LCOV - code coverage report
Current view: top level - mm - mlock.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 165 343 48.1 %
Date: 2021-04-22 12:43:58 Functions: 11 30 36.7 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  *      linux/mm/mlock.c
       4             :  *
       5             :  *  (C) Copyright 1995 Linus Torvalds
       6             :  *  (C) Copyright 2002 Christoph Hellwig
       7             :  */
       8             : 
       9             : #include <linux/capability.h>
      10             : #include <linux/mman.h>
      11             : #include <linux/mm.h>
      12             : #include <linux/sched/user.h>
      13             : #include <linux/swap.h>
      14             : #include <linux/swapops.h>
      15             : #include <linux/pagemap.h>
      16             : #include <linux/pagevec.h>
      17             : #include <linux/mempolicy.h>
      18             : #include <linux/syscalls.h>
      19             : #include <linux/sched.h>
      20             : #include <linux/export.h>
      21             : #include <linux/rmap.h>
      22             : #include <linux/mmzone.h>
      23             : #include <linux/hugetlb.h>
      24             : #include <linux/memcontrol.h>
      25             : #include <linux/mm_inline.h>
      26             : 
      27             : #include "internal.h"
      28             : 
      29           1 : bool can_do_mlock(void)
      30             : {
      31           1 :         if (rlimit(RLIMIT_MEMLOCK) != 0)
      32             :                 return true;
      33           0 :         if (capable(CAP_IPC_LOCK))
      34           0 :                 return true;
      35             :         return false;
      36             : }
      37             : EXPORT_SYMBOL(can_do_mlock);
      38             : 
      39             : /*
      40             :  * Mlocked pages are marked with PageMlocked() flag for efficient testing
      41             :  * in vmscan and, possibly, the fault path; and to support semi-accurate
      42             :  * statistics.
      43             :  *
      44             :  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
      45             :  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
      46             :  * The unevictable list is an LRU sibling list to the [in]active lists.
      47             :  * PageUnevictable is set to indicate the unevictable state.
      48             :  *
      49             :  * When lazy mlocking via vmscan, it is important to ensure that the
      50             :  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
      51             :  * may have mlocked a page that is being munlocked. So lazy mlock must take
      52             :  * the mmap_lock for read, and verify that the vma really is locked
      53             :  * (see mm/rmap.c).
      54             :  */
      55             : 
      56             : /*
      57             :  *  LRU accounting for clear_page_mlock()
      58             :  */
      59           0 : void clear_page_mlock(struct page *page)
      60             : {
      61           0 :         int nr_pages;
      62             : 
      63           0 :         if (!TestClearPageMlocked(page))
      64             :                 return;
      65             : 
      66           0 :         nr_pages = thp_nr_pages(page);
      67           0 :         mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
      68           0 :         count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
      69             :         /*
      70             :          * The previous TestClearPageMlocked() corresponds to the smp_mb()
      71             :          * in __pagevec_lru_add_fn().
      72             :          *
      73             :          * See __pagevec_lru_add_fn for more explanation.
      74             :          */
      75           0 :         if (!isolate_lru_page(page)) {
      76           0 :                 putback_lru_page(page);
      77             :         } else {
      78             :                 /*
      79             :                  * We lost the race. the page already moved to evictable list.
      80             :                  */
      81           0 :                 if (PageUnevictable(page))
      82           0 :                         count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
      83             :         }
      84             : }
      85             : 
      86             : /*
      87             :  * Mark page as mlocked if not already.
      88             :  * If page on LRU, isolate and putback to move to unevictable list.
      89             :  */
      90          16 : void mlock_vma_page(struct page *page)
      91             : {
      92             :         /* Serialize with page migration */
      93          32 :         BUG_ON(!PageLocked(page));
      94             : 
      95          16 :         VM_BUG_ON_PAGE(PageTail(page), page);
      96          32 :         VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
      97             : 
      98          32 :         if (!TestSetPageMlocked(page)) {
      99           1 :                 int nr_pages = thp_nr_pages(page);
     100             : 
     101           1 :                 mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
     102           1 :                 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
     103           1 :                 if (!isolate_lru_page(page))
     104           1 :                         putback_lru_page(page);
     105             :         }
     106          16 : }
     107             : 
     108             : /*
     109             :  * Finish munlock after successful page isolation
     110             :  *
     111             :  * Page must be locked. This is a wrapper for try_to_munlock()
     112             :  * and putback_lru_page() with munlock accounting.
     113             :  */
     114           0 : static void __munlock_isolated_page(struct page *page)
     115             : {
     116             :         /*
     117             :          * Optimization: if the page was mapped just once, that's our mapping
     118             :          * and we don't need to check all the other vmas.
     119             :          */
     120           0 :         if (page_mapcount(page) > 1)
     121           0 :                 try_to_munlock(page);
     122             : 
     123             :         /* Did try_to_unlock() succeed or punt? */
     124           0 :         if (!PageMlocked(page))
     125           0 :                 count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
     126             : 
     127           0 :         putback_lru_page(page);
     128           0 : }
     129             : 
     130             : /*
     131             :  * Accounting for page isolation fail during munlock
     132             :  *
     133             :  * Performs accounting when page isolation fails in munlock. There is nothing
     134             :  * else to do because it means some other task has already removed the page
     135             :  * from the LRU. putback_lru_page() will take care of removing the page from
     136             :  * the unevictable list, if necessary. vmscan [page_referenced()] will move
     137             :  * the page back to the unevictable list if some other vma has it mlocked.
     138             :  */
     139           0 : static void __munlock_isolation_failed(struct page *page)
     140             : {
     141           0 :         int nr_pages = thp_nr_pages(page);
     142             : 
     143           0 :         if (PageUnevictable(page))
     144           0 :                 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
     145             :         else
     146           0 :                 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
     147           0 : }
     148             : 
     149             : /**
     150             :  * munlock_vma_page - munlock a vma page
     151             :  * @page: page to be unlocked, either a normal page or THP page head
     152             :  *
     153             :  * returns the size of the page as a page mask (0 for normal page,
     154             :  *         HPAGE_PMD_NR - 1 for THP head page)
     155             :  *
     156             :  * called from munlock()/munmap() path with page supposedly on the LRU.
     157             :  * When we munlock a page, because the vma where we found the page is being
     158             :  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
     159             :  * page locked so that we can leave it on the unevictable lru list and not
     160             :  * bother vmscan with it.  However, to walk the page's rmap list in
     161             :  * try_to_munlock() we must isolate the page from the LRU.  If some other
     162             :  * task has removed the page from the LRU, we won't be able to do that.
     163             :  * So we clear the PageMlocked as we might not get another chance.  If we
     164             :  * can't isolate the page, we leave it for putback_lru_page() and vmscan
     165             :  * [page_referenced()/try_to_unmap()] to deal with.
     166             :  */
     167           0 : unsigned int munlock_vma_page(struct page *page)
     168             : {
     169           0 :         int nr_pages;
     170             : 
     171             :         /* For try_to_munlock() and to serialize with page migration */
     172           0 :         BUG_ON(!PageLocked(page));
     173           0 :         VM_BUG_ON_PAGE(PageTail(page), page);
     174             : 
     175           0 :         if (!TestClearPageMlocked(page)) {
     176             :                 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
     177             :                 return 0;
     178             :         }
     179             : 
     180           0 :         nr_pages = thp_nr_pages(page);
     181           0 :         mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
     182             : 
     183           0 :         if (!isolate_lru_page(page))
     184           0 :                 __munlock_isolated_page(page);
     185             :         else
     186           0 :                 __munlock_isolation_failed(page);
     187             : 
     188           0 :         return nr_pages - 1;
     189             : }
     190             : 
     191             : /*
     192             :  * convert get_user_pages() return value to posix mlock() error
     193             :  */
     194           0 : static int __mlock_posix_error_return(long retval)
     195             : {
     196           0 :         if (retval == -EFAULT)
     197             :                 retval = -ENOMEM;
     198           0 :         else if (retval == -ENOMEM)
     199           0 :                 retval = -EAGAIN;
     200           0 :         return retval;
     201             : }
     202             : 
     203             : /*
     204             :  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
     205             :  *
     206             :  * The fast path is available only for evictable pages with single mapping.
     207             :  * Then we can bypass the per-cpu pvec and get better performance.
     208             :  * when mapcount > 1 we need try_to_munlock() which can fail.
     209             :  * when !page_evictable(), we need the full redo logic of putback_lru_page to
     210             :  * avoid leaving evictable page in unevictable list.
     211             :  *
     212             :  * In case of success, @page is added to @pvec and @pgrescued is incremented
     213             :  * in case that the page was previously unevictable. @page is also unlocked.
     214             :  */
     215          16 : static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
     216             :                 int *pgrescued)
     217             : {
     218          32 :         VM_BUG_ON_PAGE(PageLRU(page), page);
     219          32 :         VM_BUG_ON_PAGE(!PageLocked(page), page);
     220             : 
     221          16 :         if (page_mapcount(page) <= 1 && page_evictable(page)) {
     222          16 :                 pagevec_add(pvec, page);
     223          32 :                 if (TestClearPageUnevictable(page))
     224          16 :                         (*pgrescued)++;
     225          16 :                 unlock_page(page);
     226          16 :                 return true;
     227             :         }
     228             : 
     229             :         return false;
     230             : }
     231             : 
     232             : /*
     233             :  * Putback multiple evictable pages to the LRU
     234             :  *
     235             :  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
     236             :  * the pages might have meanwhile become unevictable but that is OK.
     237             :  */
     238           2 : static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
     239             : {
     240           2 :         count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
     241             :         /*
     242             :          *__pagevec_lru_add() calls release_pages() so we don't call
     243             :          * put_page() explicitly
     244             :          */
     245           2 :         __pagevec_lru_add(pvec);
     246           2 :         count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
     247           2 : }
     248             : 
     249             : /*
     250             :  * Munlock a batch of pages from the same zone
     251             :  *
     252             :  * The work is split to two main phases. First phase clears the Mlocked flag
     253             :  * and attempts to isolate the pages, all under a single zone lru lock.
     254             :  * The second phase finishes the munlock only for pages where isolation
     255             :  * succeeded.
     256             :  *
     257             :  * Note that the pagevec may be modified during the process.
     258             :  */
     259           2 : static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
     260             : {
     261           2 :         int i;
     262           2 :         int nr = pagevec_count(pvec);
     263           2 :         int delta_munlocked = -nr;
     264           2 :         struct pagevec pvec_putback;
     265           2 :         struct lruvec *lruvec = NULL;
     266           2 :         int pgrescued = 0;
     267             : 
     268           2 :         pagevec_init(&pvec_putback);
     269             : 
     270             :         /* Phase 1: page isolation */
     271          18 :         for (i = 0; i < nr; i++) {
     272          16 :                 struct page *page = pvec->pages[i];
     273             : 
     274          32 :                 if (TestClearPageMlocked(page)) {
     275             :                         /*
     276             :                          * We already have pin from follow_page_mask()
     277             :                          * so we can spare the get_page() here.
     278             :                          */
     279          32 :                         if (TestClearPageLRU(page)) {
     280          16 :                                 lruvec = relock_page_lruvec_irq(page, lruvec);
     281          16 :                                 del_page_from_lru_list(page, lruvec);
     282          16 :                                 continue;
     283             :                         } else
     284           0 :                                 __munlock_isolation_failed(page);
     285             :                 } else {
     286           0 :                         delta_munlocked++;
     287             :                 }
     288             : 
     289             :                 /*
     290             :                  * We won't be munlocking this page in the next phase
     291             :                  * but we still need to release the follow_page_mask()
     292             :                  * pin. We cannot do it under lru_lock however. If it's
     293             :                  * the last pin, __page_cache_release() would deadlock.
     294             :                  */
     295           0 :                 pagevec_add(&pvec_putback, pvec->pages[i]);
     296           0 :                 pvec->pages[i] = NULL;
     297             :         }
     298           2 :         if (lruvec) {
     299           2 :                 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
     300           2 :                 unlock_page_lruvec_irq(lruvec);
     301           0 :         } else if (delta_munlocked) {
     302           0 :                 mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
     303             :         }
     304             : 
     305             :         /* Now we can release pins of pages that we are not munlocking */
     306           2 :         pagevec_release(&pvec_putback);
     307             : 
     308             :         /* Phase 2: page munlock */
     309          18 :         for (i = 0; i < nr; i++) {
     310          16 :                 struct page *page = pvec->pages[i];
     311             : 
     312          16 :                 if (page) {
     313          16 :                         lock_page(page);
     314          16 :                         if (!__putback_lru_fast_prepare(page, &pvec_putback,
     315             :                                         &pgrescued)) {
     316             :                                 /*
     317             :                                  * Slow path. We don't want to lose the last
     318             :                                  * pin before unlock_page()
     319             :                                  */
     320           0 :                                 get_page(page); /* for putback_lru_page() */
     321           0 :                                 __munlock_isolated_page(page);
     322           0 :                                 unlock_page(page);
     323           0 :                                 put_page(page); /* from follow_page_mask() */
     324             :                         }
     325             :                 }
     326             :         }
     327             : 
     328             :         /*
     329             :          * Phase 3: page putback for pages that qualified for the fast path
     330             :          * This will also call put_page() to return pin from follow_page_mask()
     331             :          */
     332           2 :         if (pagevec_count(&pvec_putback))
     333           2 :                 __putback_lru_fast(&pvec_putback, pgrescued);
     334           2 : }
     335             : 
     336             : /*
     337             :  * Fill up pagevec for __munlock_pagevec using pte walk
     338             :  *
     339             :  * The function expects that the struct page corresponding to @start address is
     340             :  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
     341             :  *
     342             :  * The rest of @pvec is filled by subsequent pages within the same pmd and same
     343             :  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
     344             :  * pages also get pinned.
     345             :  *
     346             :  * Returns the address of the next page that should be scanned. This equals
     347             :  * @start + PAGE_SIZE when no page could be added by the pte walk.
     348             :  */
     349           2 : static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
     350             :                         struct vm_area_struct *vma, struct zone *zone,
     351             :                         unsigned long start, unsigned long end)
     352             : {
     353           2 :         pte_t *pte;
     354           2 :         spinlock_t *ptl;
     355             : 
     356             :         /*
     357             :          * Initialize pte walk starting at the already pinned page where we
     358             :          * are sure that there is a pte, as it was pinned under the same
     359             :          * mmap_lock write op.
     360             :          */
     361           2 :         pte = get_locked_pte(vma->vm_mm, start,      &ptl);
     362             :         /* Make sure we do not cross the page table boundary */
     363           2 :         end = pgd_addr_end(start, end);
     364           2 :         end = p4d_addr_end(start, end);
     365           2 :         end = pud_addr_end(start, end);
     366           2 :         end = pmd_addr_end(start, end);
     367             : 
     368             :         /* The page next to the pinned page is the first we will try to get */
     369           2 :         start += PAGE_SIZE;
     370          15 :         while (start < end) {
     371          14 :                 struct page *page = NULL;
     372          14 :                 pte++;
     373          14 :                 if (pte_present(*pte))
     374          14 :                         page = vm_normal_page(vma, start, *pte);
     375             :                 /*
     376             :                  * Break if page could not be obtained or the page's node+zone does not
     377             :                  * match
     378             :                  */
     379          14 :                 if (!page || page_zone(page) != zone)
     380             :                         break;
     381             : 
     382             :                 /*
     383             :                  * Do not use pagevec for PTE-mapped THP,
     384             :                  * munlock_vma_pages_range() will handle them.
     385             :                  */
     386          14 :                 if (PageTransCompound(page))
     387             :                         break;
     388             : 
     389          14 :                 get_page(page);
     390             :                 /*
     391             :                  * Increase the address that will be returned *before* the
     392             :                  * eventual break due to pvec becoming full by adding the page
     393             :                  */
     394          14 :                 start += PAGE_SIZE;
     395          14 :                 if (pagevec_add(pvec, page) == 0)
     396             :                         break;
     397             :         }
     398           2 :         pte_unmap_unlock(pte, ptl);
     399           2 :         return start;
     400             : }
     401             : 
     402             : /*
     403             :  * munlock_vma_pages_range() - munlock all pages in the vma range.'
     404             :  * @vma - vma containing range to be munlock()ed.
     405             :  * @start - start address in @vma of the range
     406             :  * @end - end of range in @vma.
     407             :  *
     408             :  *  For mremap(), munmap() and exit().
     409             :  *
     410             :  * Called with @vma VM_LOCKED.
     411             :  *
     412             :  * Returns with VM_LOCKED cleared.  Callers must be prepared to
     413             :  * deal with this.
     414             :  *
     415             :  * We don't save and restore VM_LOCKED here because pages are
     416             :  * still on lru.  In unmap path, pages might be scanned by reclaim
     417             :  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
     418             :  * free them.  This will result in freeing mlocked pages.
     419             :  */
     420           1 : void munlock_vma_pages_range(struct vm_area_struct *vma,
     421             :                              unsigned long start, unsigned long end)
     422             : {
     423           1 :         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
     424             : 
     425           3 :         while (start < end) {
     426           2 :                 struct page *page;
     427           2 :                 unsigned int page_mask = 0;
     428           2 :                 unsigned long page_increm;
     429           2 :                 struct pagevec pvec;
     430           2 :                 struct zone *zone;
     431             : 
     432           2 :                 pagevec_init(&pvec);
     433             :                 /*
     434             :                  * Although FOLL_DUMP is intended for get_dump_page(),
     435             :                  * it just so happens that its special treatment of the
     436             :                  * ZERO_PAGE (returning an error instead of doing get_page)
     437             :                  * suits munlock very well (and if somehow an abnormal page
     438             :                  * has sneaked into the range, we won't oops here: great).
     439             :                  */
     440           2 :                 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
     441             : 
     442           2 :                 if (page && !IS_ERR(page)) {
     443           2 :                         if (PageTransTail(page)) {
     444           0 :                                 VM_BUG_ON_PAGE(PageMlocked(page), page);
     445           0 :                                 put_page(page); /* follow_page_mask() */
     446           2 :                         } else if (PageTransHuge(page)) {
     447           0 :                                 lock_page(page);
     448             :                                 /*
     449             :                                  * Any THP page found by follow_page_mask() may
     450             :                                  * have gotten split before reaching
     451             :                                  * munlock_vma_page(), so we need to compute
     452             :                                  * the page_mask here instead.
     453             :                                  */
     454           0 :                                 page_mask = munlock_vma_page(page);
     455           0 :                                 unlock_page(page);
     456           0 :                                 put_page(page); /* follow_page_mask() */
     457             :                         } else {
     458             :                                 /*
     459             :                                  * Non-huge pages are handled in batches via
     460             :                                  * pagevec. The pin from follow_page_mask()
     461             :                                  * prevents them from collapsing by THP.
     462             :                                  */
     463           2 :                                 pagevec_add(&pvec, page);
     464           2 :                                 zone = page_zone(page);
     465             : 
     466             :                                 /*
     467             :                                  * Try to fill the rest of pagevec using fast
     468             :                                  * pte walk. This will also update start to
     469             :                                  * the next page to process. Then munlock the
     470             :                                  * pagevec.
     471             :                                  */
     472           2 :                                 start = __munlock_pagevec_fill(&pvec, vma,
     473             :                                                 zone, start, end);
     474           2 :                                 __munlock_pagevec(&pvec, zone);
     475           2 :                                 goto next;
     476             :                         }
     477             :                 }
     478           0 :                 page_increm = 1 + page_mask;
     479           0 :                 start += page_increm * PAGE_SIZE;
     480           2 : next:
     481           2 :                 cond_resched();
     482             :         }
     483           1 : }
     484             : 
     485             : /*
     486             :  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
     487             :  *
     488             :  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
     489             :  * munlock is a no-op.  However, for some special vmas, we go ahead and
     490             :  * populate the ptes.
     491             :  *
     492             :  * For vmas that pass the filters, merge/split as appropriate.
     493             :  */
     494           1 : static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
     495             :         unsigned long start, unsigned long end, vm_flags_t newflags)
     496             : {
     497           1 :         struct mm_struct *mm = vma->vm_mm;
     498           1 :         pgoff_t pgoff;
     499           1 :         int nr_pages;
     500           1 :         int ret = 0;
     501           1 :         int lock = !!(newflags & VM_LOCKED);
     502           1 :         vm_flags_t old_flags = vma->vm_flags;
     503             : 
     504           1 :         if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
     505           1 :             is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
     506           1 :             vma_is_dax(vma))
     507             :                 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
     508           0 :                 goto out;
     509             : 
     510           1 :         pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
     511           1 :         *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
     512             :                           vma->vm_file, pgoff, vma_policy(vma),
     513             :                           vma->vm_userfaultfd_ctx);
     514           1 :         if (*prev) {
     515           0 :                 vma = *prev;
     516           0 :                 goto success;
     517             :         }
     518             : 
     519           1 :         if (start != vma->vm_start) {
     520           0 :                 ret = split_vma(mm, vma, start, 1);
     521           0 :                 if (ret)
     522           0 :                         goto out;
     523             :         }
     524             : 
     525           1 :         if (end != vma->vm_end) {
     526           0 :                 ret = split_vma(mm, vma, end, 0);
     527           0 :                 if (ret)
     528           0 :                         goto out;
     529             :         }
     530             : 
     531           1 : success:
     532             :         /*
     533             :          * Keep track of amount of locked VM.
     534             :          */
     535           1 :         nr_pages = (end - start) >> PAGE_SHIFT;
     536           1 :         if (!lock)
     537           0 :                 nr_pages = -nr_pages;
     538           1 :         else if (old_flags & VM_LOCKED)
     539           0 :                 nr_pages = 0;
     540           1 :         mm->locked_vm += nr_pages;
     541             : 
     542             :         /*
     543             :          * vm_flags is protected by the mmap_lock held in write mode.
     544             :          * It's okay if try_to_unmap_one unmaps a page just after we
     545             :          * set VM_LOCKED, populate_vma_page_range will bring it back.
     546             :          */
     547             : 
     548           1 :         if (lock)
     549           1 :                 vma->vm_flags = newflags;
     550             :         else
     551           0 :                 munlock_vma_pages_range(vma, start, end);
     552             : 
     553           1 : out:
     554           1 :         *prev = vma;
     555           1 :         return ret;
     556             : }
     557             : 
     558           1 : static int apply_vma_lock_flags(unsigned long start, size_t len,
     559             :                                 vm_flags_t flags)
     560             : {
     561           1 :         unsigned long nstart, end, tmp;
     562           1 :         struct vm_area_struct * vma, * prev;
     563           1 :         int error;
     564             : 
     565           1 :         VM_BUG_ON(offset_in_page(start));
     566           1 :         VM_BUG_ON(len != PAGE_ALIGN(len));
     567           1 :         end = start + len;
     568           1 :         if (end < start)
     569             :                 return -EINVAL;
     570           1 :         if (end == start)
     571             :                 return 0;
     572           1 :         vma = find_vma(current->mm, start);
     573           1 :         if (!vma || vma->vm_start > start)
     574             :                 return -ENOMEM;
     575             : 
     576           1 :         prev = vma->vm_prev;
     577           1 :         if (start > vma->vm_start)
     578           0 :                 prev = vma;
     579             : 
     580             :         for (nstart = start ; ; ) {
     581           1 :                 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
     582             : 
     583           1 :                 newflags |= flags;
     584             : 
     585             :                 /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
     586           1 :                 tmp = vma->vm_end;
     587           1 :                 if (tmp > end)
     588             :                         tmp = end;
     589           1 :                 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
     590           1 :                 if (error)
     591             :                         break;
     592           1 :                 nstart = tmp;
     593           1 :                 if (nstart < prev->vm_end)
     594             :                         nstart = prev->vm_end;
     595           1 :                 if (nstart >= end)
     596             :                         break;
     597             : 
     598           0 :                 vma = prev->vm_next;
     599           0 :                 if (!vma || vma->vm_start != nstart) {
     600             :                         error = -ENOMEM;
     601             :                         break;
     602             :                 }
     603             :         }
     604             :         return error;
     605             : }
     606             : 
     607             : /*
     608             :  * Go through vma areas and sum size of mlocked
     609             :  * vma pages, as return value.
     610             :  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
     611             :  * is also counted.
     612             :  * Return value: previously mlocked page counts
     613             :  */
     614           0 : static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
     615             :                 unsigned long start, size_t len)
     616             : {
     617           0 :         struct vm_area_struct *vma;
     618           0 :         unsigned long count = 0;
     619             : 
     620           0 :         if (mm == NULL)
     621           0 :                 mm = current->mm;
     622             : 
     623           0 :         vma = find_vma(mm, start);
     624           0 :         if (vma == NULL)
     625             :                 return 0;
     626             : 
     627           0 :         for (; vma ; vma = vma->vm_next) {
     628           0 :                 if (start >= vma->vm_end)
     629           0 :                         continue;
     630           0 :                 if (start + len <=  vma->vm_start)
     631             :                         break;
     632           0 :                 if (vma->vm_flags & VM_LOCKED) {
     633           0 :                         if (start > vma->vm_start)
     634           0 :                                 count -= (start - vma->vm_start);
     635           0 :                         if (start + len < vma->vm_end) {
     636           0 :                                 count += start + len - vma->vm_start;
     637           0 :                                 break;
     638             :                         }
     639           0 :                         count += vma->vm_end - vma->vm_start;
     640             :                 }
     641             :         }
     642             : 
     643           0 :         return count >> PAGE_SHIFT;
     644             : }
     645             : 
     646           1 : static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
     647             : {
     648           1 :         unsigned long locked;
     649           1 :         unsigned long lock_limit;
     650           1 :         int error = -ENOMEM;
     651             : 
     652           1 :         start = untagged_addr(start);
     653             : 
     654           1 :         if (!can_do_mlock())
     655             :                 return -EPERM;
     656             : 
     657           1 :         len = PAGE_ALIGN(len + (offset_in_page(start)));
     658           1 :         start &= PAGE_MASK;
     659             : 
     660           1 :         lock_limit = rlimit(RLIMIT_MEMLOCK);
     661           1 :         lock_limit >>= PAGE_SHIFT;
     662           1 :         locked = len >> PAGE_SHIFT;
     663             : 
     664           1 :         if (mmap_write_lock_killable(current->mm))
     665             :                 return -EINTR;
     666             : 
     667           1 :         locked += current->mm->locked_vm;
     668           1 :         if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
     669             :                 /*
     670             :                  * It is possible that the regions requested intersect with
     671             :                  * previously mlocked areas, that part area in "mm->locked_vm"
     672             :                  * should not be counted to new mlock increment count. So check
     673             :                  * and adjust locked count if necessary.
     674             :                  */
     675           0 :                 locked -= count_mm_mlocked_page_nr(current->mm,
     676             :                                 start, len);
     677             :         }
     678             : 
     679             :         /* check against resource limits */
     680           1 :         if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
     681           1 :                 error = apply_vma_lock_flags(start, len, flags);
     682             : 
     683           1 :         mmap_write_unlock(current->mm);
     684           1 :         if (error)
     685             :                 return error;
     686             : 
     687           1 :         error = __mm_populate(start, len, 0);
     688           1 :         if (error)
     689           0 :                 return __mlock_posix_error_return(error);
     690             :         return 0;
     691             : }
     692             : 
     693           2 : SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
     694             : {
     695           1 :         return do_mlock(start, len, VM_LOCKED);
     696             : }
     697             : 
     698           0 : SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
     699             : {
     700           0 :         vm_flags_t vm_flags = VM_LOCKED;
     701             : 
     702           0 :         if (flags & ~MLOCK_ONFAULT)
     703             :                 return -EINVAL;
     704             : 
     705           0 :         if (flags & MLOCK_ONFAULT)
     706           0 :                 vm_flags |= VM_LOCKONFAULT;
     707             : 
     708           0 :         return do_mlock(start, len, vm_flags);
     709             : }
     710             : 
     711           0 : SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
     712             : {
     713           0 :         int ret;
     714             : 
     715           0 :         start = untagged_addr(start);
     716             : 
     717           0 :         len = PAGE_ALIGN(len + (offset_in_page(start)));
     718           0 :         start &= PAGE_MASK;
     719             : 
     720           0 :         if (mmap_write_lock_killable(current->mm))
     721             :                 return -EINTR;
     722           0 :         ret = apply_vma_lock_flags(start, len, 0);
     723           0 :         mmap_write_unlock(current->mm);
     724             : 
     725           0 :         return ret;
     726             : }
     727             : 
     728             : /*
     729             :  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
     730             :  * and translate into the appropriate modifications to mm->def_flags and/or the
     731             :  * flags for all current VMAs.
     732             :  *
     733             :  * There are a couple of subtleties with this.  If mlockall() is called multiple
     734             :  * times with different flags, the values do not necessarily stack.  If mlockall
     735             :  * is called once including the MCL_FUTURE flag and then a second time without
     736             :  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
     737             :  */
     738           0 : static int apply_mlockall_flags(int flags)
     739             : {
     740           0 :         struct vm_area_struct * vma, * prev = NULL;
     741           0 :         vm_flags_t to_add = 0;
     742             : 
     743           0 :         current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
     744           0 :         if (flags & MCL_FUTURE) {
     745           0 :                 current->mm->def_flags |= VM_LOCKED;
     746             : 
     747           0 :                 if (flags & MCL_ONFAULT)
     748           0 :                         current->mm->def_flags |= VM_LOCKONFAULT;
     749             : 
     750           0 :                 if (!(flags & MCL_CURRENT))
     751           0 :                         goto out;
     752             :         }
     753             : 
     754           0 :         if (flags & MCL_CURRENT) {
     755           0 :                 to_add |= VM_LOCKED;
     756           0 :                 if (flags & MCL_ONFAULT)
     757           0 :                         to_add |= VM_LOCKONFAULT;
     758             :         }
     759             : 
     760           0 :         for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
     761           0 :                 vm_flags_t newflags;
     762             : 
     763           0 :                 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
     764           0 :                 newflags |= to_add;
     765             : 
     766             :                 /* Ignore errors */
     767           0 :                 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
     768           0 :                 cond_resched();
     769             :         }
     770           0 : out:
     771           0 :         return 0;
     772             : }
     773             : 
     774           0 : SYSCALL_DEFINE1(mlockall, int, flags)
     775             : {
     776           0 :         unsigned long lock_limit;
     777           0 :         int ret;
     778             : 
     779           0 :         if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
     780             :             flags == MCL_ONFAULT)
     781             :                 return -EINVAL;
     782             : 
     783           0 :         if (!can_do_mlock())
     784             :                 return -EPERM;
     785             : 
     786           0 :         lock_limit = rlimit(RLIMIT_MEMLOCK);
     787           0 :         lock_limit >>= PAGE_SHIFT;
     788             : 
     789           0 :         if (mmap_write_lock_killable(current->mm))
     790             :                 return -EINTR;
     791             : 
     792           0 :         ret = -ENOMEM;
     793           0 :         if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
     794           0 :             capable(CAP_IPC_LOCK))
     795           0 :                 ret = apply_mlockall_flags(flags);
     796           0 :         mmap_write_unlock(current->mm);
     797           0 :         if (!ret && (flags & MCL_CURRENT))
     798           0 :                 mm_populate(0, TASK_SIZE);
     799             : 
     800           0 :         return ret;
     801             : }
     802             : 
     803           0 : SYSCALL_DEFINE0(munlockall)
     804             : {
     805           0 :         int ret;
     806             : 
     807           0 :         if (mmap_write_lock_killable(current->mm))
     808             :                 return -EINTR;
     809           0 :         ret = apply_mlockall_flags(0);
     810           0 :         mmap_write_unlock(current->mm);
     811           0 :         return ret;
     812             : }
     813             : 
     814             : /*
     815             :  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
     816             :  * shm segments) get accounted against the user_struct instead.
     817             :  */
     818             : static DEFINE_SPINLOCK(shmlock_user_lock);
     819             : 
     820           0 : int user_shm_lock(size_t size, struct user_struct *user)
     821             : {
     822           0 :         unsigned long lock_limit, locked;
     823           0 :         int allowed = 0;
     824             : 
     825           0 :         locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
     826           0 :         lock_limit = rlimit(RLIMIT_MEMLOCK);
     827           0 :         if (lock_limit == RLIM_INFINITY)
     828           0 :                 allowed = 1;
     829           0 :         lock_limit >>= PAGE_SHIFT;
     830           0 :         spin_lock(&shmlock_user_lock);
     831           0 :         if (!allowed &&
     832           0 :             locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
     833           0 :                 goto out;
     834           0 :         get_uid(user);
     835           0 :         user->locked_shm += locked;
     836           0 :         allowed = 1;
     837           0 : out:
     838           0 :         spin_unlock(&shmlock_user_lock);
     839           0 :         return allowed;
     840             : }
     841             : 
     842           0 : void user_shm_unlock(size_t size, struct user_struct *user)
     843             : {
     844           0 :         spin_lock(&shmlock_user_lock);
     845           0 :         user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
     846           0 :         spin_unlock(&shmlock_user_lock);
     847           0 :         free_uid(user);
     848           0 : }

Generated by: LCOV version 1.14