_madvise we drop mmap_lock */
839 :
840 0 : if (vma->vm_flags & VM_LOCKED)
841 : return -EINVAL;
842 :
843 0 : f = vma->vm_file;
844 :
845 0 : if (!f || !f->f_mapping || !f->f_mapping->host) {
846 : return -EINVAL;
847 : }
848 :
849 0 : if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
850 : return -EACCES;
851 :
852 0 : offset = (loff_t)(start - vma->vm_start)
853 0 : + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
854 :
855 : /*
856 : * Filesystem's fallocate may need to take i_mutex. We need to
857 : * explicitly grab a reference because the vma (and hence the
858 : * vma's reference to the file) can go away as soon as we drop
859 : * mmap_lock.
860 : */
861 0 : get_file(f);
862 0 : if (userfaultfd_remove(vma, start, end)) {
863 : /* mmap_lock was not released by userfaultfd_remove() */
864 0 : mmap_read_unlock(mm);
865 : }
866 0 : error = vfs_fallocate(f,
867 : FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
868 0 : offset, end - start);
869 0 : fput(f);
870 0 : mmap_read_lock(mm);
871 0 : return error;
872 : }
873 :
874 : #ifdef CONFIG_MEMORY_FAILURE
875 : /*
876 : * Error injection support for memory error handling.
877 : */
878 : static int madvise_inject_error(int behavior,
879 : unsigned long start, unsigned long end)
880 : {
881 : unsigned long size;
882 :
883 : if (!capable(CAP_SYS_ADMIN))
884 : return -EPERM;
885 :
886 :
887 : for (; start < end; start += size) {
888 : unsigned long pfn;
889 : struct page *page;
890 : int ret;
891 :
892 : ret = get_user_pages_fast(start, 1, 0, &page);
893 : if (ret != 1)
894 : return ret;
895 : pfn = page_to_pfn(page);
896 :
897 : /*
898 : * When soft offlining hugepages, after migrating the page
899 : * we dissolve it, therefore in the second loop "page" will
900 : * no longer be a compound page.
901 : */
902 : size = page_size(compound_head(page));
903 :
904 : if (behavior == MADV_SOFT_OFFLINE) {
905 : pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
906 : pfn, start);
907 : ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
908 : } else {
909 : pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
910 : pfn, start);
911 : ret = memory_failure(pfn, MF_COUNT_INCREASED);
912 : }
913 :
914 : if (ret)
915 : return ret;
916 : }
917 :
918 : return 0;
919 : }
920 : #endif
921 :
922 : static long
923 14 : madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
924 : unsigned long start, unsigned long end, int behavior)
925 : {
926 14 : switch (behavior) {
927 0 : case MADV_REMOVE:
928 0 : return madvise_remove(vma, prev, start, end);
929 0 : case MADV_WILLNEED:
930 0 : return madvise_willneed(vma, prev, start, end);
931 0 : case MADV_COLD:
932 0 : return madvise_cold(vma, prev, start, end);
933 0 : case MADV_PAGEOUT:
934 0 : return madvise_pageout(vma, prev, start, end);
935 4 : case MADV_FREE:
936 : case MADV_DONTNEED:
937 4 : return madvise_dontneed_free(vma, prev, start, end, behavior);
938 10 : default:
939 10 : return madvise_behavior(vma, prev, start, end, behavior);
940 : }
941 : }
942 :
943 : static bool
944 12 : madvise_behavior_valid(int behavior)
945 : {
946 12 : switch (behavior) {
947 : case MADV_DOFORK:
948 : case MADV_DONTFORK:
949 : case MADV_NORMAL:
950 : case MADV_SEQUENTIAL:
951 : case MADV_RANDOM:
952 : case MADV_REMOVE:
953 : case MADV_WILLNEED:
954 : case MADV_DONTNEED:
955 : case MADV_FREE:
956 : case MADV_COLD:
957 : case MADV_PAGEOUT:
958 : #ifdef CONFIG_KSM
959 : case MADV_MERGEABLE:
960 : case MADV_UNMERGEABLE:
961 : #endif
962 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
963 : case MADV_HUGEPAGE:
964 : case MADV_NOHUGEPAGE:
965 : #endif
966 : case MADV_DONTDUMP:
967 : case MADV_DODUMP:
968 : case MADV_WIPEONFORK:
969 : case MADV_KEEPONFORK:
970 : #ifdef CONFIG_MEMORY_FAILURE
971 : case MADV_SOFT_OFFLINE:
972 : case MADV_HWPOISON:
973 : #endif
974 : return true;
975 :
976 : default:
977 : return false;
978 : }
979 : }
980 :
981 : static bool
982 0 : process_madvise_behavior_valid(int behavior)
983 : {
984 0 : switch (behavior) {
985 : case MADV_COLD:
986 : case MADV_PAGEOUT:
987 : return true;
988 : default:
989 0 : return false;
990 : }
991 : }
992 :
993 : /*
994 : * The madvise(2) system call.
995 : *
996 : * Applications can use madvise() to advise the kernel how it should
997 : * handle paging I/O in this VM area. The idea is to help the kernel
998 : * use appropriate read-ahead and caching techniques. The information
999 : * provided is advisory only, and can be safely disregarded by the
1000 : * kernel without affecting the correct operation of the application.
1001 : *
1002 : * behavior values:
1003 : * MADV_NORMAL - the default behavior is to read clusters. This
1004 : * results in some read-ahead and read-behind.
1005 : * MADV_RANDOM - the system should read the minimum amount of data
1006 : * on any access, since it is unlikely that the appli-
1007 : * cation will need more than what it asks for.
1008 : * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1009 : * once, so they can be aggressively read ahead, and
1010 : * can be freed soon after they are accessed.
1011 : * MADV_WILLNEED - the application is notifying the system to read
1012 : * some pages ahead.
1013 : * MADV_DONTNEED - the application is finished with the given range,
1014 : * so the kernel can free resources associated with it.
1015 : * MADV_FREE - the application marks pages in the given range as lazy free,
1016 : * where actual purges are postponed until memory pressure happens.
1017 : * MADV_REMOVE - the application wants to free up the given range of
1018 : * pages and associated backing store.
1019 : * MADV_DONTFORK - omit this area from child's address space when forking:
1020 : * typically, to avoid COWing pages pinned by get_user_pages().
1021 : * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1022 : * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1023 : * range after a fork.
1024 : * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1025 : * MADV_HWPOISON - trigger memory error handler as if the given memory range
1026 : * were corrupted by unrecoverable hardware memory failure.
1027 : * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1028 : * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1029 : * this area with pages of identical content from other such areas.
1030 : * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1031 : * MADV_HUGEPAGE - the application wants to back the given range by transparent
1032 : * huge pages in the future. Existing pages might be coalesced and
1033 : * new pages might be allocated as THP.
1034 : * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1035 : * transparent huge pages so the existing pages will not be
1036 : * coalesced into THP and new pages will not be allocated as THP.
1037 : * MADV_DONTDUMP - the application wants to prevent pages in the given range
1038 : * from being included in its core dump.
1039 : * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1040 : * MADV_COLD - the application is not expected to use this memory soon,
1041 : * deactivate pages in this range so that they can be reclaimed
1042 : * easily if memory pressure hanppens.
1043 : * MADV_PAGEOUT - the application is not expected to use this memory soon,
1044 : * page out the pages in this range immediately.
1045 : *
1046 : * return values:
1047 : * zero - success
1048 : * -EINVAL - start + len < 0, start is not page-aligned,
1049 : * "behavior" is not a valid value, or application
1050 : * is attempting to release locked or shared pages,
1051 : * or the specified address range includes file, Huge TLB,
1052 : * MAP_SHARED or VMPFNMAP range.
1053 : * -ENOMEM - addresses in the specified range are not currently
1054 : * mapped, or are outside the AS of the process.
1055 : * -EIO - an I/O error occurred while paging in data.
1056 : * -EBADF - map exists, but area maps something that isn't a file.
1057 : * -EAGAIN - a kernel resource was temporarily unavailable.
1058 : */
1059 12 : int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1060 : {
1061 12 : unsigned long end, tmp;
1062 12 : struct vm_area_struct *vma, *prev;
1063 12 : int unmapped_error = 0;
1064 12 : int error = -EINVAL;
1065 12 : int write;
1066 12 : size_t len;
1067 12 : struct blk_plug plug;
1068 :
1069 12 : start = untagged_addr(start);
1070 :
1071 12 : if (!madvise_behavior_valid(behavior))
1072 : return error;
1073 :
1074 12 : if (!PAGE_ALIGNED(start))
1075 : return error;
1076 12 : len = PAGE_ALIGN(len_in);
1077 :
1078 : /* Check to see whether len was rounded up from small -ve to zero */
1079 12 : if (len_in && !len)
1080 : return error;
1081 :
1082 12 : end = start + len;
1083 12 : if (end < start)
1084 : return error;
1085 :
1086 12 : error = 0;
1087 12 : if (end == start)
1088 : return error;
1089 :
1090 : #ifdef CONFIG_MEMORY_FAILURE
1091 : if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1092 : return madvise_inject_error(behavior, start, start + len_in);
1093 : #endif
1094 :
1095 12 : write = madvise_need_mmap_write(behavior);
1096 12 : if (write) {
1097 10 : if (mmap_write_lock_killable(mm))
1098 : return -EINTR;
1099 : } else {
1100 2 : mmap_read_lock(mm);
1101 : }
1102 :
1103 : /*
1104 : * If the interval [start,end) covers some unmapped address
1105 : * ranges, just ignore them, but return -ENOMEM at the end.
1106 : * - different from the way of handling in mlock etc.
1107 : */
1108 12 : vma = find_vma_prev(mm, start, &prev);
1109 12 : if (vma && start > vma->vm_start)
1110 0 : prev = vma;
1111 :
1112 12 : blk_start_plug(&plug);
1113 14 : for (;;) {
1114 : /* Still start < end. */
1115 14 : error = -ENOMEM;
1116 14 : if (!vma)
1117 0 : goto out;
1118 :
1119 : /* Here start < (end|vma->vm_end). */
1120 14 : if (start < vma->vm_start) {
1121 0 : unmapped_error = -ENOMEM;
1122 0 : start = vma->vm_start;
1123 0 : if (start >= end)
1124 0 : goto out;
1125 : }
1126 :
1127 : /* Here vma->vm_start <= start < (end|vma->vm_end) */
1128 14 : tmp = vma->vm_end;
1129 14 : if (end < tmp)
1130 : tmp = end;
1131 :
1132 : /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1133 14 : error = madvise_vma(vma, &prev, start, tmp, behavior);
1134 14 : if (error)
1135 0 : goto out;
1136 14 : start = tmp;
1137 14 : if (prev && start < prev->vm_end)
1138 : start = prev->vm_end;
1139 14 : error = unmapped_error;
1140 14 : if (start >= end)
1141 12 : goto out;
1142 2 : if (prev)
1143 2 : vma = prev->vm_next;
1144 : else /* madvise_remove dropped mmap_lock */
1145 0 : vma = find_vma(mm, start);
1146 : }
1147 12 : out:
1148 12 : blk_finish_plug(&plug);
1149 12 : if (write)
1150 10 : mmap_write_unlock(mm);
1151 : else
1152 2 : mmap_read_unlock(mm);
1153 :
1154 : return error;
1155 : }
1156 :
1157 24 : SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1158 : {
1159 12 : return do_madvise(current->mm, start, len_in, behavior);
1160 : }
1161 :
1162 0 : SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1163 : size_t, vlen, int, behavior, unsigned int, flags)
1164 : {
1165 0 : ssize_t ret;
1166 0 : struct iovec iovstack[UIO_FASTIOV], iovec;
1167 0 : struct iovec *iov = iovstack;
1168 0 : struct iov_iter iter;
1169 0 : struct pid *pid;
1170 0 : struct task_struct *task;
1171 0 : struct mm_struct *mm;
1172 0 : size_t total_len;
1173 0 : unsigned int f_flags;
1174 :
1175 0 : if (flags != 0) {
1176 0 : ret = -EINVAL;
1177 0 : goto out;
1178 : }
1179 :
1180 0 : ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1181 0 : if (ret < 0)
1182 0 : goto out;
1183 :
1184 0 : pid = pidfd_get_pid(pidfd, &f_flags);
1185 0 : if (IS_ERR(pid)) {
1186 0 : ret = PTR_ERR(pid);
1187 0 : goto free_iov;
1188 : }
1189 :
1190 0 : task = get_pid_task(pid, PIDTYPE_PID);
1191 0 : if (!task) {
1192 0 : ret = -ESRCH;
1193 0 : goto put_pid;
1194 : }
1195 :
1196 0 : if (!process_madvise_behavior_valid(behavior)) {
1197 0 : ret = -EINVAL;
1198 0 : goto release_task;
1199 : }
1200 :
1201 : /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1202 0 : mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1203 0 : if (IS_ERR_OR_NULL(mm)) {
1204 0 : ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1205 0 : goto release_task;
1206 : }
1207 :
1208 : /*
1209 : * Require CAP_SYS_NICE for influencing process performance. Note that
1210 : * only non-destructive hints are currently supported.
1211 : */
1212 0 : if (!capable(CAP_SYS_NICE)) {
1213 0 : ret = -EPERM;
1214 0 : goto release_mm;
1215 : }
1216 :
1217 0 : total_len = iov_iter_count(&iter);
1218 :
1219 0 : while (iov_iter_count(&iter)) {
1220 0 : iovec = iov_iter_iovec(&iter);
1221 0 : ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1222 : iovec.iov_len, behavior);
1223 0 : if (ret < 0)
1224 : break;
1225 0 : iov_iter_advance(&iter, iovec.iov_len);
1226 : }
1227 :
1228 0 : if (ret == 0)
1229 0 : ret = total_len - iov_iter_count(&iter);
1230 :
1231 0 : release_mm:
1232 0 : mmput(mm);
1233 0 : release_task:
1234 0 : put_task_struct(task);
1235 0 : put_pid:
1236 0 : put_pid(pid);
1237 0 : free_iov:
1238 0 : kfree(iov);
1239 0 : out:
1240 0 : return ret;
1241 : }
|