Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/mm/memory.c
4 : *
5 : * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 : */
7 :
8 : /*
9 : * demand-loading started 01.12.91 - seems it is high on the list of
10 : * things wanted, and it should be easy to implement. - Linus
11 : */
12 :
13 : /*
14 : * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 : * pages started 02.12.91, seems to work. - Linus.
16 : *
17 : * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 : * would have taken more than the 6M I have free, but it worked well as
19 : * far as I could see.
20 : *
21 : * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 : */
23 :
24 : /*
25 : * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 : * thought has to go into this. Oh, well..
27 : * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 : * Found it. Everything seems to work now.
29 : * 20.12.91 - Ok, making the swap-device changeable like the root.
30 : */
31 :
32 : /*
33 : * 05.04.94 - Multi-page memory management added for v1.1.
34 : * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 : *
36 : * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 : * (Gerhard.Wichert@pdb.siemens.de)
38 : *
39 : * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 : */
41 :
42 : #include <linux/kernel_stat.h>
43 : #include <linux/mm.h>
44 : #include <linux/sched/mm.h>
45 : #include <linux/sched/coredump.h>
46 : #include <linux/sched/numa_balancing.h>
47 : #include <linux/sched/task.h>
48 : #include <linux/hugetlb.h>
49 : #include <linux/mman.h>
50 : #include <linux/swap.h>
51 : #include <linux/highmem.h>
52 : #include <linux/pagemap.h>
53 : #include <linux/memremap.h>
54 : #include <linux/ksm.h>
55 : #include <linux/rmap.h>
56 : #include <linux/export.h>
57 : #include <linux/delayacct.h>
58 : #include <linux/init.h>
59 : #include <linux/pfn_t.h>
60 : #include <linux/writeback.h>
61 : #include <linux/memcontrol.h>
62 : #include <linux/mmu_notifier.h>
63 : #include <linux/swapops.h>
64 : #include <linux/elf.h>
65 : #include <linux/gfp.h>
66 : #include <linux/migrate.h>
67 : #include <linux/string.h>
68 : #include <linux/debugfs.h>
69 : #include <linux/userfaultfd_k.h>
70 : #include <linux/dax.h>
71 : #include <linux/oom.h>
72 : #include <linux/numa.h>
73 : #include <linux/perf_event.h>
74 : #include <linux/ptrace.h>
75 : #include <linux/vmalloc.h>
76 :
77 : #include <trace/events/kmem.h>
78 :
79 : #include <asm/io.h>
80 : #include <asm/mmu_context.h>
81 : #include <asm/pgalloc.h>
82 : #include <linux/uaccess.h>
83 : #include <asm/tlb.h>
84 : #include <asm/tlbflush.h>
85 :
86 : #include "pgalloc-track.h"
87 : #include "internal.h"
88 :
89 : #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 : #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 : #endif
92 :
93 : #ifndef CONFIG_NEED_MULTIPLE_NODES
94 : /* use the per-pgdat data instead for discontigmem - mbligh */
95 : unsigned long max_mapnr;
96 : EXPORT_SYMBOL(max_mapnr);
97 :
98 : struct page *mem_map;
99 : EXPORT_SYMBOL(mem_map);
100 : #endif
101 :
102 : /*
103 : * A number of key systems in x86 including ioremap() rely on the assumption
104 : * that high_memory defines the upper bound on direct map memory, then end
105 : * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 : * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 : * and ZONE_HIGHMEM.
108 : */
109 : void *high_memory;
110 : EXPORT_SYMBOL(high_memory);
111 :
112 : /*
113 : * Randomize the address space (stacks, mmaps, brk, etc.).
114 : *
115 : * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 : * as ancient (libc5 based) binaries can segfault. )
117 : */
118 : int randomize_va_space __read_mostly =
119 : #ifdef CONFIG_COMPAT_BRK
120 : 1;
121 : #else
122 : 2;
123 : #endif
124 :
125 : #ifndef arch_faults_on_old_pte
126 : static inline bool arch_faults_on_old_pte(void)
127 : {
128 : /*
129 : * Those arches which don't have hw access flag feature need to
130 : * implement their own helper. By default, "true" means pagefault
131 : * will be hit on old pte.
132 : */
133 : return true;
134 : }
135 : #endif
136 :
137 : #ifndef arch_wants_old_prefaulted_pte
138 : static inline bool arch_wants_old_prefaulted_pte(void)
139 : {
140 : /*
141 : * Transitioning a PTE from 'old' to 'young' can be expensive on
142 : * some architectures, even if it's performed in hardware. By
143 : * default, "false" means prefaulted entries will be 'young'.
144 : */
145 : return false;
146 : }
147 : #endif
148 :
149 0 : static int __init disable_randmaps(char *s)
150 : {
151 0 : randomize_va_space = 0;
152 0 : return 1;
153 : }
154 : __setup("norandmaps", disable_randmaps);
155 :
156 : unsigned long zero_pfn __read_mostly;
157 : EXPORT_SYMBOL(zero_pfn);
158 :
159 : unsigned long highest_memmap_pfn __read_mostly;
160 :
161 : /*
162 : * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 : */
164 1 : static int __init init_zero_pfn(void)
165 : {
166 1 : zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 1 : return 0;
168 : }
169 : core_initcall(init_zero_pfn);
170 :
171 124668 : void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 : {
173 124668 : trace_rss_stat(mm, member, count);
174 6020 : }
175 :
176 : #if defined(SPLIT_RSS_COUNTING)
177 :
178 19122 : void sync_mm_rss(struct mm_struct *mm)
179 : {
180 19122 : int i;
181 :
182 95610 : for (i = 0; i < NR_MM_COUNTERS; i++) {
183 76487 : if (current->rss_stat.count[i]) {
184 16614 : add_mm_counter(mm, i, current->rss_stat.count[i]);
185 16615 : current->rss_stat.count[i] = 0;
186 : }
187 : }
188 19123 : current->rss_stat.events = 0;
189 19123 : }
190 :
191 850245 : static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 : {
193 850245 : struct task_struct *task = current;
194 :
195 850245 : if (likely(task->mm == mm))
196 847758 : task->rss_stat.count[member] += val;
197 : else
198 2487 : add_mm_counter(mm, member, val);
199 850245 : }
200 : #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 : #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202 :
203 : /* sync counter once per 64 page faults */
204 : #define TASK_RSS_EVENTS_THRESH (64)
205 171934 : static void check_sync_rss_stat(struct task_struct *task)
206 : {
207 171934 : if (unlikely(task != current))
208 : return;
209 171934 : if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210 956 : sync_mm_rss(task->mm);
211 : }
212 : #else /* SPLIT_RSS_COUNTING */
213 :
214 : #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 : #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216 :
217 : static void check_sync_rss_stat(struct task_struct *task)
218 : {
219 : }
220 :
221 : #endif /* SPLIT_RSS_COUNTING */
222 :
223 : /*
224 : * Note: this doesn't free the actual pages themselves. That
225 : * has been handled earlier when unmapping all the memory regions.
226 : */
227 16925 : static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 : unsigned long addr)
229 : {
230 16925 : pgtable_t token = pmd_pgtable(*pmd);
231 16925 : pmd_clear(pmd);
232 16925 : pte_free_tlb(tlb, token, addr);
233 16925 : mm_dec_nr_ptes(tlb->mm);
234 16925 : }
235 :
236 11081 : static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 : unsigned long addr, unsigned long end,
238 : unsigned long floor, unsigned long ceiling)
239 : {
240 11081 : pmd_t *pmd;
241 11081 : unsigned long next;
242 11081 : unsigned long start;
243 :
244 11081 : start = addr;
245 22162 : pmd = pmd_offset(pud, addr);
246 18119 : do {
247 18119 : next = pmd_addr_end(addr, end);
248 18119 : if (pmd_none_or_clear_bad(pmd))
249 1194 : continue;
250 16925 : free_pte_range(tlb, pmd, addr);
251 18119 : } while (pmd++, addr = next, addr != end);
252 :
253 11081 : start &= PUD_MASK;
254 11081 : if (start < floor)
255 : return;
256 10981 : if (ceiling) {
257 6405 : ceiling &= PUD_MASK;
258 6405 : if (!ceiling)
259 : return;
260 : }
261 10979 : if (end - 1 > ceiling - 1)
262 : return;
263 :
264 8893 : pmd = pmd_offset(pud, start);
265 8893 : pud_clear(pud);
266 8893 : pmd_free_tlb(tlb, pmd, start);
267 8893 : mm_dec_nr_pmds(tlb->mm);
268 : }
269 :
270 11103 : static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271 : unsigned long addr, unsigned long end,
272 : unsigned long floor, unsigned long ceiling)
273 : {
274 11103 : pud_t *pud;
275 11103 : unsigned long next;
276 11103 : unsigned long start;
277 :
278 11103 : start = addr;
279 11103 : pud = pud_offset(p4d, addr);
280 11112 : do {
281 11112 : next = pud_addr_end(addr, end);
282 11112 : if (pud_none_or_clear_bad(pud))
283 31 : continue;
284 11081 : free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285 11112 : } while (pud++, addr = next, addr != end);
286 :
287 11103 : start &= P4D_MASK;
288 11103 : if (start < floor)
289 : return;
290 10097 : if (ceiling) {
291 6396 : ceiling &= P4D_MASK;
292 6396 : if (!ceiling)
293 : return;
294 : }
295 10095 : if (end - 1 > ceiling - 1)
296 : return;
297 :
298 7011 : pud = pud_offset(p4d, start);
299 7011 : p4d_clear(p4d);
300 7011 : pud_free_tlb(tlb, pud, start);
301 7011 : mm_dec_nr_puds(tlb->mm);
302 : }
303 :
304 11238 : static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 : unsigned long addr, unsigned long end,
306 : unsigned long floor, unsigned long ceiling)
307 : {
308 11238 : p4d_t *p4d;
309 11238 : unsigned long next;
310 11238 : unsigned long start;
311 :
312 11238 : start = addr;
313 11238 : p4d = p4d_offset(pgd, addr);
314 11238 : do {
315 11238 : next = p4d_addr_end(addr, end);
316 11238 : if (p4d_none_or_clear_bad(p4d))
317 135 : continue;
318 11103 : free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 11238 : } while (p4d++, addr = next, addr != end);
320 :
321 11238 : start &= PGDIR_MASK;
322 11238 : if (start < floor)
323 : return;
324 11238 : if (ceiling) {
325 : ceiling &= PGDIR_MASK;
326 : if (!ceiling)
327 : return;
328 : }
329 11238 : if (end - 1 > ceiling - 1)
330 : return;
331 :
332 11238 : p4d = p4d_offset(pgd, start);
333 11238 : pgd_clear(pgd);
334 11238 : p4d_free_tlb(tlb, p4d, start);
335 : }
336 :
337 : /*
338 : * This function frees user-level page tables of a process.
339 : */
340 27724 : void free_pgd_range(struct mmu_gather *tlb,
341 : unsigned long addr, unsigned long end,
342 : unsigned long floor, unsigned long ceiling)
343 : {
344 27724 : pgd_t *pgd;
345 27724 : unsigned long next;
346 :
347 : /*
348 : * The next few lines have given us lots of grief...
349 : *
350 : * Why are we testing PMD* at this top level? Because often
351 : * there will be no work to do at all, and we'd prefer not to
352 : * go all the way down to the bottom just to discover that.
353 : *
354 : * Why all these "- 1"s? Because 0 represents both the bottom
355 : * of the address space and the top of it (using -1 for the
356 : * top wouldn't help much: the masks would do the wrong thing).
357 : * The rule is that addr 0 and floor 0 refer to the bottom of
358 : * the address space, but end 0 and ceiling 0 refer to the top
359 : * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 : * that end 0 case should be mythical).
361 : *
362 : * Wherever addr is brought up or ceiling brought down, we must
363 : * be careful to reject "the opposite 0" before it confuses the
364 : * subsequent tests. But what about where end is brought down
365 : * by PMD_SIZE below? no, end can't go down to 0 there.
366 : *
367 : * Whereas we round start (addr) and ceiling down, by different
368 : * masks at different levels, in order to test whether a table
369 : * now has no other vmas using it, so can be freed, we don't
370 : * bother to round floor or end up - the tests don't need that.
371 : */
372 :
373 27724 : addr &= PMD_MASK;
374 27724 : if (addr < floor) {
375 16390 : addr += PMD_SIZE;
376 16390 : if (!addr)
377 : return;
378 : }
379 27724 : if (ceiling) {
380 23091 : ceiling &= PMD_MASK;
381 23091 : if (!ceiling)
382 : return;
383 : }
384 27724 : if (end - 1 > ceiling - 1)
385 14750 : end -= PMD_SIZE;
386 27724 : if (addr > end - 1)
387 : return;
388 : /*
389 : * We add page table cache pages with PAGE_SIZE,
390 : * (see pte_free_tlb()), flush the tlb if we need
391 : */
392 11238 : tlb_change_page_size(tlb, PAGE_SIZE);
393 11238 : pgd = pgd_offset(tlb->mm, addr);
394 11238 : do {
395 11238 : next = pgd_addr_end(addr, end);
396 11238 : if (pgd_none_or_clear_bad(pgd))
397 : continue;
398 11238 : free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399 11238 : } while (pgd++, addr = next, addr != end);
400 : }
401 :
402 20434 : void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403 : unsigned long floor, unsigned long ceiling)
404 : {
405 47225 : while (vma) {
406 26791 : struct vm_area_struct *next = vma->vm_next;
407 26791 : unsigned long addr = vma->vm_start;
408 :
409 : /*
410 : * Hide vma from rmap and truncate_pagecache before freeing
411 : * pgtables
412 : */
413 26791 : unlink_anon_vmas(vma);
414 26792 : unlink_file_vma(vma);
415 :
416 26792 : if (is_vm_hugetlb_page(vma)) {
417 : hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418 : floor, next ? next->vm_start : ceiling);
419 : } else {
420 : /*
421 : * Optimization: gather nearby vmas into one call down
422 : */
423 113853 : while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424 87061 : && !is_vm_hugetlb_page(next)) {
425 87061 : vma = next;
426 87061 : next = vma->vm_next;
427 87061 : unlink_anon_vmas(vma);
428 87053 : unlink_file_vma(vma);
429 : }
430 26792 : free_pgd_range(tlb, addr, vma->vm_end,
431 : floor, next ? next->vm_start : ceiling);
432 : }
433 26792 : vma = next;
434 : }
435 20434 : }
436 :
437 14036 : int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 : {
439 14036 : spinlock_t *ptl;
440 14036 : pgtable_t new = pte_alloc_one(mm);
441 14036 : if (!new)
442 : return -ENOMEM;
443 :
444 : /*
445 : * Ensure all pte setup (eg. pte page lock and page clearing) are
446 : * visible before the pte is made visible to other CPUs by being
447 : * put into page tables.
448 : *
449 : * The other side of the story is the pointer chasing in the page
450 : * table walking code (when walking the page table without locking;
451 : * ie. most of the time). Fortunately, these data accesses consist
452 : * of a chain of data-dependent loads, meaning most CPUs (alpha
453 : * being the notable exception) will already guarantee loads are
454 : * seen in-order. See the alpha page table accessors for the
455 : * smp_rmb() barriers in page table walking code.
456 : */
457 14036 : smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458 :
459 14036 : ptl = pmd_lock(mm, pmd);
460 14036 : if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
461 14036 : mm_inc_nr_ptes(mm);
462 14036 : pmd_populate(mm, pmd, new);
463 14036 : new = NULL;
464 : }
465 14036 : spin_unlock(ptl);
466 14036 : if (new)
467 0 : pte_free(mm, new);
468 : return 0;
469 : }
470 :
471 46 : int __pte_alloc_kernel(pmd_t *pmd)
472 : {
473 46 : pte_t *new = pte_alloc_one_kernel(&init_mm);
474 46 : if (!new)
475 : return -ENOMEM;
476 :
477 46 : smp_wmb(); /* See comment in __pte_alloc */
478 :
479 46 : spin_lock(&init_mm.page_table_lock);
480 46 : if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
481 46 : pmd_populate_kernel(&init_mm, pmd, new);
482 46 : new = NULL;
483 : }
484 46 : spin_unlock(&init_mm.page_table_lock);
485 46 : if (new)
486 0 : pte_free_kernel(&init_mm, new);
487 : return 0;
488 : }
489 :
490 145676 : static inline void init_rss_vec(int *rss)
491 : {
492 145676 : memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493 : }
494 :
495 145668 : static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
496 : {
497 145668 : int i;
498 :
499 145668 : if (current->mm == mm)
500 14801 : sync_mm_rss(mm);
501 728306 : for (i = 0; i < NR_MM_COUNTERS; i++)
502 582640 : if (rss[i])
503 99546 : add_mm_counter(mm, i, rss[i]);
504 145666 : }
505 :
506 : /*
507 : * This function is called to print an error when a bad pte
508 : * is found. For example, we might have a PFN-mapped pte in
509 : * a region that doesn't allow it.
510 : *
511 : * The calling function must still handle the error.
512 : */
513 0 : static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514 : pte_t pte, struct page *page)
515 : {
516 0 : pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
517 0 : p4d_t *p4d = p4d_offset(pgd, addr);
518 0 : pud_t *pud = pud_offset(p4d, addr);
519 0 : pmd_t *pmd = pmd_offset(pud, addr);
520 0 : struct address_space *mapping;
521 0 : pgoff_t index;
522 0 : static unsigned long resume;
523 0 : static unsigned long nr_shown;
524 0 : static unsigned long nr_unshown;
525 :
526 : /*
527 : * Allow a burst of 60 reports, then keep quiet for that minute;
528 : * or allow a steady drip of one report per second.
529 : */
530 0 : if (nr_shown == 60) {
531 0 : if (time_before(jiffies, resume)) {
532 0 : nr_unshown++;
533 0 : return;
534 : }
535 0 : if (nr_unshown) {
536 0 : pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537 : nr_unshown);
538 0 : nr_unshown = 0;
539 : }
540 0 : nr_shown = 0;
541 : }
542 0 : if (nr_shown++ == 0)
543 0 : resume = jiffies + 60 * HZ;
544 :
545 0 : mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546 0 : index = linear_page_index(vma, addr);
547 :
548 0 : pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
549 : current->comm,
550 : (long long)pte_val(pte), (long long)pmd_val(*pmd));
551 0 : if (page)
552 0 : dump_page(page, "bad pte");
553 0 : pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
554 : (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
555 0 : pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
556 : vma->vm_file,
557 : vma->vm_ops ? vma->vm_ops->fault : NULL,
558 : vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559 : mapping ? mapping->a_ops->readpage : NULL);
560 0 : dump_stack();
561 0 : add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
562 : }
563 :
564 : /*
565 : * vm_normal_page -- This function gets the "struct page" associated with a pte.
566 : *
567 : * "Special" mappings do not wish to be associated with a "struct page" (either
568 : * it doesn't exist, or it exists but they don't want to touch it). In this
569 : * case, NULL is returned here. "Normal" mappings do have a struct page.
570 : *
571 : * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572 : * pte bit, in which case this function is trivial. Secondly, an architecture
573 : * may not have a spare pte bit, which requires a more complicated scheme,
574 : * described below.
575 : *
576 : * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577 : * special mapping (even if there are underlying and valid "struct pages").
578 : * COWed pages of a VM_PFNMAP are always normal.
579 : *
580 : * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581 : * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
582 : * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583 : * mapping will always honor the rule
584 : *
585 : * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586 : *
587 : * And for normal mappings this is false.
588 : *
589 : * This restricts such mappings to be a linear translation from virtual address
590 : * to pfn. To get around this restriction, we allow arbitrary mappings so long
591 : * as the vma is not a COW mapping; in that case, we know that all ptes are
592 : * special (because none can have been COWed).
593 : *
594 : *
595 : * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
596 : *
597 : * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598 : * page" backing, however the difference is that _all_ pages with a struct
599 : * page (that is, those where pfn_valid is true) are refcounted and considered
600 : * normal pages by the VM. The disadvantage is that pages are refcounted
601 : * (which can be slower and simply not an option for some PFNMAP users). The
602 : * advantage is that we don't have to follow the strict linearity rule of
603 : * PFNMAP mappings in order to support COWable mappings.
604 : *
605 : */
606 1030716 : struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607 : pte_t pte)
608 : {
609 1030716 : unsigned long pfn = pte_pfn(pte);
610 :
611 1030716 : if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
612 1030716 : if (likely(!pte_special(pte)))
613 1014261 : goto check_pfn;
614 16455 : if (vma->vm_ops && vma->vm_ops->find_special_page)
615 0 : return vma->vm_ops->find_special_page(vma, addr);
616 16455 : if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617 : return NULL;
618 14675 : if (is_zero_pfn(pfn))
619 : return NULL;
620 0 : if (pte_devmap(pte))
621 : return NULL;
622 :
623 0 : print_bad_pte(vma, addr, pte, NULL);
624 0 : return NULL;
625 : }
626 :
627 : /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
628 :
629 : if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630 : if (vma->vm_flags & VM_MIXEDMAP) {
631 : if (!pfn_valid(pfn))
632 : return NULL;
633 : goto out;
634 : } else {
635 : unsigned long off;
636 : off = (addr - vma->vm_start) >> PAGE_SHIFT;
637 : if (pfn == vma->vm_pgoff + off)
638 : return NULL;
639 : if (!is_cow_mapping(vma->vm_flags))
640 : return NULL;
641 : }
642 : }
643 :
644 : if (is_zero_pfn(pfn))
645 : return NULL;
646 :
647 1014261 : check_pfn:
648 1014261 : if (unlikely(pfn > highest_memmap_pfn)) {
649 0 : print_bad_pte(vma, addr, pte, NULL);
650 0 : return NULL;
651 : }
652 :
653 : /*
654 : * NOTE! We still have PageReserved() pages in the page tables.
655 : * eg. VDSO mappings can cause them to exist.
656 : */
657 1014261 : out:
658 1014261 : return pfn_to_page(pfn);
659 : }
660 :
661 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 0 : struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663 : pmd_t pmd)
664 : {
665 0 : unsigned long pfn = pmd_pfn(pmd);
666 :
667 : /*
668 : * There is no pmd_special() but there may be special pmds, e.g.
669 : * in a direct-access (dax) mapping, so let's just replicate the
670 : * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
671 : */
672 0 : if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673 0 : if (vma->vm_flags & VM_MIXEDMAP) {
674 0 : if (!pfn_valid(pfn))
675 : return NULL;
676 0 : goto out;
677 : } else {
678 0 : unsigned long off;
679 0 : off = (addr - vma->vm_start) >> PAGE_SHIFT;
680 0 : if (pfn == vma->vm_pgoff + off)
681 : return NULL;
682 0 : if (!is_cow_mapping(vma->vm_flags))
683 : return NULL;
684 : }
685 : }
686 :
687 0 : if (pmd_devmap(pmd))
688 : return NULL;
689 0 : if (is_huge_zero_pmd(pmd))
690 : return NULL;
691 0 : if (unlikely(pfn > highest_memmap_pfn))
692 : return NULL;
693 :
694 : /*
695 : * NOTE! We still have PageReserved() pages in the page tables.
696 : * eg. VDSO mappings can cause them to exist.
697 : */
698 0 : out:
699 0 : return pfn_to_page(pfn);
700 : }
701 : #endif
702 :
703 : /*
704 : * copy one vm_area from one task to the other. Assumes the page tables
705 : * already present in the new task to be cleared in the whole range
706 : * covered by this vma.
707 : */
708 :
709 : static unsigned long
710 0 : copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
711 : pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
712 : unsigned long addr, int *rss)
713 : {
714 0 : unsigned long vm_flags = vma->vm_flags;
715 0 : pte_t pte = *src_pte;
716 0 : struct page *page;
717 0 : swp_entry_t entry = pte_to_swp_entry(pte);
718 :
719 0 : if (likely(!non_swap_entry(entry))) {
720 0 : if (swap_duplicate(entry) < 0)
721 : return entry.val;
722 :
723 : /* make sure dst_mm is on swapoff's mmlist. */
724 0 : if (unlikely(list_empty(&dst_mm->mmlist))) {
725 0 : spin_lock(&mmlist_lock);
726 0 : if (list_empty(&dst_mm->mmlist))
727 0 : list_add(&dst_mm->mmlist,
728 : &src_mm->mmlist);
729 0 : spin_unlock(&mmlist_lock);
730 : }
731 0 : rss[MM_SWAPENTS]++;
732 0 : } else if (is_migration_entry(entry)) {
733 0 : page = migration_entry_to_page(entry);
734 :
735 0 : rss[mm_counter(page)]++;
736 :
737 0 : if (is_write_migration_entry(entry) &&
738 0 : is_cow_mapping(vm_flags)) {
739 : /*
740 : * COW mappings require pages in both
741 : * parent and child to be set to read.
742 : */
743 0 : make_migration_entry_read(&entry);
744 0 : pte = swp_entry_to_pte(entry);
745 0 : if (pte_swp_soft_dirty(*src_pte))
746 : pte = pte_swp_mksoft_dirty(pte);
747 0 : if (pte_swp_uffd_wp(*src_pte))
748 : pte = pte_swp_mkuffd_wp(pte);
749 0 : set_pte_at(src_mm, addr, src_pte, pte);
750 : }
751 : } else if (is_device_private_entry(entry)) {
752 : page = device_private_entry_to_page(entry);
753 :
754 : /*
755 : * Update rss count even for unaddressable pages, as
756 : * they should treated just like normal pages in this
757 : * respect.
758 : *
759 : * We will likely want to have some new rss counters
760 : * for unaddressable pages, at some point. But for now
761 : * keep things as they are.
762 : */
763 : get_page(page);
764 : rss[mm_counter(page)]++;
765 : page_dup_rmap(page, false);
766 :
767 : /*
768 : * We do not preserve soft-dirty information, because so
769 : * far, checkpoint/restore is the only feature that
770 : * requires that. And checkpoint/restore does not work
771 : * when a device driver is involved (you cannot easily
772 : * save and restore device driver state).
773 : */
774 : if (is_write_device_private_entry(entry) &&
775 : is_cow_mapping(vm_flags)) {
776 : make_device_private_entry_read(&entry);
777 : pte = swp_entry_to_pte(entry);
778 : if (pte_swp_uffd_wp(*src_pte))
779 : pte = pte_swp_mkuffd_wp(pte);
780 : set_pte_at(src_mm, addr, src_pte, pte);
781 : }
782 : }
783 0 : set_pte_at(dst_mm, addr, dst_pte, pte);
784 0 : return 0;
785 : }
786 :
787 : /*
788 : * Copy a present and normal page if necessary.
789 : *
790 : * NOTE! The usual case is that this doesn't need to do
791 : * anything, and can just return a positive value. That
792 : * will let the caller know that it can just increase
793 : * the page refcount and re-use the pte the traditional
794 : * way.
795 : *
796 : * But _if_ we need to copy it because it needs to be
797 : * pinned in the parent (and the child should get its own
798 : * copy rather than just a reference to the same page),
799 : * we'll do that here and return zero to let the caller
800 : * know we're done.
801 : *
802 : * And if we need a pre-allocated page but don't yet have
803 : * one, return a negative error to let the preallocation
804 : * code know so that it can do so outside the page table
805 : * lock.
806 : */
807 : static inline int
808 81815 : copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809 : pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810 : struct page **prealloc, pte_t pte, struct page *page)
811 : {
812 81815 : struct page *new_page;
813 :
814 : /*
815 : * What we want to do is to check whether this page may
816 : * have been pinned by the parent process. If so,
817 : * instead of wrprotect the pte on both sides, we copy
818 : * the page immediately so that we'll always guarantee
819 : * the pinned page won't be randomly replaced in the
820 : * future.
821 : *
822 : * The page pinning checks are just "has this mm ever
823 : * seen pinning", along with the (inexact) check of
824 : * the page count. That might give false positives for
825 : * for pinning, but it will work correctly.
826 : */
827 81815 : if (likely(!page_needs_cow_for_dma(src_vma, page)))
828 : return 1;
829 :
830 0 : new_page = *prealloc;
831 0 : if (!new_page)
832 : return -EAGAIN;
833 :
834 : /*
835 : * We have a prealloc page, all good! Take it
836 : * over and copy the page & arm it.
837 : */
838 0 : *prealloc = NULL;
839 0 : copy_user_highpage(new_page, page, addr, src_vma);
840 0 : __SetPageUptodate(new_page);
841 0 : page_add_new_anon_rmap(new_page, dst_vma, addr, false);
842 0 : lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
843 0 : rss[mm_counter(new_page)]++;
844 :
845 : /* All done, just insert the new page copy in the child */
846 0 : pte = mk_pte(new_page, dst_vma->vm_page_prot);
847 0 : pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
848 0 : set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
849 0 : return 0;
850 : }
851 :
852 : /*
853 : * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
854 : * is required to copy this pte.
855 : */
856 : static inline int
857 82657 : copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
858 : pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
859 : struct page **prealloc)
860 : {
861 82657 : struct mm_struct *src_mm = src_vma->vm_mm;
862 82657 : unsigned long vm_flags = src_vma->vm_flags;
863 82657 : pte_t pte = *src_pte;
864 82657 : struct page *page;
865 :
866 82657 : page = vm_normal_page(src_vma, addr, pte);
867 82657 : if (page) {
868 81815 : int retval;
869 :
870 81815 : retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
871 : addr, rss, prealloc, pte, page);
872 81814 : if (retval <= 0)
873 : return retval;
874 :
875 81814 : get_page(page);
876 81817 : page_dup_rmap(page, false);
877 81816 : rss[mm_counter(page)]++;
878 : }
879 :
880 : /*
881 : * If it's a COW mapping, write protect it both
882 : * in the parent and the child
883 : */
884 82659 : if (is_cow_mapping(vm_flags) && pte_write(pte)) {
885 26081 : ptep_set_wrprotect(src_mm, addr, src_pte);
886 26081 : pte = pte_wrprotect(pte);
887 : }
888 :
889 : /*
890 : * If it's a shared mapping, mark it clean in
891 : * the child
892 : */
893 82659 : if (vm_flags & VM_SHARED)
894 0 : pte = pte_mkclean(pte);
895 82659 : pte = pte_mkold(pte);
896 :
897 : /*
898 : * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
899 : * does not have the VM_UFFD_WP, which means that the uffd
900 : * fork event is not enabled.
901 : */
902 82659 : if (!(vm_flags & VM_UFFD_WP))
903 82659 : pte = pte_clear_uffd_wp(pte);
904 :
905 82659 : set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
906 82659 : return 0;
907 : }
908 :
909 : static inline struct page *
910 0 : page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
911 : unsigned long addr)
912 : {
913 0 : struct page *new_page;
914 :
915 0 : new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
916 0 : if (!new_page)
917 0 : return NULL;
918 :
919 0 : if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
920 : put_page(new_page);
921 : return NULL;
922 : }
923 0 : cgroup_throttle_swaprate(new_page, GFP_KERNEL);
924 :
925 : return new_page;
926 : }
927 :
928 : static int
929 28261 : copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
930 : pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
931 : unsigned long end)
932 : {
933 28261 : struct mm_struct *dst_mm = dst_vma->vm_mm;
934 28261 : struct mm_struct *src_mm = src_vma->vm_mm;
935 28261 : pte_t *orig_src_pte, *orig_dst_pte;
936 28261 : pte_t *src_pte, *dst_pte;
937 28261 : spinlock_t *src_ptl, *dst_ptl;
938 28261 : int progress, ret = 0;
939 28261 : int rss[NR_MM_COUNTERS];
940 28261 : swp_entry_t entry = (swp_entry_t){0};
941 28261 : struct page *prealloc = NULL;
942 :
943 28334 : again:
944 28334 : progress = 0;
945 28334 : init_rss_vec(rss);
946 :
947 56668 : dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
948 28334 : if (!dst_pte) {
949 0 : ret = -ENOMEM;
950 0 : goto out;
951 : }
952 28334 : src_pte = pte_offset_map(src_pmd, addr);
953 28334 : src_ptl = pte_lockptr(src_mm, src_pmd);
954 28334 : spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
955 28334 : orig_src_pte = src_pte;
956 28334 : orig_dst_pte = dst_pte;
957 191119 : arch_enter_lazy_mmu_mode();
958 :
959 191119 : do {
960 : /*
961 : * We are holding two locks at this point - either of them
962 : * could generate latencies in another task on another CPU.
963 : */
964 191119 : if (progress >= 32) {
965 12691 : progress = 0;
966 12691 : if (need_resched() ||
967 191046 : spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
968 : break;
969 : }
970 191046 : if (pte_none(*src_pte)) {
971 108387 : progress++;
972 108387 : continue;
973 : }
974 82659 : if (unlikely(!pte_present(*src_pte))) {
975 0 : entry.val = copy_nonpresent_pte(dst_mm, src_mm,
976 : dst_pte, src_pte,
977 : src_vma, addr, rss);
978 0 : if (entry.val)
979 : break;
980 0 : progress += 8;
981 0 : continue;
982 : }
983 : /* copy_present_pte() will clear `*prealloc' if consumed */
984 82659 : ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
985 : addr, rss, &prealloc);
986 : /*
987 : * If we need a pre-allocated page for this pte, drop the
988 : * locks, allocate, and try again.
989 : */
990 82659 : if (unlikely(ret == -EAGAIN))
991 : break;
992 82659 : if (unlikely(prealloc)) {
993 : /*
994 : * pre-alloc page cannot be reused by next time so as
995 : * to strictly follow mempolicy (e.g., alloc_page_vma()
996 : * will allocate page according to address). This
997 : * could only happen if one pinned pte changed.
998 : */
999 0 : put_page(prealloc);
1000 0 : prealloc = NULL;
1001 : }
1002 82659 : progress += 8;
1003 191046 : } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1004 :
1005 28334 : arch_leave_lazy_mmu_mode();
1006 28334 : spin_unlock(src_ptl);
1007 28334 : pte_unmap(orig_src_pte);
1008 28334 : add_mm_rss_vec(dst_mm, rss);
1009 28334 : pte_unmap_unlock(orig_dst_pte, dst_ptl);
1010 28334 : cond_resched();
1011 :
1012 28334 : if (entry.val) {
1013 28334 : if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1014 : ret = -ENOMEM;
1015 : goto out;
1016 : }
1017 28334 : entry.val = 0;
1018 28334 : } else if (ret) {
1019 0 : WARN_ON_ONCE(ret != -EAGAIN);
1020 0 : prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1021 0 : if (!prealloc)
1022 : return -ENOMEM;
1023 : /* We've captured and resolved the error. Reset, try again. */
1024 : ret = 0;
1025 : }
1026 28334 : if (addr != end)
1027 73 : goto again;
1028 28261 : out:
1029 28261 : if (unlikely(prealloc))
1030 0 : put_page(prealloc);
1031 : return ret;
1032 : }
1033 :
1034 : static inline int
1035 28031 : copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1036 : pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1037 : unsigned long end)
1038 : {
1039 28031 : struct mm_struct *dst_mm = dst_vma->vm_mm;
1040 28031 : struct mm_struct *src_mm = src_vma->vm_mm;
1041 28031 : pmd_t *src_pmd, *dst_pmd;
1042 28031 : unsigned long next;
1043 :
1044 28031 : dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1045 28031 : if (!dst_pmd)
1046 : return -ENOMEM;
1047 56062 : src_pmd = pmd_offset(src_pud, addr);
1048 28360 : do {
1049 28360 : next = pmd_addr_end(addr, end);
1050 28360 : if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1051 28360 : || pmd_devmap(*src_pmd)) {
1052 0 : int err;
1053 0 : VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1054 0 : err = copy_huge_pmd(dst_mm, src_mm,
1055 : dst_pmd, src_pmd, addr, src_vma);
1056 0 : if (err == -ENOMEM)
1057 : return -ENOMEM;
1058 0 : if (!err)
1059 0 : continue;
1060 : /* fall through */
1061 : }
1062 28360 : if (pmd_none_or_clear_bad(src_pmd))
1063 99 : continue;
1064 28261 : if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1065 : addr, next))
1066 : return -ENOMEM;
1067 28360 : } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1068 : return 0;
1069 : }
1070 :
1071 : static inline int
1072 28029 : copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1073 : p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1074 : unsigned long end)
1075 : {
1076 28029 : struct mm_struct *dst_mm = dst_vma->vm_mm;
1077 28029 : struct mm_struct *src_mm = src_vma->vm_mm;
1078 28029 : pud_t *src_pud, *dst_pud;
1079 28029 : unsigned long next;
1080 :
1081 28029 : dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1082 28030 : if (!dst_pud)
1083 : return -ENOMEM;
1084 28030 : src_pud = pud_offset(src_p4d, addr);
1085 28030 : do {
1086 28030 : next = pud_addr_end(addr, end);
1087 28030 : if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1088 0 : int err;
1089 :
1090 0 : VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1091 0 : err = copy_huge_pud(dst_mm, src_mm,
1092 : dst_pud, src_pud, addr, src_vma);
1093 0 : if (err == -ENOMEM)
1094 : return -ENOMEM;
1095 0 : if (!err)
1096 0 : continue;
1097 : /* fall through */
1098 : }
1099 28030 : if (pud_none_or_clear_bad(src_pud))
1100 0 : continue;
1101 28031 : if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1102 : addr, next))
1103 : return -ENOMEM;
1104 28031 : } while (dst_pud++, src_pud++, addr = next, addr != end);
1105 : return 0;
1106 : }
1107 :
1108 : static inline int
1109 28029 : copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1110 : pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1111 : unsigned long end)
1112 : {
1113 28029 : struct mm_struct *dst_mm = dst_vma->vm_mm;
1114 28029 : p4d_t *src_p4d, *dst_p4d;
1115 28029 : unsigned long next;
1116 :
1117 28029 : dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1118 28029 : if (!dst_p4d)
1119 : return -ENOMEM;
1120 28029 : src_p4d = p4d_offset(src_pgd, addr);
1121 28029 : do {
1122 28029 : next = p4d_addr_end(addr, end);
1123 28029 : if (p4d_none_or_clear_bad(src_p4d))
1124 0 : continue;
1125 28029 : if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1126 : addr, next))
1127 : return -ENOMEM;
1128 28031 : } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1129 28031 : return 0;
1130 : }
1131 :
1132 : int
1133 59208 : copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1134 : {
1135 59208 : pgd_t *src_pgd, *dst_pgd;
1136 59208 : unsigned long next;
1137 59208 : unsigned long addr = src_vma->vm_start;
1138 59208 : unsigned long end = src_vma->vm_end;
1139 59208 : struct mm_struct *dst_mm = dst_vma->vm_mm;
1140 59208 : struct mm_struct *src_mm = src_vma->vm_mm;
1141 59208 : struct mmu_notifier_range range;
1142 59208 : bool is_cow;
1143 59208 : int ret;
1144 :
1145 : /*
1146 : * Don't copy ptes where a page fault will fill them correctly.
1147 : * Fork becomes much lighter when there are big shared or private
1148 : * readonly mappings. The tradeoff is that copy_page_range is more
1149 : * efficient than faulting.
1150 : */
1151 59208 : if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1152 57971 : !src_vma->anon_vma)
1153 : return 0;
1154 :
1155 28030 : if (is_vm_hugetlb_page(src_vma))
1156 : return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1157 :
1158 28030 : if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1159 : /*
1160 : * We do not free on error cases below as remove_vma
1161 : * gets called on error from higher level routine
1162 : */
1163 1237 : ret = track_pfn_copy(src_vma);
1164 1237 : if (ret)
1165 : return ret;
1166 : }
1167 :
1168 : /*
1169 : * We need to invalidate the secondary MMU mappings only when
1170 : * there could be a permission downgrade on the ptes of the
1171 : * parent mm. And a permission downgrade will only happen if
1172 : * is_cow_mapping() returns true.
1173 : */
1174 28030 : is_cow = is_cow_mapping(src_vma->vm_flags);
1175 :
1176 28030 : if (is_cow) {
1177 26793 : mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1178 : 0, src_vma, src_mm, addr, end);
1179 26793 : mmu_notifier_invalidate_range_start(&range);
1180 : /*
1181 : * Disabling preemption is not needed for the write side, as
1182 : * the read side doesn't spin, but goes to the mmap_lock.
1183 : *
1184 : * Use the raw variant of the seqcount_t write API to avoid
1185 : * lockdep complaining about preemptibility.
1186 : */
1187 26793 : mmap_assert_write_locked(src_mm);
1188 26793 : raw_write_seqcount_begin(&src_mm->write_protect_seq);
1189 : }
1190 :
1191 28030 : ret = 0;
1192 28030 : dst_pgd = pgd_offset(dst_mm, addr);
1193 28030 : src_pgd = pgd_offset(src_mm, addr);
1194 28030 : do {
1195 28030 : next = pgd_addr_end(addr, end);
1196 28030 : if (pgd_none_or_clear_bad(src_pgd))
1197 : continue;
1198 28030 : if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1199 : addr, next))) {
1200 : ret = -ENOMEM;
1201 : break;
1202 : }
1203 28031 : } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1204 :
1205 28031 : if (is_cow) {
1206 26794 : raw_write_seqcount_end(&src_mm->write_protect_seq);
1207 26794 : mmu_notifier_invalidate_range_end(&range);
1208 : }
1209 : return ret;
1210 : }
1211 :
1212 117289 : static unsigned long zap_pte_range(struct mmu_gather *tlb,
1213 : struct vm_area_struct *vma, pmd_t *pmd,
1214 : unsigned long addr, unsigned long end,
1215 : struct zap_details *details)
1216 : {
1217 117289 : struct mm_struct *mm = tlb->mm;
1218 117289 : int force_flush = 0;
1219 117289 : int rss[NR_MM_COUNTERS];
1220 117289 : spinlock_t *ptl;
1221 117289 : pte_t *start_pte;
1222 117289 : pte_t *pte;
1223 117289 : swp_entry_t entry;
1224 :
1225 117289 : tlb_change_page_size(tlb, PAGE_SIZE);
1226 117342 : again:
1227 117342 : init_rss_vec(rss);
1228 234683 : start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1229 117341 : pte = start_pte;
1230 117341 : flush_tlb_batched_pending(mm);
1231 3556751 : arch_enter_lazy_mmu_mode();
1232 3556751 : do {
1233 3556751 : pte_t ptent = *pte;
1234 3556751 : if (pte_none(ptent))
1235 2663773 : continue;
1236 :
1237 892978 : if (need_resched())
1238 : break;
1239 :
1240 892813 : if (pte_present(ptent)) {
1241 892813 : struct page *page;
1242 :
1243 892813 : page = vm_normal_page(vma, addr, ptent);
1244 892932 : if (unlikely(details) && page) {
1245 : /*
1246 : * unmap_shared_mapping_pages() wants to
1247 : * invalidate cache without truncating:
1248 : * unmap shared but keep private pages.
1249 : */
1250 0 : if (details->check_mapping &&
1251 0 : details->check_mapping != page_rmapping(page))
1252 0 : continue;
1253 : }
1254 1785864 : ptent = ptep_get_and_clear_full(mm, addr, pte,
1255 892932 : tlb->fullmm);
1256 892932 : tlb_remove_tlb_entry(tlb, pte, addr);
1257 892932 : if (unlikely(!page))
1258 14323 : continue;
1259 :
1260 878609 : if (!PageAnon(page)) {
1261 749783 : if (pte_dirty(ptent)) {
1262 239 : force_flush = 1;
1263 239 : set_page_dirty(page);
1264 : }
1265 749783 : if (pte_young(ptent) &&
1266 748877 : likely(!(vma->vm_flags & VM_SEQ_READ)))
1267 748877 : mark_page_accessed(page);
1268 : }
1269 878441 : rss[mm_counter(page)]--;
1270 878285 : page_remove_rmap(page, false);
1271 878704 : if (unlikely(page_mapcount(page) < 0))
1272 0 : print_bad_pte(vma, addr, ptent, page);
1273 878584 : if (unlikely(__tlb_remove_page(tlb, page))) {
1274 : force_flush = 1;
1275 : addr += PAGE_SIZE;
1276 : break;
1277 : }
1278 878599 : continue;
1279 : }
1280 :
1281 0 : entry = pte_to_swp_entry(ptent);
1282 0 : if (is_device_private_entry(entry)) {
1283 : struct page *page = device_private_entry_to_page(entry);
1284 :
1285 : if (unlikely(details && details->check_mapping)) {
1286 : /*
1287 : * unmap_shared_mapping_pages() wants to
1288 : * invalidate cache without truncating:
1289 : * unmap shared but keep private pages.
1290 : */
1291 : if (details->check_mapping !=
1292 : page_rmapping(page))
1293 : continue;
1294 : }
1295 :
1296 : pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1297 : rss[mm_counter(page)]--;
1298 : page_remove_rmap(page, false);
1299 : put_page(page);
1300 : continue;
1301 : }
1302 :
1303 : /* If details->check_mapping, we leave swap entries. */
1304 0 : if (unlikely(details))
1305 0 : continue;
1306 :
1307 0 : if (!non_swap_entry(entry))
1308 0 : rss[MM_SWAPENTS]--;
1309 0 : else if (is_migration_entry(entry)) {
1310 0 : struct page *page;
1311 :
1312 0 : page = migration_entry_to_page(entry);
1313 0 : rss[mm_counter(page)]--;
1314 : }
1315 0 : if (unlikely(!free_swap_and_cache(entry)))
1316 0 : print_bad_pte(vma, addr, ptent, NULL);
1317 0 : pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1318 3556695 : } while (pte++, addr += PAGE_SIZE, addr != end);
1319 :
1320 117338 : add_mm_rss_vec(mm, rss);
1321 117335 : arch_leave_lazy_mmu_mode();
1322 :
1323 : /* Do the actual TLB flush before dropping ptl */
1324 117335 : if (force_flush)
1325 70 : tlb_flush_mmu_tlbonly(tlb);
1326 117335 : pte_unmap_unlock(start_pte, ptl);
1327 :
1328 : /*
1329 : * If we forced a TLB flush (either due to running out of
1330 : * batch buffers or because we needed to flush dirty TLB
1331 : * entries before releasing the ptl), free the batched
1332 : * memory too. Restart if we didn't do everything.
1333 : */
1334 117343 : if (force_flush) {
1335 70 : force_flush = 0;
1336 70 : tlb_flush_mmu(tlb);
1337 : }
1338 :
1339 117343 : if (addr != end) {
1340 53 : cond_resched();
1341 53 : goto again;
1342 : }
1343 :
1344 117290 : return addr;
1345 : }
1346 :
1347 112006 : static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1348 : struct vm_area_struct *vma, pud_t *pud,
1349 : unsigned long addr, unsigned long end,
1350 : struct zap_details *details)
1351 : {
1352 112006 : pmd_t *pmd;
1353 112006 : unsigned long next;
1354 :
1355 224013 : pmd = pmd_offset(pud, addr);
1356 120148 : do {
1357 120148 : next = pmd_addr_end(addr, end);
1358 120148 : if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1359 17 : if (next - addr != HPAGE_PMD_SIZE)
1360 0 : __split_huge_pmd(vma, pmd, addr, false, NULL);
1361 17 : else if (zap_huge_pmd(tlb, vma, pmd, addr))
1362 17 : goto next;
1363 : /* fall through */
1364 : }
1365 : /*
1366 : * Here there can be other concurrent MADV_DONTNEED or
1367 : * trans huge page faults running, and if the pmd is
1368 : * none or trans huge it can change under us. This is
1369 : * because MADV_DONTNEED holds the mmap_lock in read
1370 : * mode.
1371 : */
1372 120131 : if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1373 2842 : goto next;
1374 117289 : next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1375 120149 : next:
1376 120149 : cond_resched();
1377 120144 : } while (pmd++, addr = next, addr != end);
1378 :
1379 112002 : return addr;
1380 : }
1381 :
1382 112466 : static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1383 : struct vm_area_struct *vma, p4d_t *p4d,
1384 : unsigned long addr, unsigned long end,
1385 : struct zap_details *details)
1386 : {
1387 112466 : pud_t *pud;
1388 112466 : unsigned long next;
1389 :
1390 112466 : pud = pud_offset(p4d, addr);
1391 112475 : do {
1392 112475 : next = pud_addr_end(addr, end);
1393 112475 : if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1394 0 : if (next - addr != HPAGE_PUD_SIZE) {
1395 0 : mmap_assert_locked(tlb->mm);
1396 0 : split_huge_pud(vma, pud, addr);
1397 0 : } else if (zap_huge_pud(tlb, vma, pud, addr))
1398 0 : goto next;
1399 : /* fall through */
1400 : }
1401 112475 : if (pud_none_or_clear_bad(pud))
1402 469 : continue;
1403 112007 : next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1404 112002 : next:
1405 112002 : cond_resched();
1406 112473 : } while (pud++, addr = next, addr != end);
1407 :
1408 112464 : return addr;
1409 : }
1410 :
1411 113858 : static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1412 : struct vm_area_struct *vma, pgd_t *pgd,
1413 : unsigned long addr, unsigned long end,
1414 : struct zap_details *details)
1415 : {
1416 113858 : p4d_t *p4d;
1417 113858 : unsigned long next;
1418 :
1419 113858 : p4d = p4d_offset(pgd, addr);
1420 113858 : do {
1421 113858 : next = p4d_addr_end(addr, end);
1422 113858 : if (p4d_none_or_clear_bad(p4d))
1423 1392 : continue;
1424 112466 : next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1425 113855 : } while (p4d++, addr = next, addr != end);
1426 :
1427 113855 : return addr;
1428 : }
1429 :
1430 113858 : void unmap_page_range(struct mmu_gather *tlb,
1431 : struct vm_area_struct *vma,
1432 : unsigned long addr, unsigned long end,
1433 : struct zap_details *details)
1434 : {
1435 113858 : pgd_t *pgd;
1436 113858 : unsigned long next;
1437 :
1438 113858 : BUG_ON(addr >= end);
1439 113858 : tlb_start_vma(tlb, vma);
1440 113858 : pgd = pgd_offset(vma->vm_mm, addr);
1441 113858 : do {
1442 113858 : next = pgd_addr_end(addr, end);
1443 113858 : if (pgd_none_or_clear_bad(pgd))
1444 : continue;
1445 113858 : next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1446 113854 : } while (pgd++, addr = next, addr != end);
1447 113854 : tlb_end_vma(tlb, vma);
1448 113854 : }
1449 :
1450 :
1451 113856 : static void unmap_single_vma(struct mmu_gather *tlb,
1452 : struct vm_area_struct *vma, unsigned long start_addr,
1453 : unsigned long end_addr,
1454 : struct zap_details *details)
1455 : {
1456 113856 : unsigned long start = max(vma->vm_start, start_addr);
1457 113856 : unsigned long end;
1458 :
1459 113856 : if (start >= vma->vm_end)
1460 : return;
1461 113856 : end = min(vma->vm_end, end_addr);
1462 113856 : if (end <= vma->vm_start)
1463 : return;
1464 :
1465 113856 : if (vma->vm_file)
1466 113856 : uprobe_munmap(vma, start, end);
1467 :
1468 113856 : if (unlikely(vma->vm_flags & VM_PFNMAP))
1469 2146 : untrack_pfn(vma, 0, 0);
1470 :
1471 113856 : if (start != end) {
1472 113857 : if (unlikely(is_vm_hugetlb_page(vma))) {
1473 : /*
1474 : * It is undesirable to test vma->vm_file as it
1475 : * should be non-null for valid hugetlb area.
1476 : * However, vm_file will be NULL in the error
1477 : * cleanup path of mmap_region. When
1478 : * hugetlbfs ->mmap method fails,
1479 : * mmap_region() nullifies vma->vm_file
1480 : * before calling this function to clean up.
1481 : * Since no pte has actually been setup, it is
1482 : * safe to do nothing in this case.
1483 : */
1484 : if (vma->vm_file) {
1485 : i_mmap_lock_write(vma->vm_file->f_mapping);
1486 : __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1487 : i_mmap_unlock_write(vma->vm_file->f_mapping);
1488 : }
1489 : } else
1490 113857 : unmap_page_range(tlb, vma, start, end, details);
1491 : }
1492 : }
1493 :
1494 : /**
1495 : * unmap_vmas - unmap a range of memory covered by a list of vma's
1496 : * @tlb: address of the caller's struct mmu_gather
1497 : * @vma: the starting vma
1498 : * @start_addr: virtual address at which to start unmapping
1499 : * @end_addr: virtual address at which to end unmapping
1500 : *
1501 : * Unmap all pages in the vma list.
1502 : *
1503 : * Only addresses between `start' and `end' will be unmapped.
1504 : *
1505 : * The VMA list must be sorted in ascending virtual address order.
1506 : *
1507 : * unmap_vmas() assumes that the caller will flush the whole unmapped address
1508 : * range after unmap_vmas() returns. So the only responsibility here is to
1509 : * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1510 : * drops the lock and schedules.
1511 : */
1512 20432 : void unmap_vmas(struct mmu_gather *tlb,
1513 : struct vm_area_struct *vma, unsigned long start_addr,
1514 : unsigned long end_addr)
1515 : {
1516 20432 : struct mmu_notifier_range range;
1517 :
1518 20432 : mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1519 : start_addr, end_addr);
1520 134283 : mmu_notifier_invalidate_range_start(&range);
1521 134283 : for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1522 113849 : unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1523 20434 : mmu_notifier_invalidate_range_end(&range);
1524 20434 : }
1525 :
1526 : /**
1527 : * zap_page_range - remove user pages in a given range
1528 : * @vma: vm_area_struct holding the applicable pages
1529 : * @start: starting address of pages to zap
1530 : * @size: number of bytes to zap
1531 : *
1532 : * Caller must protect the VMA list
1533 : */
1534 4 : void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1535 : unsigned long size)
1536 : {
1537 4 : struct mmu_notifier_range range;
1538 4 : struct mmu_gather tlb;
1539 :
1540 4 : lru_add_drain();
1541 4 : mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1542 : start, start + size);
1543 4 : tlb_gather_mmu(&tlb, vma->vm_mm);
1544 4 : update_hiwater_rss(vma->vm_mm);
1545 4 : mmu_notifier_invalidate_range_start(&range);
1546 8 : for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1547 4 : unmap_single_vma(&tlb, vma, start, range.end, NULL);
1548 4 : mmu_notifier_invalidate_range_end(&range);
1549 4 : tlb_finish_mmu(&tlb);
1550 4 : }
1551 :
1552 : /**
1553 : * zap_page_range_single - remove user pages in a given range
1554 : * @vma: vm_area_struct holding the applicable pages
1555 : * @address: starting address of pages to zap
1556 : * @size: number of bytes to zap
1557 : * @details: details of shared cache invalidation
1558 : *
1559 : * The range must fit into one VMA.
1560 : */
1561 0 : static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1562 : unsigned long size, struct zap_details *details)
1563 : {
1564 0 : struct mmu_notifier_range range;
1565 0 : struct mmu_gather tlb;
1566 :
1567 0 : lru_add_drain();
1568 0 : mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1569 : address, address + size);
1570 0 : tlb_gather_mmu(&tlb, vma->vm_mm);
1571 0 : update_hiwater_rss(vma->vm_mm);
1572 0 : mmu_notifier_invalidate_range_start(&range);
1573 0 : unmap_single_vma(&tlb, vma, address, range.end, details);
1574 0 : mmu_notifier_invalidate_range_end(&range);
1575 0 : tlb_finish_mmu(&tlb);
1576 0 : }
1577 :
1578 : /**
1579 : * zap_vma_ptes - remove ptes mapping the vma
1580 : * @vma: vm_area_struct holding ptes to be zapped
1581 : * @address: starting address of pages to zap
1582 : * @size: number of bytes to zap
1583 : *
1584 : * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1585 : *
1586 : * The entire address range must be fully contained within the vma.
1587 : *
1588 : */
1589 0 : void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1590 : unsigned long size)
1591 : {
1592 0 : if (address < vma->vm_start || address + size > vma->vm_end ||
1593 0 : !(vma->vm_flags & VM_PFNMAP))
1594 : return;
1595 :
1596 0 : zap_page_range_single(vma, address, size, NULL);
1597 : }
1598 : EXPORT_SYMBOL_GPL(zap_vma_ptes);
1599 :
1600 250 : static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1601 : {
1602 250 : pgd_t *pgd;
1603 250 : p4d_t *p4d;
1604 250 : pud_t *pud;
1605 250 : pmd_t *pmd;
1606 :
1607 250 : pgd = pgd_offset(mm, addr);
1608 250 : p4d = p4d_alloc(mm, pgd, addr);
1609 250 : if (!p4d)
1610 : return NULL;
1611 250 : pud = pud_alloc(mm, p4d, addr);
1612 250 : if (!pud)
1613 : return NULL;
1614 250 : pmd = pmd_alloc(mm, pud, addr);
1615 250 : if (!pmd)
1616 : return NULL;
1617 :
1618 250 : VM_BUG_ON(pmd_trans_huge(*pmd));
1619 : return pmd;
1620 : }
1621 :
1622 250 : pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1623 : spinlock_t **ptl)
1624 : {
1625 250 : pmd_t *pmd = walk_to_pmd(mm, addr);
1626 :
1627 250 : if (!pmd)
1628 : return NULL;
1629 500 : return pte_alloc_map_lock(mm, pmd, addr, ptl);
1630 : }
1631 :
1632 0 : static int validate_page_before_insert(struct page *page)
1633 : {
1634 0 : if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1635 0 : return -EINVAL;
1636 0 : flush_dcache_page(page);
1637 : return 0;
1638 : }
1639 :
1640 0 : static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1641 : unsigned long addr, struct page *page, pgprot_t prot)
1642 : {
1643 0 : if (!pte_none(*pte))
1644 : return -EBUSY;
1645 : /* Ok, finally just insert the thing.. */
1646 0 : get_page(page);
1647 0 : inc_mm_counter_fast(mm, mm_counter_file(page));
1648 0 : page_add_file_rmap(page, false);
1649 0 : set_pte_at(mm, addr, pte, mk_pte(page, prot));
1650 0 : return 0;
1651 : }
1652 :
1653 : /*
1654 : * This is the old fallback for page remapping.
1655 : *
1656 : * For historical reasons, it only allows reserved pages. Only
1657 : * old drivers should use this, and they needed to mark their
1658 : * pages reserved for the old functions anyway.
1659 : */
1660 0 : static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1661 : struct page *page, pgprot_t prot)
1662 : {
1663 0 : struct mm_struct *mm = vma->vm_mm;
1664 0 : int retval;
1665 0 : pte_t *pte;
1666 0 : spinlock_t *ptl;
1667 :
1668 0 : retval = validate_page_before_insert(page);
1669 0 : if (retval)
1670 0 : goto out;
1671 0 : retval = -ENOMEM;
1672 0 : pte = get_locked_pte(mm, addr, &ptl);
1673 0 : if (!pte)
1674 0 : goto out;
1675 0 : retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1676 0 : pte_unmap_unlock(pte, ptl);
1677 0 : out:
1678 0 : return retval;
1679 : }
1680 :
1681 : #ifdef pte_index
1682 : static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1683 : unsigned long addr, struct page *page, pgprot_t prot)
1684 : {
1685 : int err;
1686 :
1687 : if (!page_count(page))
1688 : return -EINVAL;
1689 : err = validate_page_before_insert(page);
1690 : if (err)
1691 : return err;
1692 : return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1693 : }
1694 :
1695 : /* insert_pages() amortizes the cost of spinlock operations
1696 : * when inserting pages in a loop. Arch *must* define pte_index.
1697 : */
1698 : static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1699 : struct page **pages, unsigned long *num, pgprot_t prot)
1700 : {
1701 : pmd_t *pmd = NULL;
1702 : pte_t *start_pte, *pte;
1703 : spinlock_t *pte_lock;
1704 : struct mm_struct *const mm = vma->vm_mm;
1705 : unsigned long curr_page_idx = 0;
1706 : unsigned long remaining_pages_total = *num;
1707 : unsigned long pages_to_write_in_pmd;
1708 : int ret;
1709 : more:
1710 : ret = -EFAULT;
1711 : pmd = walk_to_pmd(mm, addr);
1712 : if (!pmd)
1713 : goto out;
1714 :
1715 : pages_to_write_in_pmd = min_t(unsigned long,
1716 : remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1717 :
1718 : /* Allocate the PTE if necessary; takes PMD lock once only. */
1719 : ret = -ENOMEM;
1720 : if (pte_alloc(mm, pmd))
1721 : goto out;
1722 :
1723 : while (pages_to_write_in_pmd) {
1724 : int pte_idx = 0;
1725 : const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1726 :
1727 : start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1728 : for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1729 : int err = insert_page_in_batch_locked(mm, pte,
1730 : addr, pages[curr_page_idx], prot);
1731 : if (unlikely(err)) {
1732 : pte_unmap_unlock(start_pte, pte_lock);
1733 : ret = err;
1734 : remaining_pages_total -= pte_idx;
1735 : goto out;
1736 : }
1737 : addr += PAGE_SIZE;
1738 : ++curr_page_idx;
1739 : }
1740 : pte_unmap_unlock(start_pte, pte_lock);
1741 : pages_to_write_in_pmd -= batch_size;
1742 : remaining_pages_total -= batch_size;
1743 : }
1744 : if (remaining_pages_total)
1745 : goto more;
1746 : ret = 0;
1747 : out:
1748 : *num = remaining_pages_total;
1749 : return ret;
1750 : }
1751 : #endif /* ifdef pte_index */
1752 :
1753 : /**
1754 : * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1755 : * @vma: user vma to map to
1756 : * @addr: target start user address of these pages
1757 : * @pages: source kernel pages
1758 : * @num: in: number of pages to map. out: number of pages that were *not*
1759 : * mapped. (0 means all pages were successfully mapped).
1760 : *
1761 : * Preferred over vm_insert_page() when inserting multiple pages.
1762 : *
1763 : * In case of error, we may have mapped a subset of the provided
1764 : * pages. It is the caller's responsibility to account for this case.
1765 : *
1766 : * The same restrictions apply as in vm_insert_page().
1767 : */
1768 0 : int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1769 : struct page **pages, unsigned long *num)
1770 : {
1771 : #ifdef pte_index
1772 : const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1773 :
1774 : if (addr < vma->vm_start || end_addr >= vma->vm_end)
1775 : return -EFAULT;
1776 : if (!(vma->vm_flags & VM_MIXEDMAP)) {
1777 : BUG_ON(mmap_read_trylock(vma->vm_mm));
1778 : BUG_ON(vma->vm_flags & VM_PFNMAP);
1779 : vma->vm_flags |= VM_MIXEDMAP;
1780 : }
1781 : /* Defer page refcount checking till we're about to map that page. */
1782 : return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1783 : #else
1784 0 : unsigned long idx = 0, pgcount = *num;
1785 0 : int err = -EINVAL;
1786 :
1787 0 : for (; idx < pgcount; ++idx) {
1788 0 : err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1789 0 : if (err)
1790 : break;
1791 : }
1792 0 : *num = pgcount - idx;
1793 0 : return err;
1794 : #endif /* ifdef pte_index */
1795 : }
1796 : EXPORT_SYMBOL(vm_insert_pages);
1797 :
1798 : /**
1799 : * vm_insert_page - insert single page into user vma
1800 : * @vma: user vma to map to
1801 : * @addr: target user address of this page
1802 : * @page: source kernel page
1803 : *
1804 : * This allows drivers to insert individual pages they've allocated
1805 : * into a user vma.
1806 : *
1807 : * The page has to be a nice clean _individual_ kernel allocation.
1808 : * If you allocate a compound page, you need to have marked it as
1809 : * such (__GFP_COMP), or manually just split the page up yourself
1810 : * (see split_page()).
1811 : *
1812 : * NOTE! Traditionally this was done with "remap_pfn_range()" which
1813 : * took an arbitrary page protection parameter. This doesn't allow
1814 : * that. Your vma protection will have to be set up correctly, which
1815 : * means that if you want a shared writable mapping, you'd better
1816 : * ask for a shared writable mapping!
1817 : *
1818 : * The page does not need to be reserved.
1819 : *
1820 : * Usually this function is called from f_op->mmap() handler
1821 : * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1822 : * Caller must set VM_MIXEDMAP on vma if it wants to call this
1823 : * function from other places, for example from page-fault handler.
1824 : *
1825 : * Return: %0 on success, negative error code otherwise.
1826 : */
1827 0 : int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1828 : struct page *page)
1829 : {
1830 0 : if (addr < vma->vm_start || addr >= vma->vm_end)
1831 : return -EFAULT;
1832 0 : if (!page_count(page))
1833 : return -EINVAL;
1834 0 : if (!(vma->vm_flags & VM_MIXEDMAP)) {
1835 0 : BUG_ON(mmap_read_trylock(vma->vm_mm));
1836 0 : BUG_ON(vma->vm_flags & VM_PFNMAP);
1837 0 : vma->vm_flags |= VM_MIXEDMAP;
1838 : }
1839 0 : return insert_page(vma, addr, page, vma->vm_page_prot);
1840 : }
1841 : EXPORT_SYMBOL(vm_insert_page);
1842 :
1843 : /*
1844 : * __vm_map_pages - maps range of kernel pages into user vma
1845 : * @vma: user vma to map to
1846 : * @pages: pointer to array of source kernel pages
1847 : * @num: number of pages in page array
1848 : * @offset: user's requested vm_pgoff
1849 : *
1850 : * This allows drivers to map range of kernel pages into a user vma.
1851 : *
1852 : * Return: 0 on success and error code otherwise.
1853 : */
1854 0 : static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1855 : unsigned long num, unsigned long offset)
1856 : {
1857 0 : unsigned long count = vma_pages(vma);
1858 0 : unsigned long uaddr = vma->vm_start;
1859 0 : int ret, i;
1860 :
1861 : /* Fail if the user requested offset is beyond the end of the object */
1862 0 : if (offset >= num)
1863 : return -ENXIO;
1864 :
1865 : /* Fail if the user requested size exceeds available object size */
1866 0 : if (count > num - offset)
1867 : return -ENXIO;
1868 :
1869 0 : for (i = 0; i < count; i++) {
1870 0 : ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1871 0 : if (ret < 0)
1872 0 : return ret;
1873 0 : uaddr += PAGE_SIZE;
1874 : }
1875 :
1876 : return 0;
1877 : }
1878 :
1879 : /**
1880 : * vm_map_pages - maps range of kernel pages starts with non zero offset
1881 : * @vma: user vma to map to
1882 : * @pages: pointer to array of source kernel pages
1883 : * @num: number of pages in page array
1884 : *
1885 : * Maps an object consisting of @num pages, catering for the user's
1886 : * requested vm_pgoff
1887 : *
1888 : * If we fail to insert any page into the vma, the function will return
1889 : * immediately leaving any previously inserted pages present. Callers
1890 : * from the mmap handler may immediately return the error as their caller
1891 : * will destroy the vma, removing any successfully inserted pages. Other
1892 : * callers should make their own arrangements for calling unmap_region().
1893 : *
1894 : * Context: Process context. Called by mmap handlers.
1895 : * Return: 0 on success and error code otherwise.
1896 : */
1897 0 : int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1898 : unsigned long num)
1899 : {
1900 0 : return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1901 : }
1902 : EXPORT_SYMBOL(vm_map_pages);
1903 :
1904 : /**
1905 : * vm_map_pages_zero - map range of kernel pages starts with zero offset
1906 : * @vma: user vma to map to
1907 : * @pages: pointer to array of source kernel pages
1908 : * @num: number of pages in page array
1909 : *
1910 : * Similar to vm_map_pages(), except that it explicitly sets the offset
1911 : * to 0. This function is intended for the drivers that did not consider
1912 : * vm_pgoff.
1913 : *
1914 : * Context: Process context. Called by mmap handlers.
1915 : * Return: 0 on success and error code otherwise.
1916 : */
1917 0 : int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1918 : unsigned long num)
1919 : {
1920 0 : return __vm_map_pages(vma, pages, num, 0);
1921 : }
1922 : EXPORT_SYMBOL(vm_map_pages_zero);
1923 :
1924 133 : static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1925 : pfn_t pfn, pgprot_t prot, bool mkwrite)
1926 : {
1927 133 : struct mm_struct *mm = vma->vm_mm;
1928 133 : pte_t *pte, entry;
1929 133 : spinlock_t *ptl;
1930 :
1931 133 : pte = get_locked_pte(mm, addr, &ptl);
1932 133 : if (!pte)
1933 : return VM_FAULT_OOM;
1934 133 : if (!pte_none(*pte)) {
1935 0 : if (mkwrite) {
1936 : /*
1937 : * For read faults on private mappings the PFN passed
1938 : * in may not match the PFN we have mapped if the
1939 : * mapped PFN is a writeable COW page. In the mkwrite
1940 : * case we are creating a writable PTE for a shared
1941 : * mapping and we expect the PFNs to match. If they
1942 : * don't match, we are likely racing with block
1943 : * allocation and mapping invalidation so just skip the
1944 : * update.
1945 : */
1946 0 : if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1947 0 : WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1948 0 : goto out_unlock;
1949 : }
1950 0 : entry = pte_mkyoung(*pte);
1951 0 : entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1952 0 : if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1953 0 : update_mmu_cache(vma, addr, pte);
1954 : }
1955 0 : goto out_unlock;
1956 : }
1957 :
1958 : /* Ok, finally just insert the thing.. */
1959 133 : if (pfn_t_devmap(pfn))
1960 0 : entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1961 : else
1962 133 : entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1963 :
1964 133 : if (mkwrite) {
1965 0 : entry = pte_mkyoung(entry);
1966 0 : entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1967 : }
1968 :
1969 133 : set_pte_at(mm, addr, pte, entry);
1970 133 : update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1971 :
1972 133 : out_unlock:
1973 133 : pte_unmap_unlock(pte, ptl);
1974 133 : return VM_FAULT_NOPAGE;
1975 : }
1976 :
1977 : /**
1978 : * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1979 : * @vma: user vma to map to
1980 : * @addr: target user address of this page
1981 : * @pfn: source kernel pfn
1982 : * @pgprot: pgprot flags for the inserted page
1983 : *
1984 : * This is exactly like vmf_insert_pfn(), except that it allows drivers
1985 : * to override pgprot on a per-page basis.
1986 : *
1987 : * This only makes sense for IO mappings, and it makes no sense for
1988 : * COW mappings. In general, using multiple vmas is preferable;
1989 : * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1990 : * impractical.
1991 : *
1992 : * See vmf_insert_mixed_prot() for a discussion of the implication of using
1993 : * a value of @pgprot different from that of @vma->vm_page_prot.
1994 : *
1995 : * Context: Process context. May allocate using %GFP_KERNEL.
1996 : * Return: vm_fault_t value.
1997 : */
1998 133 : vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1999 : unsigned long pfn, pgprot_t pgprot)
2000 : {
2001 : /*
2002 : * Technically, architectures with pte_special can avoid all these
2003 : * restrictions (same for remap_pfn_range). However we would like
2004 : * consistency in testing and feature parity among all, so we should
2005 : * try to keep these invariants in place for everybody.
2006 : */
2007 133 : BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2008 133 : BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2009 : (VM_PFNMAP|VM_MIXEDMAP));
2010 133 : BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2011 133 : BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2012 :
2013 133 : if (addr < vma->vm_start || addr >= vma->vm_end)
2014 : return VM_FAULT_SIGBUS;
2015 :
2016 133 : if (!pfn_modify_allowed(pfn, pgprot))
2017 : return VM_FAULT_SIGBUS;
2018 :
2019 133 : track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2020 :
2021 133 : return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2022 : false);
2023 : }
2024 : EXPORT_SYMBOL(vmf_insert_pfn_prot);
2025 :
2026 : /**
2027 : * vmf_insert_pfn - insert single pfn into user vma
2028 : * @vma: user vma to map to
2029 : * @addr: target user address of this page
2030 : * @pfn: source kernel pfn
2031 : *
2032 : * Similar to vm_insert_page, this allows drivers to insert individual pages
2033 : * they've allocated into a user vma. Same comments apply.
2034 : *
2035 : * This function should only be called from a vm_ops->fault handler, and
2036 : * in that case the handler should return the result of this function.
2037 : *
2038 : * vma cannot be a COW mapping.
2039 : *
2040 : * As this is called only for pages that do not currently exist, we
2041 : * do not need to flush old virtual caches or the TLB.
2042 : *
2043 : * Context: Process context. May allocate using %GFP_KERNEL.
2044 : * Return: vm_fault_t value.
2045 : */
2046 76 : vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2047 : unsigned long pfn)
2048 : {
2049 76 : return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2050 : }
2051 : EXPORT_SYMBOL(vmf_insert_pfn);
2052 :
2053 0 : static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2054 : {
2055 : /* these checks mirror the abort conditions in vm_normal_page */
2056 0 : if (vma->vm_flags & VM_MIXEDMAP)
2057 : return true;
2058 0 : if (pfn_t_devmap(pfn))
2059 : return true;
2060 0 : if (pfn_t_special(pfn))
2061 : return true;
2062 0 : if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2063 0 : return true;
2064 : return false;
2065 : }
2066 :
2067 0 : static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2068 : unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2069 : bool mkwrite)
2070 : {
2071 0 : int err;
2072 :
2073 0 : BUG_ON(!vm_mixed_ok(vma, pfn));
2074 :
2075 0 : if (addr < vma->vm_start || addr >= vma->vm_end)
2076 : return VM_FAULT_SIGBUS;
2077 :
2078 0 : track_pfn_insert(vma, &pgprot, pfn);
2079 :
2080 0 : if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2081 : return VM_FAULT_SIGBUS;
2082 :
2083 : /*
2084 : * If we don't have pte special, then we have to use the pfn_valid()
2085 : * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2086 : * refcount the page if pfn_valid is true (hence insert_page rather
2087 : * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2088 : * without pte special, it would there be refcounted as a normal page.
2089 : */
2090 0 : if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2091 : !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2092 : struct page *page;
2093 :
2094 : /*
2095 : * At this point we are committed to insert_page()
2096 : * regardless of whether the caller specified flags that
2097 : * result in pfn_t_has_page() == false.
2098 : */
2099 : page = pfn_to_page(pfn_t_to_pfn(pfn));
2100 : err = insert_page(vma, addr, page, pgprot);
2101 : } else {
2102 0 : return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2103 : }
2104 :
2105 : if (err == -ENOMEM)
2106 : return VM_FAULT_OOM;
2107 : if (err < 0 && err != -EBUSY)
2108 : return VM_FAULT_SIGBUS;
2109 :
2110 : return VM_FAULT_NOPAGE;
2111 : }
2112 :
2113 : /**
2114 : * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2115 : * @vma: user vma to map to
2116 : * @addr: target user address of this page
2117 : * @pfn: source kernel pfn
2118 : * @pgprot: pgprot flags for the inserted page
2119 : *
2120 : * This is exactly like vmf_insert_mixed(), except that it allows drivers
2121 : * to override pgprot on a per-page basis.
2122 : *
2123 : * Typically this function should be used by drivers to set caching- and
2124 : * encryption bits different than those of @vma->vm_page_prot, because
2125 : * the caching- or encryption mode may not be known at mmap() time.
2126 : * This is ok as long as @vma->vm_page_prot is not used by the core vm
2127 : * to set caching and encryption bits for those vmas (except for COW pages).
2128 : * This is ensured by core vm only modifying these page table entries using
2129 : * functions that don't touch caching- or encryption bits, using pte_modify()
2130 : * if needed. (See for example mprotect()).
2131 : * Also when new page-table entries are created, this is only done using the
2132 : * fault() callback, and never using the value of vma->vm_page_prot,
2133 : * except for page-table entries that point to anonymous pages as the result
2134 : * of COW.
2135 : *
2136 : * Context: Process context. May allocate using %GFP_KERNEL.
2137 : * Return: vm_fault_t value.
2138 : */
2139 0 : vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2140 : pfn_t pfn, pgprot_t pgprot)
2141 : {
2142 0 : return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2143 : }
2144 : EXPORT_SYMBOL(vmf_insert_mixed_prot);
2145 :
2146 0 : vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2147 : pfn_t pfn)
2148 : {
2149 0 : return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2150 : }
2151 : EXPORT_SYMBOL(vmf_insert_mixed);
2152 :
2153 : /*
2154 : * If the insertion of PTE failed because someone else already added a
2155 : * different entry in the mean time, we treat that as success as we assume
2156 : * the same entry was actually inserted.
2157 : */
2158 0 : vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2159 : unsigned long addr, pfn_t pfn)
2160 : {
2161 0 : return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2162 : }
2163 : EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2164 :
2165 : /*
2166 : * maps a range of physical memory into the requested pages. the old
2167 : * mappings are removed. any references to nonexistent pages results
2168 : * in null mappings (currently treated as "copy-on-access")
2169 : */
2170 0 : static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2171 : unsigned long addr, unsigned long end,
2172 : unsigned long pfn, pgprot_t prot)
2173 : {
2174 0 : pte_t *pte, *mapped_pte;
2175 0 : spinlock_t *ptl;
2176 0 : int err = 0;
2177 :
2178 0 : mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2179 0 : if (!pte)
2180 0 : return -ENOMEM;
2181 0 : arch_enter_lazy_mmu_mode();
2182 0 : do {
2183 0 : BUG_ON(!pte_none(*pte));
2184 0 : if (!pfn_modify_allowed(pfn, prot)) {
2185 : err = -EACCES;
2186 : break;
2187 : }
2188 0 : set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2189 0 : pfn++;
2190 0 : } while (pte++, addr += PAGE_SIZE, addr != end);
2191 0 : arch_leave_lazy_mmu_mode();
2192 0 : pte_unmap_unlock(mapped_pte, ptl);
2193 0 : return err;
2194 : }
2195 :
2196 0 : static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2197 : unsigned long addr, unsigned long end,
2198 : unsigned long pfn, pgprot_t prot)
2199 : {
2200 0 : pmd_t *pmd;
2201 0 : unsigned long next;
2202 0 : int err;
2203 :
2204 0 : pfn -= addr >> PAGE_SHIFT;
2205 0 : pmd = pmd_alloc(mm, pud, addr);
2206 0 : if (!pmd)
2207 : return -ENOMEM;
2208 0 : VM_BUG_ON(pmd_trans_huge(*pmd));
2209 0 : do {
2210 0 : next = pmd_addr_end(addr, end);
2211 0 : err = remap_pte_range(mm, pmd, addr, next,
2212 0 : pfn + (addr >> PAGE_SHIFT), prot);
2213 0 : if (err)
2214 0 : return err;
2215 0 : } while (pmd++, addr = next, addr != end);
2216 : return 0;
2217 : }
2218 :
2219 0 : static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2220 : unsigned long addr, unsigned long end,
2221 : unsigned long pfn, pgprot_t prot)
2222 : {
2223 0 : pud_t *pud;
2224 0 : unsigned long next;
2225 0 : int err;
2226 :
2227 0 : pfn -= addr >> PAGE_SHIFT;
2228 0 : pud = pud_alloc(mm, p4d, addr);
2229 0 : if (!pud)
2230 : return -ENOMEM;
2231 0 : do {
2232 0 : next = pud_addr_end(addr, end);
2233 0 : err = remap_pmd_range(mm, pud, addr, next,
2234 0 : pfn + (addr >> PAGE_SHIFT), prot);
2235 0 : if (err)
2236 0 : return err;
2237 0 : } while (pud++, addr = next, addr != end);
2238 : return 0;
2239 : }
2240 :
2241 0 : static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2242 : unsigned long addr, unsigned long end,
2243 : unsigned long pfn, pgprot_t prot)
2244 : {
2245 0 : p4d_t *p4d;
2246 0 : unsigned long next;
2247 0 : int err;
2248 :
2249 0 : pfn -= addr >> PAGE_SHIFT;
2250 0 : p4d = p4d_alloc(mm, pgd, addr);
2251 0 : if (!p4d)
2252 : return -ENOMEM;
2253 0 : do {
2254 0 : next = p4d_addr_end(addr, end);
2255 0 : err = remap_pud_range(mm, p4d, addr, next,
2256 : pfn + (addr >> PAGE_SHIFT), prot);
2257 0 : if (err)
2258 0 : return err;
2259 0 : } while (p4d++, addr = next, addr != end);
2260 : return 0;
2261 : }
2262 :
2263 : /**
2264 : * remap_pfn_range - remap kernel memory to userspace
2265 : * @vma: user vma to map to
2266 : * @addr: target page aligned user address to start at
2267 : * @pfn: page frame number of kernel physical memory address
2268 : * @size: size of mapping area
2269 : * @prot: page protection flags for this mapping
2270 : *
2271 : * Note: this is only safe if the mm semaphore is held when called.
2272 : *
2273 : * Return: %0 on success, negative error code otherwise.
2274 : */
2275 0 : int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2276 : unsigned long pfn, unsigned long size, pgprot_t prot)
2277 : {
2278 0 : pgd_t *pgd;
2279 0 : unsigned long next;
2280 0 : unsigned long end = addr + PAGE_ALIGN(size);
2281 0 : struct mm_struct *mm = vma->vm_mm;
2282 0 : unsigned long remap_pfn = pfn;
2283 0 : int err;
2284 :
2285 0 : if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2286 : return -EINVAL;
2287 :
2288 : /*
2289 : * Physically remapped pages are special. Tell the
2290 : * rest of the world about it:
2291 : * VM_IO tells people not to look at these pages
2292 : * (accesses can have side effects).
2293 : * VM_PFNMAP tells the core MM that the base pages are just
2294 : * raw PFN mappings, and do not have a "struct page" associated
2295 : * with them.
2296 : * VM_DONTEXPAND
2297 : * Disable vma merging and expanding with mremap().
2298 : * VM_DONTDUMP
2299 : * Omit vma from core dump, even when VM_IO turned off.
2300 : *
2301 : * There's a horrible special case to handle copy-on-write
2302 : * behaviour that some programs depend on. We mark the "original"
2303 : * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2304 : * See vm_normal_page() for details.
2305 : */
2306 0 : if (is_cow_mapping(vma->vm_flags)) {
2307 0 : if (addr != vma->vm_start || end != vma->vm_end)
2308 : return -EINVAL;
2309 0 : vma->vm_pgoff = pfn;
2310 : }
2311 :
2312 0 : err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2313 0 : if (err)
2314 : return -EINVAL;
2315 :
2316 0 : vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2317 :
2318 0 : BUG_ON(addr >= end);
2319 0 : pfn -= addr >> PAGE_SHIFT;
2320 0 : pgd = pgd_offset(mm, addr);
2321 0 : flush_cache_range(vma, addr, end);
2322 0 : do {
2323 0 : next = pgd_addr_end(addr, end);
2324 0 : err = remap_p4d_range(mm, pgd, addr, next,
2325 0 : pfn + (addr >> PAGE_SHIFT), prot);
2326 0 : if (err)
2327 : break;
2328 0 : } while (pgd++, addr = next, addr != end);
2329 :
2330 0 : if (err)
2331 0 : untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2332 :
2333 : return err;
2334 : }
2335 : EXPORT_SYMBOL(remap_pfn_range);
2336 :
2337 : /**
2338 : * vm_iomap_memory - remap memory to userspace
2339 : * @vma: user vma to map to
2340 : * @start: start of the physical memory to be mapped
2341 : * @len: size of area
2342 : *
2343 : * This is a simplified io_remap_pfn_range() for common driver use. The
2344 : * driver just needs to give us the physical memory range to be mapped,
2345 : * we'll figure out the rest from the vma information.
2346 : *
2347 : * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2348 : * whatever write-combining details or similar.
2349 : *
2350 : * Return: %0 on success, negative error code otherwise.
2351 : */
2352 0 : int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2353 : {
2354 0 : unsigned long vm_len, pfn, pages;
2355 :
2356 : /* Check that the physical memory area passed in looks valid */
2357 0 : if (start + len < start)
2358 : return -EINVAL;
2359 : /*
2360 : * You *really* shouldn't map things that aren't page-aligned,
2361 : * but we've historically allowed it because IO memory might
2362 : * just have smaller alignment.
2363 : */
2364 0 : len += start & ~PAGE_MASK;
2365 0 : pfn = start >> PAGE_SHIFT;
2366 0 : pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2367 0 : if (pfn + pages < pfn)
2368 : return -EINVAL;
2369 :
2370 : /* We start the mapping 'vm_pgoff' pages into the area */
2371 0 : if (vma->vm_pgoff > pages)
2372 : return -EINVAL;
2373 0 : pfn += vma->vm_pgoff;
2374 0 : pages -= vma->vm_pgoff;
2375 :
2376 : /* Can we fit all of the mapping? */
2377 0 : vm_len = vma->vm_end - vma->vm_start;
2378 0 : if (vm_len >> PAGE_SHIFT > pages)
2379 : return -EINVAL;
2380 :
2381 : /* Ok, let it rip */
2382 0 : return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2383 : }
2384 : EXPORT_SYMBOL(vm_iomap_memory);
2385 :
2386 9984 : static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2387 : unsigned long addr, unsigned long end,
2388 : pte_fn_t fn, void *data, bool create,
2389 : pgtbl_mod_mask *mask)
2390 : {
2391 9984 : pte_t *pte, *mapped_pte;
2392 9984 : int err = 0;
2393 9984 : spinlock_t *ptl;
2394 :
2395 9984 : if (create) {
2396 19954 : mapped_pte = pte = (mm == &init_mm) ?
2397 19954 : pte_alloc_kernel_track(pmd, addr, mask) :
2398 0 : pte_alloc_map_lock(mm, pmd, addr, &ptl);
2399 9977 : if (!pte)
2400 : return -ENOMEM;
2401 : } else {
2402 9991 : mapped_pte = pte = (mm == &init_mm) ?
2403 14 : pte_offset_kernel(pmd, addr) :
2404 0 : pte_offset_map_lock(mm, pmd, addr, &ptl);
2405 : }
2406 :
2407 9984 : BUG_ON(pmd_huge(*pmd));
2408 :
2409 9984 : arch_enter_lazy_mmu_mode();
2410 :
2411 9984 : if (fn) {
2412 11063 : do {
2413 11063 : if (create || !pte_none(*pte)) {
2414 11063 : err = fn(pte++, addr, data);
2415 11063 : if (err)
2416 : break;
2417 : }
2418 11063 : } while (addr += PAGE_SIZE, addr != end);
2419 : }
2420 9984 : *mask |= PGTBL_PTE_MODIFIED;
2421 :
2422 9984 : arch_leave_lazy_mmu_mode();
2423 :
2424 9984 : if (mm != &init_mm)
2425 0 : pte_unmap_unlock(mapped_pte, ptl);
2426 : return err;
2427 : }
2428 :
2429 9983 : static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2430 : unsigned long addr, unsigned long end,
2431 : pte_fn_t fn, void *data, bool create,
2432 : pgtbl_mod_mask *mask)
2433 : {
2434 9983 : pmd_t *pmd;
2435 9983 : unsigned long next;
2436 9983 : int err = 0;
2437 :
2438 9983 : BUG_ON(pud_huge(*pud));
2439 :
2440 9983 : if (create) {
2441 9976 : pmd = pmd_alloc_track(mm, pud, addr, mask);
2442 9976 : if (!pmd)
2443 : return -ENOMEM;
2444 : } else {
2445 14 : pmd = pmd_offset(pud, addr);
2446 : }
2447 9983 : do {
2448 9983 : next = pmd_addr_end(addr, end);
2449 9983 : if (create || !pmd_none_or_clear_bad(pmd)) {
2450 9983 : err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2451 : create, mask);
2452 9983 : if (err)
2453 : break;
2454 : }
2455 9983 : } while (pmd++, addr = next, addr != end);
2456 : return err;
2457 : }
2458 :
2459 9982 : static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2460 : unsigned long addr, unsigned long end,
2461 : pte_fn_t fn, void *data, bool create,
2462 : pgtbl_mod_mask *mask)
2463 : {
2464 9982 : pud_t *pud;
2465 9982 : unsigned long next;
2466 9982 : int err = 0;
2467 :
2468 9982 : if (create) {
2469 9975 : pud = pud_alloc_track(mm, p4d, addr, mask);
2470 9975 : if (!pud)
2471 : return -ENOMEM;
2472 : } else {
2473 7 : pud = pud_offset(p4d, addr);
2474 : }
2475 9982 : do {
2476 9982 : next = pud_addr_end(addr, end);
2477 9982 : if (create || !pud_none_or_clear_bad(pud)) {
2478 9982 : err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2479 : create, mask);
2480 9982 : if (err)
2481 : break;
2482 : }
2483 9982 : } while (pud++, addr = next, addr != end);
2484 : return err;
2485 : }
2486 :
2487 9981 : static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2488 : unsigned long addr, unsigned long end,
2489 : pte_fn_t fn, void *data, bool create,
2490 : pgtbl_mod_mask *mask)
2491 : {
2492 9981 : p4d_t *p4d;
2493 9981 : unsigned long next;
2494 9981 : int err = 0;
2495 :
2496 9981 : if (create) {
2497 9974 : p4d = p4d_alloc_track(mm, pgd, addr, mask);
2498 9974 : if (!p4d)
2499 : return -ENOMEM;
2500 : } else {
2501 9981 : p4d = p4d_offset(pgd, addr);
2502 : }
2503 9981 : do {
2504 9981 : next = p4d_addr_end(addr, end);
2505 9981 : if (create || !p4d_none_or_clear_bad(p4d)) {
2506 9981 : err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2507 : create, mask);
2508 9981 : if (err)
2509 : break;
2510 : }
2511 9981 : } while (p4d++, addr = next, addr != end);
2512 : return err;
2513 : }
2514 :
2515 9980 : static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2516 : unsigned long size, pte_fn_t fn,
2517 : void *data, bool create)
2518 : {
2519 9980 : pgd_t *pgd;
2520 9980 : unsigned long start = addr, next;
2521 9980 : unsigned long end = addr + size;
2522 9980 : pgtbl_mod_mask mask = 0;
2523 9980 : int err = 0;
2524 :
2525 9980 : if (WARN_ON(addr >= end))
2526 : return -EINVAL;
2527 :
2528 9980 : pgd = pgd_offset(mm, addr);
2529 9980 : do {
2530 9980 : next = pgd_addr_end(addr, end);
2531 9980 : if (!create && pgd_none_or_clear_bad(pgd))
2532 : continue;
2533 9980 : err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2534 9980 : if (err)
2535 : break;
2536 9980 : } while (pgd++, addr = next, addr != end);
2537 :
2538 : if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2539 : arch_sync_kernel_mappings(start, start + size);
2540 :
2541 : return err;
2542 : }
2543 :
2544 : /*
2545 : * Scan a region of virtual memory, filling in page tables as necessary
2546 : * and calling a provided function on each leaf page table.
2547 : */
2548 9972 : int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2549 : unsigned long size, pte_fn_t fn, void *data)
2550 : {
2551 9972 : return __apply_to_page_range(mm, addr, size, fn, data, true);
2552 : }
2553 : EXPORT_SYMBOL_GPL(apply_to_page_range);
2554 :
2555 : /*
2556 : * Scan a region of virtual memory, calling a provided function on
2557 : * each leaf page table where it exists.
2558 : *
2559 : * Unlike apply_to_page_range, this does _not_ fill in page tables
2560 : * where they are absent.
2561 : */
2562 7 : int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2563 : unsigned long size, pte_fn_t fn, void *data)
2564 : {
2565 7 : return __apply_to_page_range(mm, addr, size, fn, data, false);
2566 : }
2567 : EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2568 :
2569 : /*
2570 : * handle_pte_fault chooses page fault handler according to an entry which was
2571 : * read non-atomically. Before making any commitment, on those architectures
2572 : * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2573 : * parts, do_swap_page must check under lock before unmapping the pte and
2574 : * proceeding (but do_wp_page is only called after already making such a check;
2575 : * and do_anonymous_page can safely check later on).
2576 : */
2577 0 : static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2578 : pte_t *page_table, pte_t orig_pte)
2579 : {
2580 0 : int same = 1;
2581 : #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2582 0 : if (sizeof(pte_t) > sizeof(unsigned long)) {
2583 : spinlock_t *ptl = pte_lockptr(mm, pmd);
2584 : spin_lock(ptl);
2585 : same = pte_same(*page_table, orig_pte);
2586 : spin_unlock(ptl);
2587 : }
2588 : #endif
2589 0 : pte_unmap(page_table);
2590 0 : return same;
2591 : }
2592 :
2593 28758 : static inline bool cow_user_page(struct page *dst, struct page *src,
2594 : struct vm_fault *vmf)
2595 : {
2596 28758 : bool ret;
2597 28758 : void *kaddr;
2598 28758 : void __user *uaddr;
2599 28758 : bool locked = false;
2600 28758 : struct vm_area_struct *vma = vmf->vma;
2601 28758 : struct mm_struct *mm = vma->vm_mm;
2602 28758 : unsigned long addr = vmf->address;
2603 :
2604 28758 : if (likely(src)) {
2605 28758 : copy_user_highpage(dst, src, addr, vma);
2606 28758 : return true;
2607 : }
2608 :
2609 : /*
2610 : * If the source page was a PFN mapping, we don't have
2611 : * a "struct page" for it. We do a best-effort copy by
2612 : * just copying from the original user address. If that
2613 : * fails, we just zero-fill it. Live with it.
2614 : */
2615 0 : kaddr = kmap_atomic(dst);
2616 0 : uaddr = (void __user *)(addr & PAGE_MASK);
2617 :
2618 : /*
2619 : * On architectures with software "accessed" bits, we would
2620 : * take a double page fault, so mark it accessed here.
2621 : */
2622 0 : if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2623 : pte_t entry;
2624 :
2625 : vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2626 : locked = true;
2627 : if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2628 : /*
2629 : * Other thread has already handled the fault
2630 : * and update local tlb only
2631 : */
2632 : update_mmu_tlb(vma, addr, vmf->pte);
2633 : ret = false;
2634 : goto pte_unlock;
2635 : }
2636 :
2637 : entry = pte_mkyoung(vmf->orig_pte);
2638 : if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2639 : update_mmu_cache(vma, addr, vmf->pte);
2640 : }
2641 :
2642 : /*
2643 : * This really shouldn't fail, because the page is there
2644 : * in the page tables. But it might just be unreadable,
2645 : * in which case we just give up and fill the result with
2646 : * zeroes.
2647 : */
2648 0 : if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2649 0 : if (locked)
2650 : goto warn;
2651 :
2652 : /* Re-validate under PTL if the page is still mapped */
2653 0 : vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2654 0 : locked = true;
2655 0 : if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2656 : /* The PTE changed under us, update local tlb */
2657 0 : update_mmu_tlb(vma, addr, vmf->pte);
2658 0 : ret = false;
2659 0 : goto pte_unlock;
2660 : }
2661 :
2662 : /*
2663 : * The same page can be mapped back since last copy attempt.
2664 : * Try to copy again under PTL.
2665 : */
2666 0 : if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2667 : /*
2668 : * Give a warn in case there can be some obscure
2669 : * use-case
2670 : */
2671 0 : warn:
2672 0 : WARN_ON_ONCE(1);
2673 0 : clear_page(kaddr);
2674 : }
2675 : }
2676 :
2677 0 : ret = true;
2678 :
2679 : pte_unlock:
2680 0 : if (locked)
2681 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
2682 0 : kunmap_atomic(kaddr);
2683 0 : flush_dcache_page(dst);
2684 :
2685 0 : return ret;
2686 : }
2687 :
2688 171939 : static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2689 : {
2690 171939 : struct file *vm_file = vma->vm_file;
2691 :
2692 171939 : if (vm_file)
2693 99599 : return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2694 :
2695 : /*
2696 : * Special mappings (e.g. VDSO) do not have any file so fake
2697 : * a default GFP_KERNEL for them.
2698 : */
2699 : return GFP_KERNEL;
2700 : }
2701 :
2702 : /*
2703 : * Notify the address space that the page is about to become writable so that
2704 : * it can prohibit this or wait for the page to get into an appropriate state.
2705 : *
2706 : * We do this without the lock held, so that it can sleep if it needs to.
2707 : */
2708 304 : static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2709 : {
2710 304 : vm_fault_t ret;
2711 304 : struct page *page = vmf->page;
2712 304 : unsigned int old_flags = vmf->flags;
2713 :
2714 304 : vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2715 :
2716 304 : if (vmf->vma->vm_file &&
2717 304 : IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2718 : return VM_FAULT_SIGBUS;
2719 :
2720 304 : ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2721 : /* Restore original flags so that caller is not surprised */
2722 304 : vmf->flags = old_flags;
2723 304 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2724 : return ret;
2725 304 : if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2726 0 : lock_page(page);
2727 0 : if (!page->mapping) {
2728 0 : unlock_page(page);
2729 0 : return 0; /* retry */
2730 : }
2731 0 : ret |= VM_FAULT_LOCKED;
2732 : } else
2733 608 : VM_BUG_ON_PAGE(!PageLocked(page), page);
2734 : return ret;
2735 : }
2736 :
2737 : /*
2738 : * Handle dirtying of a page in shared file mapping on a write fault.
2739 : *
2740 : * The function expects the page to be locked and unlocks it.
2741 : */
2742 458 : static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2743 : {
2744 458 : struct vm_area_struct *vma = vmf->vma;
2745 458 : struct address_space *mapping;
2746 458 : struct page *page = vmf->page;
2747 458 : bool dirtied;
2748 458 : bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2749 :
2750 458 : dirtied = set_page_dirty(page);
2751 458 : VM_BUG_ON_PAGE(PageAnon(page), page);
2752 : /*
2753 : * Take a local copy of the address_space - page.mapping may be zeroed
2754 : * by truncate after unlock_page(). The address_space itself remains
2755 : * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2756 : * release semantics to prevent the compiler from undoing this copying.
2757 : */
2758 458 : mapping = page_rmapping(page);
2759 458 : unlock_page(page);
2760 :
2761 458 : if (!page_mkwrite)
2762 154 : file_update_time(vma->vm_file);
2763 :
2764 : /*
2765 : * Throttle page dirtying rate down to writeback speed.
2766 : *
2767 : * mapping may be NULL here because some device drivers do not
2768 : * set page.mapping but still dirty their pages
2769 : *
2770 : * Drop the mmap_lock before waiting on IO, if we can. The file
2771 : * is pinning the mapping, as per above.
2772 : */
2773 458 : if ((dirtied || page_mkwrite) && mapping) {
2774 307 : struct file *fpin;
2775 :
2776 307 : fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2777 307 : balance_dirty_pages_ratelimited(mapping);
2778 307 : if (fpin) {
2779 307 : fput(fpin);
2780 307 : return VM_FAULT_RETRY;
2781 : }
2782 : }
2783 :
2784 : return 0;
2785 : }
2786 :
2787 : /*
2788 : * Handle write page faults for pages that can be reused in the current vma
2789 : *
2790 : * This can happen either due to the mapping being with the VM_SHARED flag,
2791 : * or due to us being the last reference standing to the page. In either
2792 : * case, all we need to do here is to mark the page as writable and update
2793 : * any related book-keeping.
2794 : */
2795 17381 : static inline void wp_page_reuse(struct vm_fault *vmf)
2796 : __releases(vmf->ptl)
2797 : {
2798 17381 : struct vm_area_struct *vma = vmf->vma;
2799 17381 : struct page *page = vmf->page;
2800 17381 : pte_t entry;
2801 : /*
2802 : * Clear the pages cpupid information as the existing
2803 : * information potentially belongs to a now completely
2804 : * unrelated process.
2805 : */
2806 17381 : if (page)
2807 17381 : page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2808 :
2809 17381 : flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2810 17381 : entry = pte_mkyoung(vmf->orig_pte);
2811 17381 : entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2812 17381 : if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2813 17381 : update_mmu_cache(vma, vmf->address, vmf->pte);
2814 17381 : pte_unmap_unlock(vmf->pte, vmf->ptl);
2815 17381 : count_vm_event(PGREUSE);
2816 17381 : }
2817 :
2818 : /*
2819 : * Handle the case of a page which we actually need to copy to a new page.
2820 : *
2821 : * Called with mmap_lock locked and the old page referenced, but
2822 : * without the ptl held.
2823 : *
2824 : * High level logic flow:
2825 : *
2826 : * - Allocate a page, copy the content of the old page to the new one.
2827 : * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2828 : * - Take the PTL. If the pte changed, bail out and release the allocated page
2829 : * - If the pte is still the way we remember it, update the page table and all
2830 : * relevant references. This includes dropping the reference the page-table
2831 : * held to the old page, as well as updating the rmap.
2832 : * - In any case, unlock the PTL and drop the reference we took to the old page.
2833 : */
2834 30052 : static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2835 : {
2836 30052 : struct vm_area_struct *vma = vmf->vma;
2837 30052 : struct mm_struct *mm = vma->vm_mm;
2838 30052 : struct page *old_page = vmf->page;
2839 30052 : struct page *new_page = NULL;
2840 30052 : pte_t entry;
2841 30052 : int page_copied = 0;
2842 30052 : struct mmu_notifier_range range;
2843 :
2844 30320 : if (unlikely(anon_vma_prepare(vma)))
2845 0 : goto oom;
2846 :
2847 30052 : if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2848 1290 : new_page = alloc_zeroed_user_highpage_movable(vma,
2849 : vmf->address);
2850 1290 : if (!new_page)
2851 0 : goto oom;
2852 : } else {
2853 28762 : new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2854 : vmf->address);
2855 28759 : if (!new_page)
2856 0 : goto oom;
2857 :
2858 28759 : if (!cow_user_page(new_page, old_page, vmf)) {
2859 : /*
2860 : * COW failed, if the fault was solved by other,
2861 : * it's fine. If not, userspace would re-fault on
2862 : * the same address and we will handle the fault
2863 : * from the second attempt.
2864 : */
2865 0 : put_page(new_page);
2866 0 : if (old_page)
2867 0 : put_page(old_page);
2868 0 : return 0;
2869 : }
2870 : }
2871 :
2872 30048 : if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2873 : goto oom_free_new;
2874 30048 : cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2875 :
2876 30048 : __SetPageUptodate(new_page);
2877 :
2878 30048 : mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2879 : vmf->address & PAGE_MASK,
2880 : (vmf->address & PAGE_MASK) + PAGE_SIZE);
2881 30048 : mmu_notifier_invalidate_range_start(&range);
2882 :
2883 : /*
2884 : * Re-check the pte - we dropped the lock
2885 : */
2886 60097 : vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2887 30051 : if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2888 30051 : if (old_page) {
2889 28761 : if (!PageAnon(old_page)) {
2890 12876 : dec_mm_counter_fast(mm,
2891 : mm_counter_file(old_page));
2892 12876 : inc_mm_counter_fast(mm, MM_ANONPAGES);
2893 : }
2894 : } else {
2895 1290 : inc_mm_counter_fast(mm, MM_ANONPAGES);
2896 : }
2897 30051 : flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2898 30051 : entry = mk_pte(new_page, vma->vm_page_prot);
2899 30049 : entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2900 :
2901 : /*
2902 : * Clear the pte entry and flush it first, before updating the
2903 : * pte with the new entry, to keep TLBs on different CPUs in
2904 : * sync. This code used to set the new PTE then flush TLBs, but
2905 : * that left a window where the new PTE could be loaded into
2906 : * some TLBs while the old PTE remains in others.
2907 : */
2908 30049 : ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2909 30052 : page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2910 30052 : lru_cache_add_inactive_or_unevictable(new_page, vma);
2911 : /*
2912 : * We call the notify macro here because, when using secondary
2913 : * mmu page tables (such as kvm shadow page tables), we want the
2914 : * new page to be mapped directly into the secondary page table.
2915 : */
2916 30048 : set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2917 30048 : update_mmu_cache(vma, vmf->address, vmf->pte);
2918 30048 : if (old_page) {
2919 : /*
2920 : * Only after switching the pte to the new page may
2921 : * we remove the mapcount here. Otherwise another
2922 : * process may come and find the rmap count decremented
2923 : * before the pte is switched to the new page, and
2924 : * "reuse" the old page writing into it while our pte
2925 : * here still points into it and can be read by other
2926 : * threads.
2927 : *
2928 : * The critical issue is to order this
2929 : * page_remove_rmap with the ptp_clear_flush above.
2930 : * Those stores are ordered by (if nothing else,)
2931 : * the barrier present in the atomic_add_negative
2932 : * in page_remove_rmap.
2933 : *
2934 : * Then the TLB flush in ptep_clear_flush ensures that
2935 : * no process can access the old page before the
2936 : * decremented mapcount is visible. And the old page
2937 : * cannot be reused until after the decremented
2938 : * mapcount is visible. So transitively, TLBs to
2939 : * old page will be flushed before it can be reused.
2940 : */
2941 28758 : page_remove_rmap(old_page, false);
2942 : }
2943 :
2944 : /* Free the old page.. */
2945 : new_page = old_page;
2946 : page_copied = 1;
2947 : } else {
2948 30052 : update_mmu_tlb(vma, vmf->address, vmf->pte);
2949 : }
2950 :
2951 30052 : if (new_page)
2952 28762 : put_page(new_page);
2953 :
2954 30053 : pte_unmap_unlock(vmf->pte, vmf->ptl);
2955 : /*
2956 : * No need to double call mmu_notifier->invalidate_range() callback as
2957 : * the above ptep_clear_flush_notify() did already call it.
2958 : */
2959 30053 : mmu_notifier_invalidate_range_only_end(&range);
2960 30053 : if (old_page) {
2961 : /*
2962 : * Don't let another task, with possibly unlocked vma,
2963 : * keep the mlocked page.
2964 : */
2965 28763 : if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2966 0 : lock_page(old_page); /* LRU manipulation */
2967 0 : if (PageMlocked(old_page))
2968 0 : munlock_vma_page(old_page);
2969 0 : unlock_page(old_page);
2970 : }
2971 28763 : put_page(old_page);
2972 : }
2973 30053 : return page_copied ? VM_FAULT_WRITE : 0;
2974 : oom_free_new:
2975 : put_page(new_page);
2976 0 : oom:
2977 0 : if (old_page)
2978 0 : put_page(old_page);
2979 : return VM_FAULT_OOM;
2980 : }
2981 :
2982 : /**
2983 : * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2984 : * writeable once the page is prepared
2985 : *
2986 : * @vmf: structure describing the fault
2987 : *
2988 : * This function handles all that is needed to finish a write page fault in a
2989 : * shared mapping due to PTE being read-only once the mapped page is prepared.
2990 : * It handles locking of PTE and modifying it.
2991 : *
2992 : * The function expects the page to be locked or other protection against
2993 : * concurrent faults / writeback (such as DAX radix tree locks).
2994 : *
2995 : * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2996 : * we acquired PTE lock.
2997 : */
2998 57 : vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2999 : {
3000 57 : WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3001 114 : vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3002 : &vmf->ptl);
3003 : /*
3004 : * We might have raced with another page fault while we released the
3005 : * pte_offset_map_lock.
3006 : */
3007 57 : if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3008 0 : update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3009 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3010 0 : return VM_FAULT_NOPAGE;
3011 : }
3012 57 : wp_page_reuse(vmf);
3013 57 : return 0;
3014 : }
3015 :
3016 : /*
3017 : * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3018 : * mapping
3019 : */
3020 0 : static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3021 : {
3022 0 : struct vm_area_struct *vma = vmf->vma;
3023 :
3024 0 : if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3025 0 : vm_fault_t ret;
3026 :
3027 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3028 0 : vmf->flags |= FAULT_FLAG_MKWRITE;
3029 0 : ret = vma->vm_ops->pfn_mkwrite(vmf);
3030 0 : if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3031 : return ret;
3032 0 : return finish_mkwrite_fault(vmf);
3033 : }
3034 0 : wp_page_reuse(vmf);
3035 0 : return VM_FAULT_WRITE;
3036 : }
3037 :
3038 57 : static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3039 : __releases(vmf->ptl)
3040 : {
3041 57 : struct vm_area_struct *vma = vmf->vma;
3042 57 : vm_fault_t ret = VM_FAULT_WRITE;
3043 :
3044 57 : get_page(vmf->page);
3045 :
3046 57 : if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3047 57 : vm_fault_t tmp;
3048 :
3049 57 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3050 57 : tmp = do_page_mkwrite(vmf);
3051 57 : if (unlikely(!tmp || (tmp &
3052 : (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3053 0 : put_page(vmf->page);
3054 0 : return tmp;
3055 : }
3056 57 : tmp = finish_mkwrite_fault(vmf);
3057 57 : if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3058 0 : unlock_page(vmf->page);
3059 0 : put_page(vmf->page);
3060 0 : return tmp;
3061 : }
3062 : } else {
3063 0 : wp_page_reuse(vmf);
3064 0 : lock_page(vmf->page);
3065 : }
3066 57 : ret |= fault_dirty_shared_page(vmf);
3067 57 : put_page(vmf->page);
3068 :
3069 57 : return ret;
3070 : }
3071 :
3072 : /*
3073 : * This routine handles present pages, when users try to write
3074 : * to a shared page. It is done by copying the page to a new address
3075 : * and decrementing the shared-page counter for the old page.
3076 : *
3077 : * Note that this routine assumes that the protection checks have been
3078 : * done by the caller (the low-level page fault routine in most cases).
3079 : * Thus we can safely just mark it writable once we've done any necessary
3080 : * COW.
3081 : *
3082 : * We also mark the page dirty at this point even though the page will
3083 : * change only once the write actually happens. This avoids a few races,
3084 : * and potentially makes it more efficient.
3085 : *
3086 : * We enter with non-exclusive mmap_lock (to exclude vma changes,
3087 : * but allow concurrent faults), with pte both mapped and locked.
3088 : * We return with mmap_lock still held, but pte unmapped and unlocked.
3089 : */
3090 47433 : static vm_fault_t do_wp_page(struct vm_fault *vmf)
3091 : __releases(vmf->ptl)
3092 : {
3093 47433 : struct vm_area_struct *vma = vmf->vma;
3094 :
3095 47433 : if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3096 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3097 : return handle_userfault(vmf, VM_UFFD_WP);
3098 : }
3099 :
3100 : /*
3101 : * Userfaultfd write-protect can defer flushes. Ensure the TLB
3102 : * is flushed in this case before copying.
3103 : */
3104 47433 : if (unlikely(userfaultfd_wp(vmf->vma) &&
3105 : mm_tlb_flush_pending(vmf->vma->vm_mm)))
3106 : flush_tlb_page(vmf->vma, vmf->address);
3107 :
3108 47433 : vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3109 47431 : if (!vmf->page) {
3110 : /*
3111 : * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3112 : * VM_PFNMAP VMA.
3113 : *
3114 : * We should not cow pages in a shared writeable mapping.
3115 : * Just mark the pages writable and/or call ops->pfn_mkwrite.
3116 : */
3117 1290 : if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3118 : (VM_WRITE|VM_SHARED))
3119 0 : return wp_pfn_shared(vmf);
3120 :
3121 1290 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3122 1290 : return wp_page_copy(vmf);
3123 : }
3124 :
3125 : /*
3126 : * Take out anonymous pages first, anonymous shared vmas are
3127 : * not dirty accountable.
3128 : */
3129 46141 : if (PageAnon(vmf->page)) {
3130 33208 : struct page *page = vmf->page;
3131 :
3132 : /* PageKsm() doesn't necessarily raise the page refcount */
3133 33208 : if (PageKsm(page) || page_count(page) != 1)
3134 15882 : goto copy;
3135 17324 : if (!trylock_page(page))
3136 0 : goto copy;
3137 17324 : if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3138 0 : unlock_page(page);
3139 0 : goto copy;
3140 : }
3141 : /*
3142 : * Ok, we've got the only map reference, and the only
3143 : * page count reference, and the page is locked,
3144 : * it's dark out, and we're wearing sunglasses. Hit it.
3145 : */
3146 17324 : unlock_page(page);
3147 17324 : wp_page_reuse(vmf);
3148 17324 : return VM_FAULT_WRITE;
3149 12933 : } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3150 : (VM_WRITE|VM_SHARED))) {
3151 57 : return wp_page_shared(vmf);
3152 : }
3153 12876 : copy:
3154 : /*
3155 : * Ok, we need to copy. Oh, well..
3156 : */
3157 28758 : get_page(vmf->page);
3158 :
3159 28763 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3160 28763 : return wp_page_copy(vmf);
3161 : }
3162 :
3163 0 : static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3164 : unsigned long start_addr, unsigned long end_addr,
3165 : struct zap_details *details)
3166 : {
3167 0 : zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3168 : }
3169 :
3170 0 : static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3171 : struct zap_details *details)
3172 : {
3173 0 : struct vm_area_struct *vma;
3174 0 : pgoff_t vba, vea, zba, zea;
3175 :
3176 0 : vma_interval_tree_foreach(vma, root,
3177 : details->first_index, details->last_index) {
3178 :
3179 0 : vba = vma->vm_pgoff;
3180 0 : vea = vba + vma_pages(vma) - 1;
3181 0 : zba = details->first_index;
3182 0 : if (zba < vba)
3183 : zba = vba;
3184 0 : zea = details->last_index;
3185 0 : if (zea > vea)
3186 : zea = vea;
3187 :
3188 0 : unmap_mapping_range_vma(vma,
3189 0 : ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3190 0 : ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3191 : details);
3192 : }
3193 0 : }
3194 :
3195 : /**
3196 : * unmap_mapping_pages() - Unmap pages from processes.
3197 : * @mapping: The address space containing pages to be unmapped.
3198 : * @start: Index of first page to be unmapped.
3199 : * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3200 : * @even_cows: Whether to unmap even private COWed pages.
3201 : *
3202 : * Unmap the pages in this address space from any userspace process which
3203 : * has them mmaped. Generally, you want to remove COWed pages as well when
3204 : * a file is being truncated, but not when invalidating pages from the page
3205 : * cache.
3206 : */
3207 14 : void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3208 : pgoff_t nr, bool even_cows)
3209 : {
3210 14 : struct zap_details details = { };
3211 :
3212 14 : details.check_mapping = even_cows ? NULL : mapping;
3213 14 : details.first_index = start;
3214 14 : details.last_index = start + nr - 1;
3215 14 : if (details.last_index < details.first_index)
3216 4 : details.last_index = ULONG_MAX;
3217 :
3218 14 : i_mmap_lock_write(mapping);
3219 14 : if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3220 0 : unmap_mapping_range_tree(&mapping->i_mmap, &details);
3221 14 : i_mmap_unlock_write(mapping);
3222 14 : }
3223 :
3224 : /**
3225 : * unmap_mapping_range - unmap the portion of all mmaps in the specified
3226 : * address_space corresponding to the specified byte range in the underlying
3227 : * file.
3228 : *
3229 : * @mapping: the address space containing mmaps to be unmapped.
3230 : * @holebegin: byte in first page to unmap, relative to the start of
3231 : * the underlying file. This will be rounded down to a PAGE_SIZE
3232 : * boundary. Note that this is different from truncate_pagecache(), which
3233 : * must keep the partial page. In contrast, we must get rid of
3234 : * partial pages.
3235 : * @holelen: size of prospective hole in bytes. This will be rounded
3236 : * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3237 : * end of the file.
3238 : * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3239 : * but 0 when invalidating pagecache, don't throw away private data.
3240 : */
3241 14 : void unmap_mapping_range(struct address_space *mapping,
3242 : loff_t const holebegin, loff_t const holelen, int even_cows)
3243 : {
3244 14 : pgoff_t hba = holebegin >> PAGE_SHIFT;
3245 14 : pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3246 :
3247 : /* Check for overflow. */
3248 14 : if (sizeof(holelen) > sizeof(hlen)) {
3249 : long long holeend =
3250 : (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3251 : if (holeend & ~(long long)ULONG_MAX)
3252 : hlen = ULONG_MAX - hba + 1;
3253 : }
3254 :
3255 14 : unmap_mapping_pages(mapping, hba, hlen, even_cows);
3256 14 : }
3257 : EXPORT_SYMBOL(unmap_mapping_range);
3258 :
3259 : /*
3260 : * We enter with non-exclusive mmap_lock (to exclude vma changes,
3261 : * but allow concurrent faults), and pte mapped but not yet locked.
3262 : * We return with pte unmapped and unlocked.
3263 : *
3264 : * We return with the mmap_lock locked or unlocked in the same cases
3265 : * as does filemap_fault().
3266 : */
3267 0 : vm_fault_t do_swap_page(struct vm_fault *vmf)
3268 : {
3269 0 : struct vm_area_struct *vma = vmf->vma;
3270 0 : struct page *page = NULL, *swapcache;
3271 0 : swp_entry_t entry;
3272 0 : pte_t pte;
3273 0 : int locked;
3274 0 : int exclusive = 0;
3275 0 : vm_fault_t ret = 0;
3276 0 : void *shadow = NULL;
3277 :
3278 0 : if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3279 : goto out;
3280 :
3281 0 : entry = pte_to_swp_entry(vmf->orig_pte);
3282 0 : if (unlikely(non_swap_entry(entry))) {
3283 0 : if (is_migration_entry(entry)) {
3284 0 : migration_entry_wait(vma->vm_mm, vmf->pmd,
3285 : vmf->address);
3286 0 : } else if (is_device_private_entry(entry)) {
3287 : vmf->page = device_private_entry_to_page(entry);
3288 : ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3289 0 : } else if (is_hwpoison_entry(entry)) {
3290 : ret = VM_FAULT_HWPOISON;
3291 : } else {
3292 0 : print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3293 0 : ret = VM_FAULT_SIGBUS;
3294 : }
3295 0 : goto out;
3296 : }
3297 :
3298 :
3299 0 : delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3300 0 : page = lookup_swap_cache(entry, vma, vmf->address);
3301 0 : swapcache = page;
3302 :
3303 0 : if (!page) {
3304 0 : struct swap_info_struct *si = swp_swap_info(entry);
3305 :
3306 0 : if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3307 : __swap_count(entry) == 1) {
3308 : /* skip swapcache */
3309 : page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3310 : vmf->address);
3311 : if (page) {
3312 : int err;
3313 :
3314 : __SetPageLocked(page);
3315 : __SetPageSwapBacked(page);
3316 : set_page_private(page, entry.val);
3317 :
3318 : /* Tell memcg to use swap ownership records */
3319 : SetPageSwapCache(page);
3320 : err = mem_cgroup_charge(page, vma->vm_mm,
3321 : GFP_KERNEL);
3322 : ClearPageSwapCache(page);
3323 : if (err) {
3324 : ret = VM_FAULT_OOM;
3325 : goto out_page;
3326 : }
3327 :
3328 : shadow = get_shadow_from_swap_cache(entry);
3329 : if (shadow)
3330 : workingset_refault(page, shadow);
3331 :
3332 : lru_cache_add(page);
3333 0 : swap_readpage(page, true);
3334 : }
3335 : } else {
3336 0 : page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3337 : vmf);
3338 0 : swapcache = page;
3339 : }
3340 :
3341 0 : if (!page) {
3342 : /*
3343 : * Back out if somebody else faulted in this pte
3344 : * while we released the pte lock.
3345 : */
3346 0 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3347 : vmf->address, &vmf->ptl);
3348 0 : if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3349 0 : ret = VM_FAULT_OOM;
3350 0 : delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3351 0 : goto unlock;
3352 : }
3353 :
3354 : /* Had to read the page from swap area: Major fault */
3355 : ret = VM_FAULT_MAJOR;
3356 : count_vm_event(PGMAJFAULT);
3357 : count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3358 : } else if (PageHWPoison(page)) {
3359 : /*
3360 : * hwpoisoned dirty swapcache pages are kept for killing
3361 : * owner processes (which may be unknown at hwpoison time)
3362 : */
3363 : ret = VM_FAULT_HWPOISON;
3364 : delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3365 : goto out_release;
3366 : }
3367 :
3368 : locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3369 :
3370 : delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3371 : if (!locked) {
3372 : ret |= VM_FAULT_RETRY;
3373 : goto out_release;
3374 : }
3375 :
3376 : /*
3377 : * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3378 : * release the swapcache from under us. The page pin, and pte_same
3379 : * test below, are not enough to exclude that. Even if it is still
3380 : * swapcache, we need to check that the page's swap has not changed.
3381 : */
3382 : if (unlikely((!PageSwapCache(page) ||
3383 : page_private(page) != entry.val)) && swapcache)
3384 : goto out_page;
3385 :
3386 : page = ksm_might_need_to_copy(page, vma, vmf->address);
3387 : if (unlikely(!page)) {
3388 : ret = VM_FAULT_OOM;
3389 : page = swapcache;
3390 : goto out_page;
3391 : }
3392 :
3393 : cgroup_throttle_swaprate(page, GFP_KERNEL);
3394 :
3395 : /*
3396 : * Back out if somebody else already faulted in this pte.
3397 : */
3398 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3399 : &vmf->ptl);
3400 : if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3401 : goto out_nomap;
3402 :
3403 : if (unlikely(!PageUptodate(page))) {
3404 : ret = VM_FAULT_SIGBUS;
3405 : goto out_nomap;
3406 : }
3407 :
3408 : /*
3409 : * The page isn't present yet, go ahead with the fault.
3410 : *
3411 : * Be careful about the sequence of operations here.
3412 : * To get its accounting right, reuse_swap_page() must be called
3413 : * while the page is counted on swap but not yet in mapcount i.e.
3414 : * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3415 : * must be called after the swap_free(), or it will never succeed.
3416 : */
3417 :
3418 : inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3419 : dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3420 : pte = mk_pte(page, vma->vm_page_prot);
3421 : if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3422 : pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3423 : vmf->flags &= ~FAULT_FLAG_WRITE;
3424 : ret |= VM_FAULT_WRITE;
3425 : exclusive = RMAP_EXCLUSIVE;
3426 : }
3427 : flush_icache_page(vma, page);
3428 : if (pte_swp_soft_dirty(vmf->orig_pte))
3429 : pte = pte_mksoft_dirty(pte);
3430 : if (pte_swp_uffd_wp(vmf->orig_pte)) {
3431 : pte = pte_mkuffd_wp(pte);
3432 : pte = pte_wrprotect(pte);
3433 : }
3434 : set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3435 : arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3436 : vmf->orig_pte = pte;
3437 :
3438 : /* ksm created a completely new copy */
3439 : if (unlikely(page != swapcache && swapcache)) {
3440 : page_add_new_anon_rmap(page, vma, vmf->address, false);
3441 : lru_cache_add_inactive_or_unevictable(page, vma);
3442 : } else {
3443 : do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3444 : }
3445 :
3446 : swap_free(entry);
3447 : if (mem_cgroup_swap_full(page) ||
3448 : (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3449 : try_to_free_swap(page);
3450 : unlock_page(page);
3451 : if (page != swapcache && swapcache) {
3452 : /*
3453 : * Hold the lock to avoid the swap entry to be reused
3454 : * until we take the PT lock for the pte_same() check
3455 : * (to avoid false positives from pte_same). For
3456 : * further safety release the lock after the swap_free
3457 : * so that the swap count won't change under a
3458 : * parallel locked swapcache.
3459 : */
3460 : unlock_page(swapcache);
3461 : put_page(swapcache);
3462 : }
3463 :
3464 : if (vmf->flags & FAULT_FLAG_WRITE) {
3465 : ret |= do_wp_page(vmf);
3466 : if (ret & VM_FAULT_ERROR)
3467 : ret &= VM_FAULT_ERROR;
3468 : goto out;
3469 : }
3470 :
3471 : /* No need to invalidate - it was non-present before */
3472 0 : update_mmu_cache(vma, vmf->address, vmf->pte);
3473 0 : unlock:
3474 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3475 0 : out:
3476 0 : return ret;
3477 : out_nomap:
3478 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3479 : out_page:
3480 : unlock_page(page);
3481 : out_release:
3482 : put_page(page);
3483 : if (page != swapcache && swapcache) {
3484 : unlock_page(swapcache);
3485 : put_page(swapcache);
3486 : }
3487 : return ret;
3488 : }
3489 :
3490 : /*
3491 : * We enter with non-exclusive mmap_lock (to exclude vma changes,
3492 : * but allow concurrent faults), and pte mapped but not yet locked.
3493 : * We return with mmap_lock still held, but pte unmapped and unlocked.
3494 : */
3495 43703 : static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3496 : {
3497 43703 : struct vm_area_struct *vma = vmf->vma;
3498 43703 : struct page *page;
3499 43703 : vm_fault_t ret = 0;
3500 43703 : pte_t entry;
3501 :
3502 : /* File mapping without ->vm_ops ? */
3503 43703 : if (vma->vm_flags & VM_SHARED)
3504 : return VM_FAULT_SIGBUS;
3505 :
3506 : /*
3507 : * Use pte_alloc() instead of pte_alloc_map(). We can't run
3508 : * pte_offset_map() on pmds where a huge pmd might be created
3509 : * from a different thread.
3510 : *
3511 : * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3512 : * parallel threads are excluded by other means.
3513 : *
3514 : * Here we only have mmap_read_lock(mm).
3515 : */
3516 43703 : if (pte_alloc(vma->vm_mm, vmf->pmd))
3517 : return VM_FAULT_OOM;
3518 :
3519 : /* See comment in handle_pte_fault() */
3520 43703 : if (unlikely(pmd_trans_unstable(vmf->pmd)))
3521 : return 0;
3522 :
3523 : /* Use the zero-page for reads */
3524 43703 : if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3525 : !mm_forbids_zeropage(vma->vm_mm)) {
3526 14675 : entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3527 : vma->vm_page_prot));
3528 29350 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3529 : vmf->address, &vmf->ptl);
3530 14675 : if (!pte_none(*vmf->pte)) {
3531 0 : update_mmu_tlb(vma, vmf->address, vmf->pte);
3532 0 : goto unlock;
3533 : }
3534 14675 : ret = check_stable_address_space(vma->vm_mm);
3535 14675 : if (ret)
3536 0 : goto unlock;
3537 : /* Deliver the page fault to userland, check inside PT lock */
3538 14675 : if (userfaultfd_missing(vma)) {
3539 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3540 : return handle_userfault(vmf, VM_UFFD_MISSING);
3541 : }
3542 14675 : goto setpte;
3543 : }
3544 :
3545 : /* Allocate our own private page. */
3546 36171 : if (unlikely(anon_vma_prepare(vma)))
3547 0 : goto oom;
3548 29028 : page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3549 29028 : if (!page)
3550 0 : goto oom;
3551 :
3552 29028 : if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3553 : goto oom_free_page;
3554 29028 : cgroup_throttle_swaprate(page, GFP_KERNEL);
3555 :
3556 : /*
3557 : * The memory barrier inside __SetPageUptodate makes sure that
3558 : * preceding stores to the page contents become visible before
3559 : * the set_pte_at() write.
3560 : */
3561 29028 : __SetPageUptodate(page);
3562 :
3563 29028 : entry = mk_pte(page, vma->vm_page_prot);
3564 29028 : if (vma->vm_flags & VM_WRITE)
3565 29028 : entry = pte_mkwrite(pte_mkdirty(entry));
3566 :
3567 58056 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3568 : &vmf->ptl);
3569 29027 : if (!pte_none(*vmf->pte)) {
3570 0 : update_mmu_cache(vma, vmf->address, vmf->pte);
3571 0 : goto release;
3572 : }
3573 :
3574 29027 : ret = check_stable_address_space(vma->vm_mm);
3575 29027 : if (ret)
3576 0 : goto release;
3577 :
3578 : /* Deliver the page fault to userland, check inside PT lock */
3579 29027 : if (userfaultfd_missing(vma)) {
3580 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3581 : put_page(page);
3582 : return handle_userfault(vmf, VM_UFFD_MISSING);
3583 : }
3584 :
3585 29027 : inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3586 29028 : page_add_new_anon_rmap(page, vma, vmf->address, false);
3587 29028 : lru_cache_add_inactive_or_unevictable(page, vma);
3588 43703 : setpte:
3589 43703 : set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3590 :
3591 : /* No need to invalidate - it was non-present before */
3592 43703 : update_mmu_cache(vma, vmf->address, vmf->pte);
3593 43703 : unlock:
3594 43703 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3595 43703 : return ret;
3596 0 : release:
3597 0 : put_page(page);
3598 0 : goto unlock;
3599 : oom_free_page:
3600 : put_page(page);
3601 : oom:
3602 : return VM_FAULT_OOM;
3603 : }
3604 :
3605 : /*
3606 : * The mmap_lock must have been held on entry, and may have been
3607 : * released depending on flags and vma->vm_ops->fault() return value.
3608 : * See filemap_fault() and __lock_page_retry().
3609 : */
3610 11614 : static vm_fault_t __do_fault(struct vm_fault *vmf)
3611 : {
3612 11614 : struct vm_area_struct *vma = vmf->vma;
3613 11614 : vm_fault_t ret;
3614 :
3615 : /*
3616 : * Preallocate pte before we take page_lock because this might lead to
3617 : * deadlocks for memcg reclaim which waits for pages under writeback:
3618 : * lock_page(A)
3619 : * SetPageWriteback(A)
3620 : * unlock_page(A)
3621 : * lock_page(B)
3622 : * lock_page(B)
3623 : * pte_alloc_one
3624 : * shrink_page_list
3625 : * wait_on_page_writeback(A)
3626 : * SetPageWriteback(B)
3627 : * unlock_page(B)
3628 : * # flush A, B to clear the writeback
3629 : */
3630 11614 : if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3631 1968 : vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3632 1968 : if (!vmf->prealloc_pte)
3633 : return VM_FAULT_OOM;
3634 1968 : smp_wmb(); /* See comment in __pte_alloc() */
3635 : }
3636 :
3637 11614 : ret = vma->vm_ops->fault(vmf);
3638 11614 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3639 : VM_FAULT_DONE_COW)))
3640 : return ret;
3641 :
3642 10583 : if (unlikely(PageHWPoison(vmf->page))) {
3643 : if (ret & VM_FAULT_LOCKED)
3644 : unlock_page(vmf->page);
3645 : put_page(vmf->page);
3646 : vmf->page = NULL;
3647 : return VM_FAULT_HWPOISON;
3648 : }
3649 :
3650 10583 : if (unlikely(!(ret & VM_FAULT_LOCKED)))
3651 957 : lock_page(vmf->page);
3652 : else
3653 19252 : VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3654 :
3655 : return ret;
3656 : }
3657 :
3658 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3659 : static void deposit_prealloc_pte(struct vm_fault *vmf)
3660 : {
3661 : struct vm_area_struct *vma = vmf->vma;
3662 :
3663 : pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3664 : /*
3665 : * We are going to consume the prealloc table,
3666 : * count that as nr_ptes.
3667 : */
3668 : mm_inc_nr_ptes(vma->vm_mm);
3669 : vmf->prealloc_pte = NULL;
3670 : }
3671 :
3672 0 : vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3673 : {
3674 0 : struct vm_area_struct *vma = vmf->vma;
3675 0 : bool write = vmf->flags & FAULT_FLAG_WRITE;
3676 0 : unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3677 0 : pmd_t entry;
3678 0 : int i;
3679 0 : vm_fault_t ret = VM_FAULT_FALLBACK;
3680 :
3681 0 : if (!transhuge_vma_suitable(vma, haddr))
3682 : return ret;
3683 :
3684 0 : page = compound_head(page);
3685 0 : if (compound_order(page) != HPAGE_PMD_ORDER)
3686 : return ret;
3687 :
3688 : /*
3689 : * Archs like ppc64 need additonal space to store information
3690 : * related to pte entry. Use the preallocated table for that.
3691 : */
3692 0 : if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3693 : vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3694 : if (!vmf->prealloc_pte)
3695 : return VM_FAULT_OOM;
3696 : smp_wmb(); /* See comment in __pte_alloc() */
3697 : }
3698 :
3699 0 : vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3700 0 : if (unlikely(!pmd_none(*vmf->pmd)))
3701 0 : goto out;
3702 :
3703 0 : for (i = 0; i < HPAGE_PMD_NR; i++)
3704 : flush_icache_page(vma, page + i);
3705 :
3706 0 : entry = mk_huge_pmd(page, vma->vm_page_prot);
3707 0 : if (write)
3708 0 : entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3709 :
3710 0 : add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3711 0 : page_add_file_rmap(page, true);
3712 : /*
3713 : * deposit and withdraw with pmd lock held
3714 : */
3715 0 : if (arch_needs_pgtable_deposit())
3716 : deposit_prealloc_pte(vmf);
3717 :
3718 0 : set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3719 :
3720 0 : update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3721 :
3722 : /* fault is handled */
3723 0 : ret = 0;
3724 0 : count_vm_event(THP_FILE_MAPPED);
3725 0 : out:
3726 0 : spin_unlock(vmf->ptl);
3727 0 : return ret;
3728 : }
3729 : #else
3730 : vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3731 : {
3732 : return VM_FAULT_FALLBACK;
3733 : }
3734 : #endif
3735 :
3736 794210 : void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3737 : {
3738 794210 : struct vm_area_struct *vma = vmf->vma;
3739 794210 : bool write = vmf->flags & FAULT_FLAG_WRITE;
3740 794210 : bool prefault = vmf->address != addr;
3741 794210 : pte_t entry;
3742 :
3743 794210 : flush_icache_page(vma, page);
3744 794210 : entry = mk_pte(page, vma->vm_page_prot);
3745 :
3746 794262 : if (prefault && arch_wants_old_prefaulted_pte())
3747 : entry = pte_mkold(entry);
3748 :
3749 794262 : if (write)
3750 9623 : entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3751 : /* copy-on-write page */
3752 794262 : if (write && !(vma->vm_flags & VM_SHARED)) {
3753 9222 : inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3754 9222 : page_add_new_anon_rmap(page, vma, addr, false);
3755 9222 : lru_cache_add_inactive_or_unevictable(page, vma);
3756 : } else {
3757 785040 : inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3758 785018 : page_add_file_rmap(page, false);
3759 : }
3760 794341 : set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3761 794341 : }
3762 :
3763 : /**
3764 : * finish_fault - finish page fault once we have prepared the page to fault
3765 : *
3766 : * @vmf: structure describing the fault
3767 : *
3768 : * This function handles all that is needed to finish a page fault once the
3769 : * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3770 : * given page, adds reverse page mapping, handles memcg charges and LRU
3771 : * addition.
3772 : *
3773 : * The function expects the page to be locked and on success it consumes a
3774 : * reference of a page being mapped (for the PTE which maps it).
3775 : *
3776 : * Return: %0 on success, %VM_FAULT_ code in case of error.
3777 : */
3778 10583 : vm_fault_t finish_fault(struct vm_fault *vmf)
3779 : {
3780 10583 : struct vm_area_struct *vma = vmf->vma;
3781 10583 : struct page *page;
3782 10583 : vm_fault_t ret;
3783 :
3784 : /* Did we COW the page? */
3785 10583 : if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3786 9222 : page = vmf->cow_page;
3787 : else
3788 1361 : page = vmf->page;
3789 :
3790 : /*
3791 : * check even for read faults because we might have lost our CoWed
3792 : * page
3793 : */
3794 10583 : if (!(vma->vm_flags & VM_SHARED)) {
3795 10181 : ret = check_stable_address_space(vma->vm_mm);
3796 10181 : if (ret)
3797 : return ret;
3798 : }
3799 :
3800 10583 : if (pmd_none(*vmf->pmd)) {
3801 1915 : if (PageTransCompound(page)) {
3802 0 : ret = do_set_pmd(vmf, page);
3803 0 : if (ret != VM_FAULT_FALLBACK)
3804 : return ret;
3805 : }
3806 :
3807 1915 : if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3808 : return VM_FAULT_OOM;
3809 : }
3810 :
3811 : /* See comment in handle_pte_fault() */
3812 10583 : if (pmd_devmap_trans_unstable(vmf->pmd))
3813 : return 0;
3814 :
3815 21166 : vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3816 : vmf->address, &vmf->ptl);
3817 10583 : ret = 0;
3818 : /* Re-check under ptl */
3819 10583 : if (likely(pte_none(*vmf->pte)))
3820 10583 : do_set_pte(vmf, page, vmf->address);
3821 : else
3822 : ret = VM_FAULT_NOPAGE;
3823 :
3824 10583 : update_mmu_tlb(vma, vmf->address, vmf->pte);
3825 10583 : pte_unmap_unlock(vmf->pte, vmf->ptl);
3826 10583 : return ret;
3827 : }
3828 :
3829 : static unsigned long fault_around_bytes __read_mostly =
3830 : rounddown_pow_of_two(65536);
3831 :
3832 : #ifdef CONFIG_DEBUG_FS
3833 0 : static int fault_around_bytes_get(void *data, u64 *val)
3834 : {
3835 0 : *val = fault_around_bytes;
3836 0 : return 0;
3837 : }
3838 :
3839 : /*
3840 : * fault_around_bytes must be rounded down to the nearest page order as it's
3841 : * what do_fault_around() expects to see.
3842 : */
3843 0 : static int fault_around_bytes_set(void *data, u64 val)
3844 : {
3845 0 : if (val / PAGE_SIZE > PTRS_PER_PTE)
3846 : return -EINVAL;
3847 0 : if (val > PAGE_SIZE)
3848 0 : fault_around_bytes = rounddown_pow_of_two(val);
3849 : else
3850 0 : fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3851 : return 0;
3852 : }
3853 0 : DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3854 : fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3855 :
3856 1 : static int __init fault_around_debugfs(void)
3857 : {
3858 1 : debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3859 : &fault_around_bytes_fops);
3860 1 : return 0;
3861 : }
3862 : late_initcall(fault_around_debugfs);
3863 : #endif
3864 :
3865 : /*
3866 : * do_fault_around() tries to map few pages around the fault address. The hope
3867 : * is that the pages will be needed soon and this will lower the number of
3868 : * faults to handle.
3869 : *
3870 : * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3871 : * not ready to be mapped: not up-to-date, locked, etc.
3872 : *
3873 : * This function is called with the page table lock taken. In the split ptlock
3874 : * case the page table lock only protects only those entries which belong to
3875 : * the page table corresponding to the fault address.
3876 : *
3877 : * This function doesn't cross the VMA boundaries, in order to call map_pages()
3878 : * only once.
3879 : *
3880 : * fault_around_bytes defines how many bytes we'll try to map.
3881 : * do_fault_around() expects it to be set to a power of two less than or equal
3882 : * to PTRS_PER_PTE.
3883 : *
3884 : * The virtual address of the area that we map is naturally aligned to
3885 : * fault_around_bytes rounded down to the machine page size
3886 : * (and therefore to page order). This way it's easier to guarantee
3887 : * that we don't cross page table boundaries.
3888 : */
3889 69617 : static vm_fault_t do_fault_around(struct vm_fault *vmf)
3890 : {
3891 69617 : unsigned long address = vmf->address, nr_pages, mask;
3892 69617 : pgoff_t start_pgoff = vmf->pgoff;
3893 69617 : pgoff_t end_pgoff;
3894 69617 : int off;
3895 :
3896 69617 : nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3897 69617 : mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3898 :
3899 69617 : address = max(address & mask, vmf->vma->vm_start);
3900 69617 : off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3901 69617 : start_pgoff -= off;
3902 :
3903 : /*
3904 : * end_pgoff is either the end of the page table, the end of
3905 : * the vma or nr_pages from start_pgoff, depending what is nearest.
3906 : */
3907 69617 : end_pgoff = start_pgoff -
3908 69617 : ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3909 : PTRS_PER_PTE - 1;
3910 69617 : end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3911 : start_pgoff + nr_pages - 1);
3912 :
3913 69617 : if (pmd_none(*vmf->pmd)) {
3914 3151 : vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3915 3151 : if (!vmf->prealloc_pte)
3916 : return VM_FAULT_OOM;
3917 3151 : smp_wmb(); /* See comment in __pte_alloc() */
3918 : }
3919 :
3920 69617 : return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3921 : }
3922 :
3923 70707 : static vm_fault_t do_read_fault(struct vm_fault *vmf)
3924 : {
3925 70707 : struct vm_area_struct *vma = vmf->vma;
3926 70707 : vm_fault_t ret = 0;
3927 :
3928 : /*
3929 : * Let's call ->map_pages() first and use ->fault() as fallback
3930 : * if page by the offset is not ready to be mapped (cold cache or
3931 : * something).
3932 : */
3933 70707 : if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3934 69617 : ret = do_fault_around(vmf);
3935 69613 : if (ret)
3936 : return ret;
3937 : }
3938 :
3939 1838 : ret = __do_fault(vmf);
3940 1838 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3941 : return ret;
3942 :
3943 960 : ret |= finish_fault(vmf);
3944 960 : unlock_page(vmf->page);
3945 960 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3946 0 : put_page(vmf->page);
3947 : return ret;
3948 : }
3949 :
3950 9374 : static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3951 : {
3952 9374 : struct vm_area_struct *vma = vmf->vma;
3953 9374 : vm_fault_t ret;
3954 :
3955 15314 : if (unlikely(anon_vma_prepare(vma)))
3956 : return VM_FAULT_OOM;
3957 :
3958 9375 : vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3959 9375 : if (!vmf->cow_page)
3960 : return VM_FAULT_OOM;
3961 :
3962 9375 : if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3963 : put_page(vmf->cow_page);
3964 : return VM_FAULT_OOM;
3965 : }
3966 9375 : cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3967 :
3968 9375 : ret = __do_fault(vmf);
3969 9375 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3970 153 : goto uncharge_out;
3971 9222 : if (ret & VM_FAULT_DONE_COW)
3972 : return ret;
3973 :
3974 9222 : copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3975 9221 : __SetPageUptodate(vmf->cow_page);
3976 :
3977 9221 : ret |= finish_fault(vmf);
3978 9222 : unlock_page(vmf->page);
3979 9222 : put_page(vmf->page);
3980 9222 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3981 0 : goto uncharge_out;
3982 : return ret;
3983 153 : uncharge_out:
3984 153 : put_page(vmf->cow_page);
3985 153 : return ret;
3986 : }
3987 :
3988 401 : static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3989 : {
3990 401 : struct vm_area_struct *vma = vmf->vma;
3991 401 : vm_fault_t ret, tmp;
3992 :
3993 401 : ret = __do_fault(vmf);
3994 401 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3995 : return ret;
3996 :
3997 : /*
3998 : * Check if the backing address space wants to know that the page is
3999 : * about to become writable
4000 : */
4001 401 : if (vma->vm_ops->page_mkwrite) {
4002 247 : unlock_page(vmf->page);
4003 247 : tmp = do_page_mkwrite(vmf);
4004 247 : if (unlikely(!tmp ||
4005 : (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4006 0 : put_page(vmf->page);
4007 0 : return tmp;
4008 : }
4009 : }
4010 :
4011 401 : ret |= finish_fault(vmf);
4012 401 : if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4013 : VM_FAULT_RETRY))) {
4014 0 : unlock_page(vmf->page);
4015 0 : put_page(vmf->page);
4016 0 : return ret;
4017 : }
4018 :
4019 401 : ret |= fault_dirty_shared_page(vmf);
4020 401 : return ret;
4021 : }
4022 :
4023 : /*
4024 : * We enter with non-exclusive mmap_lock (to exclude vma changes,
4025 : * but allow concurrent faults).
4026 : * The mmap_lock may have been released depending on flags and our
4027 : * return value. See filemap_fault() and __lock_page_or_retry().
4028 : * If mmap_lock is released, vma may become invalid (for example
4029 : * by other thread calling munmap()).
4030 : */
4031 80482 : static vm_fault_t do_fault(struct vm_fault *vmf)
4032 : {
4033 80482 : struct vm_area_struct *vma = vmf->vma;
4034 80482 : struct mm_struct *vm_mm = vma->vm_mm;
4035 80482 : vm_fault_t ret;
4036 :
4037 : /*
4038 : * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4039 : */
4040 80482 : if (!vma->vm_ops->fault) {
4041 : /*
4042 : * If we find a migration pmd entry or a none pmd entry, which
4043 : * should never happen, return SIGBUS
4044 : */
4045 0 : if (unlikely(!pmd_present(*vmf->pmd)))
4046 : ret = VM_FAULT_SIGBUS;
4047 : else {
4048 0 : vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4049 : vmf->pmd,
4050 : vmf->address,
4051 : &vmf->ptl);
4052 : /*
4053 : * Make sure this is not a temporary clearing of pte
4054 : * by holding ptl and checking again. A R/M/W update
4055 : * of pte involves: take ptl, clearing the pte so that
4056 : * we don't have concurrent modification by hardware
4057 : * followed by an update.
4058 : */
4059 0 : if (unlikely(pte_none(*vmf->pte)))
4060 : ret = VM_FAULT_SIGBUS;
4061 : else
4062 0 : ret = VM_FAULT_NOPAGE;
4063 :
4064 0 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4065 : }
4066 80482 : } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4067 70707 : ret = do_read_fault(vmf);
4068 9775 : else if (!(vma->vm_flags & VM_SHARED))
4069 9374 : ret = do_cow_fault(vmf);
4070 : else
4071 401 : ret = do_shared_fault(vmf);
4072 :
4073 : /* preallocated pagetable is unused: free it */
4074 80479 : if (vmf->prealloc_pte) {
4075 1975 : pte_free(vm_mm, vmf->prealloc_pte);
4076 1975 : vmf->prealloc_pte = NULL;
4077 : }
4078 80479 : return ret;
4079 : }
4080 :
4081 : static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4082 : unsigned long addr, int page_nid,
4083 : int *flags)
4084 : {
4085 : get_page(page);
4086 :
4087 : count_vm_numa_event(NUMA_HINT_FAULTS);
4088 : if (page_nid == numa_node_id()) {
4089 : count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4090 : *flags |= TNF_FAULT_LOCAL;
4091 : }
4092 :
4093 : return mpol_misplaced(page, vma, addr);
4094 : }
4095 :
4096 : static vm_fault_t do_numa_page(struct vm_fault *vmf)
4097 : {
4098 : struct vm_area_struct *vma = vmf->vma;
4099 : struct page *page = NULL;
4100 : int page_nid = NUMA_NO_NODE;
4101 : int last_cpupid;
4102 : int target_nid;
4103 : bool migrated = false;
4104 : pte_t pte, old_pte;
4105 : bool was_writable = pte_savedwrite(vmf->orig_pte);
4106 : int flags = 0;
4107 :
4108 : /*
4109 : * The "pte" at this point cannot be used safely without
4110 : * validation through pte_unmap_same(). It's of NUMA type but
4111 : * the pfn may be screwed if the read is non atomic.
4112 : */
4113 : vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4114 : spin_lock(vmf->ptl);
4115 : if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4116 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4117 : goto out;
4118 : }
4119 :
4120 : /*
4121 : * Make it present again, Depending on how arch implementes non
4122 : * accessible ptes, some can allow access by kernel mode.
4123 : */
4124 : old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4125 : pte = pte_modify(old_pte, vma->vm_page_prot);
4126 : pte = pte_mkyoung(pte);
4127 : if (was_writable)
4128 : pte = pte_mkwrite(pte);
4129 : ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4130 : update_mmu_cache(vma, vmf->address, vmf->pte);
4131 :
4132 : page = vm_normal_page(vma, vmf->address, pte);
4133 : if (!page) {
4134 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4135 : return 0;
4136 : }
4137 :
4138 : /* TODO: handle PTE-mapped THP */
4139 : if (PageCompound(page)) {
4140 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4141 : return 0;
4142 : }
4143 :
4144 : /*
4145 : * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4146 : * much anyway since they can be in shared cache state. This misses
4147 : * the case where a mapping is writable but the process never writes
4148 : * to it but pte_write gets cleared during protection updates and
4149 : * pte_dirty has unpredictable behaviour between PTE scan updates,
4150 : * background writeback, dirty balancing and application behaviour.
4151 : */
4152 : if (!pte_write(pte))
4153 : flags |= TNF_NO_GROUP;
4154 :
4155 : /*
4156 : * Flag if the page is shared between multiple address spaces. This
4157 : * is later used when determining whether to group tasks together
4158 : */
4159 : if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4160 : flags |= TNF_SHARED;
4161 :
4162 : last_cpupid = page_cpupid_last(page);
4163 : page_nid = page_to_nid(page);
4164 : target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4165 : &flags);
4166 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4167 : if (target_nid == NUMA_NO_NODE) {
4168 : put_page(page);
4169 : goto out;
4170 : }
4171 :
4172 : /* Migrate to the requested node */
4173 : migrated = migrate_misplaced_page(page, vma, target_nid);
4174 : if (migrated) {
4175 : page_nid = target_nid;
4176 : flags |= TNF_MIGRATED;
4177 : } else
4178 : flags |= TNF_MIGRATE_FAIL;
4179 :
4180 : out:
4181 : if (page_nid != NUMA_NO_NODE)
4182 : task_numa_fault(last_cpupid, page_nid, 1, flags);
4183 : return 0;
4184 : }
4185 :
4186 6167 : static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4187 : {
4188 6167 : if (vma_is_anonymous(vmf->vma))
4189 1048 : return do_huge_pmd_anonymous_page(vmf);
4190 5119 : if (vmf->vma->vm_ops->huge_fault)
4191 0 : return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4192 : return VM_FAULT_FALLBACK;
4193 : }
4194 :
4195 : /* `inline' is required to avoid gcc 4.1.2 build error */
4196 0 : static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4197 : {
4198 0 : if (vma_is_anonymous(vmf->vma)) {
4199 0 : if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4200 : return handle_userfault(vmf, VM_UFFD_WP);
4201 0 : return do_huge_pmd_wp_page(vmf, orig_pmd);
4202 : }
4203 0 : if (vmf->vma->vm_ops->huge_fault) {
4204 0 : vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4205 :
4206 0 : if (!(ret & VM_FAULT_FALLBACK))
4207 : return ret;
4208 : }
4209 :
4210 : /* COW or write-notify handled on pte level: split pmd. */
4211 0 : __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4212 :
4213 0 : return VM_FAULT_FALLBACK;
4214 : }
4215 :
4216 1881 : static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4217 : {
4218 : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4219 : defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4220 : /* No support for anonymous transparent PUD pages yet */
4221 1881 : if (vma_is_anonymous(vmf->vma))
4222 13 : goto split;
4223 1868 : if (vmf->vma->vm_ops->huge_fault) {
4224 0 : vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4225 :
4226 0 : if (!(ret & VM_FAULT_FALLBACK))
4227 : return ret;
4228 : }
4229 1868 : split:
4230 : /* COW or write-notify not handled on PUD level: split pud.*/
4231 1881 : __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4232 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4233 1881 : return VM_FAULT_FALLBACK;
4234 : }
4235 :
4236 0 : static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4237 : {
4238 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4239 : /* No support for anonymous transparent PUD pages yet */
4240 0 : if (vma_is_anonymous(vmf->vma))
4241 : return VM_FAULT_FALLBACK;
4242 0 : if (vmf->vma->vm_ops->huge_fault)
4243 0 : return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4244 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4245 : return VM_FAULT_FALLBACK;
4246 : }
4247 :
4248 : /*
4249 : * These routines also need to handle stuff like marking pages dirty
4250 : * and/or accessed for architectures that don't do it in hardware (most
4251 : * RISC architectures). The early dirtying is also good on the i386.
4252 : *
4253 : * There is also a hook called "update_mmu_cache()" that architectures
4254 : * with external mmu caches can use to update those (ie the Sparc or
4255 : * PowerPC hashed page tables that act as extended TLBs).
4256 : *
4257 : * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4258 : * concurrent faults).
4259 : *
4260 : * The mmap_lock may have been released depending on flags and our return value.
4261 : * See filemap_fault() and __lock_page_or_retry().
4262 : */
4263 171922 : static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4264 : {
4265 171922 : pte_t entry;
4266 :
4267 171922 : if (unlikely(pmd_none(*vmf->pmd))) {
4268 : /*
4269 : * Leave __pte_alloc() until later: because vm_ops->fault may
4270 : * want to allocate huge page, and if we expose page table
4271 : * for an instant, it will be difficult to retract from
4272 : * concurrent faults and from rmap lookups.
4273 : */
4274 8637 : vmf->pte = NULL;
4275 : } else {
4276 : /*
4277 : * If a huge pmd materialized under us just retry later. Use
4278 : * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4279 : * of pmd_trans_huge() to ensure the pmd didn't become
4280 : * pmd_trans_huge under us and then back to pmd_none, as a
4281 : * result of MADV_DONTNEED running immediately after a huge pmd
4282 : * fault in a different thread of this mm, in turn leading to a
4283 : * misleading pmd_trans_huge() retval. All we have to ensure is
4284 : * that it is a regular pmd that we can walk with
4285 : * pte_offset_map() and we can do that through an atomic read
4286 : * in C, which is what pmd_trans_unstable() provides.
4287 : */
4288 163285 : if (pmd_devmap_trans_unstable(vmf->pmd))
4289 : return 0;
4290 : /*
4291 : * A regular pmd is established and it can't morph into a huge
4292 : * pmd from under us anymore at this point because we hold the
4293 : * mmap_lock read mode and khugepaged takes it in write mode.
4294 : * So now it's safe to run pte_offset_map().
4295 : */
4296 163286 : vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4297 163286 : vmf->orig_pte = *vmf->pte;
4298 :
4299 : /*
4300 : * some architectures can have larger ptes than wordsize,
4301 : * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4302 : * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4303 : * accesses. The code below just needs a consistent view
4304 : * for the ifs and we later double check anyway with the
4305 : * ptl lock held. So here a barrier will do.
4306 : */
4307 163286 : barrier();
4308 163288 : if (pte_none(vmf->orig_pte)) {
4309 115549 : pte_unmap(vmf->pte);
4310 115549 : vmf->pte = NULL;
4311 : }
4312 : }
4313 :
4314 171925 : if (!vmf->pte) {
4315 124186 : if (vma_is_anonymous(vmf->vma))
4316 43703 : return do_anonymous_page(vmf);
4317 : else
4318 80483 : return do_fault(vmf);
4319 : }
4320 :
4321 47739 : if (!pte_present(vmf->orig_pte))
4322 0 : return do_swap_page(vmf);
4323 :
4324 47739 : if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4325 : return do_numa_page(vmf);
4326 :
4327 47739 : vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4328 47739 : spin_lock(vmf->ptl);
4329 47740 : entry = vmf->orig_pte;
4330 47740 : if (unlikely(!pte_same(*vmf->pte, entry))) {
4331 0 : update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4332 0 : goto unlock;
4333 : }
4334 47740 : if (vmf->flags & FAULT_FLAG_WRITE) {
4335 47740 : if (!pte_write(entry))
4336 47433 : return do_wp_page(vmf);
4337 307 : entry = pte_mkdirty(entry);
4338 : }
4339 307 : entry = pte_mkyoung(entry);
4340 307 : if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4341 307 : vmf->flags & FAULT_FLAG_WRITE)) {
4342 307 : update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4343 : } else {
4344 : /* Skip spurious TLB flush for retried page fault */
4345 307 : if (vmf->flags & FAULT_FLAG_TRIED)
4346 : goto unlock;
4347 : /*
4348 : * This is needed only for protection faults but the arch code
4349 : * is not yet telling us if this is a protection fault or not.
4350 : * This still avoids useless tlb flushes for .text page faults
4351 : * with threads.
4352 : */
4353 : if (vmf->flags & FAULT_FLAG_WRITE)
4354 307 : flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4355 : }
4356 307 : unlock:
4357 307 : pte_unmap_unlock(vmf->pte, vmf->ptl);
4358 307 : return 0;
4359 : }
4360 :
4361 : /*
4362 : * By the time we get here, we already hold the mm semaphore
4363 : *
4364 : * The mmap_lock may have been released depending on flags and our
4365 : * return value. See filemap_fault() and __lock_page_or_retry().
4366 : */
4367 171939 : static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4368 : unsigned long address, unsigned int flags)
4369 : {
4370 171939 : struct vm_fault vmf = {
4371 : .vma = vma,
4372 171939 : .address = address & PAGE_MASK,
4373 : .flags = flags,
4374 171939 : .pgoff = linear_page_index(vma, address),
4375 171939 : .gfp_mask = __get_fault_gfp_mask(vma),
4376 : };
4377 171939 : unsigned int dirty = flags & FAULT_FLAG_WRITE;
4378 171939 : struct mm_struct *mm = vma->vm_mm;
4379 171939 : pgd_t *pgd;
4380 171939 : p4d_t *p4d;
4381 171939 : vm_fault_t ret;
4382 :
4383 171939 : pgd = pgd_offset(mm, address);
4384 171939 : p4d = p4d_alloc(mm, pgd, address);
4385 171939 : if (!p4d)
4386 : return VM_FAULT_OOM;
4387 :
4388 171939 : vmf.pud = pud_alloc(mm, p4d, address);
4389 171939 : if (!vmf.pud)
4390 : return VM_FAULT_OOM;
4391 171939 : retry_pud:
4392 171939 : if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4393 1881 : ret = create_huge_pud(&vmf);
4394 1881 : if (!(ret & VM_FAULT_FALLBACK))
4395 0 : return ret;
4396 : } else {
4397 170058 : pud_t orig_pud = *vmf.pud;
4398 :
4399 170058 : barrier();
4400 170057 : if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4401 :
4402 : /* NUMA case for anonymous PUDs would go here */
4403 :
4404 0 : if (dirty && !pud_write(orig_pud)) {
4405 0 : ret = wp_huge_pud(&vmf, orig_pud);
4406 0 : if (!(ret & VM_FAULT_FALLBACK))
4407 0 : return ret;
4408 : } else {
4409 0 : huge_pud_set_accessed(&vmf, orig_pud);
4410 0 : return 0;
4411 : }
4412 : }
4413 : }
4414 :
4415 171938 : vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4416 171939 : if (!vmf.pmd)
4417 : return VM_FAULT_OOM;
4418 :
4419 : /* Huge pud page fault raced with pmd_alloc? */
4420 171939 : if (pud_trans_unstable(vmf.pud))
4421 0 : goto retry_pud;
4422 :
4423 171939 : if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4424 6167 : ret = create_huge_pmd(&vmf);
4425 6167 : if (!(ret & VM_FAULT_FALLBACK))
4426 : return ret;
4427 : } else {
4428 165772 : pmd_t orig_pmd = *vmf.pmd;
4429 :
4430 165772 : barrier();
4431 165771 : if (unlikely(is_swap_pmd(orig_pmd))) {
4432 0 : VM_BUG_ON(thp_migration_supported() &&
4433 : !is_pmd_migration_entry(orig_pmd));
4434 0 : if (is_pmd_migration_entry(orig_pmd))
4435 0 : pmd_migration_entry_wait(mm, vmf.pmd);
4436 0 : return 0;
4437 : }
4438 165771 : if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4439 0 : if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4440 : return do_huge_pmd_numa_page(&vmf, orig_pmd);
4441 :
4442 0 : if (dirty && !pmd_write(orig_pmd)) {
4443 0 : ret = wp_huge_pmd(&vmf, orig_pmd);
4444 0 : if (!(ret & VM_FAULT_FALLBACK))
4445 : return ret;
4446 : } else {
4447 0 : huge_pmd_set_accessed(&vmf, orig_pmd);
4448 0 : return 0;
4449 : }
4450 : }
4451 : }
4452 :
4453 171921 : return handle_pte_fault(&vmf);
4454 : }
4455 :
4456 : /**
4457 : * mm_account_fault - Do page fault accountings
4458 : *
4459 : * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4460 : * of perf event counters, but we'll still do the per-task accounting to
4461 : * the task who triggered this page fault.
4462 : * @address: the faulted address.
4463 : * @flags: the fault flags.
4464 : * @ret: the fault retcode.
4465 : *
4466 : * This will take care of most of the page fault accountings. Meanwhile, it
4467 : * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4468 : * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4469 : * still be in per-arch page fault handlers at the entry of page fault.
4470 : */
4471 171930 : static inline void mm_account_fault(struct pt_regs *regs,
4472 : unsigned long address, unsigned int flags,
4473 : vm_fault_t ret)
4474 : {
4475 171930 : bool major;
4476 :
4477 : /*
4478 : * We don't do accounting for some specific faults:
4479 : *
4480 : * - Unsuccessful faults (e.g. when the address wasn't valid). That
4481 : * includes arch_vma_access_permitted() failing before reaching here.
4482 : * So this is not a "this many hardware page faults" counter. We
4483 : * should use the hw profiling for that.
4484 : *
4485 : * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4486 : * once they're completed.
4487 : */
4488 171930 : if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4489 : return;
4490 :
4491 : /*
4492 : * We define the fault as a major fault when the final successful fault
4493 : * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4494 : * handle it immediately previously).
4495 : */
4496 170725 : major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4497 :
4498 170725 : if (major)
4499 1195 : current->maj_flt++;
4500 : else
4501 169530 : current->min_flt++;
4502 :
4503 : /*
4504 : * If the fault is done for GUP, regs will be NULL. We only do the
4505 : * accounting for the per thread fault counters who triggered the
4506 : * fault, and we skip the perf event updates.
4507 : */
4508 170725 : if (!regs)
4509 : return;
4510 :
4511 168213 : if (major)
4512 1195 : perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4513 : else
4514 167018 : perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4515 : }
4516 :
4517 : /*
4518 : * By the time we get here, we already hold the mm semaphore
4519 : *
4520 : * The mmap_lock may have been released depending on flags and our
4521 : * return value. See filemap_fault() and __lock_page_or_retry().
4522 : */
4523 171934 : vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4524 : unsigned int flags, struct pt_regs *regs)
4525 : {
4526 171934 : vm_fault_t ret;
4527 :
4528 171934 : __set_current_state(TASK_RUNNING);
4529 :
4530 171934 : count_vm_event(PGFAULT);
4531 171934 : count_memcg_event_mm(vma->vm_mm, PGFAULT);
4532 :
4533 : /* do counter updates before entering really critical section. */
4534 171934 : check_sync_rss_stat(current);
4535 :
4536 171934 : if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4537 171932 : flags & FAULT_FLAG_INSTRUCTION,
4538 171932 : flags & FAULT_FLAG_REMOTE))
4539 : return VM_FAULT_SIGSEGV;
4540 :
4541 : /*
4542 : * Enable the memcg OOM handling for faults triggered in user
4543 : * space. Kernel faults are handled more gracefully.
4544 : */
4545 171934 : if (flags & FAULT_FLAG_USER)
4546 : mem_cgroup_enter_user_fault();
4547 :
4548 171934 : if (unlikely(is_vm_hugetlb_page(vma)))
4549 : ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4550 : else
4551 171934 : ret = __handle_mm_fault(vma, address, flags);
4552 :
4553 171928 : if (flags & FAULT_FLAG_USER) {
4554 162524 : mem_cgroup_exit_user_fault();
4555 : /*
4556 : * The task may have entered a memcg OOM situation but
4557 : * if the allocation error was handled gracefully (no
4558 : * VM_FAULT_OOM), there is no need to kill anything.
4559 : * Just clean up the OOM state peacefully.
4560 : */
4561 162524 : if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4562 171928 : mem_cgroup_oom_synchronize(false);
4563 : }
4564 :
4565 171928 : mm_account_fault(regs, address, flags, ret);
4566 :
4567 171928 : return ret;
4568 : }
4569 : EXPORT_SYMBOL_GPL(handle_mm_fault);
4570 :
4571 : #ifndef __PAGETABLE_P4D_FOLDED
4572 : /*
4573 : * Allocate p4d page table.
4574 : * We've already handled the fast-path in-line.
4575 : */
4576 : int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4577 : {
4578 : p4d_t *new = p4d_alloc_one(mm, address);
4579 : if (!new)
4580 : return -ENOMEM;
4581 :
4582 : smp_wmb(); /* See comment in __pte_alloc */
4583 :
4584 : spin_lock(&mm->page_table_lock);
4585 : if (pgd_present(*pgd)) /* Another has populated it */
4586 : p4d_free(mm, new);
4587 : else
4588 : pgd_populate(mm, pgd, new);
4589 : spin_unlock(&mm->page_table_lock);
4590 : return 0;
4591 : }
4592 : #endif /* __PAGETABLE_P4D_FOLDED */
4593 :
4594 : #ifndef __PAGETABLE_PUD_FOLDED
4595 : /*
4596 : * Allocate page upper directory.
4597 : * We've already handled the fast-path in-line.
4598 : */
4599 7132 : int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4600 : {
4601 7132 : pud_t *new = pud_alloc_one(mm, address);
4602 7132 : if (!new)
4603 : return -ENOMEM;
4604 :
4605 7132 : smp_wmb(); /* See comment in __pte_alloc */
4606 :
4607 7132 : spin_lock(&mm->page_table_lock);
4608 7132 : if (!p4d_present(*p4d)) {
4609 7132 : mm_inc_nr_puds(mm);
4610 7132 : p4d_populate(mm, p4d, new);
4611 : } else /* Another has populated it */
4612 0 : pud_free(mm, new);
4613 7132 : spin_unlock(&mm->page_table_lock);
4614 7132 : return 0;
4615 : }
4616 : #endif /* __PAGETABLE_PUD_FOLDED */
4617 :
4618 : #ifndef __PAGETABLE_PMD_FOLDED
4619 : /*
4620 : * Allocate page middle directory.
4621 : * We've already handled the fast-path in-line.
4622 : */
4623 8967 : int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4624 : {
4625 8967 : spinlock_t *ptl;
4626 8967 : pmd_t *new = pmd_alloc_one(mm, address);
4627 8967 : if (!new)
4628 : return -ENOMEM;
4629 :
4630 8967 : smp_wmb(); /* See comment in __pte_alloc */
4631 :
4632 8967 : ptl = pud_lock(mm, pud);
4633 17934 : if (!pud_present(*pud)) {
4634 8967 : mm_inc_nr_pmds(mm);
4635 8967 : pud_populate(mm, pud, new);
4636 : } else /* Another has populated it */
4637 0 : pmd_free(mm, new);
4638 8967 : spin_unlock(ptl);
4639 8967 : return 0;
4640 : }
4641 : #endif /* __PAGETABLE_PMD_FOLDED */
4642 :
4643 0 : int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4644 : struct mmu_notifier_range *range, pte_t **ptepp,
4645 : pmd_t **pmdpp, spinlock_t **ptlp)
4646 : {
4647 0 : pgd_t *pgd;
4648 0 : p4d_t *p4d;
4649 0 : pud_t *pud;
4650 0 : pmd_t *pmd;
4651 0 : pte_t *ptep;
4652 :
4653 0 : pgd = pgd_offset(mm, address);
4654 0 : if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4655 : goto out;
4656 :
4657 0 : p4d = p4d_offset(pgd, address);
4658 0 : if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4659 0 : goto out;
4660 :
4661 0 : pud = pud_offset(p4d, address);
4662 0 : if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4663 0 : goto out;
4664 :
4665 0 : pmd = pmd_offset(pud, address);
4666 0 : VM_BUG_ON(pmd_trans_huge(*pmd));
4667 :
4668 0 : if (pmd_huge(*pmd)) {
4669 : if (!pmdpp)
4670 : goto out;
4671 :
4672 : if (range) {
4673 : mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4674 : NULL, mm, address & PMD_MASK,
4675 : (address & PMD_MASK) + PMD_SIZE);
4676 : mmu_notifier_invalidate_range_start(range);
4677 : }
4678 : *ptlp = pmd_lock(mm, pmd);
4679 : if (pmd_huge(*pmd)) {
4680 : *pmdpp = pmd;
4681 : return 0;
4682 : }
4683 : spin_unlock(*ptlp);
4684 : if (range)
4685 0 : mmu_notifier_invalidate_range_end(range);
4686 : }
4687 :
4688 0 : if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4689 0 : goto out;
4690 :
4691 0 : if (range) {
4692 0 : mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4693 : address & PAGE_MASK,
4694 : (address & PAGE_MASK) + PAGE_SIZE);
4695 0 : mmu_notifier_invalidate_range_start(range);
4696 : }
4697 0 : ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4698 0 : if (!pte_present(*ptep))
4699 0 : goto unlock;
4700 0 : *ptepp = ptep;
4701 0 : return 0;
4702 0 : unlock:
4703 0 : pte_unmap_unlock(ptep, *ptlp);
4704 0 : if (range)
4705 0 : mmu_notifier_invalidate_range_end(range);
4706 0 : out:
4707 : return -EINVAL;
4708 : }
4709 :
4710 : /**
4711 : * follow_pte - look up PTE at a user virtual address
4712 : * @mm: the mm_struct of the target address space
4713 : * @address: user virtual address
4714 : * @ptepp: location to store found PTE
4715 : * @ptlp: location to store the lock for the PTE
4716 : *
4717 : * On a successful return, the pointer to the PTE is stored in @ptepp;
4718 : * the corresponding lock is taken and its location is stored in @ptlp.
4719 : * The contents of the PTE are only stable until @ptlp is released;
4720 : * any further use, if any, must be protected against invalidation
4721 : * with MMU notifiers.
4722 : *
4723 : * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4724 : * should be taken for read.
4725 : *
4726 : * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4727 : * it is not a good general-purpose API.
4728 : *
4729 : * Return: zero on success, -ve otherwise.
4730 : */
4731 0 : int follow_pte(struct mm_struct *mm, unsigned long address,
4732 : pte_t **ptepp, spinlock_t **ptlp)
4733 : {
4734 0 : return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4735 : }
4736 : EXPORT_SYMBOL_GPL(follow_pte);
4737 :
4738 : /**
4739 : * follow_pfn - look up PFN at a user virtual address
4740 : * @vma: memory mapping
4741 : * @address: user virtual address
4742 : * @pfn: location to store found PFN
4743 : *
4744 : * Only IO mappings and raw PFN mappings are allowed.
4745 : *
4746 : * This function does not allow the caller to read the permissions
4747 : * of the PTE. Do not use it.
4748 : *
4749 : * Return: zero and the pfn at @pfn on success, -ve otherwise.
4750 : */
4751 0 : int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4752 : unsigned long *pfn)
4753 : {
4754 0 : int ret = -EINVAL;
4755 0 : spinlock_t *ptl;
4756 0 : pte_t *ptep;
4757 :
4758 0 : if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4759 : return ret;
4760 :
4761 0 : ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4762 0 : if (ret)
4763 : return ret;
4764 0 : *pfn = pte_pfn(*ptep);
4765 0 : pte_unmap_unlock(ptep, ptl);
4766 0 : return 0;
4767 : }
4768 : EXPORT_SYMBOL(follow_pfn);
4769 :
4770 : #ifdef CONFIG_HAVE_IOREMAP_PROT
4771 0 : int follow_phys(struct vm_area_struct *vma,
4772 : unsigned long address, unsigned int flags,
4773 : unsigned long *prot, resource_size_t *phys)
4774 : {
4775 0 : int ret = -EINVAL;
4776 0 : pte_t *ptep, pte;
4777 0 : spinlock_t *ptl;
4778 :
4779 0 : if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4780 0 : goto out;
4781 :
4782 0 : if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4783 0 : goto out;
4784 0 : pte = *ptep;
4785 :
4786 0 : if ((flags & FOLL_WRITE) && !pte_write(pte))
4787 0 : goto unlock;
4788 :
4789 0 : *prot = pgprot_val(pte_pgprot(pte));
4790 0 : *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4791 :
4792 0 : ret = 0;
4793 0 : unlock:
4794 0 : pte_unmap_unlock(ptep, ptl);
4795 0 : out:
4796 0 : return ret;
4797 : }
4798 :
4799 : /**
4800 : * generic_access_phys - generic implementation for iomem mmap access
4801 : * @vma: the vma to access
4802 : * @addr: userspace addres, not relative offset within @vma
4803 : * @buf: buffer to read/write
4804 : * @len: length of transfer
4805 : * @write: set to FOLL_WRITE when writing, otherwise reading
4806 : *
4807 : * This is a generic implementation for &vm_operations_struct.access for an
4808 : * iomem mapping. This callback is used by access_process_vm() when the @vma is
4809 : * not page based.
4810 : */
4811 0 : int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4812 : void *buf, int len, int write)
4813 : {
4814 0 : resource_size_t phys_addr;
4815 0 : unsigned long prot = 0;
4816 0 : void __iomem *maddr;
4817 0 : pte_t *ptep, pte;
4818 0 : spinlock_t *ptl;
4819 0 : int offset = offset_in_page(addr);
4820 0 : int ret = -EINVAL;
4821 :
4822 0 : if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4823 : return -EINVAL;
4824 :
4825 0 : retry:
4826 0 : if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4827 : return -EINVAL;
4828 0 : pte = *ptep;
4829 0 : pte_unmap_unlock(ptep, ptl);
4830 :
4831 0 : prot = pgprot_val(pte_pgprot(pte));
4832 0 : phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4833 :
4834 0 : if ((write & FOLL_WRITE) && !pte_write(pte))
4835 : return -EINVAL;
4836 :
4837 0 : maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4838 0 : if (!maddr)
4839 : return -ENOMEM;
4840 :
4841 0 : if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4842 0 : goto out_unmap;
4843 :
4844 0 : if (!pte_same(pte, *ptep)) {
4845 0 : pte_unmap_unlock(ptep, ptl);
4846 0 : iounmap(maddr);
4847 :
4848 0 : goto retry;
4849 : }
4850 :
4851 0 : if (write)
4852 0 : memcpy_toio(maddr + offset, buf, len);
4853 : else
4854 0 : memcpy_fromio(buf, maddr + offset, len);
4855 0 : ret = len;
4856 0 : pte_unmap_unlock(ptep, ptl);
4857 0 : out_unmap:
4858 0 : iounmap(maddr);
4859 :
4860 0 : return ret;
4861 : }
4862 : EXPORT_SYMBOL_GPL(generic_access_phys);
4863 : #endif
4864 :
4865 : /*
4866 : * Access another process' address space as given in mm.
4867 : */
4868 220 : int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4869 : int len, unsigned int gup_flags)
4870 : {
4871 220 : struct vm_area_struct *vma;
4872 220 : void *old_buf = buf;
4873 220 : int write = gup_flags & FOLL_WRITE;
4874 :
4875 220 : if (mmap_read_lock_killable(mm))
4876 : return 0;
4877 :
4878 : /* ignore errors, just check how much was successfully transferred */
4879 440 : while (len) {
4880 220 : int bytes, ret, offset;
4881 220 : void *maddr;
4882 220 : struct page *page = NULL;
4883 :
4884 220 : ret = get_user_pages_remote(mm, addr, 1,
4885 : gup_flags, &page, &vma, NULL);
4886 220 : if (ret <= 0) {
4887 : #ifndef CONFIG_HAVE_IOREMAP_PROT
4888 : break;
4889 : #else
4890 : /*
4891 : * Check if this is a VM_IO | VM_PFNMAP VMA, which
4892 : * we can access using slightly different code.
4893 : */
4894 0 : vma = find_vma(mm, addr);
4895 0 : if (!vma || vma->vm_start > addr)
4896 : break;
4897 0 : if (vma->vm_ops && vma->vm_ops->access)
4898 0 : ret = vma->vm_ops->access(vma, addr, buf,
4899 : len, write);
4900 0 : if (ret <= 0)
4901 : break;
4902 : bytes = ret;
4903 : #endif
4904 : } else {
4905 220 : bytes = len;
4906 220 : offset = addr & (PAGE_SIZE-1);
4907 220 : if (bytes > PAGE_SIZE-offset)
4908 0 : bytes = PAGE_SIZE-offset;
4909 :
4910 220 : maddr = kmap(page);
4911 220 : if (write) {
4912 0 : copy_to_user_page(vma, page, addr,
4913 : maddr + offset, buf, bytes);
4914 0 : set_page_dirty_lock(page);
4915 : } else {
4916 220 : copy_from_user_page(vma, page, addr,
4917 : buf, maddr + offset, bytes);
4918 : }
4919 220 : kunmap(page);
4920 220 : put_page(page);
4921 : }
4922 220 : len -= bytes;
4923 220 : buf += bytes;
4924 220 : addr += bytes;
4925 : }
4926 220 : mmap_read_unlock(mm);
4927 :
4928 220 : return buf - old_buf;
4929 : }
4930 :
4931 : /**
4932 : * access_remote_vm - access another process' address space
4933 : * @mm: the mm_struct of the target address space
4934 : * @addr: start address to access
4935 : * @buf: source or destination buffer
4936 : * @len: number of bytes to transfer
4937 : * @gup_flags: flags modifying lookup behaviour
4938 : *
4939 : * The caller must hold a reference on @mm.
4940 : *
4941 : * Return: number of bytes copied from source to destination.
4942 : */
4943 220 : int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4944 : void *buf, int len, unsigned int gup_flags)
4945 : {
4946 220 : return __access_remote_vm(mm, addr, buf, len, gup_flags);
4947 : }
4948 :
4949 : /*
4950 : * Access another process' address space.
4951 : * Source/target buffer must be kernel space,
4952 : * Do not walk the page table directly, use get_user_pages
4953 : */
4954 0 : int access_process_vm(struct task_struct *tsk, unsigned long addr,
4955 : void *buf, int len, unsigned int gup_flags)
4956 : {
4957 0 : struct mm_struct *mm;
4958 0 : int ret;
4959 :
4960 0 : mm = get_task_mm(tsk);
4961 0 : if (!mm)
4962 : return 0;
4963 :
4964 0 : ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
4965 :
4966 0 : mmput(mm);
4967 :
4968 0 : return ret;
4969 : }
4970 : EXPORT_SYMBOL_GPL(access_process_vm);
4971 :
4972 : /*
4973 : * Print the name of a VMA.
4974 : */
4975 0 : void print_vma_addr(char *prefix, unsigned long ip)
4976 : {
4977 0 : struct mm_struct *mm = current->mm;
4978 0 : struct vm_area_struct *vma;
4979 :
4980 : /*
4981 : * we might be running from an atomic context so we cannot sleep
4982 : */
4983 0 : if (!mmap_read_trylock(mm))
4984 : return;
4985 :
4986 0 : vma = find_vma(mm, ip);
4987 0 : if (vma && vma->vm_file) {
4988 0 : struct file *f = vma->vm_file;
4989 0 : char *buf = (char *)__get_free_page(GFP_NOWAIT);
4990 0 : if (buf) {
4991 0 : char *p;
4992 :
4993 0 : p = file_path(f, buf, PAGE_SIZE);
4994 0 : if (IS_ERR(p))
4995 0 : p = "?";
4996 0 : printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4997 : vma->vm_start,
4998 0 : vma->vm_end - vma->vm_start);
4999 0 : free_page((unsigned long)buf);
5000 : }
5001 : }
5002 0 : mmap_read_unlock(mm);
5003 : }
5004 :
5005 : #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5006 419805 : void __might_fault(const char *file, int line)
5007 : {
5008 : /*
5009 : * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5010 : * holding the mmap_lock, this is safe because kernel memory doesn't
5011 : * get paged out, therefore we'll never actually fault, and the
5012 : * below annotations will generate false positives.
5013 : */
5014 419805 : if (uaccess_kernel())
5015 : return;
5016 419805 : if (pagefault_disabled())
5017 : return;
5018 418849 : __might_sleep(file, line, 0);
5019 : #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5020 418871 : if (current->mm)
5021 418871 : might_lock_read(¤t->mm->mmap_lock);
5022 : #endif
5023 : }
5024 : EXPORT_SYMBOL(__might_fault);
5025 : #endif
5026 :
5027 : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5028 : /*
5029 : * Process all subpages of the specified huge page with the specified
5030 : * operation. The target subpage will be processed last to keep its
5031 : * cache lines hot.
5032 : */
5033 17 : static inline void process_huge_page(
5034 : unsigned long addr_hint, unsigned int pages_per_huge_page,
5035 : void (*process_subpage)(unsigned long addr, int idx, void *arg),
5036 : void *arg)
5037 : {
5038 17 : int i, n, base, l;
5039 17 : unsigned long addr = addr_hint &
5040 17 : ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5041 :
5042 : /* Process target subpage last to keep its cache lines hot */
5043 17 : might_sleep();
5044 17 : n = (addr_hint - addr) / PAGE_SIZE;
5045 17 : if (2 * n <= pages_per_huge_page) {
5046 : /* If target subpage in first half of huge page */
5047 4 : base = 0;
5048 4 : l = n;
5049 : /* Process subpages at the end of huge page */
5050 2052 : for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5051 2048 : cond_resched();
5052 2048 : process_subpage(addr + i * PAGE_SIZE, i, arg);
5053 : }
5054 : } else {
5055 : /* If target subpage in second half of huge page */
5056 13 : base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5057 13 : l = pages_per_huge_page - n;
5058 : /* Process subpages at the begin of huge page */
5059 5473 : for (i = 0; i < base; i++) {
5060 5460 : cond_resched();
5061 5460 : process_subpage(addr + i * PAGE_SIZE, i, arg);
5062 : }
5063 : }
5064 : /*
5065 : * Process remaining subpages in left-right-left-right pattern
5066 : * towards the target subpage
5067 : */
5068 615 : for (i = 0; i < l; i++) {
5069 598 : int left_idx = base + i;
5070 598 : int right_idx = base + 2 * l - 1 - i;
5071 :
5072 598 : cond_resched();
5073 598 : process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5074 598 : cond_resched();
5075 598 : process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5076 : }
5077 17 : }
5078 :
5079 0 : static void clear_gigantic_page(struct page *page,
5080 : unsigned long addr,
5081 : unsigned int pages_per_huge_page)
5082 : {
5083 0 : int i;
5084 0 : struct page *p = page;
5085 :
5086 0 : might_sleep();
5087 0 : for (i = 0; i < pages_per_huge_page;
5088 0 : i++, p = mem_map_next(p, page, i)) {
5089 0 : cond_resched();
5090 0 : clear_user_highpage(p, addr + i * PAGE_SIZE);
5091 : }
5092 0 : }
5093 :
5094 8704 : static void clear_subpage(unsigned long addr, int idx, void *arg)
5095 : {
5096 8704 : struct page *page = arg;
5097 :
5098 8704 : clear_user_highpage(page + idx, addr);
5099 8704 : }
5100 :
5101 17 : void clear_huge_page(struct page *page,
5102 : unsigned long addr_hint, unsigned int pages_per_huge_page)
5103 : {
5104 17 : unsigned long addr = addr_hint &
5105 17 : ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5106 :
5107 17 : if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5108 0 : clear_gigantic_page(page, addr, pages_per_huge_page);
5109 0 : return;
5110 : }
5111 :
5112 17 : process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5113 : }
5114 :
5115 0 : static void copy_user_gigantic_page(struct page *dst, struct page *src,
5116 : unsigned long addr,
5117 : struct vm_area_struct *vma,
5118 : unsigned int pages_per_huge_page)
5119 : {
5120 0 : int i;
5121 0 : struct page *dst_base = dst;
5122 0 : struct page *src_base = src;
5123 :
5124 0 : for (i = 0; i < pages_per_huge_page; ) {
5125 0 : cond_resched();
5126 0 : copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5127 :
5128 0 : i++;
5129 0 : dst = mem_map_next(dst, dst_base, i);
5130 0 : src = mem_map_next(src, src_base, i);
5131 : }
5132 0 : }
5133 :
5134 : struct copy_subpage_arg {
5135 : struct page *dst;
5136 : struct page *src;
5137 : struct vm_area_struct *vma;
5138 : };
5139 :
5140 0 : static void copy_subpage(unsigned long addr, int idx, void *arg)
5141 : {
5142 0 : struct copy_subpage_arg *copy_arg = arg;
5143 :
5144 0 : copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5145 : addr, copy_arg->vma);
5146 0 : }
5147 :
5148 0 : void copy_user_huge_page(struct page *dst, struct page *src,
5149 : unsigned long addr_hint, struct vm_area_struct *vma,
5150 : unsigned int pages_per_huge_page)
5151 : {
5152 0 : unsigned long addr = addr_hint &
5153 0 : ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5154 0 : struct copy_subpage_arg arg = {
5155 : .dst = dst,
5156 : .src = src,
5157 : .vma = vma,
5158 : };
5159 :
5160 0 : if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5161 0 : copy_user_gigantic_page(dst, src, addr, vma,
5162 : pages_per_huge_page);
5163 0 : return;
5164 : }
5165 :
5166 0 : process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5167 : }
5168 :
5169 0 : long copy_huge_page_from_user(struct page *dst_page,
5170 : const void __user *usr_src,
5171 : unsigned int pages_per_huge_page,
5172 : bool allow_pagefault)
5173 : {
5174 0 : void *src = (void *)usr_src;
5175 0 : void *page_kaddr;
5176 0 : unsigned long i, rc = 0;
5177 0 : unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5178 0 : struct page *subpage = dst_page;
5179 :
5180 0 : for (i = 0; i < pages_per_huge_page;
5181 0 : i++, subpage = mem_map_next(subpage, dst_page, i)) {
5182 0 : if (allow_pagefault)
5183 0 : page_kaddr = kmap(subpage);
5184 : else
5185 0 : page_kaddr = kmap_atomic(subpage);
5186 0 : rc = copy_from_user(page_kaddr,
5187 0 : (const void __user *)(src + i * PAGE_SIZE),
5188 : PAGE_SIZE);
5189 0 : if (allow_pagefault)
5190 0 : kunmap(subpage);
5191 : else
5192 0 : kunmap_atomic(page_kaddr);
5193 :
5194 0 : ret_val -= (PAGE_SIZE - rc);
5195 0 : if (rc)
5196 : break;
5197 :
5198 0 : cond_resched();
5199 : }
5200 0 : return ret_val;
5201 : }
5202 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5203 :
5204 : #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5205 :
5206 : static struct kmem_cache *page_ptl_cachep;
5207 :
5208 1 : void __init ptlock_cache_init(void)
5209 : {
5210 1 : page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5211 : SLAB_PANIC, NULL);
5212 1 : }
5213 :
5214 28139 : bool ptlock_alloc(struct page *page)
5215 : {
5216 28139 : spinlock_t *ptl;
5217 :
5218 28139 : ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5219 28139 : if (!ptl)
5220 : return false;
5221 28139 : page->ptl = ptl;
5222 28139 : return true;
5223 : }
5224 :
5225 27810 : void ptlock_free(struct page *page)
5226 : {
5227 27810 : kmem_cache_free(page_ptl_cachep, page->ptl);
5228 25835 : }
5229 : #endif
|