LCOV - code coverage report
Current view: top level - mm - memblock.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 416 644 64.6 %
Date: 2021-04-22 12:43:58 Functions: 41 67 61.2 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-or-later
       2             : /*
       3             :  * Procedures for maintaining information about logical memory blocks.
       4             :  *
       5             :  * Peter Bergner, IBM Corp.     June 2001.
       6             :  * Copyright (C) 2001 Peter Bergner.
       7             :  */
       8             : 
       9             : #include <linux/kernel.h>
      10             : #include <linux/slab.h>
      11             : #include <linux/init.h>
      12             : #include <linux/bitops.h>
      13             : #include <linux/poison.h>
      14             : #include <linux/pfn.h>
      15             : #include <linux/debugfs.h>
      16             : #include <linux/kmemleak.h>
      17             : #include <linux/seq_file.h>
      18             : #include <linux/memblock.h>
      19             : 
      20             : #include <asm/sections.h>
      21             : #include <linux/io.h>
      22             : 
      23             : #include "internal.h"
      24             : 
      25             : #define INIT_MEMBLOCK_REGIONS                   128
      26             : #define INIT_PHYSMEM_REGIONS                    4
      27             : 
      28             : #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
      29             : # define INIT_MEMBLOCK_RESERVED_REGIONS         INIT_MEMBLOCK_REGIONS
      30             : #endif
      31             : 
      32             : /**
      33             :  * DOC: memblock overview
      34             :  *
      35             :  * Memblock is a method of managing memory regions during the early
      36             :  * boot period when the usual kernel memory allocators are not up and
      37             :  * running.
      38             :  *
      39             :  * Memblock views the system memory as collections of contiguous
      40             :  * regions. There are several types of these collections:
      41             :  *
      42             :  * * ``memory`` - describes the physical memory available to the
      43             :  *   kernel; this may differ from the actual physical memory installed
      44             :  *   in the system, for instance when the memory is restricted with
      45             :  *   ``mem=`` command line parameter
      46             :  * * ``reserved`` - describes the regions that were allocated
      47             :  * * ``physmem`` - describes the actual physical memory available during
      48             :  *   boot regardless of the possible restrictions and memory hot(un)plug;
      49             :  *   the ``physmem`` type is only available on some architectures.
      50             :  *
      51             :  * Each region is represented by struct memblock_region that
      52             :  * defines the region extents, its attributes and NUMA node id on NUMA
      53             :  * systems. Every memory type is described by the struct memblock_type
      54             :  * which contains an array of memory regions along with
      55             :  * the allocator metadata. The "memory" and "reserved" types are nicely
      56             :  * wrapped with struct memblock. This structure is statically
      57             :  * initialized at build time. The region arrays are initially sized to
      58             :  * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
      59             :  * for "reserved". The region array for "physmem" is initially sized to
      60             :  * %INIT_PHYSMEM_REGIONS.
      61             :  * The memblock_allow_resize() enables automatic resizing of the region
      62             :  * arrays during addition of new regions. This feature should be used
      63             :  * with care so that memory allocated for the region array will not
      64             :  * overlap with areas that should be reserved, for example initrd.
      65             :  *
      66             :  * The early architecture setup should tell memblock what the physical
      67             :  * memory layout is by using memblock_add() or memblock_add_node()
      68             :  * functions. The first function does not assign the region to a NUMA
      69             :  * node and it is appropriate for UMA systems. Yet, it is possible to
      70             :  * use it on NUMA systems as well and assign the region to a NUMA node
      71             :  * later in the setup process using memblock_set_node(). The
      72             :  * memblock_add_node() performs such an assignment directly.
      73             :  *
      74             :  * Once memblock is setup the memory can be allocated using one of the
      75             :  * API variants:
      76             :  *
      77             :  * * memblock_phys_alloc*() - these functions return the **physical**
      78             :  *   address of the allocated memory
      79             :  * * memblock_alloc*() - these functions return the **virtual** address
      80             :  *   of the allocated memory.
      81             :  *
      82             :  * Note, that both API variants use implicit assumptions about allowed
      83             :  * memory ranges and the fallback methods. Consult the documentation
      84             :  * of memblock_alloc_internal() and memblock_alloc_range_nid()
      85             :  * functions for more elaborate description.
      86             :  *
      87             :  * As the system boot progresses, the architecture specific mem_init()
      88             :  * function frees all the memory to the buddy page allocator.
      89             :  *
      90             :  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
      91             :  * memblock data structures (except "physmem") will be discarded after the
      92             :  * system initialization completes.
      93             :  */
      94             : 
      95             : #ifndef CONFIG_NEED_MULTIPLE_NODES
      96             : struct pglist_data __refdata contig_page_data;
      97             : EXPORT_SYMBOL(contig_page_data);
      98             : #endif
      99             : 
     100             : unsigned long max_low_pfn;
     101             : unsigned long min_low_pfn;
     102             : unsigned long max_pfn;
     103             : unsigned long long max_possible_pfn;
     104             : 
     105             : static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
     106             : static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
     107             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
     108             : static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
     109             : #endif
     110             : 
     111             : struct memblock memblock __initdata_memblock = {
     112             :         .memory.regions         = memblock_memory_init_regions,
     113             :         .memory.cnt             = 1,    /* empty dummy entry */
     114             :         .memory.max             = INIT_MEMBLOCK_REGIONS,
     115             :         .memory.name            = "memory",
     116             : 
     117             :         .reserved.regions       = memblock_reserved_init_regions,
     118             :         .reserved.cnt           = 1,    /* empty dummy entry */
     119             :         .reserved.max           = INIT_MEMBLOCK_RESERVED_REGIONS,
     120             :         .reserved.name          = "reserved",
     121             : 
     122             :         .bottom_up              = false,
     123             :         .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
     124             : };
     125             : 
     126             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
     127             : struct memblock_type physmem = {
     128             :         .regions                = memblock_physmem_init_regions,
     129             :         .cnt                    = 1,    /* empty dummy entry */
     130             :         .max                    = INIT_PHYSMEM_REGIONS,
     131             :         .name                   = "physmem",
     132             : };
     133             : #endif
     134             : 
     135             : /*
     136             :  * keep a pointer to &memblock.memory in the text section to use it in
     137             :  * __next_mem_range() and its helpers.
     138             :  *  For architectures that do not keep memblock data after init, this
     139             :  * pointer will be reset to NULL at memblock_discard()
     140             :  */
     141             : static __refdata struct memblock_type *memblock_memory = &memblock.memory;
     142             : 
     143             : #define for_each_memblock_type(i, memblock_type, rgn)                   \
     144             :         for (i = 0, rgn = &memblock_type->regions[0];                    \
     145             :              i < memblock_type->cnt;                                      \
     146             :              i++, rgn = &memblock_type->regions[i])
     147             : 
     148             : #define memblock_dbg(fmt, ...)                                          \
     149             :         do {                                                            \
     150             :                 if (memblock_debug)                                     \
     151             :                         pr_info(fmt, ##__VA_ARGS__);                    \
     152             :         } while (0)
     153             : 
     154             : static int memblock_debug __initdata_memblock;
     155             : static bool system_has_some_mirror __initdata_memblock = false;
     156             : static int memblock_can_resize __initdata_memblock;
     157             : static int memblock_memory_in_slab __initdata_memblock = 0;
     158             : static int memblock_reserved_in_slab __initdata_memblock = 0;
     159             : 
     160         364 : static enum memblock_flags __init_memblock choose_memblock_flags(void)
     161             : {
     162         364 :         return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
     163             : }
     164             : 
     165             : /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
     166         392 : static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
     167             : {
     168         392 :         return *size = min(*size, PHYS_ADDR_MAX - base);
     169             : }
     170             : 
     171             : /*
     172             :  * Address comparison utilities
     173             :  */
     174           1 : static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
     175             :                                        phys_addr_t base2, phys_addr_t size2)
     176             : {
     177           1 :         return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
     178             : }
     179             : 
     180           1 : bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
     181             :                                         phys_addr_t base, phys_addr_t size)
     182             : {
     183           1 :         unsigned long i;
     184             : 
     185           1 :         for (i = 0; i < type->cnt; i++)
     186           1 :                 if (memblock_addrs_overlap(base, size, type->regions[i].base,
     187           1 :                                            type->regions[i].size))
     188             :                         break;
     189           1 :         return i < type->cnt;
     190             : }
     191             : 
     192             : /**
     193             :  * __memblock_find_range_bottom_up - find free area utility in bottom-up
     194             :  * @start: start of candidate range
     195             :  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
     196             :  *       %MEMBLOCK_ALLOC_ACCESSIBLE
     197             :  * @size: size of free area to find
     198             :  * @align: alignment of free area to find
     199             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     200             :  * @flags: pick from blocks based on memory attributes
     201             :  *
     202             :  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
     203             :  *
     204             :  * Return:
     205             :  * Found address on success, 0 on failure.
     206             :  */
     207             : static phys_addr_t __init_memblock
     208           0 : __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
     209             :                                 phys_addr_t size, phys_addr_t align, int nid,
     210             :                                 enum memblock_flags flags)
     211             : {
     212           0 :         phys_addr_t this_start, this_end, cand;
     213           0 :         u64 i;
     214             : 
     215           0 :         for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
     216           0 :                 this_start = clamp(this_start, start, end);
     217           0 :                 this_end = clamp(this_end, start, end);
     218             : 
     219           0 :                 cand = round_up(this_start, align);
     220           0 :                 if (cand < this_end && this_end - cand >= size)
     221           0 :                         return cand;
     222             :         }
     223             : 
     224             :         return 0;
     225             : }
     226             : 
     227             : /**
     228             :  * __memblock_find_range_top_down - find free area utility, in top-down
     229             :  * @start: start of candidate range
     230             :  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
     231             :  *       %MEMBLOCK_ALLOC_ACCESSIBLE
     232             :  * @size: size of free area to find
     233             :  * @align: alignment of free area to find
     234             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     235             :  * @flags: pick from blocks based on memory attributes
     236             :  *
     237             :  * Utility called from memblock_find_in_range_node(), find free area top-down.
     238             :  *
     239             :  * Return:
     240             :  * Found address on success, 0 on failure.
     241             :  */
     242             : static phys_addr_t __init_memblock
     243         364 : __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
     244             :                                phys_addr_t size, phys_addr_t align, int nid,
     245             :                                enum memblock_flags flags)
     246             : {
     247         364 :         phys_addr_t this_start, this_end, cand;
     248         364 :         u64 i;
     249             : 
     250         922 :         for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
     251             :                                         NULL) {
     252         922 :                 this_start = clamp(this_start, start, end);
     253         922 :                 this_end = clamp(this_end, start, end);
     254             : 
     255         922 :                 if (this_end < size)
     256           0 :                         continue;
     257             : 
     258         922 :                 cand = round_down(this_end - size, align);
     259         922 :                 if (cand >= this_start)
     260         364 :                         return cand;
     261             :         }
     262             : 
     263             :         return 0;
     264             : }
     265             : 
     266             : /**
     267             :  * memblock_find_in_range_node - find free area in given range and node
     268             :  * @size: size of free area to find
     269             :  * @align: alignment of free area to find
     270             :  * @start: start of candidate range
     271             :  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
     272             :  *       %MEMBLOCK_ALLOC_ACCESSIBLE
     273             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     274             :  * @flags: pick from blocks based on memory attributes
     275             :  *
     276             :  * Find @size free area aligned to @align in the specified range and node.
     277             :  *
     278             :  * Return:
     279             :  * Found address on success, 0 on failure.
     280             :  */
     281         364 : static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
     282             :                                         phys_addr_t align, phys_addr_t start,
     283             :                                         phys_addr_t end, int nid,
     284             :                                         enum memblock_flags flags)
     285             : {
     286             :         /* pump up @end */
     287         364 :         if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
     288             :             end == MEMBLOCK_ALLOC_KASAN)
     289         362 :                 end = memblock.current_limit;
     290             : 
     291             :         /* avoid allocating the first page */
     292         364 :         start = max_t(phys_addr_t, start, PAGE_SIZE);
     293         364 :         end = max(start, end);
     294             : 
     295         364 :         if (memblock_bottom_up())
     296           0 :                 return __memblock_find_range_bottom_up(start, end, size, align,
     297             :                                                        nid, flags);
     298             :         else
     299         364 :                 return __memblock_find_range_top_down(start, end, size, align,
     300             :                                                       nid, flags);
     301             : }
     302             : 
     303             : /**
     304             :  * memblock_find_in_range - find free area in given range
     305             :  * @start: start of candidate range
     306             :  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
     307             :  *       %MEMBLOCK_ALLOC_ACCESSIBLE
     308             :  * @size: size of free area to find
     309             :  * @align: alignment of free area to find
     310             :  *
     311             :  * Find @size free area aligned to @align in the specified range.
     312             :  *
     313             :  * Return:
     314             :  * Found address on success, 0 on failure.
     315             :  */
     316           2 : phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
     317             :                                         phys_addr_t end, phys_addr_t size,
     318             :                                         phys_addr_t align)
     319             : {
     320           2 :         phys_addr_t ret;
     321           2 :         enum memblock_flags flags = choose_memblock_flags();
     322             : 
     323           2 : again:
     324           2 :         ret = memblock_find_in_range_node(size, align, start, end,
     325             :                                             NUMA_NO_NODE, flags);
     326             : 
     327           2 :         if (!ret && (flags & MEMBLOCK_MIRROR)) {
     328           0 :                 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
     329             :                         &size);
     330           0 :                 flags &= ~MEMBLOCK_MIRROR;
     331           0 :                 goto again;
     332             :         }
     333             : 
     334           2 :         return ret;
     335             : }
     336             : 
     337           6 : static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
     338             : {
     339           6 :         type->total_size -= type->regions[r].size;
     340           6 :         memmove(&type->regions[r], &type->regions[r + 1],
     341           6 :                 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
     342           6 :         type->cnt--;
     343             : 
     344             :         /* Special case for empty arrays */
     345           6 :         if (type->cnt == 0) {
     346           0 :                 WARN_ON(type->total_size != 0);
     347           0 :                 type->cnt = 1;
     348           0 :                 type->regions[0].base = 0;
     349           0 :                 type->regions[0].size = 0;
     350           0 :                 type->regions[0].flags = 0;
     351           0 :                 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
     352             :         }
     353           6 : }
     354             : 
     355             : #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
     356             : /**
     357             :  * memblock_discard - discard memory and reserved arrays if they were allocated
     358             :  */
     359           1 : void __init memblock_discard(void)
     360             : {
     361           1 :         phys_addr_t addr, size;
     362             : 
     363           1 :         if (memblock.reserved.regions != memblock_reserved_init_regions) {
     364           0 :                 addr = __pa(memblock.reserved.regions);
     365           0 :                 size = PAGE_ALIGN(sizeof(struct memblock_region) *
     366             :                                   memblock.reserved.max);
     367           0 :                 __memblock_free_late(addr, size);
     368             :         }
     369             : 
     370           1 :         if (memblock.memory.regions != memblock_memory_init_regions) {
     371           0 :                 addr = __pa(memblock.memory.regions);
     372           0 :                 size = PAGE_ALIGN(sizeof(struct memblock_region) *
     373             :                                   memblock.memory.max);
     374           0 :                 __memblock_free_late(addr, size);
     375             :         }
     376             : 
     377           1 :         memblock_memory = NULL;
     378           1 : }
     379             : #endif
     380             : 
     381             : /**
     382             :  * memblock_double_array - double the size of the memblock regions array
     383             :  * @type: memblock type of the regions array being doubled
     384             :  * @new_area_start: starting address of memory range to avoid overlap with
     385             :  * @new_area_size: size of memory range to avoid overlap with
     386             :  *
     387             :  * Double the size of the @type regions array. If memblock is being used to
     388             :  * allocate memory for a new reserved regions array and there is a previously
     389             :  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
     390             :  * waiting to be reserved, ensure the memory used by the new array does
     391             :  * not overlap.
     392             :  *
     393             :  * Return:
     394             :  * 0 on success, -1 on failure.
     395             :  */
     396           0 : static int __init_memblock memblock_double_array(struct memblock_type *type,
     397             :                                                 phys_addr_t new_area_start,
     398             :                                                 phys_addr_t new_area_size)
     399             : {
     400           0 :         struct memblock_region *new_array, *old_array;
     401           0 :         phys_addr_t old_alloc_size, new_alloc_size;
     402           0 :         phys_addr_t old_size, new_size, addr, new_end;
     403           0 :         int use_slab = slab_is_available();
     404           0 :         int *in_slab;
     405             : 
     406             :         /* We don't allow resizing until we know about the reserved regions
     407             :          * of memory that aren't suitable for allocation
     408             :          */
     409           0 :         if (!memblock_can_resize)
     410             :                 return -1;
     411             : 
     412             :         /* Calculate new doubled size */
     413           0 :         old_size = type->max * sizeof(struct memblock_region);
     414           0 :         new_size = old_size << 1;
     415             :         /*
     416             :          * We need to allocated new one align to PAGE_SIZE,
     417             :          *   so we can free them completely later.
     418             :          */
     419           0 :         old_alloc_size = PAGE_ALIGN(old_size);
     420           0 :         new_alloc_size = PAGE_ALIGN(new_size);
     421             : 
     422             :         /* Retrieve the slab flag */
     423           0 :         if (type == &memblock.memory)
     424             :                 in_slab = &memblock_memory_in_slab;
     425             :         else
     426           0 :                 in_slab = &memblock_reserved_in_slab;
     427             : 
     428             :         /* Try to find some space for it */
     429           0 :         if (use_slab) {
     430           0 :                 new_array = kmalloc(new_size, GFP_KERNEL);
     431           0 :                 addr = new_array ? __pa(new_array) : 0;
     432             :         } else {
     433             :                 /* only exclude range when trying to double reserved.regions */
     434           0 :                 if (type != &memblock.reserved)
     435           0 :                         new_area_start = new_area_size = 0;
     436             : 
     437           0 :                 addr = memblock_find_in_range(new_area_start + new_area_size,
     438             :                                                 memblock.current_limit,
     439             :                                                 new_alloc_size, PAGE_SIZE);
     440           0 :                 if (!addr && new_area_size)
     441           0 :                         addr = memblock_find_in_range(0,
     442           0 :                                 min(new_area_start, memblock.current_limit),
     443             :                                 new_alloc_size, PAGE_SIZE);
     444             : 
     445           0 :                 new_array = addr ? __va(addr) : NULL;
     446             :         }
     447           0 :         if (!addr) {
     448           0 :                 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
     449             :                        type->name, type->max, type->max * 2);
     450           0 :                 return -1;
     451             :         }
     452             : 
     453           0 :         new_end = addr + new_size - 1;
     454           0 :         memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
     455             :                         type->name, type->max * 2, &addr, &new_end);
     456             : 
     457             :         /*
     458             :          * Found space, we now need to move the array over before we add the
     459             :          * reserved region since it may be our reserved array itself that is
     460             :          * full.
     461             :          */
     462           0 :         memcpy(new_array, type->regions, old_size);
     463           0 :         memset(new_array + type->max, 0, old_size);
     464           0 :         old_array = type->regions;
     465           0 :         type->regions = new_array;
     466           0 :         type->max <<= 1;
     467             : 
     468             :         /* Free old array. We needn't free it if the array is the static one */
     469           0 :         if (*in_slab)
     470           0 :                 kfree(old_array);
     471           0 :         else if (old_array != memblock_memory_init_regions &&
     472             :                  old_array != memblock_reserved_init_regions)
     473           0 :                 memblock_free(__pa(old_array), old_alloc_size);
     474             : 
     475             :         /*
     476             :          * Reserve the new array if that comes from the memblock.  Otherwise, we
     477             :          * needn't do it
     478             :          */
     479           0 :         if (!use_slab)
     480           0 :                 BUG_ON(memblock_reserve(addr, new_alloc_size));
     481             : 
     482             :         /* Update slab flag */
     483           0 :         *in_slab = use_slab;
     484             : 
     485           0 :         return 0;
     486             : }
     487             : 
     488             : /**
     489             :  * memblock_merge_regions - merge neighboring compatible regions
     490             :  * @type: memblock type to scan
     491             :  *
     492             :  * Scan @type and merge neighboring compatible regions.
     493             :  */
     494         377 : static void __init_memblock memblock_merge_regions(struct memblock_type *type)
     495             : {
     496         377 :         int i = 0;
     497             : 
     498             :         /* cnt never goes below 1 */
     499        2764 :         while (i < type->cnt - 1) {
     500        2387 :                 struct memblock_region *this = &type->regions[i];
     501        2387 :                 struct memblock_region *next = &type->regions[i + 1];
     502             : 
     503        2387 :                 if (this->base + this->size != next->base ||
     504         355 :                     memblock_get_region_node(this) !=
     505         355 :                     memblock_get_region_node(next) ||
     506         355 :                     this->flags != next->flags) {
     507        2032 :                         BUG_ON(this->base + this->size > next->base);
     508        2032 :                         i++;
     509        2032 :                         continue;
     510             :                 }
     511             : 
     512         355 :                 this->size += next->size;
     513             :                 /* move forward from next + 1, index of which is i + 2 */
     514         355 :                 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
     515         355 :                 type->cnt--;
     516             :         }
     517         377 : }
     518             : 
     519             : /**
     520             :  * memblock_insert_region - insert new memblock region
     521             :  * @type:       memblock type to insert into
     522             :  * @idx:        index for the insertion point
     523             :  * @base:       base address of the new region
     524             :  * @size:       size of the new region
     525             :  * @nid:        node id of the new region
     526             :  * @flags:      flags of the new region
     527             :  *
     528             :  * Insert new memblock region [@base, @base + @size) into @type at @idx.
     529             :  * @type must already have extra room to accommodate the new region.
     530             :  */
     531         381 : static void __init_memblock memblock_insert_region(struct memblock_type *type,
     532             :                                                    int idx, phys_addr_t base,
     533             :                                                    phys_addr_t size,
     534             :                                                    int nid,
     535             :                                                    enum memblock_flags flags)
     536             : {
     537         381 :         struct memblock_region *rgn = &type->regions[idx];
     538             : 
     539         381 :         BUG_ON(type->cnt >= type->max);
     540         381 :         memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
     541         381 :         rgn->base = base;
     542         381 :         rgn->size = size;
     543         381 :         rgn->flags = flags;
     544         381 :         memblock_set_region_node(rgn, nid);
     545         381 :         type->cnt++;
     546         381 :         type->total_size += size;
     547         381 : }
     548             : 
     549             : /**
     550             :  * memblock_add_range - add new memblock region
     551             :  * @type: memblock type to add new region into
     552             :  * @base: base address of the new region
     553             :  * @size: size of the new region
     554             :  * @nid: nid of the new region
     555             :  * @flags: flags of the new region
     556             :  *
     557             :  * Add new memblock region [@base, @base + @size) into @type.  The new region
     558             :  * is allowed to overlap with existing ones - overlaps don't affect already
     559             :  * existing regions.  @type is guaranteed to be minimal (all neighbouring
     560             :  * compatible regions are merged) after the addition.
     561             :  *
     562             :  * Return:
     563             :  * 0 on success, -errno on failure.
     564             :  */
     565         372 : static int __init_memblock memblock_add_range(struct memblock_type *type,
     566             :                                 phys_addr_t base, phys_addr_t size,
     567             :                                 int nid, enum memblock_flags flags)
     568             : {
     569         372 :         bool insert = false;
     570         372 :         phys_addr_t obase = base;
     571         372 :         phys_addr_t end = base + memblock_cap_size(base, &size);
     572         372 :         int idx, nr_new;
     573         372 :         struct memblock_region *rgn;
     574             : 
     575         372 :         if (!size)
     576             :                 return 0;
     577             : 
     578             :         /* special case for empty array */
     579         372 :         if (type->regions[0].size == 0) {
     580           4 :                 WARN_ON(type->cnt != 1 || type->total_size);
     581           2 :                 type->regions[0].base = base;
     582           2 :                 type->regions[0].size = size;
     583           2 :                 type->regions[0].flags = flags;
     584           2 :                 memblock_set_region_node(&type->regions[0], nid);
     585           2 :                 type->total_size = size;
     586           2 :                 return 0;
     587             :         }
     588         370 : repeat:
     589             :         /*
     590             :          * The following is executed twice.  Once with %false @insert and
     591             :          * then with %true.  The first counts the number of regions needed
     592             :          * to accommodate the new area.  The second actually inserts them.
     593             :          */
     594         740 :         base = obase;
     595         740 :         nr_new = 0;
     596             : 
     597        3644 :         for_each_memblock_type(idx, type, rgn) {
     598        3638 :                 phys_addr_t rbase = rgn->base;
     599        3638 :                 phys_addr_t rend = rbase + rgn->size;
     600             : 
     601        3638 :                 if (rbase >= end)
     602             :                         break;
     603        2904 :                 if (rend <= base)
     604        2900 :                         continue;
     605             :                 /*
     606             :                  * @rgn overlaps.  If it separates the lower part of new
     607             :                  * area, insert that portion.
     608             :                  */
     609           4 :                 if (rbase > base) {
     610             : #ifdef CONFIG_NEED_MULTIPLE_NODES
     611           2 :                         WARN_ON(nid != memblock_get_region_node(rgn));
     612             : #endif
     613           2 :                         WARN_ON(flags != rgn->flags);
     614           2 :                         nr_new++;
     615           2 :                         if (insert)
     616           1 :                                 memblock_insert_region(type, idx++, base,
     617             :                                                        rbase - base, nid,
     618             :                                                        flags);
     619             :                 }
     620             :                 /* area below @rend is dealt with, forget about it */
     621           4 :                 base = min(rend, end);
     622             :         }
     623             : 
     624             :         /* insert the remaining portion */
     625         740 :         if (base < end) {
     626         740 :                 nr_new++;
     627         740 :                 if (insert)
     628         370 :                         memblock_insert_region(type, idx, base, end - base,
     629             :                                                nid, flags);
     630             :         }
     631             : 
     632         740 :         if (!nr_new)
     633             :                 return 0;
     634             : 
     635             :         /*
     636             :          * If this was the first round, resize array and repeat for actual
     637             :          * insertions; otherwise, merge and return.
     638             :          */
     639         740 :         if (!insert) {
     640         370 :                 while (type->cnt + nr_new > type->max)
     641           0 :                         if (memblock_double_array(type, obase, size) < 0)
     642             :                                 return -ENOMEM;
     643         370 :                 insert = true;
     644         370 :                 goto repeat;
     645             :         } else {
     646         370 :                 memblock_merge_regions(type);
     647         370 :                 return 0;
     648             :         }
     649             : }
     650             : 
     651             : /**
     652             :  * memblock_add_node - add new memblock region within a NUMA node
     653             :  * @base: base address of the new region
     654             :  * @size: size of the new region
     655             :  * @nid: nid of the new region
     656             :  *
     657             :  * Add new memblock region [@base, @base + @size) to the "memory"
     658             :  * type. See memblock_add_range() description for mode details
     659             :  *
     660             :  * Return:
     661             :  * 0 on success, -errno on failure.
     662             :  */
     663           0 : int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
     664             :                                        int nid)
     665             : {
     666           0 :         return memblock_add_range(&memblock.memory, base, size, nid, 0);
     667             : }
     668             : 
     669             : /**
     670             :  * memblock_add - add new memblock region
     671             :  * @base: base address of the new region
     672             :  * @size: size of the new region
     673             :  *
     674             :  * Add new memblock region [@base, @base + @size) to the "memory"
     675             :  * type. See memblock_add_range() description for mode details
     676             :  *
     677             :  * Return:
     678             :  * 0 on success, -errno on failure.
     679             :  */
     680           2 : int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
     681             : {
     682           2 :         phys_addr_t end = base + size - 1;
     683             : 
     684           2 :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     685             :                      &base, &end, (void *)_RET_IP_);
     686             : 
     687           2 :         return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
     688             : }
     689             : 
     690             : /**
     691             :  * memblock_isolate_range - isolate given range into disjoint memblocks
     692             :  * @type: memblock type to isolate range for
     693             :  * @base: base of range to isolate
     694             :  * @size: size of range to isolate
     695             :  * @start_rgn: out parameter for the start of isolated region
     696             :  * @end_rgn: out parameter for the end of isolated region
     697             :  *
     698             :  * Walk @type and ensure that regions don't cross the boundaries defined by
     699             :  * [@base, @base + @size).  Crossing regions are split at the boundaries,
     700             :  * which may create at most two more regions.  The index of the first
     701             :  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
     702             :  *
     703             :  * Return:
     704             :  * 0 on success, -errno on failure.
     705             :  */
     706          13 : static int __init_memblock memblock_isolate_range(struct memblock_type *type,
     707             :                                         phys_addr_t base, phys_addr_t size,
     708             :                                         int *start_rgn, int *end_rgn)
     709             : {
     710          13 :         phys_addr_t end = base + memblock_cap_size(base, &size);
     711          13 :         int idx;
     712          13 :         struct memblock_region *rgn;
     713             : 
     714          13 :         *start_rgn = *end_rgn = 0;
     715             : 
     716          13 :         if (!size)
     717             :                 return 0;
     718             : 
     719             :         /* we'll create at most two more regions */
     720          13 :         while (type->cnt + 2 > type->max)
     721           0 :                 if (memblock_double_array(type, base, size) < 0)
     722             :                         return -ENOMEM;
     723             : 
     724          79 :         for_each_memblock_type(idx, type, rgn) {
     725          72 :                 phys_addr_t rbase = rgn->base;
     726          72 :                 phys_addr_t rend = rbase + rgn->size;
     727             : 
     728          72 :                 if (rbase >= end)
     729             :                         break;
     730          66 :                 if (rend <= base)
     731          34 :                         continue;
     732             : 
     733          32 :                 if (rbase < base) {
     734             :                         /*
     735             :                          * @rgn intersects from below.  Split and continue
     736             :                          * to process the next region - the new top half.
     737             :                          */
     738           5 :                         rgn->base = base;
     739           5 :                         rgn->size -= base - rbase;
     740           5 :                         type->total_size -= base - rbase;
     741           5 :                         memblock_insert_region(type, idx, rbase, base - rbase,
     742             :                                                memblock_get_region_node(rgn),
     743             :                                                rgn->flags);
     744          27 :                 } else if (rend > end) {
     745             :                         /*
     746             :                          * @rgn intersects from above.  Split and redo the
     747             :                          * current region - the new bottom half.
     748             :                          */
     749           5 :                         rgn->base = end;
     750           5 :                         rgn->size -= end - rbase;
     751           5 :                         type->total_size -= end - rbase;
     752           5 :                         memblock_insert_region(type, idx--, rbase, end - rbase,
     753             :                                                memblock_get_region_node(rgn),
     754             :                                                rgn->flags);
     755             :                 } else {
     756             :                         /* @rgn is fully contained, record it */
     757          22 :                         if (!*end_rgn)
     758          13 :                                 *start_rgn = idx;
     759          22 :                         *end_rgn = idx + 1;
     760             :                 }
     761             :         }
     762             : 
     763             :         return 0;
     764             : }
     765             : 
     766           6 : static int __init_memblock memblock_remove_range(struct memblock_type *type,
     767             :                                           phys_addr_t base, phys_addr_t size)
     768             : {
     769           6 :         int start_rgn, end_rgn;
     770           6 :         int i, ret;
     771             : 
     772           6 :         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
     773           6 :         if (ret)
     774             :                 return ret;
     775             : 
     776          12 :         for (i = end_rgn - 1; i >= start_rgn; i--)
     777           6 :                 memblock_remove_region(type, i);
     778             :         return 0;
     779             : }
     780             : 
     781           0 : int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
     782             : {
     783           0 :         phys_addr_t end = base + size - 1;
     784             : 
     785           0 :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     786             :                      &base, &end, (void *)_RET_IP_);
     787             : 
     788           0 :         return memblock_remove_range(&memblock.memory, base, size);
     789             : }
     790             : 
     791             : /**
     792             :  * memblock_free - free boot memory block
     793             :  * @base: phys starting address of the  boot memory block
     794             :  * @size: size of the boot memory block in bytes
     795             :  *
     796             :  * Free boot memory block previously allocated by memblock_alloc_xx() API.
     797             :  * The freeing memory will not be released to the buddy allocator.
     798             :  */
     799           6 : int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
     800             : {
     801           6 :         phys_addr_t end = base + size - 1;
     802             : 
     803           6 :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     804             :                      &base, &end, (void *)_RET_IP_);
     805             : 
     806           6 :         kmemleak_free_part_phys(base, size);
     807           6 :         return memblock_remove_range(&memblock.reserved, base, size);
     808             : }
     809             : 
     810         370 : int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
     811             : {
     812         370 :         phys_addr_t end = base + size - 1;
     813             : 
     814         370 :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     815             :                      &base, &end, (void *)_RET_IP_);
     816             : 
     817         370 :         return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
     818             : }
     819             : 
     820             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
     821             : int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
     822             : {
     823             :         phys_addr_t end = base + size - 1;
     824             : 
     825             :         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
     826             :                      &base, &end, (void *)_RET_IP_);
     827             : 
     828             :         return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
     829             : }
     830             : #endif
     831             : 
     832             : /**
     833             :  * memblock_setclr_flag - set or clear flag for a memory region
     834             :  * @base: base address of the region
     835             :  * @size: size of the region
     836             :  * @set: set or clear the flag
     837             :  * @flag: the flag to update
     838             :  *
     839             :  * This function isolates region [@base, @base + @size), and sets/clears flag
     840             :  *
     841             :  * Return: 0 on success, -errno on failure.
     842             :  */
     843           3 : static int __init_memblock memblock_setclr_flag(phys_addr_t base,
     844             :                                 phys_addr_t size, int set, int flag)
     845             : {
     846           3 :         struct memblock_type *type = &memblock.memory;
     847           3 :         int i, ret, start_rgn, end_rgn;
     848             : 
     849           3 :         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
     850           3 :         if (ret)
     851             :                 return ret;
     852             : 
     853           9 :         for (i = start_rgn; i < end_rgn; i++) {
     854           6 :                 struct memblock_region *r = &type->regions[i];
     855             : 
     856           6 :                 if (set)
     857           0 :                         r->flags |= flag;
     858             :                 else
     859           6 :                         r->flags &= ~flag;
     860             :         }
     861             : 
     862           3 :         memblock_merge_regions(type);
     863           3 :         return 0;
     864             : }
     865             : 
     866             : /**
     867             :  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
     868             :  * @base: the base phys addr of the region
     869             :  * @size: the size of the region
     870             :  *
     871             :  * Return: 0 on success, -errno on failure.
     872             :  */
     873           0 : int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
     874             : {
     875           0 :         return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
     876             : }
     877             : 
     878             : /**
     879             :  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
     880             :  * @base: the base phys addr of the region
     881             :  * @size: the size of the region
     882             :  *
     883             :  * Return: 0 on success, -errno on failure.
     884             :  */
     885           3 : int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
     886             : {
     887           3 :         return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
     888             : }
     889             : 
     890             : /**
     891             :  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
     892             :  * @base: the base phys addr of the region
     893             :  * @size: the size of the region
     894             :  *
     895             :  * Return: 0 on success, -errno on failure.
     896             :  */
     897           0 : int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
     898             : {
     899           0 :         system_has_some_mirror = true;
     900             : 
     901           0 :         return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
     902             : }
     903             : 
     904             : /**
     905             :  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
     906             :  * @base: the base phys addr of the region
     907             :  * @size: the size of the region
     908             :  *
     909             :  * Return: 0 on success, -errno on failure.
     910             :  */
     911           0 : int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
     912             : {
     913           0 :         return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
     914             : }
     915             : 
     916             : /**
     917             :  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
     918             :  * @base: the base phys addr of the region
     919             :  * @size: the size of the region
     920             :  *
     921             :  * Return: 0 on success, -errno on failure.
     922             :  */
     923           0 : int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
     924             : {
     925           0 :         return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
     926             : }
     927             : 
     928         968 : static bool should_skip_region(struct memblock_type *type,
     929             :                                struct memblock_region *m,
     930             :                                int nid, int flags)
     931             : {
     932         968 :         int m_nid = memblock_get_region_node(m);
     933             : 
     934             :         /* we never skip regions when iterating memblock.reserved or physmem */
     935         968 :         if (type != memblock_memory)
     936             :                 return false;
     937             : 
     938             :         /* only memory regions are associated with nodes, check it */
     939         948 :         if (nid != NUMA_NO_NODE && nid != m_nid)
     940             :                 return true;
     941             : 
     942             :         /* skip hotpluggable memory regions if needed */
     943         948 :         if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
     944             :                 return true;
     945             : 
     946             :         /* if we want mirror memory skip non-mirror memory regions */
     947         948 :         if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
     948             :                 return true;
     949             : 
     950             :         /* skip nomap memory unless we were asked for it explicitly */
     951         948 :         if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
     952           0 :                 return true;
     953             : 
     954             :         return false;
     955             : }
     956             : 
     957             : /**
     958             :  * __next_mem_range - next function for for_each_free_mem_range() etc.
     959             :  * @idx: pointer to u64 loop variable
     960             :  * @nid: node selector, %NUMA_NO_NODE for all nodes
     961             :  * @flags: pick from blocks based on memory attributes
     962             :  * @type_a: pointer to memblock_type from where the range is taken
     963             :  * @type_b: pointer to memblock_type which excludes memory from being taken
     964             :  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
     965             :  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
     966             :  * @out_nid: ptr to int for nid of the range, can be %NULL
     967             :  *
     968             :  * Find the first area from *@idx which matches @nid, fill the out
     969             :  * parameters, and update *@idx for the next iteration.  The lower 32bit of
     970             :  * *@idx contains index into type_a and the upper 32bit indexes the
     971             :  * areas before each region in type_b.  For example, if type_b regions
     972             :  * look like the following,
     973             :  *
     974             :  *      0:[0-16), 1:[32-48), 2:[128-130)
     975             :  *
     976             :  * The upper 32bit indexes the following regions.
     977             :  *
     978             :  *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
     979             :  *
     980             :  * As both region arrays are sorted, the function advances the two indices
     981             :  * in lockstep and returns each intersection.
     982             :  */
     983          45 : void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
     984             :                       struct memblock_type *type_a,
     985             :                       struct memblock_type *type_b, phys_addr_t *out_start,
     986             :                       phys_addr_t *out_end, int *out_nid)
     987             : {
     988          45 :         int idx_a = *idx & 0xffffffff;
     989          45 :         int idx_b = *idx >> 32;
     990             : 
     991          45 :         if (WARN_ONCE(nid == MAX_NUMNODES,
     992             :         "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
     993           0 :                 nid = NUMA_NO_NODE;
     994             : 
     995          49 :         for (; idx_a < type_a->cnt; idx_a++) {
     996          46 :                 struct memblock_region *m = &type_a->regions[idx_a];
     997             : 
     998          46 :                 phys_addr_t m_start = m->base;
     999          46 :                 phys_addr_t m_end = m->base + m->size;
    1000          46 :                 int         m_nid = memblock_get_region_node(m);
    1001             : 
    1002          46 :                 if (should_skip_region(type_a, m, nid, flags))
    1003           0 :                         continue;
    1004             : 
    1005          46 :                 if (!type_b) {
    1006          20 :                         if (out_start)
    1007          20 :                                 *out_start = m_start;
    1008          20 :                         if (out_end)
    1009          20 :                                 *out_end = m_end;
    1010          20 :                         if (out_nid)
    1011           0 :                                 *out_nid = m_nid;
    1012          20 :                         idx_a++;
    1013          20 :                         *idx = (u32)idx_a | (u64)idx_b << 32;
    1014          20 :                         return;
    1015             :                 }
    1016             : 
    1017             :                 /* scan areas before each reservation */
    1018          28 :                 for (; idx_b < type_b->cnt + 1; idx_b++) {
    1019          28 :                         struct memblock_region *r;
    1020          28 :                         phys_addr_t r_start;
    1021          28 :                         phys_addr_t r_end;
    1022             : 
    1023          28 :                         r = &type_b->regions[idx_b];
    1024          28 :                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
    1025          56 :                         r_end = idx_b < type_b->cnt ?
    1026          28 :                                 r->base : PHYS_ADDR_MAX;
    1027             : 
    1028             :                         /*
    1029             :                          * if idx_b advanced past idx_a,
    1030             :                          * break out to advance idx_a
    1031             :                          */
    1032          28 :                         if (r_start >= m_end)
    1033             :                                 break;
    1034             :                         /* if the two regions intersect, we're done */
    1035          24 :                         if (m_start < r_end) {
    1036          22 :                                 if (out_start)
    1037          22 :                                         *out_start =
    1038          22 :                                                 max(m_start, r_start);
    1039          22 :                                 if (out_end)
    1040          22 :                                         *out_end = min(m_end, r_end);
    1041          22 :                                 if (out_nid)
    1042           0 :                                         *out_nid = m_nid;
    1043             :                                 /*
    1044             :                                  * The region which ends first is
    1045             :                                  * advanced for the next iteration.
    1046             :                                  */
    1047          22 :                                 if (m_end <= r_end)
    1048           0 :                                         idx_a++;
    1049             :                                 else
    1050          22 :                                         idx_b++;
    1051          22 :                                 *idx = (u32)idx_a | (u64)idx_b << 32;
    1052          22 :                                 return;
    1053             :                         }
    1054             :                 }
    1055             :         }
    1056             : 
    1057             :         /* signal end of iteration */
    1058           3 :         *idx = ULLONG_MAX;
    1059             : }
    1060             : 
    1061             : /**
    1062             :  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
    1063             :  *
    1064             :  * @idx: pointer to u64 loop variable
    1065             :  * @nid: node selector, %NUMA_NO_NODE for all nodes
    1066             :  * @flags: pick from blocks based on memory attributes
    1067             :  * @type_a: pointer to memblock_type from where the range is taken
    1068             :  * @type_b: pointer to memblock_type which excludes memory from being taken
    1069             :  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
    1070             :  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
    1071             :  * @out_nid: ptr to int for nid of the range, can be %NULL
    1072             :  *
    1073             :  * Finds the next range from type_a which is not marked as unsuitable
    1074             :  * in type_b.
    1075             :  *
    1076             :  * Reverse of __next_mem_range().
    1077             :  */
    1078         922 : void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
    1079             :                                           enum memblock_flags flags,
    1080             :                                           struct memblock_type *type_a,
    1081             :                                           struct memblock_type *type_b,
    1082             :                                           phys_addr_t *out_start,
    1083             :                                           phys_addr_t *out_end, int *out_nid)
    1084             : {
    1085         922 :         int idx_a = *idx & 0xffffffff;
    1086         922 :         int idx_b = *idx >> 32;
    1087             : 
    1088         922 :         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    1089           0 :                 nid = NUMA_NO_NODE;
    1090             : 
    1091         922 :         if (*idx == (u64)ULLONG_MAX) {
    1092         364 :                 idx_a = type_a->cnt - 1;
    1093         364 :                 if (type_b != NULL)
    1094         364 :                         idx_b = type_b->cnt;
    1095             :                 else
    1096             :                         idx_b = 0;
    1097             :         }
    1098             : 
    1099         922 :         for (; idx_a >= 0; idx_a--) {
    1100         922 :                 struct memblock_region *m = &type_a->regions[idx_a];
    1101             : 
    1102         922 :                 phys_addr_t m_start = m->base;
    1103         922 :                 phys_addr_t m_end = m->base + m->size;
    1104         922 :                 int m_nid = memblock_get_region_node(m);
    1105             : 
    1106         922 :                 if (should_skip_region(type_a, m, nid, flags))
    1107           0 :                         continue;
    1108             : 
    1109         922 :                 if (!type_b) {
    1110           0 :                         if (out_start)
    1111           0 :                                 *out_start = m_start;
    1112           0 :                         if (out_end)
    1113           0 :                                 *out_end = m_end;
    1114           0 :                         if (out_nid)
    1115           0 :                                 *out_nid = m_nid;
    1116           0 :                         idx_a--;
    1117           0 :                         *idx = (u32)idx_a | (u64)idx_b << 32;
    1118           0 :                         return;
    1119             :                 }
    1120             : 
    1121             :                 /* scan areas before each reservation */
    1122        1284 :                 for (; idx_b >= 0; idx_b--) {
    1123        1284 :                         struct memblock_region *r;
    1124        1284 :                         phys_addr_t r_start;
    1125        1284 :                         phys_addr_t r_end;
    1126             : 
    1127        1284 :                         r = &type_b->regions[idx_b];
    1128        1284 :                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
    1129        2568 :                         r_end = idx_b < type_b->cnt ?
    1130        1284 :                                 r->base : PHYS_ADDR_MAX;
    1131             :                         /*
    1132             :                          * if idx_b advanced past idx_a,
    1133             :                          * break out to advance idx_a
    1134             :                          */
    1135             : 
    1136        1284 :                         if (r_end <= m_start)
    1137             :                                 break;
    1138             :                         /* if the two regions intersect, we're done */
    1139        1284 :                         if (m_end > r_start) {
    1140         922 :                                 if (out_start)
    1141         922 :                                         *out_start = max(m_start, r_start);
    1142         922 :                                 if (out_end)
    1143         922 :                                         *out_end = min(m_end, r_end);
    1144         922 :                                 if (out_nid)
    1145           0 :                                         *out_nid = m_nid;
    1146         922 :                                 if (m_start >= r_start)
    1147           2 :                                         idx_a--;
    1148             :                                 else
    1149         920 :                                         idx_b--;
    1150         922 :                                 *idx = (u32)idx_a | (u64)idx_b << 32;
    1151         922 :                                 return;
    1152             :                         }
    1153             :                 }
    1154             :         }
    1155             :         /* signal end of iteration */
    1156           0 :         *idx = ULLONG_MAX;
    1157             : }
    1158             : 
    1159             : /*
    1160             :  * Common iterator interface used to define for_each_mem_pfn_range().
    1161             :  */
    1162          42 : void __init_memblock __next_mem_pfn_range(int *idx, int nid,
    1163             :                                 unsigned long *out_start_pfn,
    1164             :                                 unsigned long *out_end_pfn, int *out_nid)
    1165             : {
    1166          42 :         struct memblock_type *type = &memblock.memory;
    1167          42 :         struct memblock_region *r;
    1168          42 :         int r_nid;
    1169             : 
    1170          42 :         while (++*idx < type->cnt) {
    1171          28 :                 r = &type->regions[*idx];
    1172          28 :                 r_nid = memblock_get_region_node(r);
    1173             : 
    1174          28 :                 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
    1175           0 :                         continue;
    1176          28 :                 if (nid == MAX_NUMNODES || nid == r_nid)
    1177             :                         break;
    1178             :         }
    1179          42 :         if (*idx >= type->cnt) {
    1180          14 :                 *idx = -1;
    1181          14 :                 return;
    1182             :         }
    1183             : 
    1184          28 :         if (out_start_pfn)
    1185          28 :                 *out_start_pfn = PFN_UP(r->base);
    1186          28 :         if (out_end_pfn)
    1187          28 :                 *out_end_pfn = PFN_DOWN(r->base + r->size);
    1188          28 :         if (out_nid)
    1189           6 :                 *out_nid = r_nid;
    1190             : }
    1191             : 
    1192             : /**
    1193             :  * memblock_set_node - set node ID on memblock regions
    1194             :  * @base: base of area to set node ID for
    1195             :  * @size: size of area to set node ID for
    1196             :  * @type: memblock type to set node ID for
    1197             :  * @nid: node ID to set
    1198             :  *
    1199             :  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
    1200             :  * Regions which cross the area boundaries are split as necessary.
    1201             :  *
    1202             :  * Return:
    1203             :  * 0 on success, -errno on failure.
    1204             :  */
    1205           4 : int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
    1206             :                                       struct memblock_type *type, int nid)
    1207             : {
    1208             : #ifdef CONFIG_NEED_MULTIPLE_NODES
    1209           4 :         int start_rgn, end_rgn;
    1210           4 :         int i, ret;
    1211             : 
    1212           4 :         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
    1213           4 :         if (ret)
    1214             :                 return ret;
    1215             : 
    1216          14 :         for (i = start_rgn; i < end_rgn; i++)
    1217          10 :                 memblock_set_region_node(&type->regions[i], nid);
    1218             : 
    1219           4 :         memblock_merge_regions(type);
    1220             : #endif
    1221           4 :         return 0;
    1222             : }
    1223             : 
    1224             : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    1225             : /**
    1226             :  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
    1227             :  *
    1228             :  * @idx: pointer to u64 loop variable
    1229             :  * @zone: zone in which all of the memory blocks reside
    1230             :  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
    1231             :  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
    1232             :  *
    1233             :  * This function is meant to be a zone/pfn specific wrapper for the
    1234             :  * for_each_mem_range type iterators. Specifically they are used in the
    1235             :  * deferred memory init routines and as such we were duplicating much of
    1236             :  * this logic throughout the code. So instead of having it in multiple
    1237             :  * locations it seemed like it would make more sense to centralize this to
    1238             :  * one new iterator that does everything they need.
    1239             :  */
    1240             : void __init_memblock
    1241             : __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
    1242             :                              unsigned long *out_spfn, unsigned long *out_epfn)
    1243             : {
    1244             :         int zone_nid = zone_to_nid(zone);
    1245             :         phys_addr_t spa, epa;
    1246             :         int nid;
    1247             : 
    1248             :         __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
    1249             :                          &memblock.memory, &memblock.reserved,
    1250             :                          &spa, &epa, &nid);
    1251             : 
    1252             :         while (*idx != U64_MAX) {
    1253             :                 unsigned long epfn = PFN_DOWN(epa);
    1254             :                 unsigned long spfn = PFN_UP(spa);
    1255             : 
    1256             :                 /*
    1257             :                  * Verify the end is at least past the start of the zone and
    1258             :                  * that we have at least one PFN to initialize.
    1259             :                  */
    1260             :                 if (zone->zone_start_pfn < epfn && spfn < epfn) {
    1261             :                         /* if we went too far just stop searching */
    1262             :                         if (zone_end_pfn(zone) <= spfn) {
    1263             :                                 *idx = U64_MAX;
    1264             :                                 break;
    1265             :                         }
    1266             : 
    1267             :                         if (out_spfn)
    1268             :                                 *out_spfn = max(zone->zone_start_pfn, spfn);
    1269             :                         if (out_epfn)
    1270             :                                 *out_epfn = min(zone_end_pfn(zone), epfn);
    1271             : 
    1272             :                         return;
    1273             :                 }
    1274             : 
    1275             :                 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
    1276             :                                  &memblock.memory, &memblock.reserved,
    1277             :                                  &spa, &epa, &nid);
    1278             :         }
    1279             : 
    1280             :         /* signal end of iteration */
    1281             :         if (out_spfn)
    1282             :                 *out_spfn = ULONG_MAX;
    1283             :         if (out_epfn)
    1284             :                 *out_epfn = 0;
    1285             : }
    1286             : 
    1287             : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
    1288             : 
    1289             : /**
    1290             :  * memblock_alloc_range_nid - allocate boot memory block
    1291             :  * @size: size of memory block to be allocated in bytes
    1292             :  * @align: alignment of the region and block's size
    1293             :  * @start: the lower bound of the memory region to allocate (phys address)
    1294             :  * @end: the upper bound of the memory region to allocate (phys address)
    1295             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1296             :  * @exact_nid: control the allocation fall back to other nodes
    1297             :  *
    1298             :  * The allocation is performed from memory region limited by
    1299             :  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
    1300             :  *
    1301             :  * If the specified node can not hold the requested memory and @exact_nid
    1302             :  * is false, the allocation falls back to any node in the system.
    1303             :  *
    1304             :  * For systems with memory mirroring, the allocation is attempted first
    1305             :  * from the regions with mirroring enabled and then retried from any
    1306             :  * memory region.
    1307             :  *
    1308             :  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
    1309             :  * allocated boot memory block, so that it is never reported as leaks.
    1310             :  *
    1311             :  * Return:
    1312             :  * Physical address of allocated memory block on success, %0 on failure.
    1313             :  */
    1314         362 : phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
    1315             :                                         phys_addr_t align, phys_addr_t start,
    1316             :                                         phys_addr_t end, int nid,
    1317             :                                         bool exact_nid)
    1318             : {
    1319         362 :         enum memblock_flags flags = choose_memblock_flags();
    1320         362 :         phys_addr_t found;
    1321             : 
    1322         362 :         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    1323           0 :                 nid = NUMA_NO_NODE;
    1324             : 
    1325         362 :         if (!align) {
    1326             :                 /* Can't use WARNs this early in boot on powerpc */
    1327           0 :                 dump_stack();
    1328           0 :                 align = SMP_CACHE_BYTES;
    1329             :         }
    1330             : 
    1331         362 : again:
    1332         362 :         found = memblock_find_in_range_node(size, align, start, end, nid,
    1333             :                                             flags);
    1334         362 :         if (found && !memblock_reserve(found, size))
    1335         362 :                 goto done;
    1336             : 
    1337           0 :         if (nid != NUMA_NO_NODE && !exact_nid) {
    1338           0 :                 found = memblock_find_in_range_node(size, align, start,
    1339             :                                                     end, NUMA_NO_NODE,
    1340             :                                                     flags);
    1341           0 :                 if (found && !memblock_reserve(found, size))
    1342           0 :                         goto done;
    1343             :         }
    1344             : 
    1345           0 :         if (flags & MEMBLOCK_MIRROR) {
    1346           0 :                 flags &= ~MEMBLOCK_MIRROR;
    1347           0 :                 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
    1348             :                         &size);
    1349           0 :                 goto again;
    1350             :         }
    1351             : 
    1352             :         return 0;
    1353             : 
    1354         362 : done:
    1355             :         /* Skip kmemleak for kasan_init() due to high volume. */
    1356         362 :         if (end != MEMBLOCK_ALLOC_KASAN)
    1357             :                 /*
    1358             :                  * The min_count is set to 0 so that memblock allocated
    1359             :                  * blocks are never reported as leaks. This is because many
    1360             :                  * of these blocks are only referred via the physical
    1361             :                  * address which is not looked up by kmemleak.
    1362             :                  */
    1363         362 :                 kmemleak_alloc_phys(found, size, 0, 0);
    1364             : 
    1365             :         return found;
    1366             : }
    1367             : 
    1368             : /**
    1369             :  * memblock_phys_alloc_range - allocate a memory block inside specified range
    1370             :  * @size: size of memory block to be allocated in bytes
    1371             :  * @align: alignment of the region and block's size
    1372             :  * @start: the lower bound of the memory region to allocate (physical address)
    1373             :  * @end: the upper bound of the memory region to allocate (physical address)
    1374             :  *
    1375             :  * Allocate @size bytes in the between @start and @end.
    1376             :  *
    1377             :  * Return: physical address of the allocated memory block on success,
    1378             :  * %0 on failure.
    1379             :  */
    1380           0 : phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
    1381             :                                              phys_addr_t align,
    1382             :                                              phys_addr_t start,
    1383             :                                              phys_addr_t end)
    1384             : {
    1385           0 :         memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
    1386             :                      __func__, (u64)size, (u64)align, &start, &end,
    1387             :                      (void *)_RET_IP_);
    1388           0 :         return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
    1389             :                                         false);
    1390             : }
    1391             : 
    1392             : /**
    1393             :  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
    1394             :  * @size: size of memory block to be allocated in bytes
    1395             :  * @align: alignment of the region and block's size
    1396             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1397             :  *
    1398             :  * Allocates memory block from the specified NUMA node. If the node
    1399             :  * has no available memory, attempts to allocated from any node in the
    1400             :  * system.
    1401             :  *
    1402             :  * Return: physical address of the allocated memory block on success,
    1403             :  * %0 on failure.
    1404             :  */
    1405           1 : phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
    1406             : {
    1407           1 :         return memblock_alloc_range_nid(size, align, 0,
    1408             :                                         MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
    1409             : }
    1410             : 
    1411             : /**
    1412             :  * memblock_alloc_internal - allocate boot memory block
    1413             :  * @size: size of memory block to be allocated in bytes
    1414             :  * @align: alignment of the region and block's size
    1415             :  * @min_addr: the lower bound of the memory region to allocate (phys address)
    1416             :  * @max_addr: the upper bound of the memory region to allocate (phys address)
    1417             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1418             :  * @exact_nid: control the allocation fall back to other nodes
    1419             :  *
    1420             :  * Allocates memory block using memblock_alloc_range_nid() and
    1421             :  * converts the returned physical address to virtual.
    1422             :  *
    1423             :  * The @min_addr limit is dropped if it can not be satisfied and the allocation
    1424             :  * will fall back to memory below @min_addr. Other constraints, such
    1425             :  * as node and mirrored memory will be handled again in
    1426             :  * memblock_alloc_range_nid().
    1427             :  *
    1428             :  * Return:
    1429             :  * Virtual address of allocated memory block on success, NULL on failure.
    1430             :  */
    1431         361 : static void * __init memblock_alloc_internal(
    1432             :                                 phys_addr_t size, phys_addr_t align,
    1433             :                                 phys_addr_t min_addr, phys_addr_t max_addr,
    1434             :                                 int nid, bool exact_nid)
    1435             : {
    1436         361 :         phys_addr_t alloc;
    1437             : 
    1438             :         /*
    1439             :          * Detect any accidental use of these APIs after slab is ready, as at
    1440             :          * this moment memblock may be deinitialized already and its
    1441             :          * internal data may be destroyed (after execution of memblock_free_all)
    1442             :          */
    1443         361 :         if (WARN_ON_ONCE(slab_is_available()))
    1444           0 :                 return kzalloc_node(size, GFP_NOWAIT, nid);
    1445             : 
    1446         361 :         if (max_addr > memblock.current_limit)
    1447             :                 max_addr = memblock.current_limit;
    1448             : 
    1449         361 :         alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
    1450             :                                         exact_nid);
    1451             : 
    1452             :         /* retry allocation without lower limit */
    1453         361 :         if (!alloc && min_addr)
    1454           0 :                 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
    1455             :                                                 exact_nid);
    1456             : 
    1457         361 :         if (!alloc)
    1458             :                 return NULL;
    1459             : 
    1460         361 :         return phys_to_virt(alloc);
    1461             : }
    1462             : 
    1463             : /**
    1464             :  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
    1465             :  * without zeroing memory
    1466             :  * @size: size of memory block to be allocated in bytes
    1467             :  * @align: alignment of the region and block's size
    1468             :  * @min_addr: the lower bound of the memory region from where the allocation
    1469             :  *        is preferred (phys address)
    1470             :  * @max_addr: the upper bound of the memory region from where the allocation
    1471             :  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
    1472             :  *            allocate only from memory limited by memblock.current_limit value
    1473             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1474             :  *
    1475             :  * Public function, provides additional debug information (including caller
    1476             :  * info), if enabled. Does not zero allocated memory.
    1477             :  *
    1478             :  * Return:
    1479             :  * Virtual address of allocated memory block on success, NULL on failure.
    1480             :  */
    1481           1 : void * __init memblock_alloc_exact_nid_raw(
    1482             :                         phys_addr_t size, phys_addr_t align,
    1483             :                         phys_addr_t min_addr, phys_addr_t max_addr,
    1484             :                         int nid)
    1485             : {
    1486           1 :         void *ptr;
    1487             : 
    1488           1 :         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
    1489             :                      __func__, (u64)size, (u64)align, nid, &min_addr,
    1490             :                      &max_addr, (void *)_RET_IP_);
    1491             : 
    1492           1 :         ptr = memblock_alloc_internal(size, align,
    1493             :                                            min_addr, max_addr, nid, true);
    1494           1 :         if (ptr && size > 0)
    1495           1 :                 page_init_poison(ptr, size);
    1496             : 
    1497           1 :         return ptr;
    1498             : }
    1499             : 
    1500             : /**
    1501             :  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
    1502             :  * memory and without panicking
    1503             :  * @size: size of memory block to be allocated in bytes
    1504             :  * @align: alignment of the region and block's size
    1505             :  * @min_addr: the lower bound of the memory region from where the allocation
    1506             :  *        is preferred (phys address)
    1507             :  * @max_addr: the upper bound of the memory region from where the allocation
    1508             :  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
    1509             :  *            allocate only from memory limited by memblock.current_limit value
    1510             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1511             :  *
    1512             :  * Public function, provides additional debug information (including caller
    1513             :  * info), if enabled. Does not zero allocated memory, does not panic if request
    1514             :  * cannot be satisfied.
    1515             :  *
    1516             :  * Return:
    1517             :  * Virtual address of allocated memory block on success, NULL on failure.
    1518             :  */
    1519           0 : void * __init memblock_alloc_try_nid_raw(
    1520             :                         phys_addr_t size, phys_addr_t align,
    1521             :                         phys_addr_t min_addr, phys_addr_t max_addr,
    1522             :                         int nid)
    1523             : {
    1524           0 :         void *ptr;
    1525             : 
    1526           0 :         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
    1527             :                      __func__, (u64)size, (u64)align, nid, &min_addr,
    1528             :                      &max_addr, (void *)_RET_IP_);
    1529             : 
    1530           0 :         ptr = memblock_alloc_internal(size, align,
    1531             :                                            min_addr, max_addr, nid, false);
    1532           0 :         if (ptr && size > 0)
    1533           0 :                 page_init_poison(ptr, size);
    1534             : 
    1535           0 :         return ptr;
    1536             : }
    1537             : 
    1538             : /**
    1539             :  * memblock_alloc_try_nid - allocate boot memory block
    1540             :  * @size: size of memory block to be allocated in bytes
    1541             :  * @align: alignment of the region and block's size
    1542             :  * @min_addr: the lower bound of the memory region from where the allocation
    1543             :  *        is preferred (phys address)
    1544             :  * @max_addr: the upper bound of the memory region from where the allocation
    1545             :  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
    1546             :  *            allocate only from memory limited by memblock.current_limit value
    1547             :  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
    1548             :  *
    1549             :  * Public function, provides additional debug information (including caller
    1550             :  * info), if enabled. This function zeroes the allocated memory.
    1551             :  *
    1552             :  * Return:
    1553             :  * Virtual address of allocated memory block on success, NULL on failure.
    1554             :  */
    1555         360 : void * __init memblock_alloc_try_nid(
    1556             :                         phys_addr_t size, phys_addr_t align,
    1557             :                         phys_addr_t min_addr, phys_addr_t max_addr,
    1558             :                         int nid)
    1559             : {
    1560         360 :         void *ptr;
    1561             : 
    1562         360 :         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
    1563             :                      __func__, (u64)size, (u64)align, nid, &min_addr,
    1564             :                      &max_addr, (void *)_RET_IP_);
    1565         360 :         ptr = memblock_alloc_internal(size, align,
    1566             :                                            min_addr, max_addr, nid, false);
    1567         360 :         if (ptr)
    1568         360 :                 memset(ptr, 0, size);
    1569             : 
    1570         360 :         return ptr;
    1571             : }
    1572             : 
    1573             : /**
    1574             :  * __memblock_free_late - free pages directly to buddy allocator
    1575             :  * @base: phys starting address of the  boot memory block
    1576             :  * @size: size of the boot memory block in bytes
    1577             :  *
    1578             :  * This is only useful when the memblock allocator has already been torn
    1579             :  * down, but we are still initializing the system.  Pages are released directly
    1580             :  * to the buddy allocator.
    1581             :  */
    1582           0 : void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
    1583             : {
    1584           0 :         phys_addr_t cursor, end;
    1585             : 
    1586           0 :         end = base + size - 1;
    1587           0 :         memblock_dbg("%s: [%pa-%pa] %pS\n",
    1588             :                      __func__, &base, &end, (void *)_RET_IP_);
    1589           0 :         kmemleak_free_part_phys(base, size);
    1590           0 :         cursor = PFN_UP(base);
    1591           0 :         end = PFN_DOWN(base + size);
    1592             : 
    1593           0 :         for (; cursor < end; cursor++) {
    1594           0 :                 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
    1595           0 :                 totalram_pages_inc();
    1596             :         }
    1597           0 : }
    1598             : 
    1599             : /*
    1600             :  * Remaining API functions
    1601             :  */
    1602             : 
    1603           0 : phys_addr_t __init_memblock memblock_phys_mem_size(void)
    1604             : {
    1605           0 :         return memblock.memory.total_size;
    1606             : }
    1607             : 
    1608           0 : phys_addr_t __init_memblock memblock_reserved_size(void)
    1609             : {
    1610           0 :         return memblock.reserved.total_size;
    1611             : }
    1612             : 
    1613             : /* lowest address */
    1614           1 : phys_addr_t __init_memblock memblock_start_of_DRAM(void)
    1615             : {
    1616           1 :         return memblock.memory.regions[0].base;
    1617             : }
    1618             : 
    1619           0 : phys_addr_t __init_memblock memblock_end_of_DRAM(void)
    1620             : {
    1621           0 :         int idx = memblock.memory.cnt - 1;
    1622             : 
    1623           0 :         return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
    1624             : }
    1625             : 
    1626           0 : static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
    1627             : {
    1628           0 :         phys_addr_t max_addr = PHYS_ADDR_MAX;
    1629           0 :         struct memblock_region *r;
    1630             : 
    1631             :         /*
    1632             :          * translate the memory @limit size into the max address within one of
    1633             :          * the memory memblock regions, if the @limit exceeds the total size
    1634             :          * of those regions, max_addr will keep original value PHYS_ADDR_MAX
    1635             :          */
    1636           0 :         for_each_mem_region(r) {
    1637           0 :                 if (limit <= r->size) {
    1638           0 :                         max_addr = r->base + limit;
    1639           0 :                         break;
    1640             :                 }
    1641           0 :                 limit -= r->size;
    1642             :         }
    1643             : 
    1644           0 :         return max_addr;
    1645             : }
    1646             : 
    1647           0 : void __init memblock_enforce_memory_limit(phys_addr_t limit)
    1648             : {
    1649           0 :         phys_addr_t max_addr;
    1650             : 
    1651           0 :         if (!limit)
    1652             :                 return;
    1653             : 
    1654           0 :         max_addr = __find_max_addr(limit);
    1655             : 
    1656             :         /* @limit exceeds the total size of the memory, do nothing */
    1657           0 :         if (max_addr == PHYS_ADDR_MAX)
    1658             :                 return;
    1659             : 
    1660             :         /* truncate both memory and reserved regions */
    1661           0 :         memblock_remove_range(&memblock.memory, max_addr,
    1662             :                               PHYS_ADDR_MAX);
    1663           0 :         memblock_remove_range(&memblock.reserved, max_addr,
    1664             :                               PHYS_ADDR_MAX);
    1665             : }
    1666             : 
    1667           0 : void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
    1668             : {
    1669           0 :         int start_rgn, end_rgn;
    1670           0 :         int i, ret;
    1671             : 
    1672           0 :         if (!size)
    1673           0 :                 return;
    1674             : 
    1675           0 :         ret = memblock_isolate_range(&memblock.memory, base, size,
    1676             :                                                 &start_rgn, &end_rgn);
    1677           0 :         if (ret)
    1678             :                 return;
    1679             : 
    1680             :         /* remove all the MAP regions */
    1681           0 :         for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
    1682           0 :                 if (!memblock_is_nomap(&memblock.memory.regions[i]))
    1683           0 :                         memblock_remove_region(&memblock.memory, i);
    1684             : 
    1685           0 :         for (i = start_rgn - 1; i >= 0; i--)
    1686           0 :                 if (!memblock_is_nomap(&memblock.memory.regions[i]))
    1687           0 :                         memblock_remove_region(&memblock.memory, i);
    1688             : 
    1689             :         /* truncate the reserved regions */
    1690           0 :         memblock_remove_range(&memblock.reserved, 0, base);
    1691           0 :         memblock_remove_range(&memblock.reserved,
    1692             :                         base + size, PHYS_ADDR_MAX);
    1693             : }
    1694             : 
    1695           0 : void __init memblock_mem_limit_remove_map(phys_addr_t limit)
    1696             : {
    1697           0 :         phys_addr_t max_addr;
    1698             : 
    1699           0 :         if (!limit)
    1700             :                 return;
    1701             : 
    1702           0 :         max_addr = __find_max_addr(limit);
    1703             : 
    1704             :         /* @limit exceeds the total size of the memory, do nothing */
    1705           0 :         if (max_addr == PHYS_ADDR_MAX)
    1706             :                 return;
    1707             : 
    1708           0 :         memblock_cap_memory_range(0, max_addr);
    1709             : }
    1710             : 
    1711          10 : static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
    1712             : {
    1713          10 :         unsigned int left = 0, right = type->cnt;
    1714             : 
    1715          18 :         do {
    1716          18 :                 unsigned int mid = (right + left) / 2;
    1717             : 
    1718          18 :                 if (addr < type->regions[mid].base)
    1719             :                         right = mid;
    1720           2 :                 else if (addr >= (type->regions[mid].base +
    1721           2 :                                   type->regions[mid].size))
    1722           1 :                         left = mid + 1;
    1723             :                 else
    1724           1 :                         return mid;
    1725          17 :         } while (left < right);
    1726             :         return -1;
    1727             : }
    1728             : 
    1729           0 : bool __init_memblock memblock_is_reserved(phys_addr_t addr)
    1730             : {
    1731           0 :         return memblock_search(&memblock.reserved, addr) != -1;
    1732             : }
    1733             : 
    1734           0 : bool __init_memblock memblock_is_memory(phys_addr_t addr)
    1735             : {
    1736           0 :         return memblock_search(&memblock.memory, addr) != -1;
    1737             : }
    1738             : 
    1739           0 : bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
    1740             : {
    1741           0 :         int i = memblock_search(&memblock.memory, addr);
    1742             : 
    1743           0 :         if (i == -1)
    1744             :                 return false;
    1745           0 :         return !memblock_is_nomap(&memblock.memory.regions[i]);
    1746             : }
    1747             : 
    1748           3 : int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
    1749             :                          unsigned long *start_pfn, unsigned long *end_pfn)
    1750             : {
    1751           3 :         struct memblock_type *type = &memblock.memory;
    1752           3 :         int mid = memblock_search(type, PFN_PHYS(pfn));
    1753             : 
    1754           3 :         if (mid == -1)
    1755             :                 return -1;
    1756             : 
    1757           1 :         *start_pfn = PFN_DOWN(type->regions[mid].base);
    1758           1 :         *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
    1759             : 
    1760           1 :         return memblock_get_region_node(&type->regions[mid]);
    1761             : }
    1762             : 
    1763             : /**
    1764             :  * memblock_is_region_memory - check if a region is a subset of memory
    1765             :  * @base: base of region to check
    1766             :  * @size: size of region to check
    1767             :  *
    1768             :  * Check if the region [@base, @base + @size) is a subset of a memory block.
    1769             :  *
    1770             :  * Return:
    1771             :  * 0 if false, non-zero if true
    1772             :  */
    1773           7 : bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
    1774             : {
    1775           7 :         int idx = memblock_search(&memblock.memory, base);
    1776           7 :         phys_addr_t end = base + memblock_cap_size(base, &size);
    1777             : 
    1778           7 :         if (idx == -1)
    1779             :                 return false;
    1780           0 :         return (memblock.memory.regions[idx].base +
    1781           0 :                  memblock.memory.regions[idx].size) >= end;
    1782             : }
    1783             : 
    1784             : /**
    1785             :  * memblock_is_region_reserved - check if a region intersects reserved memory
    1786             :  * @base: base of region to check
    1787             :  * @size: size of region to check
    1788             :  *
    1789             :  * Check if the region [@base, @base + @size) intersects a reserved
    1790             :  * memory block.
    1791             :  *
    1792             :  * Return:
    1793             :  * True if they intersect, false if not.
    1794             :  */
    1795           0 : bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
    1796             : {
    1797           0 :         memblock_cap_size(base, &size);
    1798           0 :         return memblock_overlaps_region(&memblock.reserved, base, size);
    1799             : }
    1800             : 
    1801           1 : void __init_memblock memblock_trim_memory(phys_addr_t align)
    1802             : {
    1803           1 :         phys_addr_t start, end, orig_start, orig_end;
    1804           1 :         struct memblock_region *r;
    1805             : 
    1806           3 :         for_each_mem_region(r) {
    1807           2 :                 orig_start = r->base;
    1808           2 :                 orig_end = r->base + r->size;
    1809           2 :                 start = round_up(orig_start, align);
    1810           2 :                 end = round_down(orig_end, align);
    1811             : 
    1812           2 :                 if (start == orig_start && end == orig_end)
    1813           1 :                         continue;
    1814             : 
    1815           1 :                 if (start < end) {
    1816           1 :                         r->base = start;
    1817           1 :                         r->size = end - start;
    1818             :                 } else {
    1819           0 :                         memblock_remove_region(&memblock.memory,
    1820           0 :                                                r - memblock.memory.regions);
    1821           0 :                         r--;
    1822             :                 }
    1823             :         }
    1824           1 : }
    1825             : 
    1826           2 : void __init_memblock memblock_set_current_limit(phys_addr_t limit)
    1827             : {
    1828           2 :         memblock.current_limit = limit;
    1829           2 : }
    1830             : 
    1831           0 : phys_addr_t __init_memblock memblock_get_current_limit(void)
    1832             : {
    1833           0 :         return memblock.current_limit;
    1834             : }
    1835             : 
    1836           0 : static void __init_memblock memblock_dump(struct memblock_type *type)
    1837             : {
    1838           0 :         phys_addr_t base, end, size;
    1839           0 :         enum memblock_flags flags;
    1840           0 :         int idx;
    1841           0 :         struct memblock_region *rgn;
    1842             : 
    1843           0 :         pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
    1844             : 
    1845           0 :         for_each_memblock_type(idx, type, rgn) {
    1846           0 :                 char nid_buf[32] = "";
    1847             : 
    1848           0 :                 base = rgn->base;
    1849           0 :                 size = rgn->size;
    1850           0 :                 end = base + size - 1;
    1851           0 :                 flags = rgn->flags;
    1852             : #ifdef CONFIG_NEED_MULTIPLE_NODES
    1853           0 :                 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
    1854           0 :                         snprintf(nid_buf, sizeof(nid_buf), " on node %d",
    1855             :                                  memblock_get_region_node(rgn));
    1856             : #endif
    1857           0 :                 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
    1858             :                         type->name, idx, &base, &end, &size, nid_buf, flags);
    1859             :         }
    1860           0 : }
    1861             : 
    1862           0 : static void __init_memblock __memblock_dump_all(void)
    1863             : {
    1864           0 :         pr_info("MEMBLOCK configuration:\n");
    1865           0 :         pr_info(" memory size = %pa reserved size = %pa\n",
    1866             :                 &memblock.memory.total_size,
    1867             :                 &memblock.reserved.total_size);
    1868             : 
    1869           0 :         memblock_dump(&memblock.memory);
    1870           0 :         memblock_dump(&memblock.reserved);
    1871             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    1872             :         memblock_dump(&physmem);
    1873             : #endif
    1874           0 : }
    1875             : 
    1876           2 : void __init_memblock memblock_dump_all(void)
    1877             : {
    1878           2 :         if (memblock_debug)
    1879           0 :                 __memblock_dump_all();
    1880           2 : }
    1881             : 
    1882           1 : void __init memblock_allow_resize(void)
    1883             : {
    1884           1 :         memblock_can_resize = 1;
    1885           1 : }
    1886             : 
    1887           0 : static int __init early_memblock(char *p)
    1888             : {
    1889           0 :         if (p && strstr(p, "debug"))
    1890           0 :                 memblock_debug = 1;
    1891           0 :         return 0;
    1892             : }
    1893             : early_param("memblock", early_memblock);
    1894             : 
    1895             : static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
    1896             : {
    1897             :         struct page *start_pg, *end_pg;
    1898             :         phys_addr_t pg, pgend;
    1899             : 
    1900             :         /*
    1901             :          * Convert start_pfn/end_pfn to a struct page pointer.
    1902             :          */
    1903             :         start_pg = pfn_to_page(start_pfn - 1) + 1;
    1904             :         end_pg = pfn_to_page(end_pfn - 1) + 1;
    1905             : 
    1906             :         /*
    1907             :          * Convert to physical addresses, and round start upwards and end
    1908             :          * downwards.
    1909             :          */
    1910             :         pg = PAGE_ALIGN(__pa(start_pg));
    1911             :         pgend = __pa(end_pg) & PAGE_MASK;
    1912             : 
    1913             :         /*
    1914             :          * If there are free pages between these, free the section of the
    1915             :          * memmap array.
    1916             :          */
    1917             :         if (pg < pgend)
    1918             :                 memblock_free(pg, pgend - pg);
    1919             : }
    1920             : 
    1921             : /*
    1922             :  * The mem_map array can get very big.  Free the unused area of the memory map.
    1923             :  */
    1924           1 : static void __init free_unused_memmap(void)
    1925             : {
    1926           1 :         unsigned long start, end, prev_end = 0;
    1927           1 :         int i;
    1928             : 
    1929           1 :         if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
    1930             :             IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
    1931           1 :                 return;
    1932             : 
    1933             :         /*
    1934             :          * This relies on each bank being in address order.
    1935             :          * The banks are sorted previously in bootmem_init().
    1936             :          */
    1937             :         for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
    1938             : #ifdef CONFIG_SPARSEMEM
    1939             :                 /*
    1940             :                  * Take care not to free memmap entries that don't exist
    1941             :                  * due to SPARSEMEM sections which aren't present.
    1942             :                  */
    1943             :                 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
    1944             : #else
    1945             :                 /*
    1946             :                  * Align down here since the VM subsystem insists that the
    1947             :                  * memmap entries are valid from the bank start aligned to
    1948             :                  * MAX_ORDER_NR_PAGES.
    1949             :                  */
    1950             :                 start = round_down(start, MAX_ORDER_NR_PAGES);
    1951             : #endif
    1952             : 
    1953             :                 /*
    1954             :                  * If we had a previous bank, and there is a space
    1955             :                  * between the current bank and the previous, free it.
    1956             :                  */
    1957             :                 if (prev_end && prev_end < start)
    1958             :                         free_memmap(prev_end, start);
    1959             : 
    1960             :                 /*
    1961             :                  * Align up here since the VM subsystem insists that the
    1962             :                  * memmap entries are valid from the bank end aligned to
    1963             :                  * MAX_ORDER_NR_PAGES.
    1964             :                  */
    1965             :                 prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
    1966             :         }
    1967             : 
    1968             : #ifdef CONFIG_SPARSEMEM
    1969             :         if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
    1970             :                 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
    1971             : #endif
    1972             : }
    1973             : 
    1974           9 : static void __init __free_pages_memory(unsigned long start, unsigned long end)
    1975             : {
    1976           9 :         int order;
    1977             : 
    1978         242 :         while (start < end) {
    1979         233 :                 order = min(MAX_ORDER - 1UL, __ffs(start));
    1980             : 
    1981         251 :                 while (start + (1UL << order) > end)
    1982          18 :                         order--;
    1983             : 
    1984         233 :                 memblock_free_pages(pfn_to_page(start), start, order);
    1985             : 
    1986         233 :                 start += (1UL << order);
    1987             :         }
    1988           9 : }
    1989             : 
    1990          19 : static unsigned long __init __free_memory_core(phys_addr_t start,
    1991             :                                  phys_addr_t end)
    1992             : {
    1993          19 :         unsigned long start_pfn = PFN_UP(start);
    1994          19 :         unsigned long end_pfn = min_t(unsigned long,
    1995             :                                       PFN_DOWN(end), max_low_pfn);
    1996             : 
    1997          19 :         if (start_pfn >= end_pfn)
    1998             :                 return 0;
    1999             : 
    2000           9 :         __free_pages_memory(start_pfn, end_pfn);
    2001             : 
    2002           9 :         return end_pfn - start_pfn;
    2003             : }
    2004             : 
    2005           1 : static unsigned long __init free_low_memory_core_early(void)
    2006             : {
    2007           1 :         unsigned long count = 0;
    2008           1 :         phys_addr_t start, end;
    2009           1 :         u64 i;
    2010             : 
    2011           1 :         memblock_clear_hotplug(0, -1);
    2012             : 
    2013          21 :         for_each_reserved_mem_range(i, &start, &end)
    2014          20 :                 reserve_bootmem_region(start, end);
    2015             : 
    2016             :         /*
    2017             :          * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
    2018             :          *  because in some case like Node0 doesn't have RAM installed
    2019             :          *  low ram will be on Node1
    2020             :          */
    2021          20 :         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
    2022             :                                 NULL)
    2023          19 :                 count += __free_memory_core(start, end);
    2024             : 
    2025           1 :         return count;
    2026             : }
    2027             : 
    2028             : static int reset_managed_pages_done __initdata;
    2029             : 
    2030           1 : void reset_node_managed_pages(pg_data_t *pgdat)
    2031             : {
    2032           1 :         struct zone *z;
    2033             : 
    2034           4 :         for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
    2035           3 :                 atomic_long_set(&z->managed_pages, 0);
    2036           1 : }
    2037             : 
    2038           1 : void __init reset_all_zones_managed_pages(void)
    2039             : {
    2040           1 :         struct pglist_data *pgdat;
    2041             : 
    2042           1 :         if (reset_managed_pages_done)
    2043             :                 return;
    2044             : 
    2045           2 :         for_each_online_pgdat(pgdat)
    2046           1 :                 reset_node_managed_pages(pgdat);
    2047             : 
    2048           1 :         reset_managed_pages_done = 1;
    2049             : }
    2050             : 
    2051             : /**
    2052             :  * memblock_free_all - release free pages to the buddy allocator
    2053             :  */
    2054           1 : void __init memblock_free_all(void)
    2055             : {
    2056           1 :         unsigned long pages;
    2057             : 
    2058           1 :         free_unused_memmap();
    2059           1 :         reset_all_zones_managed_pages();
    2060             : 
    2061           1 :         pages = free_low_memory_core_early();
    2062           1 :         totalram_pages_add(pages);
    2063           1 : }
    2064             : 
    2065             : #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
    2066             : 
    2067             : static int memblock_debug_show(struct seq_file *m, void *private)
    2068             : {
    2069             :         struct memblock_type *type = m->private;
    2070             :         struct memblock_region *reg;
    2071             :         int i;
    2072             :         phys_addr_t end;
    2073             : 
    2074             :         for (i = 0; i < type->cnt; i++) {
    2075             :                 reg = &type->regions[i];
    2076             :                 end = reg->base + reg->size - 1;
    2077             : 
    2078             :                 seq_printf(m, "%4d: ", i);
    2079             :                 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
    2080             :         }
    2081             :         return 0;
    2082             : }
    2083             : DEFINE_SHOW_ATTRIBUTE(memblock_debug);
    2084             : 
    2085             : static int __init memblock_init_debugfs(void)
    2086             : {
    2087             :         struct dentry *root = debugfs_create_dir("memblock", NULL);
    2088             : 
    2089             :         debugfs_create_file("memory", 0444, root,
    2090             :                             &memblock.memory, &memblock_debug_fops);
    2091             :         debugfs_create_file("reserved", 0444, root,
    2092             :                             &memblock.reserved, &memblock_debug_fops);
    2093             : #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    2094             :         debugfs_create_file("physmem", 0444, root, &physmem,
    2095             :                             &memblock_debug_fops);
    2096             : #endif
    2097             : 
    2098             :         return 0;
    2099             : }
    2100             : __initcall(memblock_init_debugfs);
    2101             : 
    2102             : #endif /* CONFIG_DEBUG_FS */

Generated by: LCOV version 1.14