Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * mm/mmap.c
4 : *
5 : * Written by obz.
6 : *
7 : * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 : */
9 :
10 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 :
12 : #include <linux/kernel.h>
13 : #include <linux/slab.h>
14 : #include <linux/backing-dev.h>
15 : #include <linux/mm.h>
16 : #include <linux/vmacache.h>
17 : #include <linux/shm.h>
18 : #include <linux/mman.h>
19 : #include <linux/pagemap.h>
20 : #include <linux/swap.h>
21 : #include <linux/syscalls.h>
22 : #include <linux/capability.h>
23 : #include <linux/init.h>
24 : #include <linux/file.h>
25 : #include <linux/fs.h>
26 : #include <linux/personality.h>
27 : #include <linux/security.h>
28 : #include <linux/hugetlb.h>
29 : #include <linux/shmem_fs.h>
30 : #include <linux/profile.h>
31 : #include <linux/export.h>
32 : #include <linux/mount.h>
33 : #include <linux/mempolicy.h>
34 : #include <linux/rmap.h>
35 : #include <linux/mmu_notifier.h>
36 : #include <linux/mmdebug.h>
37 : #include <linux/perf_event.h>
38 : #include <linux/audit.h>
39 : #include <linux/khugepaged.h>
40 : #include <linux/uprobes.h>
41 : #include <linux/rbtree_augmented.h>
42 : #include <linux/notifier.h>
43 : #include <linux/memory.h>
44 : #include <linux/printk.h>
45 : #include <linux/userfaultfd_k.h>
46 : #include <linux/moduleparam.h>
47 : #include <linux/pkeys.h>
48 : #include <linux/oom.h>
49 : #include <linux/sched/mm.h>
50 :
51 : #include <linux/uaccess.h>
52 : #include <asm/cacheflush.h>
53 : #include <asm/tlb.h>
54 : #include <asm/mmu_context.h>
55 :
56 : #define CREATE_TRACE_POINTS
57 : #include <trace/events/mmap.h>
58 :
59 : #include "internal.h"
60 :
61 : #ifndef arch_mmap_check
62 : #define arch_mmap_check(addr, len, flags) (0)
63 : #endif
64 :
65 : #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 : const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 : const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 : int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 : #endif
70 : #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 : const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 : const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 : int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 : #endif
75 :
76 : static bool ignore_rlimit_data;
77 : core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 :
79 : static void unmap_region(struct mm_struct *mm,
80 : struct vm_area_struct *vma, struct vm_area_struct *prev,
81 : unsigned long start, unsigned long end);
82 :
83 : /* description of effects of mapping type and prot in current implementation.
84 : * this is due to the limited x86 page protection hardware. The expected
85 : * behavior is in parens:
86 : *
87 : * map_type prot
88 : * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
89 : * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 : * w: (no) no w: (no) no w: (yes) yes w: (no) no
91 : * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 : *
93 : * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 : * w: (no) no w: (no) no w: (copy) copy w: (no) no
95 : * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
96 : */
97 : pgprot_t protection_map[16] __ro_after_init = {
98 : __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 : __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 : };
101 :
102 : #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 : static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 : {
105 : return prot;
106 : }
107 : #endif
108 :
109 68999 : pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 : {
111 68999 : pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112 : (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113 : pgprot_val(arch_vm_get_page_prot(vm_flags)));
114 :
115 2508 : return arch_filter_pgprot(ret);
116 : }
117 : EXPORT_SYMBOL(vm_get_page_prot);
118 :
119 36848 : static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 : {
121 36848 : return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 : }
123 :
124 : /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 36706 : void vma_set_page_prot(struct vm_area_struct *vma)
126 : {
127 36706 : unsigned long vm_flags = vma->vm_flags;
128 36706 : pgprot_t vm_page_prot;
129 :
130 36706 : vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131 36706 : if (vma_wants_writenotify(vma, vm_page_prot)) {
132 136 : vm_flags &= ~VM_SHARED;
133 136 : vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134 : }
135 : /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136 36706 : WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 36706 : }
138 :
139 : /*
140 : * Requires inode->i_mapping->i_mmap_rwsem
141 : */
142 93402 : static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143 : struct file *file, struct address_space *mapping)
144 : {
145 93402 : if (vma->vm_flags & VM_DENYWRITE)
146 23440 : allow_write_access(file);
147 93402 : if (vma->vm_flags & VM_SHARED)
148 259 : mapping_unmap_writable(mapping);
149 :
150 93402 : flush_dcache_mmap_lock(mapping);
151 93402 : vma_interval_tree_remove(vma, &mapping->i_mmap);
152 93412 : flush_dcache_mmap_unlock(mapping);
153 93412 : }
154 :
155 : /*
156 : * Unlink a file-based vm structure from its interval tree, to hide
157 : * vma from rmap and vmtruncate before freeing its page tables.
158 : */
159 114271 : void unlink_file_vma(struct vm_area_struct *vma)
160 : {
161 114271 : struct file *file = vma->vm_file;
162 :
163 114271 : if (file) {
164 93409 : struct address_space *mapping = file->f_mapping;
165 93409 : i_mmap_lock_write(mapping);
166 93404 : __remove_shared_vm_struct(vma, file, mapping);
167 93412 : i_mmap_unlock_write(mapping);
168 : }
169 114277 : }
170 :
171 : /*
172 : * Close a vm structure and free it, returning the next.
173 : */
174 114271 : static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 : {
176 114271 : struct vm_area_struct *next = vma->vm_next;
177 :
178 114271 : might_sleep();
179 114272 : if (vma->vm_ops && vma->vm_ops->close)
180 4316 : vma->vm_ops->close(vma);
181 114274 : if (vma->vm_file)
182 93412 : fput(vma->vm_file);
183 114276 : mpol_put(vma_policy(vma));
184 114276 : vm_area_free(vma);
185 114248 : return next;
186 : }
187 :
188 : static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189 : struct list_head *uf);
190 6190 : SYSCALL_DEFINE1(brk, unsigned long, brk)
191 : {
192 3095 : unsigned long newbrk, oldbrk, origbrk;
193 3095 : struct mm_struct *mm = current->mm;
194 3095 : struct vm_area_struct *next;
195 3095 : unsigned long min_brk;
196 3095 : bool populate;
197 3095 : bool downgraded = false;
198 3095 : LIST_HEAD(uf);
199 :
200 3095 : if (mmap_write_lock_killable(mm))
201 : return -EINTR;
202 :
203 3095 : origbrk = mm->brk;
204 :
205 : #ifdef CONFIG_COMPAT_BRK
206 : /*
207 : * CONFIG_COMPAT_BRK can still be overridden by setting
208 : * randomize_va_space to 2, which will still cause mm->start_brk
209 : * to be arbitrarily shifted
210 : */
211 : if (current->brk_randomized)
212 : min_brk = mm->start_brk;
213 : else
214 : min_brk = mm->end_data;
215 : #else
216 3095 : min_brk = mm->start_brk;
217 : #endif
218 3095 : if (brk < min_brk)
219 1860 : goto out;
220 :
221 : /*
222 : * Check against rlimit here. If this check is done later after the test
223 : * of oldbrk with newbrk then it can escape the test and let the data
224 : * segment grow beyond its set limit the in case where the limit is
225 : * not page aligned -Ram Gupta
226 : */
227 1235 : if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 : mm->end_data, mm->start_data))
229 0 : goto out;
230 :
231 1235 : newbrk = PAGE_ALIGN(brk);
232 1235 : oldbrk = PAGE_ALIGN(mm->brk);
233 1235 : if (oldbrk == newbrk) {
234 2 : mm->brk = brk;
235 2 : goto success;
236 : }
237 :
238 : /*
239 : * Always allow shrinking brk.
240 : * __do_munmap() may downgrade mmap_lock to read.
241 : */
242 1233 : if (brk <= mm->brk) {
243 50 : int ret;
244 :
245 : /*
246 : * mm->brk must to be protected by write mmap_lock so update it
247 : * before downgrading mmap_lock. When __do_munmap() fails,
248 : * mm->brk will be restored from origbrk.
249 : */
250 50 : mm->brk = brk;
251 50 : ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
252 50 : if (ret < 0) {
253 0 : mm->brk = origbrk;
254 0 : goto out;
255 50 : } else if (ret == 1) {
256 50 : downgraded = true;
257 : }
258 50 : goto success;
259 : }
260 :
261 : /* Check against existing mmap mappings. */
262 1183 : next = find_vma(mm, oldbrk);
263 1187 : if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
264 0 : goto out;
265 :
266 : /* Ok, looks good - let it rip. */
267 1183 : if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
268 0 : goto out;
269 1183 : mm->brk = brk;
270 :
271 1235 : success:
272 1235 : populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
273 1235 : if (downgraded)
274 50 : mmap_read_unlock(mm);
275 : else
276 1185 : mmap_write_unlock(mm);
277 1235 : userfaultfd_unmap_complete(mm, &uf);
278 1235 : if (populate)
279 0 : mm_populate(oldbrk, newbrk - oldbrk);
280 1235 : return brk;
281 :
282 1860 : out:
283 1860 : mmap_write_unlock(mm);
284 1860 : return origbrk;
285 : }
286 :
287 461024 : static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
288 : {
289 461024 : unsigned long gap, prev_end;
290 :
291 : /*
292 : * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
293 : * allow two stack_guard_gaps between them here, and when choosing
294 : * an unmapped area; whereas when expanding we only require one.
295 : * That's a little inconsistent, but keeps the code here simpler.
296 : */
297 461024 : gap = vm_start_gap(vma);
298 461024 : if (vma->vm_prev) {
299 451341 : prev_end = vm_end_gap(vma->vm_prev);
300 451341 : if (gap > prev_end)
301 105273 : gap -= prev_end;
302 : else
303 : gap = 0;
304 : }
305 461024 : return gap;
306 : }
307 :
308 : #ifdef CONFIG_DEBUG_VM_RB
309 : static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
310 : {
311 : unsigned long max = vma_compute_gap(vma), subtree_gap;
312 : if (vma->vm_rb.rb_left) {
313 : subtree_gap = rb_entry(vma->vm_rb.rb_left,
314 : struct vm_area_struct, vm_rb)->rb_subtree_gap;
315 : if (subtree_gap > max)
316 : max = subtree_gap;
317 : }
318 : if (vma->vm_rb.rb_right) {
319 : subtree_gap = rb_entry(vma->vm_rb.rb_right,
320 : struct vm_area_struct, vm_rb)->rb_subtree_gap;
321 : if (subtree_gap > max)
322 : max = subtree_gap;
323 : }
324 : return max;
325 : }
326 :
327 : static int browse_rb(struct mm_struct *mm)
328 : {
329 : struct rb_root *root = &mm->mm_rb;
330 : int i = 0, j, bug = 0;
331 : struct rb_node *nd, *pn = NULL;
332 : unsigned long prev = 0, pend = 0;
333 :
334 : for (nd = rb_first(root); nd; nd = rb_next(nd)) {
335 : struct vm_area_struct *vma;
336 : vma = rb_entry(nd, struct vm_area_struct, vm_rb);
337 : if (vma->vm_start < prev) {
338 : pr_emerg("vm_start %lx < prev %lx\n",
339 : vma->vm_start, prev);
340 : bug = 1;
341 : }
342 : if (vma->vm_start < pend) {
343 : pr_emerg("vm_start %lx < pend %lx\n",
344 : vma->vm_start, pend);
345 : bug = 1;
346 : }
347 : if (vma->vm_start > vma->vm_end) {
348 : pr_emerg("vm_start %lx > vm_end %lx\n",
349 : vma->vm_start, vma->vm_end);
350 : bug = 1;
351 : }
352 : spin_lock(&mm->page_table_lock);
353 : if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
354 : pr_emerg("free gap %lx, correct %lx\n",
355 : vma->rb_subtree_gap,
356 : vma_compute_subtree_gap(vma));
357 : bug = 1;
358 : }
359 : spin_unlock(&mm->page_table_lock);
360 : i++;
361 : pn = nd;
362 : prev = vma->vm_start;
363 : pend = vma->vm_end;
364 : }
365 : j = 0;
366 : for (nd = pn; nd; nd = rb_prev(nd))
367 : j++;
368 : if (i != j) {
369 : pr_emerg("backwards %d, forwards %d\n", j, i);
370 : bug = 1;
371 : }
372 : return bug ? -1 : i;
373 : }
374 :
375 : static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
376 : {
377 : struct rb_node *nd;
378 :
379 : for (nd = rb_first(root); nd; nd = rb_next(nd)) {
380 : struct vm_area_struct *vma;
381 : vma = rb_entry(nd, struct vm_area_struct, vm_rb);
382 : VM_BUG_ON_VMA(vma != ignore &&
383 : vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
384 : vma);
385 : }
386 : }
387 :
388 : static void validate_mm(struct mm_struct *mm)
389 : {
390 : int bug = 0;
391 : int i = 0;
392 : unsigned long highest_address = 0;
393 : struct vm_area_struct *vma = mm->mmap;
394 :
395 : while (vma) {
396 : struct anon_vma *anon_vma = vma->anon_vma;
397 : struct anon_vma_chain *avc;
398 :
399 : if (anon_vma) {
400 : anon_vma_lock_read(anon_vma);
401 : list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
402 : anon_vma_interval_tree_verify(avc);
403 : anon_vma_unlock_read(anon_vma);
404 : }
405 :
406 : highest_address = vm_end_gap(vma);
407 : vma = vma->vm_next;
408 : i++;
409 : }
410 : if (i != mm->map_count) {
411 : pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
412 : bug = 1;
413 : }
414 : if (highest_address != mm->highest_vm_end) {
415 : pr_emerg("mm->highest_vm_end %lx, found %lx\n",
416 : mm->highest_vm_end, highest_address);
417 : bug = 1;
418 : }
419 : i = browse_rb(mm);
420 : if (i != mm->map_count) {
421 : if (i != -1)
422 : pr_emerg("map_count %d rb %d\n", mm->map_count, i);
423 : bug = 1;
424 : }
425 : VM_BUG_ON_MM(bug, mm);
426 : }
427 : #else
428 : #define validate_mm_rb(root, ignore) do { } while (0)
429 : #define validate_mm(mm) do { } while (0)
430 : #endif
431 :
432 934302 : RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
433 : struct vm_area_struct, vm_rb,
434 : unsigned long, rb_subtree_gap, vma_compute_gap)
435 :
436 : /*
437 : * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
438 : * vma->vm_prev->vm_end values changed, without modifying the vma's position
439 : * in the rbtree.
440 : */
441 193282 : static void vma_gap_update(struct vm_area_struct *vma)
442 : {
443 : /*
444 : * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
445 : * a callback function that does exactly what we want.
446 : */
447 193282 : vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
448 75333 : }
449 :
450 116996 : static inline void vma_rb_insert(struct vm_area_struct *vma,
451 : struct rb_root *root)
452 : {
453 : /* All rb_subtree_gap values must be consistent prior to insertion */
454 116996 : validate_mm_rb(root, NULL);
455 :
456 233991 : rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
457 : }
458 :
459 16940 : static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
460 : {
461 : /*
462 : * Note rb_erase_augmented is a fairly large inline function,
463 : * so make sure we instantiate it only once with our desired
464 : * augmented rbtree callbacks.
465 : */
466 16940 : rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
467 16940 : }
468 :
469 16940 : static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
470 : struct rb_root *root,
471 : struct vm_area_struct *ignore)
472 : {
473 : /*
474 : * All rb_subtree_gap values must be consistent prior to erase,
475 : * with the possible exception of
476 : *
477 : * a. the "next" vma being erased if next->vm_start was reduced in
478 : * __vma_adjust() -> __vma_unlink()
479 : * b. the vma being erased in detach_vmas_to_be_unmapped() ->
480 : * vma_rb_erase()
481 : */
482 16940 : validate_mm_rb(root, ignore);
483 :
484 16940 : __vma_rb_erase(vma, root);
485 : }
486 :
487 16940 : static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
488 : struct rb_root *root)
489 : {
490 33880 : vma_rb_erase_ignore(vma, root, vma);
491 : }
492 :
493 : /*
494 : * vma has some anon_vma assigned, and is already inserted on that
495 : * anon_vma's interval trees.
496 : *
497 : * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
498 : * vma must be removed from the anon_vma's interval trees using
499 : * anon_vma_interval_tree_pre_update_vma().
500 : *
501 : * After the update, the vma will be reinserted using
502 : * anon_vma_interval_tree_post_update_vma().
503 : *
504 : * The entire update must be protected by exclusive mmap_lock and by
505 : * the root anon_vma's mutex.
506 : */
507 : static inline void
508 10363 : anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
509 : {
510 10363 : struct anon_vma_chain *avc;
511 :
512 20702 : list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
513 10339 : anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
514 10363 : }
515 :
516 : static inline void
517 10363 : anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
518 : {
519 10363 : struct anon_vma_chain *avc;
520 :
521 20702 : list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
522 10339 : anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
523 10363 : }
524 :
525 74395 : static int find_vma_links(struct mm_struct *mm, unsigned long addr,
526 : unsigned long end, struct vm_area_struct **pprev,
527 : struct rb_node ***rb_link, struct rb_node **rb_parent)
528 : {
529 74395 : struct rb_node **__rb_link, *__rb_parent, *rb_prev;
530 :
531 74395 : __rb_link = &mm->mm_rb.rb_node;
532 74395 : rb_prev = __rb_parent = NULL;
533 :
534 509255 : while (*__rb_link) {
535 448192 : struct vm_area_struct *vma_tmp;
536 :
537 448192 : __rb_parent = *__rb_link;
538 448192 : vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
539 :
540 448192 : if (vma_tmp->vm_end > addr) {
541 : /* Fail if an existing vma overlaps the area */
542 290183 : if (vma_tmp->vm_start < end)
543 : return -ENOMEM;
544 276851 : __rb_link = &__rb_parent->rb_left;
545 : } else {
546 158009 : rb_prev = __rb_parent;
547 158009 : __rb_link = &__rb_parent->rb_right;
548 : }
549 : }
550 :
551 61063 : *pprev = NULL;
552 61063 : if (rb_prev)
553 57617 : *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
554 31266 : *rb_link = __rb_link;
555 31266 : *rb_parent = __rb_parent;
556 31266 : return 0;
557 : }
558 :
559 : /*
560 : * vma_next() - Get the next VMA.
561 : * @mm: The mm_struct.
562 : * @vma: The current vma.
563 : *
564 : * If @vma is NULL, return the first vma in the mm.
565 : *
566 : * Returns: The next VMA after @vma.
567 : */
568 72785 : static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
569 : struct vm_area_struct *vma)
570 : {
571 72785 : if (!vma)
572 938 : return mm->mmap;
573 :
574 71847 : return vma->vm_next;
575 : }
576 :
577 : /*
578 : * munmap_vma_range() - munmap VMAs that overlap a range.
579 : * @mm: The mm struct
580 : * @start: The start of the range.
581 : * @len: The length of the range.
582 : * @pprev: pointer to the pointer that will be set to previous vm_area_struct
583 : * @rb_link: the rb_node
584 : * @rb_parent: the parent rb_node
585 : *
586 : * Find all the vm_area_struct that overlap from @start to
587 : * @end and munmap them. Set @pprev to the previous vm_area_struct.
588 : *
589 : * Returns: -ENOMEM on munmap failure or 0 on success.
590 : */
591 : static inline int
592 31268 : munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
593 : struct vm_area_struct **pprev, struct rb_node ***link,
594 : struct rb_node **parent, struct list_head *uf)
595 : {
596 :
597 75864 : while (find_vma_links(mm, start, start + len, pprev, link, parent))
598 13330 : if (do_munmap(mm, start, len, uf))
599 : return -ENOMEM;
600 :
601 : return 0;
602 : }
603 0 : static unsigned long count_vma_pages_range(struct mm_struct *mm,
604 : unsigned long addr, unsigned long end)
605 : {
606 0 : unsigned long nr_pages = 0;
607 0 : struct vm_area_struct *vma;
608 :
609 : /* Find first overlaping mapping */
610 0 : vma = find_vma_intersection(mm, addr, end);
611 0 : if (!vma)
612 : return 0;
613 :
614 0 : nr_pages = (min(end, vma->vm_end) -
615 0 : max(addr, vma->vm_start)) >> PAGE_SHIFT;
616 :
617 : /* Iterate over the rest of the overlaps */
618 0 : for (vma = vma->vm_next; vma; vma = vma->vm_next) {
619 0 : unsigned long overlap_len;
620 :
621 0 : if (vma->vm_start > end)
622 : break;
623 :
624 0 : overlap_len = min(end, vma->vm_end) - vma->vm_start;
625 0 : nr_pages += overlap_len >> PAGE_SHIFT;
626 : }
627 :
628 : return nr_pages;
629 : }
630 :
631 116995 : void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
632 : struct rb_node **rb_link, struct rb_node *rb_parent)
633 : {
634 : /* Update tracking information for the gap following the new vma. */
635 116995 : if (vma->vm_next)
636 54118 : vma_gap_update(vma->vm_next);
637 : else
638 62877 : mm->highest_vm_end = vm_end_gap(vma);
639 :
640 : /*
641 : * vma->vm_prev wasn't known when we followed the rbtree to find the
642 : * correct insertion point for that vma. As a result, we could not
643 : * update the vma vm_rb parents rb_subtree_gap values on the way down.
644 : * So, we first insert the vma with a zero rb_subtree_gap value
645 : * (to be consistent with what we did on the way down), and then
646 : * immediately update the gap to the correct value. Finally we
647 : * rebalance the rbtree after all augmented values have been set.
648 : */
649 116995 : rb_link_node(&vma->vm_rb, rb_parent, rb_link);
650 116995 : vma->rb_subtree_gap = 0;
651 116995 : vma_gap_update(vma);
652 116996 : vma_rb_insert(vma, &mm->mm_rb);
653 116995 : }
654 :
655 57397 : static void __vma_link_file(struct vm_area_struct *vma)
656 : {
657 57397 : struct file *file;
658 :
659 57397 : file = vma->vm_file;
660 57397 : if (file) {
661 47883 : struct address_space *mapping = file->f_mapping;
662 :
663 47883 : if (vma->vm_flags & VM_DENYWRITE)
664 11240 : put_write_access(file_inode(file));
665 47883 : if (vma->vm_flags & VM_SHARED)
666 142 : mapping_allow_writable(mapping);
667 :
668 47883 : flush_dcache_mmap_lock(mapping);
669 47883 : vma_interval_tree_insert(vma, &mapping->i_mmap);
670 47883 : flush_dcache_mmap_unlock(mapping);
671 : }
672 57397 : }
673 :
674 : static void
675 57564 : __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
676 : struct vm_area_struct *prev, struct rb_node **rb_link,
677 : struct rb_node *rb_parent)
678 : {
679 57564 : __vma_link_list(mm, vma, prev);
680 57564 : __vma_link_rb(mm, vma, rb_link, rb_parent);
681 57564 : }
682 :
683 32151 : static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
684 : struct vm_area_struct *prev, struct rb_node **rb_link,
685 : struct rb_node *rb_parent)
686 : {
687 32151 : struct address_space *mapping = NULL;
688 :
689 32151 : if (vma->vm_file) {
690 22637 : mapping = vma->vm_file->f_mapping;
691 22637 : i_mmap_lock_write(mapping);
692 : }
693 :
694 32151 : __vma_link(mm, vma, prev, rb_link, rb_parent);
695 32151 : __vma_link_file(vma);
696 :
697 32151 : if (mapping)
698 22637 : i_mmap_unlock_write(mapping);
699 :
700 32151 : mm->map_count++;
701 32151 : validate_mm(mm);
702 32151 : }
703 :
704 : /*
705 : * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
706 : * mm's list and rbtree. It has already been inserted into the interval tree.
707 : */
708 25413 : static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
709 : {
710 25413 : struct vm_area_struct *prev;
711 25413 : struct rb_node **rb_link, *rb_parent;
712 :
713 50826 : if (find_vma_links(mm, vma->vm_start, vma->vm_end,
714 : &prev, &rb_link, &rb_parent))
715 0 : BUG();
716 25413 : __vma_link(mm, vma, prev, rb_link, rb_parent);
717 25413 : mm->map_count++;
718 25413 : }
719 :
720 0 : static __always_inline void __vma_unlink(struct mm_struct *mm,
721 : struct vm_area_struct *vma,
722 : struct vm_area_struct *ignore)
723 : {
724 0 : vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
725 0 : __vma_unlink_list(mm, vma);
726 : /* Kill the cache */
727 0 : vmacache_invalidate(mm);
728 : }
729 :
730 : /*
731 : * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
732 : * is already present in an i_mmap tree without adjusting the tree.
733 : * The following helper function should be used when such adjustments
734 : * are necessary. The "insert" vma (if any) is to be inserted
735 : * before we drop the necessary locks.
736 : */
737 30812 : int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
738 : unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
739 : struct vm_area_struct *expand)
740 : {
741 30812 : struct mm_struct *mm = vma->vm_mm;
742 30812 : struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
743 30812 : struct address_space *mapping = NULL;
744 30812 : struct rb_root_cached *root = NULL;
745 30812 : struct anon_vma *anon_vma = NULL;
746 30812 : struct file *file = vma->vm_file;
747 30812 : bool start_changed = false, end_changed = false;
748 30812 : long adjust_next = 0;
749 30812 : int remove_next = 0;
750 :
751 30812 : if (next && !insert) {
752 3523 : struct vm_area_struct *exporter = NULL, *importer = NULL;
753 :
754 3523 : if (end >= next->vm_end) {
755 : /*
756 : * vma expands, overlapping all the next, and
757 : * perhaps the one after too (mprotect case 6).
758 : * The only other cases that gets here are
759 : * case 1, case 7 and case 8.
760 : */
761 0 : if (next == expand) {
762 : /*
763 : * The only case where we don't expand "vma"
764 : * and we expand "next" instead is case 8.
765 : */
766 0 : VM_WARN_ON(end != next->vm_end);
767 : /*
768 : * remove_next == 3 means we're
769 : * removing "vma" and that to do so we
770 : * swapped "vma" and "next".
771 : */
772 0 : remove_next = 3;
773 0 : VM_WARN_ON(file != next->vm_file);
774 0 : swap(vma, next);
775 : } else {
776 0 : VM_WARN_ON(expand != vma);
777 : /*
778 : * case 1, 6, 7, remove_next == 2 is case 6,
779 : * remove_next == 1 is case 1 or 7.
780 : */
781 0 : remove_next = 1 + (end > next->vm_end);
782 0 : VM_WARN_ON(remove_next == 2 &&
783 : end != next->vm_next->vm_end);
784 : /* trim end to next, for case 6 first pass */
785 : end = next->vm_end;
786 : }
787 :
788 0 : exporter = next;
789 0 : importer = vma;
790 :
791 : /*
792 : * If next doesn't have anon_vma, import from vma after
793 : * next, if the vma overlaps with it.
794 : */
795 0 : if (remove_next == 2 && !next->anon_vma)
796 0 : exporter = next->vm_next;
797 :
798 3523 : } else if (end > next->vm_start) {
799 : /*
800 : * vma expands, overlapping part of the next:
801 : * mprotect case 5 shifting the boundary up.
802 : */
803 21 : adjust_next = (end - next->vm_start);
804 21 : exporter = next;
805 21 : importer = vma;
806 21 : VM_WARN_ON(expand != importer);
807 3502 : } else if (end < vma->vm_end) {
808 : /*
809 : * vma shrinks, and !insert tells it's not
810 : * split_vma inserting another: so it must be
811 : * mprotect case 4 shifting the boundary down.
812 : */
813 3 : adjust_next = -(vma->vm_end - end);
814 3 : exporter = vma;
815 3 : importer = next;
816 3 : VM_WARN_ON(expand != importer);
817 : }
818 :
819 : /*
820 : * Easily overlooked: when mprotect shifts the boundary,
821 : * make sure the expanding vma has anon_vma set if the
822 : * shrinking vma had, to cover any anon pages imported.
823 : */
824 3523 : if (exporter && exporter->anon_vma && !importer->anon_vma) {
825 0 : int error;
826 :
827 0 : importer->anon_vma = exporter->anon_vma;
828 0 : error = anon_vma_clone(importer, exporter);
829 0 : if (error)
830 : return error;
831 : }
832 : }
833 30812 : again:
834 30812 : vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
835 :
836 30812 : if (file) {
837 27360 : mapping = file->f_mapping;
838 27360 : root = &mapping->i_mmap;
839 27360 : uprobe_munmap(vma, vma->vm_start, vma->vm_end);
840 :
841 27360 : if (adjust_next)
842 27360 : uprobe_munmap(next, next->vm_start, next->vm_end);
843 :
844 27360 : i_mmap_lock_write(mapping);
845 27360 : if (insert) {
846 : /*
847 : * Put into interval tree now, so instantiated pages
848 : * are visible to arm/parisc __flush_dcache_page
849 : * throughout; but we cannot insert into address
850 : * space until vma start or end is updated.
851 : */
852 25246 : __vma_link_file(insert);
853 : }
854 : }
855 :
856 30812 : anon_vma = vma->anon_vma;
857 30812 : if (!anon_vma && adjust_next)
858 3 : anon_vma = next->anon_vma;
859 30812 : if (anon_vma) {
860 18770 : VM_WARN_ON(adjust_next && next->anon_vma &&
861 : anon_vma != next->anon_vma);
862 9385 : anon_vma_lock_write(anon_vma);
863 9385 : anon_vma_interval_tree_pre_update_vma(vma);
864 9385 : if (adjust_next)
865 24 : anon_vma_interval_tree_pre_update_vma(next);
866 : }
867 :
868 30812 : if (file) {
869 27360 : flush_dcache_mmap_lock(mapping);
870 27360 : vma_interval_tree_remove(vma, root);
871 27360 : if (adjust_next)
872 0 : vma_interval_tree_remove(next, root);
873 : }
874 :
875 30812 : if (start != vma->vm_start) {
876 15445 : vma->vm_start = start;
877 15445 : start_changed = true;
878 : }
879 30812 : if (end != vma->vm_end) {
880 15367 : vma->vm_end = end;
881 15367 : end_changed = true;
882 : }
883 30812 : vma->vm_pgoff = pgoff;
884 30812 : if (adjust_next) {
885 24 : next->vm_start += adjust_next;
886 24 : next->vm_pgoff += adjust_next >> PAGE_SHIFT;
887 : }
888 :
889 30812 : if (file) {
890 27360 : if (adjust_next)
891 0 : vma_interval_tree_insert(next, root);
892 27360 : vma_interval_tree_insert(vma, root);
893 27360 : flush_dcache_mmap_unlock(mapping);
894 : }
895 :
896 30812 : if (remove_next) {
897 : /*
898 : * vma_merge has merged next into vma, and needs
899 : * us to remove next before dropping the locks.
900 : */
901 0 : if (remove_next != 3)
902 0 : __vma_unlink(mm, next, next);
903 : else
904 : /*
905 : * vma is not before next if they've been
906 : * swapped.
907 : *
908 : * pre-swap() next->vm_start was reduced so
909 : * tell validate_mm_rb to ignore pre-swap()
910 : * "next" (which is stored in post-swap()
911 : * "vma").
912 : */
913 0 : __vma_unlink(mm, next, vma);
914 0 : if (file)
915 0 : __remove_shared_vm_struct(next, file, mapping);
916 30812 : } else if (insert) {
917 : /*
918 : * split_vma has split insert from vma, and needs
919 : * us to insert it before dropping the locks
920 : * (it may either follow vma or precede it).
921 : */
922 25413 : __insert_vm_struct(mm, insert);
923 : } else {
924 5399 : if (start_changed)
925 4182 : vma_gap_update(vma);
926 5399 : if (end_changed) {
927 1217 : if (!next)
928 938 : mm->highest_vm_end = vm_end_gap(vma);
929 279 : else if (!adjust_next)
930 255 : vma_gap_update(next);
931 : }
932 : }
933 :
934 30812 : if (anon_vma) {
935 9385 : anon_vma_interval_tree_post_update_vma(vma);
936 9385 : if (adjust_next)
937 24 : anon_vma_interval_tree_post_update_vma(next);
938 9385 : anon_vma_unlock_write(anon_vma);
939 : }
940 :
941 30812 : if (file) {
942 27360 : i_mmap_unlock_write(mapping);
943 27360 : uprobe_mmap(vma);
944 :
945 27360 : if (adjust_next)
946 30812 : uprobe_mmap(next);
947 : }
948 :
949 30812 : if (remove_next) {
950 0 : if (file) {
951 0 : uprobe_munmap(next, next->vm_start, next->vm_end);
952 0 : fput(file);
953 : }
954 0 : if (next->anon_vma)
955 0 : anon_vma_merge(vma, next);
956 0 : mm->map_count--;
957 0 : mpol_put(vma_policy(next));
958 0 : vm_area_free(next);
959 : /*
960 : * In mprotect's case 6 (see comments on vma_merge),
961 : * we must remove another next too. It would clutter
962 : * up the code too much to do both in one go.
963 : */
964 0 : if (remove_next != 3) {
965 : /*
966 : * If "next" was removed and vma->vm_end was
967 : * expanded (up) over it, in turn
968 : * "next->vm_prev->vm_end" changed and the
969 : * "vma->vm_next" gap must be updated.
970 : */
971 0 : next = vma->vm_next;
972 : } else {
973 : /*
974 : * For the scope of the comment "next" and
975 : * "vma" considered pre-swap(): if "vma" was
976 : * removed, next->vm_start was expanded (down)
977 : * over it and the "next" gap must be updated.
978 : * Because of the swap() the post-swap() "vma"
979 : * actually points to pre-swap() "next"
980 : * (post-swap() "next" as opposed is now a
981 : * dangling pointer).
982 : */
983 : next = vma;
984 : }
985 0 : if (remove_next == 2) {
986 0 : remove_next = 1;
987 0 : end = next->vm_end;
988 0 : goto again;
989 : }
990 0 : else if (next)
991 0 : vma_gap_update(next);
992 : else {
993 : /*
994 : * If remove_next == 2 we obviously can't
995 : * reach this path.
996 : *
997 : * If remove_next == 3 we can't reach this
998 : * path because pre-swap() next is always not
999 : * NULL. pre-swap() "next" is not being
1000 : * removed and its next->vm_end is not altered
1001 : * (and furthermore "end" already matches
1002 : * next->vm_end in remove_next == 3).
1003 : *
1004 : * We reach this only in the remove_next == 1
1005 : * case if the "next" vma that was removed was
1006 : * the highest vma of the mm. However in such
1007 : * case next->vm_end == "end" and the extended
1008 : * "vma" has vma->vm_end == next->vm_end so
1009 : * mm->highest_vm_end doesn't need any update
1010 : * in remove_next == 1 case.
1011 : */
1012 0 : VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1013 : }
1014 : }
1015 30812 : if (insert && file)
1016 30812 : uprobe_mmap(insert);
1017 :
1018 30812 : validate_mm(mm);
1019 :
1020 30812 : return 0;
1021 : }
1022 :
1023 : /*
1024 : * If the vma has a ->close operation then the driver probably needs to release
1025 : * per-vma resources, so we don't attempt to merge those.
1026 : */
1027 46882 : static inline int is_mergeable_vma(struct vm_area_struct *vma,
1028 : struct file *file, unsigned long vm_flags,
1029 : struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1030 : {
1031 : /*
1032 : * VM_SOFTDIRTY should not prevent from VMA merging, if we
1033 : * match the flags but dirty bit -- the caller should mark
1034 : * merged VMA as dirty. If dirty bit won't be excluded from
1035 : * comparison, we increase pressure on the memory system forcing
1036 : * the kernel to generate new VMAs when old one could be
1037 : * extended instead.
1038 : */
1039 46882 : if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1040 : return 0;
1041 8388 : if (vma->vm_file != file)
1042 : return 0;
1043 3538 : if (vma->vm_ops && vma->vm_ops->close)
1044 : return 0;
1045 3538 : if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1046 : return 0;
1047 3538 : return 1;
1048 : }
1049 :
1050 3538 : static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1051 : struct anon_vma *anon_vma2,
1052 : struct vm_area_struct *vma)
1053 : {
1054 : /*
1055 : * The list_is_singular() test is to avoid merging VMA cloned from
1056 : * parents. This can improve scalability caused by anon_vma lock.
1057 : */
1058 3538 : if ((!anon_vma1 || !anon_vma2) && (!vma ||
1059 3538 : list_is_singular(&vma->anon_vma_chain)))
1060 : return 1;
1061 2133 : return anon_vma1 == anon_vma2;
1062 : }
1063 :
1064 : /*
1065 : * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1066 : * in front of (at a lower virtual address and file offset than) the vma.
1067 : *
1068 : * We cannot merge two vmas if they have differently assigned (non-NULL)
1069 : * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1070 : *
1071 : * We don't check here for the merged mmap wrapping around the end of pagecache
1072 : * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1073 : * wrap, nor mmaps which cover the final page at index -1UL.
1074 : */
1075 : static int
1076 21253 : can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1077 : struct anon_vma *anon_vma, struct file *file,
1078 : pgoff_t vm_pgoff,
1079 : struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1080 : {
1081 27439 : if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1082 3248 : is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1083 3247 : if (vma->vm_pgoff == vm_pgoff)
1084 3247 : return 1;
1085 : }
1086 : return 0;
1087 : }
1088 :
1089 : /*
1090 : * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1091 : * beyond (at a higher virtual address and file offset than) the vma.
1092 : *
1093 : * We cannot merge two vmas if they have differently assigned (non-NULL)
1094 : * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1095 : */
1096 : static int
1097 25629 : can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1098 : struct anon_vma *anon_vma, struct file *file,
1099 : pgoff_t vm_pgoff,
1100 : struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1101 : {
1102 27831 : if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1103 290 : is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1104 285 : pgoff_t vm_pglen;
1105 285 : vm_pglen = vma_pages(vma);
1106 285 : if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1107 276 : return 1;
1108 : }
1109 : return 0;
1110 : }
1111 :
1112 : /*
1113 : * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1114 : * whether that can be merged with its predecessor or its successor.
1115 : * Or both (it neatly fills a hole).
1116 : *
1117 : * In most cases - when called for mmap, brk or mremap - [addr,end) is
1118 : * certain not to be mapped by the time vma_merge is called; but when
1119 : * called for mprotect, it is certain to be already mapped (either at
1120 : * an offset within prev, or at the start of next), and the flags of
1121 : * this area are about to be changed to vm_flags - and the no-change
1122 : * case has already been eliminated.
1123 : *
1124 : * The following mprotect cases have to be considered, where AAAA is
1125 : * the area passed down from mprotect_fixup, never extending beyond one
1126 : * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1127 : *
1128 : * AAAA AAAA AAAA
1129 : * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1130 : * cannot merge might become might become
1131 : * PPNNNNNNNNNN PPPPPPPPPPNN
1132 : * mmap, brk or case 4 below case 5 below
1133 : * mremap move:
1134 : * AAAA AAAA
1135 : * PPPP NNNN PPPPNNNNXXXX
1136 : * might become might become
1137 : * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1138 : * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1139 : * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1140 : *
1141 : * It is important for case 8 that the vma NNNN overlapping the
1142 : * region AAAA is never going to extended over XXXX. Instead XXXX must
1143 : * be extended in region AAAA and NNNN must be removed. This way in
1144 : * all cases where vma_merge succeeds, the moment vma_adjust drops the
1145 : * rmap_locks, the properties of the merged vma will be already
1146 : * correct for the whole merged range. Some of those properties like
1147 : * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1148 : * be correct for the whole merged range immediately after the
1149 : * rmap_locks are released. Otherwise if XXXX would be removed and
1150 : * NNNN would be extended over the XXXX range, remove_migration_ptes
1151 : * or other rmap walkers (if working on addresses beyond the "end"
1152 : * parameter) may establish ptes with the wrong permissions of NNNN
1153 : * instead of the right permissions of XXXX.
1154 : */
1155 39229 : struct vm_area_struct *vma_merge(struct mm_struct *mm,
1156 : struct vm_area_struct *prev, unsigned long addr,
1157 : unsigned long end, unsigned long vm_flags,
1158 : struct anon_vma *anon_vma, struct file *file,
1159 : pgoff_t pgoff, struct mempolicy *policy,
1160 : struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1161 : {
1162 39229 : pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1163 39229 : struct vm_area_struct *area, *next;
1164 39229 : int err;
1165 :
1166 : /*
1167 : * We later require that vma->vm_flags == vm_flags,
1168 : * so this tests vma->vm_flags & VM_SPECIAL, too.
1169 : */
1170 39229 : if (vm_flags & VM_SPECIAL)
1171 : return NULL;
1172 :
1173 39229 : next = vma_next(mm, prev);
1174 39229 : area = next;
1175 39229 : if (area && area->vm_end == end) /* cases 6, 7, 8 */
1176 1 : next = next->vm_next;
1177 :
1178 : /* verify some invariant that must be enforced by the caller */
1179 78455 : VM_WARN_ON(prev && addr <= prev->vm_start);
1180 78457 : VM_WARN_ON(area && end > area->vm_end);
1181 39229 : VM_WARN_ON(addr >= end);
1182 :
1183 : /*
1184 : * Can it merge with the predecessor?
1185 : */
1186 39229 : if (prev && prev->vm_end == addr &&
1187 51255 : mpol_equal(vma_policy(prev), policy) &&
1188 25628 : can_vma_merge_after(prev, vm_flags,
1189 : anon_vma, file, pgoff,
1190 : vm_userfaultfd_ctx)) {
1191 : /*
1192 : * OK, it can. Can we now merge in the successor as well?
1193 : */
1194 276 : if (next && end == next->vm_start &&
1195 2 : mpol_equal(policy, vma_policy(next)) &&
1196 1 : can_vma_merge_before(next, vm_flags,
1197 : anon_vma, file,
1198 : pgoff+pglen,
1199 0 : vm_userfaultfd_ctx) &&
1200 0 : is_mergeable_anon_vma(prev->anon_vma,
1201 : next->anon_vma, NULL)) {
1202 : /* cases 1, 6 */
1203 0 : err = __vma_adjust(prev, prev->vm_start,
1204 : next->vm_end, prev->vm_pgoff, NULL,
1205 : prev);
1206 : } else /* cases 2, 5, 7 */
1207 276 : err = __vma_adjust(prev, prev->vm_start,
1208 : end, prev->vm_pgoff, NULL, prev);
1209 276 : if (err)
1210 : return NULL;
1211 276 : khugepaged_enter_vma_merge(prev, vm_flags);
1212 276 : return prev;
1213 : }
1214 :
1215 : /*
1216 : * Can this new request be merged in front of next?
1217 : */
1218 38952 : if (next && end == next->vm_start &&
1219 42507 : mpol_equal(policy, vma_policy(next)) &&
1220 21255 : can_vma_merge_before(next, vm_flags,
1221 : anon_vma, file, pgoff+pglen,
1222 : vm_userfaultfd_ctx)) {
1223 3247 : if (prev && addr < prev->vm_end) /* case 4 */
1224 3 : err = __vma_adjust(prev, prev->vm_start,
1225 : addr, prev->vm_pgoff, NULL, next);
1226 : else { /* cases 3, 8 */
1227 3244 : err = __vma_adjust(area, addr, next->vm_end,
1228 3244 : next->vm_pgoff - pglen, NULL, next);
1229 : /*
1230 : * In case 3 area is already equal to next and
1231 : * this is a noop, but in case 8 "area" has
1232 : * been removed and next was expanded over it.
1233 : */
1234 3244 : area = next;
1235 : }
1236 3247 : if (err)
1237 : return NULL;
1238 3247 : khugepaged_enter_vma_merge(area, vm_flags);
1239 3247 : return area;
1240 : }
1241 :
1242 : return NULL;
1243 : }
1244 :
1245 : /*
1246 : * Rough compatibility check to quickly see if it's even worth looking
1247 : * at sharing an anon_vma.
1248 : *
1249 : * They need to have the same vm_file, and the flags can only differ
1250 : * in things that mprotect may change.
1251 : *
1252 : * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1253 : * we can merge the two vma's. For example, we refuse to merge a vma if
1254 : * there is a vm_ops->close() function, because that indicates that the
1255 : * driver is doing some kind of reference counting. But that doesn't
1256 : * really matter for the anon_vma sharing case.
1257 : */
1258 21812 : static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1259 : {
1260 21812 : return a->vm_end == b->vm_start &&
1261 14693 : mpol_equal(vma_policy(a), vma_policy(b)) &&
1262 14693 : a->vm_file == b->vm_file &&
1263 29134 : !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1264 13 : b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1265 : }
1266 :
1267 : /*
1268 : * Do some basic sanity checking to see if we can re-use the anon_vma
1269 : * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1270 : * the same as 'old', the other will be the new one that is trying
1271 : * to share the anon_vma.
1272 : *
1273 : * NOTE! This runs with mm_sem held for reading, so it is possible that
1274 : * the anon_vma of 'old' is concurrently in the process of being set up
1275 : * by another page fault trying to merge _that_. But that's ok: if it
1276 : * is being set up, that automatically means that it will be a singleton
1277 : * acceptable for merging, so we can do all of this optimistically. But
1278 : * we do that READ_ONCE() to make sure that we never re-load the pointer.
1279 : *
1280 : * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1281 : * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1282 : * is to return an anon_vma that is "complex" due to having gone through
1283 : * a fork).
1284 : *
1285 : * We also make sure that the two vma's are compatible (adjacent,
1286 : * and with the same memory policies). That's all stable, even with just
1287 : * a read lock on the mm_sem.
1288 : */
1289 21812 : static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1290 : {
1291 21812 : if (anon_vma_compatible(a, b)) {
1292 13 : struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1293 :
1294 13 : if (anon_vma && list_is_singular(&old->anon_vma_chain))
1295 0 : return anon_vma;
1296 : }
1297 : return NULL;
1298 : }
1299 :
1300 : /*
1301 : * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1302 : * neighbouring vmas for a suitable anon_vma, before it goes off
1303 : * to allocate a new anon_vma. It checks because a repetitive
1304 : * sequence of mprotects and faults may otherwise lead to distinct
1305 : * anon_vmas being allocated, preventing vma merge in subsequent
1306 : * mprotect.
1307 : */
1308 13414 : struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1309 : {
1310 13414 : struct anon_vma *anon_vma = NULL;
1311 :
1312 : /* Try next first. */
1313 13414 : if (vma->vm_next) {
1314 10906 : anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1315 10906 : if (anon_vma)
1316 : return anon_vma;
1317 : }
1318 :
1319 : /* Try prev next. */
1320 13414 : if (vma->vm_prev)
1321 10906 : anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1322 :
1323 : /*
1324 : * We might reach here with anon_vma == NULL if we can't find
1325 : * any reusable anon_vma.
1326 : * There's no absolute need to look only at touching neighbours:
1327 : * we could search further afield for "compatible" anon_vmas.
1328 : * But it would probably just be a waste of time searching,
1329 : * or lead to too many vmas hanging off the same anon_vma.
1330 : * We're trying to allow mprotect remerging later on,
1331 : * not trying to minimize memory used for anon_vmas.
1332 : */
1333 : return anon_vma;
1334 : }
1335 :
1336 : /*
1337 : * If a hint addr is less than mmap_min_addr change hint to be as
1338 : * low as possible but still greater than mmap_min_addr
1339 : */
1340 8856 : static inline unsigned long round_hint_to_min(unsigned long hint)
1341 : {
1342 8856 : hint &= PAGE_MASK;
1343 8857 : if (((void *)hint != NULL) &&
1344 1 : (hint < mmap_min_addr))
1345 0 : return PAGE_ALIGN(mmap_min_addr);
1346 : return hint;
1347 : }
1348 :
1349 31266 : static inline int mlock_future_check(struct mm_struct *mm,
1350 : unsigned long flags,
1351 : unsigned long len)
1352 : {
1353 31266 : unsigned long locked, lock_limit;
1354 :
1355 : /* mlock MCL_FUTURE? */
1356 31266 : if (flags & VM_LOCKED) {
1357 0 : locked = len >> PAGE_SHIFT;
1358 0 : locked += mm->locked_vm;
1359 0 : lock_limit = rlimit(RLIMIT_MEMLOCK);
1360 0 : lock_limit >>= PAGE_SHIFT;
1361 0 : if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1362 0 : return -EAGAIN;
1363 : }
1364 : return 0;
1365 : }
1366 :
1367 24748 : static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1368 : {
1369 24748 : if (S_ISREG(inode->i_mode))
1370 : return MAX_LFS_FILESIZE;
1371 :
1372 0 : if (S_ISBLK(inode->i_mode))
1373 : return MAX_LFS_FILESIZE;
1374 :
1375 0 : if (S_ISSOCK(inode->i_mode))
1376 : return MAX_LFS_FILESIZE;
1377 :
1378 : /* Special "we do even unsigned file positions" case */
1379 0 : if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1380 0 : return 0;
1381 :
1382 : /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1383 : return ULONG_MAX;
1384 : }
1385 :
1386 24748 : static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1387 : unsigned long pgoff, unsigned long len)
1388 : {
1389 24748 : u64 maxsize = file_mmap_size_max(file, inode);
1390 :
1391 24748 : if (maxsize && len > maxsize)
1392 : return false;
1393 24748 : maxsize -= len;
1394 24748 : if (pgoff > maxsize >> PAGE_SHIFT)
1395 0 : return false;
1396 : return true;
1397 : }
1398 :
1399 : /*
1400 : * The caller must write-lock current->mm->mmap_lock.
1401 : */
1402 28746 : unsigned long do_mmap(struct file *file, unsigned long addr,
1403 : unsigned long len, unsigned long prot,
1404 : unsigned long flags, unsigned long pgoff,
1405 : unsigned long *populate, struct list_head *uf)
1406 : {
1407 28746 : struct mm_struct *mm = current->mm;
1408 28746 : vm_flags_t vm_flags;
1409 28746 : int pkey = 0;
1410 :
1411 28746 : *populate = 0;
1412 :
1413 28746 : if (!len)
1414 : return -EINVAL;
1415 :
1416 : /*
1417 : * Does the application expect PROT_READ to imply PROT_EXEC?
1418 : *
1419 : * (the exception is when the underlying filesystem is noexec
1420 : * mounted, in which case we dont add PROT_EXEC.)
1421 : */
1422 28746 : if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1423 0 : if (!(file && path_noexec(&file->f_path)))
1424 0 : prot |= PROT_EXEC;
1425 :
1426 : /* force arch specific MAP_FIXED handling in get_unmapped_area */
1427 28746 : if (flags & MAP_FIXED_NOREPLACE)
1428 2808 : flags |= MAP_FIXED;
1429 :
1430 28746 : if (!(flags & MAP_FIXED))
1431 8856 : addr = round_hint_to_min(addr);
1432 :
1433 : /* Careful about overflows.. */
1434 28746 : len = PAGE_ALIGN(len);
1435 28746 : if (!len)
1436 : return -ENOMEM;
1437 :
1438 : /* offset overflow? */
1439 28746 : if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1440 : return -EOVERFLOW;
1441 :
1442 : /* Too many mappings? */
1443 28746 : if (mm->map_count > sysctl_max_map_count)
1444 : return -ENOMEM;
1445 :
1446 : /* Obtain the address to map to. we verify (or select) it and ensure
1447 : * that it represents a valid section of the address space.
1448 : */
1449 28746 : addr = get_unmapped_area(file, addr, len, pgoff, flags);
1450 28746 : if (IS_ERR_VALUE(addr))
1451 : return addr;
1452 :
1453 28746 : if (flags & MAP_FIXED_NOREPLACE) {
1454 2808 : struct vm_area_struct *vma = find_vma(mm, addr);
1455 :
1456 2808 : if (vma && vma->vm_start < addr + len)
1457 : return -EEXIST;
1458 : }
1459 :
1460 28746 : if (prot == PROT_EXEC) {
1461 : pkey = execute_only_pkey(mm);
1462 : if (pkey < 0)
1463 : pkey = 0;
1464 : }
1465 :
1466 : /* Do simple checking here so the lower-level routines won't have
1467 : * to. we assume access permissions have been handled by the open
1468 : * of the memory object, so we don't do any here.
1469 : */
1470 28746 : vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1471 28746 : mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1472 :
1473 28746 : if (flags & MAP_LOCKED)
1474 0 : if (!can_do_mlock())
1475 : return -EPERM;
1476 :
1477 28746 : if (mlock_future_check(mm, vm_flags, len))
1478 : return -EAGAIN;
1479 :
1480 28746 : if (file) {
1481 24748 : struct inode *inode = file_inode(file);
1482 24748 : unsigned long flags_mask;
1483 :
1484 24748 : if (!file_mmap_ok(file, inode, pgoff, len))
1485 : return -EOVERFLOW;
1486 :
1487 24748 : flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1488 :
1489 24748 : switch (flags & MAP_TYPE) {
1490 219 : case MAP_SHARED:
1491 : /*
1492 : * Force use of MAP_SHARED_VALIDATE with non-legacy
1493 : * flags. E.g. MAP_SYNC is dangerous to use with
1494 : * MAP_SHARED as you don't know which consistency model
1495 : * you will get. We silently ignore unsupported flags
1496 : * with MAP_SHARED to preserve backward compatibility.
1497 : */
1498 219 : flags &= LEGACY_MAP_MASK;
1499 219 : fallthrough;
1500 219 : case MAP_SHARED_VALIDATE:
1501 219 : if (flags & ~flags_mask)
1502 : return -EOPNOTSUPP;
1503 219 : if (prot & PROT_WRITE) {
1504 139 : if (!(file->f_mode & FMODE_WRITE))
1505 : return -EACCES;
1506 139 : if (IS_SWAPFILE(file->f_mapping->host))
1507 : return -ETXTBSY;
1508 : }
1509 :
1510 : /*
1511 : * Make sure we don't allow writing to an append-only
1512 : * file..
1513 : */
1514 219 : if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1515 : return -EACCES;
1516 :
1517 : /*
1518 : * Make sure there are no mandatory locks on the file.
1519 : */
1520 219 : if (locks_verify_locked(file))
1521 : return -EAGAIN;
1522 :
1523 219 : vm_flags |= VM_SHARED | VM_MAYSHARE;
1524 219 : if (!(file->f_mode & FMODE_WRITE))
1525 80 : vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1526 24748 : fallthrough;
1527 : case MAP_PRIVATE:
1528 24748 : if (!(file->f_mode & FMODE_READ))
1529 : return -EACCES;
1530 24748 : if (path_noexec(&file->f_path)) {
1531 0 : if (vm_flags & VM_EXEC)
1532 : return -EPERM;
1533 0 : vm_flags &= ~VM_MAYEXEC;
1534 : }
1535 :
1536 24748 : if (!file->f_op->mmap)
1537 : return -ENODEV;
1538 24748 : if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1539 : return -EINVAL;
1540 : break;
1541 :
1542 : default:
1543 : return -EINVAL;
1544 : }
1545 : } else {
1546 3998 : switch (flags & MAP_TYPE) {
1547 3 : case MAP_SHARED:
1548 3 : if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1549 : return -EINVAL;
1550 : /*
1551 : * Ignore pgoff.
1552 : */
1553 3 : pgoff = 0;
1554 3 : vm_flags |= VM_SHARED | VM_MAYSHARE;
1555 3 : break;
1556 3995 : case MAP_PRIVATE:
1557 : /*
1558 : * Set pgoff according to addr for anon_vma.
1559 : */
1560 3995 : pgoff = addr >> PAGE_SHIFT;
1561 3995 : break;
1562 : default:
1563 : return -EINVAL;
1564 : }
1565 : }
1566 :
1567 : /*
1568 : * Set 'VM_NORESERVE' if we should not account for the
1569 : * memory use of this mapping.
1570 : */
1571 28746 : if (flags & MAP_NORESERVE) {
1572 : /* We honor MAP_NORESERVE if allowed to overcommit */
1573 6 : if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1574 6 : vm_flags |= VM_NORESERVE;
1575 :
1576 : /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1577 : if (file && is_file_hugepages(file))
1578 : vm_flags |= VM_NORESERVE;
1579 : }
1580 :
1581 28746 : addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1582 28745 : if (!IS_ERR_VALUE(addr) &&
1583 28745 : ((vm_flags & VM_LOCKED) ||
1584 28745 : (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1585 10 : *populate = len;
1586 : return addr;
1587 : }
1588 :
1589 21251 : unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1590 : unsigned long prot, unsigned long flags,
1591 : unsigned long fd, unsigned long pgoff)
1592 : {
1593 21251 : struct file *file = NULL;
1594 21251 : unsigned long retval;
1595 :
1596 21251 : if (!(flags & MAP_ANONYMOUS)) {
1597 17253 : audit_mmap_fd(fd, flags);
1598 17253 : file = fget(fd);
1599 17254 : if (!file)
1600 : return -EBADF;
1601 17254 : if (is_file_hugepages(file)) {
1602 : len = ALIGN(len, huge_page_size(hstate_file(file)));
1603 17254 : } else if (unlikely(flags & MAP_HUGETLB)) {
1604 0 : retval = -EINVAL;
1605 0 : goto out_fput;
1606 : }
1607 3998 : } else if (flags & MAP_HUGETLB) {
1608 21252 : struct user_struct *user = NULL;
1609 : struct hstate *hs;
1610 :
1611 21252 : hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1612 : if (!hs)
1613 21252 : return -EINVAL;
1614 :
1615 : len = ALIGN(len, huge_page_size(hs));
1616 : /*
1617 : * VM_NORESERVE is used because the reservations will be
1618 : * taken when vm_ops->mmap() is called
1619 : * A dummy user value is used because we are not locking
1620 : * memory so no accounting is necessary
1621 : */
1622 : file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1623 : VM_NORESERVE,
1624 : &user, HUGETLB_ANONHUGE_INODE,
1625 : (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1626 : if (IS_ERR(file))
1627 : return PTR_ERR(file);
1628 : }
1629 :
1630 21252 : flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1631 :
1632 21252 : retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1633 21252 : out_fput:
1634 21252 : if (file)
1635 17254 : fput(file);
1636 : return retval;
1637 : }
1638 :
1639 0 : SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1640 : unsigned long, prot, unsigned long, flags,
1641 : unsigned long, fd, unsigned long, pgoff)
1642 : {
1643 0 : return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1644 : }
1645 :
1646 : #ifdef __ARCH_WANT_SYS_OLD_MMAP
1647 : struct mmap_arg_struct {
1648 : unsigned long addr;
1649 : unsigned long len;
1650 : unsigned long prot;
1651 : unsigned long flags;
1652 : unsigned long fd;
1653 : unsigned long offset;
1654 : };
1655 :
1656 : SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1657 : {
1658 : struct mmap_arg_struct a;
1659 :
1660 : if (copy_from_user(&a, arg, sizeof(a)))
1661 : return -EFAULT;
1662 : if (offset_in_page(a.offset))
1663 : return -EINVAL;
1664 :
1665 : return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1666 : a.offset >> PAGE_SHIFT);
1667 : }
1668 : #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1669 :
1670 : /*
1671 : * Some shared mappings will want the pages marked read-only
1672 : * to track write events. If so, we'll downgrade vm_page_prot
1673 : * to the private version (using protection_map[] without the
1674 : * VM_SHARED bit).
1675 : */
1676 44667 : int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1677 : {
1678 44667 : vm_flags_t vm_flags = vma->vm_flags;
1679 44667 : const struct vm_operations_struct *vm_ops = vma->vm_ops;
1680 :
1681 : /* If it was private or non-writable, the write bit is already clear */
1682 44667 : if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1683 : return 0;
1684 :
1685 : /* The backer wishes to know when pages are first written to? */
1686 142 : if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1687 : return 1;
1688 :
1689 : /* The open routine did something to the protections that pgprot_modify
1690 : * won't preserve? */
1691 6 : if (pgprot_val(vm_page_prot) !=
1692 6 : pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1693 : return 0;
1694 :
1695 : /* Do we need to track softdirty? */
1696 6 : if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1697 : return 1;
1698 :
1699 : /* Specialty mapping? */
1700 6 : if (vm_flags & VM_PFNMAP)
1701 : return 0;
1702 :
1703 : /* Can the mapping track the dirty pages? */
1704 6 : return vma->vm_file && vma->vm_file->f_mapping &&
1705 6 : mapping_can_writeback(vma->vm_file->f_mapping);
1706 : }
1707 :
1708 : /*
1709 : * We account for memory if it's a private writeable mapping,
1710 : * not hugepages and VM_NORESERVE wasn't set.
1711 : */
1712 28745 : static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1713 : {
1714 : /*
1715 : * hugetlb has its own accounting separate from the core VM
1716 : * VM_HUGETLB may not be set yet so we cannot check for that flag.
1717 : */
1718 28745 : if (file && is_file_hugepages(file))
1719 : return 0;
1720 :
1721 28745 : return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1722 : }
1723 :
1724 28746 : unsigned long mmap_region(struct file *file, unsigned long addr,
1725 : unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1726 : struct list_head *uf)
1727 : {
1728 28746 : struct mm_struct *mm = current->mm;
1729 28746 : struct vm_area_struct *vma, *prev, *merge;
1730 28746 : int error;
1731 28746 : struct rb_node **rb_link, *rb_parent;
1732 28746 : unsigned long charged = 0;
1733 :
1734 : /* Check against address space limit. */
1735 28746 : if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1736 0 : unsigned long nr_pages;
1737 :
1738 : /*
1739 : * MAP_FIXED may remove pages of mappings that intersects with
1740 : * requested mapping. Account for the pages it would unmap.
1741 : */
1742 0 : nr_pages = count_vma_pages_range(mm, addr, addr + len);
1743 :
1744 0 : if (!may_expand_vm(mm, vm_flags,
1745 : (len >> PAGE_SHIFT) - nr_pages))
1746 : return -ENOMEM;
1747 : }
1748 :
1749 : /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1750 28746 : if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1751 : return -ENOMEM;
1752 : /*
1753 : * Private writable mapping: check memory availability
1754 : */
1755 28745 : if (accountable_mapping(file, vm_flags)) {
1756 9943 : charged = len >> PAGE_SHIFT;
1757 9943 : if (security_vm_enough_memory_mm(mm, charged))
1758 : return -ENOMEM;
1759 9942 : vm_flags |= VM_ACCOUNT;
1760 : }
1761 :
1762 : /*
1763 : * Can we just expand an old mapping?
1764 : */
1765 28744 : vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1766 : NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1767 28743 : if (vma)
1768 3245 : goto out;
1769 :
1770 : /*
1771 : * Determine the object being mapped and call the appropriate
1772 : * specific mapper. the address has already been validated, but
1773 : * not unmapped, but the maps are removed from the list.
1774 : */
1775 25498 : vma = vm_area_alloc(mm);
1776 25501 : if (!vma) {
1777 0 : error = -ENOMEM;
1778 0 : goto unacct_error;
1779 : }
1780 :
1781 25501 : vma->vm_start = addr;
1782 25501 : vma->vm_end = addr + len;
1783 25501 : vma->vm_flags = vm_flags;
1784 25501 : vma->vm_page_prot = vm_get_page_prot(vm_flags);
1785 25501 : vma->vm_pgoff = pgoff;
1786 :
1787 25501 : if (file) {
1788 22634 : if (vm_flags & VM_DENYWRITE) {
1789 7494 : error = deny_write_access(file);
1790 7494 : if (error)
1791 0 : goto free_vma;
1792 : }
1793 22634 : if (vm_flags & VM_SHARED) {
1794 139 : error = mapping_map_writable(file->f_mapping);
1795 139 : if (error)
1796 0 : goto allow_write_and_free_vma;
1797 : }
1798 :
1799 : /* ->mmap() can change vma->vm_file, but must guarantee that
1800 : * vma_link() below can deny write-access if VM_DENYWRITE is set
1801 : * and map writably if VM_SHARED is set. This usually means the
1802 : * new file must not have been exposed to user-space, yet.
1803 : */
1804 22634 : vma->vm_file = get_file(file);
1805 22634 : error = call_mmap(file, vma);
1806 22634 : if (error)
1807 0 : goto unmap_and_free_vma;
1808 :
1809 : /* Can addr have changed??
1810 : *
1811 : * Answer: Yes, several device drivers can do it in their
1812 : * f_op->mmap method. -DaveM
1813 : * Bug: If addr is changed, prev, rb_link, rb_parent should
1814 : * be updated for vma_link()
1815 : */
1816 22634 : WARN_ON_ONCE(addr != vma->vm_start);
1817 :
1818 22634 : addr = vma->vm_start;
1819 :
1820 : /* If vm_flags changed after call_mmap(), we should try merge vma again
1821 : * as we may succeed this time.
1822 : */
1823 22634 : if (unlikely(vm_flags != vma->vm_flags && prev)) {
1824 0 : merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1825 : NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1826 0 : if (merge) {
1827 : /* ->mmap() can change vma->vm_file and fput the original file. So
1828 : * fput the vma->vm_file here or we would add an extra fput for file
1829 : * and cause general protection fault ultimately.
1830 : */
1831 0 : fput(vma->vm_file);
1832 0 : vm_area_free(vma);
1833 0 : vma = merge;
1834 : /* Update vm_flags to pick up the change. */
1835 0 : vm_flags = vma->vm_flags;
1836 0 : goto unmap_writable;
1837 : }
1838 : }
1839 :
1840 22634 : vm_flags = vma->vm_flags;
1841 2867 : } else if (vm_flags & VM_SHARED) {
1842 3 : error = shmem_zero_setup(vma);
1843 3 : if (error)
1844 0 : goto free_vma;
1845 : } else {
1846 2864 : vma_set_anonymous(vma);
1847 : }
1848 :
1849 : /* Allow architectures to sanity-check the vm_flags */
1850 25501 : if (!arch_validate_flags(vma->vm_flags)) {
1851 : error = -EINVAL;
1852 : if (file)
1853 : goto unmap_and_free_vma;
1854 : else
1855 : goto free_vma;
1856 : }
1857 :
1858 25501 : vma_link(mm, vma, prev, rb_link, rb_parent);
1859 : /* Once vma denies write, undo our temporary denial count */
1860 25501 : if (file) {
1861 22634 : unmap_writable:
1862 22634 : if (vm_flags & VM_SHARED)
1863 139 : mapping_unmap_writable(file->f_mapping);
1864 22634 : if (vm_flags & VM_DENYWRITE)
1865 7494 : allow_write_access(file);
1866 : }
1867 25501 : file = vma->vm_file;
1868 28746 : out:
1869 28746 : perf_event_mmap(vma);
1870 :
1871 28745 : vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1872 28745 : if (vm_flags & VM_LOCKED) {
1873 0 : if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1874 0 : is_vm_hugetlb_page(vma) ||
1875 0 : vma == get_gate_vma(current->mm))
1876 0 : vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1877 : else
1878 0 : mm->locked_vm += (len >> PAGE_SHIFT);
1879 : }
1880 :
1881 28745 : if (file)
1882 28745 : uprobe_mmap(vma);
1883 :
1884 : /*
1885 : * New (or expanded) vma always get soft dirty status.
1886 : * Otherwise user-space soft-dirty page tracker won't
1887 : * be able to distinguish situation when vma area unmapped,
1888 : * then new mapped in-place (which must be aimed as
1889 : * a completely new data area).
1890 : */
1891 28745 : vma->vm_flags |= VM_SOFTDIRTY;
1892 :
1893 28745 : vma_set_page_prot(vma);
1894 :
1895 28745 : return addr;
1896 :
1897 0 : unmap_and_free_vma:
1898 0 : fput(vma->vm_file);
1899 0 : vma->vm_file = NULL;
1900 :
1901 : /* Undo any partial mapping done by a device driver. */
1902 0 : unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1903 0 : charged = 0;
1904 0 : if (vm_flags & VM_SHARED)
1905 0 : mapping_unmap_writable(file->f_mapping);
1906 0 : allow_write_and_free_vma:
1907 0 : if (vm_flags & VM_DENYWRITE)
1908 0 : allow_write_access(file);
1909 0 : free_vma:
1910 0 : vm_area_free(vma);
1911 0 : unacct_error:
1912 0 : if (charged)
1913 0 : vm_unacct_memory(charged);
1914 0 : return error;
1915 : }
1916 :
1917 0 : static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1918 : {
1919 : /*
1920 : * We implement the search by looking for an rbtree node that
1921 : * immediately follows a suitable gap. That is,
1922 : * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1923 : * - gap_end = vma->vm_start >= info->low_limit + length;
1924 : * - gap_end - gap_start >= length
1925 : */
1926 :
1927 0 : struct mm_struct *mm = current->mm;
1928 0 : struct vm_area_struct *vma;
1929 0 : unsigned long length, low_limit, high_limit, gap_start, gap_end;
1930 :
1931 : /* Adjust search length to account for worst case alignment overhead */
1932 0 : length = info->length + info->align_mask;
1933 0 : if (length < info->length)
1934 : return -ENOMEM;
1935 :
1936 : /* Adjust search limits by the desired length */
1937 0 : if (info->high_limit < length)
1938 : return -ENOMEM;
1939 0 : high_limit = info->high_limit - length;
1940 :
1941 0 : if (info->low_limit > high_limit)
1942 : return -ENOMEM;
1943 0 : low_limit = info->low_limit + length;
1944 :
1945 : /* Check if rbtree root looks promising */
1946 0 : if (RB_EMPTY_ROOT(&mm->mm_rb))
1947 0 : goto check_highest;
1948 0 : vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1949 0 : if (vma->rb_subtree_gap < length)
1950 0 : goto check_highest;
1951 :
1952 0 : while (true) {
1953 : /* Visit left subtree if it looks promising */
1954 0 : gap_end = vm_start_gap(vma);
1955 0 : if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1956 0 : struct vm_area_struct *left =
1957 0 : rb_entry(vma->vm_rb.rb_left,
1958 : struct vm_area_struct, vm_rb);
1959 0 : if (left->rb_subtree_gap >= length) {
1960 0 : vma = left;
1961 0 : continue;
1962 : }
1963 : }
1964 :
1965 0 : gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1966 0 : check_current:
1967 : /* Check if current node has a suitable gap */
1968 0 : if (gap_start > high_limit)
1969 : return -ENOMEM;
1970 0 : if (gap_end >= low_limit &&
1971 0 : gap_end > gap_start && gap_end - gap_start >= length)
1972 0 : goto found;
1973 :
1974 : /* Visit right subtree if it looks promising */
1975 0 : if (vma->vm_rb.rb_right) {
1976 0 : struct vm_area_struct *right =
1977 0 : rb_entry(vma->vm_rb.rb_right,
1978 : struct vm_area_struct, vm_rb);
1979 0 : if (right->rb_subtree_gap >= length) {
1980 0 : vma = right;
1981 0 : continue;
1982 : }
1983 : }
1984 :
1985 : /* Go back up the rbtree to find next candidate node */
1986 0 : while (true) {
1987 0 : struct rb_node *prev = &vma->vm_rb;
1988 0 : if (!rb_parent(prev))
1989 0 : goto check_highest;
1990 0 : vma = rb_entry(rb_parent(prev),
1991 : struct vm_area_struct, vm_rb);
1992 0 : if (prev == vma->vm_rb.rb_left) {
1993 0 : gap_start = vm_end_gap(vma->vm_prev);
1994 0 : gap_end = vm_start_gap(vma);
1995 0 : goto check_current;
1996 : }
1997 : }
1998 : }
1999 :
2000 0 : check_highest:
2001 : /* Check highest gap, which does not precede any rbtree node */
2002 0 : gap_start = mm->highest_vm_end;
2003 0 : gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
2004 0 : if (gap_start > high_limit)
2005 : return -ENOMEM;
2006 :
2007 0 : found:
2008 : /* We found a suitable gap. Clip it with the original low_limit. */
2009 0 : if (gap_start < info->low_limit)
2010 : gap_start = info->low_limit;
2011 :
2012 : /* Adjust gap address to the desired alignment */
2013 0 : gap_start += (info->align_offset - gap_start) & info->align_mask;
2014 :
2015 0 : VM_BUG_ON(gap_start + info->length > info->high_limit);
2016 0 : VM_BUG_ON(gap_start + info->length > gap_end);
2017 : return gap_start;
2018 : }
2019 :
2020 8854 : static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2021 : {
2022 8854 : struct mm_struct *mm = current->mm;
2023 8854 : struct vm_area_struct *vma;
2024 8854 : unsigned long length, low_limit, high_limit, gap_start, gap_end;
2025 :
2026 : /* Adjust search length to account for worst case alignment overhead */
2027 8854 : length = info->length + info->align_mask;
2028 8854 : if (length < info->length)
2029 : return -ENOMEM;
2030 :
2031 : /*
2032 : * Adjust search limits by the desired length.
2033 : * See implementation comment at top of unmapped_area().
2034 : */
2035 8854 : gap_end = info->high_limit;
2036 8854 : if (gap_end < length)
2037 : return -ENOMEM;
2038 8854 : high_limit = gap_end - length;
2039 :
2040 8854 : if (info->low_limit > high_limit)
2041 : return -ENOMEM;
2042 8854 : low_limit = info->low_limit + length;
2043 :
2044 : /* Check highest gap, which does not precede any rbtree node */
2045 8854 : gap_start = mm->highest_vm_end;
2046 8854 : if (gap_start <= high_limit)
2047 0 : goto found_highest;
2048 :
2049 : /* Check if rbtree root looks promising */
2050 8854 : if (RB_EMPTY_ROOT(&mm->mm_rb))
2051 : return -ENOMEM;
2052 8854 : vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2053 8854 : if (vma->rb_subtree_gap < length)
2054 : return -ENOMEM;
2055 :
2056 60867 : while (true) {
2057 : /* Visit right subtree if it looks promising */
2058 60867 : gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2059 60867 : if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2060 41445 : struct vm_area_struct *right =
2061 41445 : rb_entry(vma->vm_rb.rb_right,
2062 : struct vm_area_struct, vm_rb);
2063 41445 : if (right->rb_subtree_gap >= length) {
2064 20720 : vma = right;
2065 20720 : continue;
2066 : }
2067 : }
2068 :
2069 40147 : check_current:
2070 : /* Check if current node has a suitable gap */
2071 49165 : gap_end = vm_start_gap(vma);
2072 49165 : if (gap_end < low_limit)
2073 : return -ENOMEM;
2074 49165 : if (gap_start <= high_limit &&
2075 49165 : gap_end > gap_start && gap_end - gap_start >= length)
2076 8855 : goto found;
2077 :
2078 : /* Visit left subtree if it looks promising */
2079 40310 : if (vma->vm_rb.rb_left) {
2080 40263 : struct vm_area_struct *left =
2081 40263 : rb_entry(vma->vm_rb.rb_left,
2082 : struct vm_area_struct, vm_rb);
2083 40263 : if (left->rb_subtree_gap >= length) {
2084 31293 : vma = left;
2085 31293 : continue;
2086 : }
2087 : }
2088 :
2089 : /* Go back up the rbtree to find next candidate node */
2090 9064 : while (true) {
2091 9064 : struct rb_node *prev = &vma->vm_rb;
2092 9064 : if (!rb_parent(prev))
2093 : return -ENOMEM;
2094 9065 : vma = rb_entry(rb_parent(prev),
2095 : struct vm_area_struct, vm_rb);
2096 9065 : if (prev == vma->vm_rb.rb_right) {
2097 18036 : gap_start = vma->vm_prev ?
2098 9018 : vm_end_gap(vma->vm_prev) : 0;
2099 9018 : goto check_current;
2100 : }
2101 : }
2102 : }
2103 :
2104 8855 : found:
2105 : /* We found a suitable gap. Clip it with the original high_limit. */
2106 8855 : if (gap_end > info->high_limit)
2107 : gap_end = info->high_limit;
2108 :
2109 8855 : found_highest:
2110 : /* Compute highest gap address at the desired alignment */
2111 8855 : gap_end -= info->length;
2112 8855 : gap_end -= (gap_end - info->align_offset) & info->align_mask;
2113 :
2114 8855 : VM_BUG_ON(gap_end < info->low_limit);
2115 8855 : VM_BUG_ON(gap_end < gap_start);
2116 : return gap_end;
2117 : }
2118 :
2119 : /*
2120 : * Search for an unmapped address range.
2121 : *
2122 : * We are looking for a range that:
2123 : * - does not intersect with any VMA;
2124 : * - is contained within the [low_limit, high_limit) interval;
2125 : * - is at least the desired size.
2126 : * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2127 : */
2128 8855 : unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2129 : {
2130 8855 : unsigned long addr;
2131 :
2132 8855 : if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2133 8855 : addr = unmapped_area_topdown(info);
2134 : else
2135 0 : addr = unmapped_area(info);
2136 :
2137 8855 : trace_vm_unmapped_area(addr, info);
2138 8855 : return addr;
2139 : }
2140 :
2141 : #ifndef arch_get_mmap_end
2142 : #define arch_get_mmap_end(addr) (TASK_SIZE)
2143 : #endif
2144 :
2145 : #ifndef arch_get_mmap_base
2146 : #define arch_get_mmap_base(addr, base) (base)
2147 : #endif
2148 :
2149 : /* Get an address range which is currently unmapped.
2150 : * For shmat() with addr=0.
2151 : *
2152 : * Ugly calling convention alert:
2153 : * Return value with the low bits set means error value,
2154 : * ie
2155 : * if (ret & ~PAGE_MASK)
2156 : * error = ret;
2157 : *
2158 : * This function "knows" that -ENOMEM has the bits set.
2159 : */
2160 : #ifndef HAVE_ARCH_UNMAPPED_AREA
2161 : unsigned long
2162 : arch_get_unmapped_area(struct file *filp, unsigned long addr,
2163 : unsigned long len, unsigned long pgoff, unsigned long flags)
2164 : {
2165 : struct mm_struct *mm = current->mm;
2166 : struct vm_area_struct *vma, *prev;
2167 : struct vm_unmapped_area_info info;
2168 : const unsigned long mmap_end = arch_get_mmap_end(addr);
2169 :
2170 : if (len > mmap_end - mmap_min_addr)
2171 : return -ENOMEM;
2172 :
2173 : if (flags & MAP_FIXED)
2174 : return addr;
2175 :
2176 : if (addr) {
2177 : addr = PAGE_ALIGN(addr);
2178 : vma = find_vma_prev(mm, addr, &prev);
2179 : if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2180 : (!vma || addr + len <= vm_start_gap(vma)) &&
2181 : (!prev || addr >= vm_end_gap(prev)))
2182 : return addr;
2183 : }
2184 :
2185 : info.flags = 0;
2186 : info.length = len;
2187 : info.low_limit = mm->mmap_base;
2188 : info.high_limit = mmap_end;
2189 : info.align_mask = 0;
2190 : info.align_offset = 0;
2191 : return vm_unmapped_area(&info);
2192 : }
2193 : #endif
2194 :
2195 : /*
2196 : * This mmap-allocator allocates new areas top-down from below the
2197 : * stack's low limit (the base):
2198 : */
2199 : #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2200 : unsigned long
2201 : arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2202 : unsigned long len, unsigned long pgoff,
2203 : unsigned long flags)
2204 : {
2205 : struct vm_area_struct *vma, *prev;
2206 : struct mm_struct *mm = current->mm;
2207 : struct vm_unmapped_area_info info;
2208 : const unsigned long mmap_end = arch_get_mmap_end(addr);
2209 :
2210 : /* requested length too big for entire address space */
2211 : if (len > mmap_end - mmap_min_addr)
2212 : return -ENOMEM;
2213 :
2214 : if (flags & MAP_FIXED)
2215 : return addr;
2216 :
2217 : /* requesting a specific address */
2218 : if (addr) {
2219 : addr = PAGE_ALIGN(addr);
2220 : vma = find_vma_prev(mm, addr, &prev);
2221 : if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2222 : (!vma || addr + len <= vm_start_gap(vma)) &&
2223 : (!prev || addr >= vm_end_gap(prev)))
2224 : return addr;
2225 : }
2226 :
2227 : info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2228 : info.length = len;
2229 : info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2230 : info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2231 : info.align_mask = 0;
2232 : info.align_offset = 0;
2233 : addr = vm_unmapped_area(&info);
2234 :
2235 : /*
2236 : * A failed mmap() very likely causes application failure,
2237 : * so fall back to the bottom-up function here. This scenario
2238 : * can happen with large stack limits and large mmap()
2239 : * allocations.
2240 : */
2241 : if (offset_in_page(addr)) {
2242 : VM_BUG_ON(addr != -ENOMEM);
2243 : info.flags = 0;
2244 : info.low_limit = TASK_UNMAPPED_BASE;
2245 : info.high_limit = mmap_end;
2246 : addr = vm_unmapped_area(&info);
2247 : }
2248 :
2249 : return addr;
2250 : }
2251 : #endif
2252 :
2253 : unsigned long
2254 32203 : get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2255 : unsigned long pgoff, unsigned long flags)
2256 : {
2257 32203 : unsigned long (*get_area)(struct file *, unsigned long,
2258 : unsigned long, unsigned long, unsigned long);
2259 :
2260 32203 : unsigned long error = arch_mmap_check(addr, len, flags);
2261 32203 : if (error)
2262 : return error;
2263 :
2264 : /* Careful about overflows.. */
2265 32203 : if (len > TASK_SIZE)
2266 : return -ENOMEM;
2267 :
2268 32204 : get_area = current->mm->get_unmapped_area;
2269 32204 : if (file) {
2270 24748 : if (file->f_op->get_unmapped_area)
2271 24748 : get_area = file->f_op->get_unmapped_area;
2272 7456 : } else if (flags & MAP_SHARED) {
2273 : /*
2274 : * mmap_region() will call shmem_zero_setup() to create a file,
2275 : * so use shmem's get_unmapped_area in case it can be huge.
2276 : * do_mmap() will clear pgoff, so match alignment.
2277 : */
2278 3 : pgoff = 0;
2279 3 : get_area = shmem_get_unmapped_area;
2280 : }
2281 :
2282 32204 : addr = get_area(file, addr, len, pgoff, flags);
2283 32204 : if (IS_ERR_VALUE(addr))
2284 : return addr;
2285 :
2286 32204 : if (addr > TASK_SIZE - len)
2287 : return -ENOMEM;
2288 32204 : if (offset_in_page(addr))
2289 : return -EINVAL;
2290 :
2291 32204 : error = security_mmap_addr(addr);
2292 32204 : return error ? error : addr;
2293 : }
2294 :
2295 : EXPORT_SYMBOL(get_unmapped_area);
2296 :
2297 : /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2298 226397 : struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2299 : {
2300 226397 : struct rb_node *rb_node;
2301 226397 : struct vm_area_struct *vma;
2302 :
2303 : /* Check the cache first. */
2304 226397 : vma = vmacache_find(mm, addr);
2305 226410 : if (likely(vma))
2306 : return vma;
2307 :
2308 127680 : rb_node = mm->mm_rb.rb_node;
2309 :
2310 656263 : while (rb_node) {
2311 648364 : struct vm_area_struct *tmp;
2312 :
2313 648364 : tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2314 :
2315 648364 : if (tmp->vm_end > addr) {
2316 413338 : vma = tmp;
2317 413338 : if (tmp->vm_start <= addr)
2318 : break;
2319 293557 : rb_node = rb_node->rb_left;
2320 : } else
2321 235026 : rb_node = rb_node->rb_right;
2322 : }
2323 :
2324 127680 : if (vma)
2325 126742 : vmacache_update(addr, vma);
2326 : return vma;
2327 : }
2328 :
2329 : EXPORT_SYMBOL(find_vma);
2330 :
2331 : /*
2332 : * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2333 : */
2334 : struct vm_area_struct *
2335 12 : find_vma_prev(struct mm_struct *mm, unsigned long addr,
2336 : struct vm_area_struct **pprev)
2337 : {
2338 12 : struct vm_area_struct *vma;
2339 :
2340 12 : vma = find_vma(mm, addr);
2341 12 : if (vma) {
2342 12 : *pprev = vma->vm_prev;
2343 : } else {
2344 0 : struct rb_node *rb_node = rb_last(&mm->mm_rb);
2345 :
2346 0 : *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2347 : }
2348 12 : return vma;
2349 : }
2350 :
2351 : /*
2352 : * Verify that the stack growth is acceptable and
2353 : * update accounting. This is shared with both the
2354 : * grow-up and grow-down cases.
2355 : */
2356 954 : static int acct_stack_growth(struct vm_area_struct *vma,
2357 : unsigned long size, unsigned long grow)
2358 : {
2359 954 : struct mm_struct *mm = vma->vm_mm;
2360 954 : unsigned long new_start;
2361 :
2362 : /* address space limit tests */
2363 954 : if (!may_expand_vm(mm, vma->vm_flags, grow))
2364 : return -ENOMEM;
2365 :
2366 : /* Stack limit test */
2367 954 : if (size > rlimit(RLIMIT_STACK))
2368 : return -ENOMEM;
2369 :
2370 : /* mlock limit tests */
2371 954 : if (vma->vm_flags & VM_LOCKED) {
2372 0 : unsigned long locked;
2373 0 : unsigned long limit;
2374 0 : locked = mm->locked_vm + grow;
2375 0 : limit = rlimit(RLIMIT_MEMLOCK);
2376 0 : limit >>= PAGE_SHIFT;
2377 0 : if (locked > limit && !capable(CAP_IPC_LOCK))
2378 : return -ENOMEM;
2379 : }
2380 :
2381 : /* Check to ensure the stack will not grow into a hugetlb-only region */
2382 954 : new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2383 954 : vma->vm_end - size;
2384 954 : if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2385 : return -EFAULT;
2386 :
2387 : /*
2388 : * Overcommit.. This must be the final test, as it will
2389 : * update security statistics.
2390 : */
2391 954 : if (security_vm_enough_memory_mm(mm, grow))
2392 0 : return -ENOMEM;
2393 :
2394 : return 0;
2395 : }
2396 :
2397 : #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2398 : /*
2399 : * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2400 : * vma is the last one with address > vma->vm_end. Have to extend vma.
2401 : */
2402 : int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2403 : {
2404 : struct mm_struct *mm = vma->vm_mm;
2405 : struct vm_area_struct *next;
2406 : unsigned long gap_addr;
2407 : int error = 0;
2408 :
2409 : if (!(vma->vm_flags & VM_GROWSUP))
2410 : return -EFAULT;
2411 :
2412 : /* Guard against exceeding limits of the address space. */
2413 : address &= PAGE_MASK;
2414 : if (address >= (TASK_SIZE & PAGE_MASK))
2415 : return -ENOMEM;
2416 : address += PAGE_SIZE;
2417 :
2418 : /* Enforce stack_guard_gap */
2419 : gap_addr = address + stack_guard_gap;
2420 :
2421 : /* Guard against overflow */
2422 : if (gap_addr < address || gap_addr > TASK_SIZE)
2423 : gap_addr = TASK_SIZE;
2424 :
2425 : next = vma->vm_next;
2426 : if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2427 : if (!(next->vm_flags & VM_GROWSUP))
2428 : return -ENOMEM;
2429 : /* Check that both stack segments have the same anon_vma? */
2430 : }
2431 :
2432 : /* We must make sure the anon_vma is allocated. */
2433 : if (unlikely(anon_vma_prepare(vma)))
2434 : return -ENOMEM;
2435 :
2436 : /*
2437 : * vma->vm_start/vm_end cannot change under us because the caller
2438 : * is required to hold the mmap_lock in read mode. We need the
2439 : * anon_vma lock to serialize against concurrent expand_stacks.
2440 : */
2441 : anon_vma_lock_write(vma->anon_vma);
2442 :
2443 : /* Somebody else might have raced and expanded it already */
2444 : if (address > vma->vm_end) {
2445 : unsigned long size, grow;
2446 :
2447 : size = address - vma->vm_start;
2448 : grow = (address - vma->vm_end) >> PAGE_SHIFT;
2449 :
2450 : error = -ENOMEM;
2451 : if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2452 : error = acct_stack_growth(vma, size, grow);
2453 : if (!error) {
2454 : /*
2455 : * vma_gap_update() doesn't support concurrent
2456 : * updates, but we only hold a shared mmap_lock
2457 : * lock here, so we need to protect against
2458 : * concurrent vma expansions.
2459 : * anon_vma_lock_write() doesn't help here, as
2460 : * we don't guarantee that all growable vmas
2461 : * in a mm share the same root anon vma.
2462 : * So, we reuse mm->page_table_lock to guard
2463 : * against concurrent vma expansions.
2464 : */
2465 : spin_lock(&mm->page_table_lock);
2466 : if (vma->vm_flags & VM_LOCKED)
2467 : mm->locked_vm += grow;
2468 : vm_stat_account(mm, vma->vm_flags, grow);
2469 : anon_vma_interval_tree_pre_update_vma(vma);
2470 : vma->vm_end = address;
2471 : anon_vma_interval_tree_post_update_vma(vma);
2472 : if (vma->vm_next)
2473 : vma_gap_update(vma->vm_next);
2474 : else
2475 : mm->highest_vm_end = vm_end_gap(vma);
2476 : spin_unlock(&mm->page_table_lock);
2477 :
2478 : perf_event_mmap(vma);
2479 : }
2480 : }
2481 : }
2482 : anon_vma_unlock_write(vma->anon_vma);
2483 : khugepaged_enter_vma_merge(vma, vma->vm_flags);
2484 : validate_mm(mm);
2485 : return error;
2486 : }
2487 : #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2488 :
2489 : /*
2490 : * vma is the first one with address < vma->vm_start. Have to extend vma.
2491 : */
2492 954 : int expand_downwards(struct vm_area_struct *vma,
2493 : unsigned long address)
2494 : {
2495 954 : struct mm_struct *mm = vma->vm_mm;
2496 954 : struct vm_area_struct *prev;
2497 954 : int error = 0;
2498 :
2499 954 : address &= PAGE_MASK;
2500 954 : if (address < mmap_min_addr)
2501 : return -EPERM;
2502 :
2503 : /* Enforce stack_guard_gap */
2504 954 : prev = vma->vm_prev;
2505 : /* Check that both stack segments have the same anon_vma? */
2506 954 : if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2507 16 : vma_is_accessible(prev)) {
2508 16 : if (address - prev->vm_end < stack_guard_gap)
2509 : return -ENOMEM;
2510 : }
2511 :
2512 : /* We must make sure the anon_vma is allocated. */
2513 954 : if (unlikely(anon_vma_prepare(vma)))
2514 : return -ENOMEM;
2515 :
2516 : /*
2517 : * vma->vm_start/vm_end cannot change under us because the caller
2518 : * is required to hold the mmap_lock in read mode. We need the
2519 : * anon_vma lock to serialize against concurrent expand_stacks.
2520 : */
2521 954 : anon_vma_lock_write(vma->anon_vma);
2522 :
2523 : /* Somebody else might have raced and expanded it already */
2524 954 : if (address < vma->vm_start) {
2525 954 : unsigned long size, grow;
2526 :
2527 954 : size = vma->vm_end - address;
2528 954 : grow = (vma->vm_start - address) >> PAGE_SHIFT;
2529 :
2530 954 : error = -ENOMEM;
2531 954 : if (grow <= vma->vm_pgoff) {
2532 954 : error = acct_stack_growth(vma, size, grow);
2533 954 : if (!error) {
2534 : /*
2535 : * vma_gap_update() doesn't support concurrent
2536 : * updates, but we only hold a shared mmap_lock
2537 : * lock here, so we need to protect against
2538 : * concurrent vma expansions.
2539 : * anon_vma_lock_write() doesn't help here, as
2540 : * we don't guarantee that all growable vmas
2541 : * in a mm share the same root anon vma.
2542 : * So, we reuse mm->page_table_lock to guard
2543 : * against concurrent vma expansions.
2544 : */
2545 954 : spin_lock(&mm->page_table_lock);
2546 954 : if (vma->vm_flags & VM_LOCKED)
2547 0 : mm->locked_vm += grow;
2548 954 : vm_stat_account(mm, vma->vm_flags, grow);
2549 954 : anon_vma_interval_tree_pre_update_vma(vma);
2550 954 : vma->vm_start = address;
2551 954 : vma->vm_pgoff -= grow;
2552 954 : anon_vma_interval_tree_post_update_vma(vma);
2553 954 : vma_gap_update(vma);
2554 954 : spin_unlock(&mm->page_table_lock);
2555 :
2556 954 : perf_event_mmap(vma);
2557 : }
2558 : }
2559 : }
2560 954 : anon_vma_unlock_write(vma->anon_vma);
2561 954 : khugepaged_enter_vma_merge(vma, vma->vm_flags);
2562 954 : validate_mm(mm);
2563 954 : return error;
2564 : }
2565 :
2566 : /* enforced gap between the expanding stack and other mappings. */
2567 : unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2568 :
2569 0 : static int __init cmdline_parse_stack_guard_gap(char *p)
2570 : {
2571 0 : unsigned long val;
2572 0 : char *endptr;
2573 :
2574 0 : val = simple_strtoul(p, &endptr, 10);
2575 0 : if (!*endptr)
2576 0 : stack_guard_gap = val << PAGE_SHIFT;
2577 :
2578 0 : return 0;
2579 : }
2580 : __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2581 :
2582 : #ifdef CONFIG_STACK_GROWSUP
2583 : int expand_stack(struct vm_area_struct *vma, unsigned long address)
2584 : {
2585 : return expand_upwards(vma, address);
2586 : }
2587 :
2588 : struct vm_area_struct *
2589 : find_extend_vma(struct mm_struct *mm, unsigned long addr)
2590 : {
2591 : struct vm_area_struct *vma, *prev;
2592 :
2593 : addr &= PAGE_MASK;
2594 : vma = find_vma_prev(mm, addr, &prev);
2595 : if (vma && (vma->vm_start <= addr))
2596 : return vma;
2597 : /* don't alter vm_end if the coredump is running */
2598 : if (!prev || expand_stack(prev, addr))
2599 : return NULL;
2600 : if (prev->vm_flags & VM_LOCKED)
2601 : populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2602 : return prev;
2603 : }
2604 : #else
2605 954 : int expand_stack(struct vm_area_struct *vma, unsigned long address)
2606 : {
2607 954 : return expand_downwards(vma, address);
2608 : }
2609 :
2610 : struct vm_area_struct *
2611 8834 : find_extend_vma(struct mm_struct *mm, unsigned long addr)
2612 : {
2613 8834 : struct vm_area_struct *vma;
2614 8834 : unsigned long start;
2615 :
2616 8834 : addr &= PAGE_MASK;
2617 8834 : vma = find_vma(mm, addr);
2618 8834 : if (!vma)
2619 : return NULL;
2620 8834 : if (vma->vm_start <= addr)
2621 : return vma;
2622 0 : if (!(vma->vm_flags & VM_GROWSDOWN))
2623 : return NULL;
2624 0 : start = vma->vm_start;
2625 0 : if (expand_stack(vma, addr))
2626 : return NULL;
2627 0 : if (vma->vm_flags & VM_LOCKED)
2628 0 : populate_vma_page_range(vma, addr, start, NULL);
2629 : return vma;
2630 : }
2631 : #endif
2632 :
2633 : EXPORT_SYMBOL_GPL(find_extend_vma);
2634 :
2635 : /*
2636 : * Ok - we have the memory areas we should free on the vma list,
2637 : * so release them, and do the vma updates.
2638 : *
2639 : * Called with the mm semaphore held.
2640 : */
2641 16778 : static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2642 : {
2643 16778 : unsigned long nr_accounted = 0;
2644 :
2645 : /* Update high watermark before we lower total_vm */
2646 16778 : update_hiwater_vm(mm);
2647 16940 : do {
2648 16940 : long nrpages = vma_pages(vma);
2649 :
2650 16940 : if (vma->vm_flags & VM_ACCOUNT)
2651 454 : nr_accounted += nrpages;
2652 16940 : vm_stat_account(mm, vma->vm_flags, -nrpages);
2653 16940 : vma = remove_vma(vma);
2654 16936 : } while (vma);
2655 16774 : vm_unacct_memory(nr_accounted);
2656 16776 : validate_mm(mm);
2657 16776 : }
2658 :
2659 : /*
2660 : * Get rid of page table information in the indicated region.
2661 : *
2662 : * Called with the mm semaphore held.
2663 : */
2664 16778 : static void unmap_region(struct mm_struct *mm,
2665 : struct vm_area_struct *vma, struct vm_area_struct *prev,
2666 : unsigned long start, unsigned long end)
2667 : {
2668 16778 : struct vm_area_struct *next = vma_next(mm, prev);
2669 16778 : struct mmu_gather tlb;
2670 :
2671 16778 : lru_add_drain();
2672 16778 : tlb_gather_mmu(&tlb, mm);
2673 16778 : update_hiwater_rss(mm);
2674 16776 : unmap_vmas(&tlb, vma, start, end);
2675 16778 : free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2676 : next ? next->vm_start : USER_PGTABLES_CEILING);
2677 16778 : tlb_finish_mmu(&tlb);
2678 16778 : }
2679 :
2680 : /*
2681 : * Create a list of vma's touched by the unmap, removing them from the mm's
2682 : * vma list as we go..
2683 : */
2684 : static bool
2685 16778 : detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2686 : struct vm_area_struct *prev, unsigned long end)
2687 : {
2688 16778 : struct vm_area_struct **insertion_point;
2689 16778 : struct vm_area_struct *tail_vma = NULL;
2690 :
2691 16778 : insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2692 16778 : vma->vm_prev = NULL;
2693 16940 : do {
2694 16940 : vma_rb_erase(vma, &mm->mm_rb);
2695 16940 : mm->map_count--;
2696 16940 : tail_vma = vma;
2697 16940 : vma = vma->vm_next;
2698 16940 : } while (vma && vma->vm_start < end);
2699 16778 : *insertion_point = vma;
2700 16778 : if (vma) {
2701 16778 : vma->vm_prev = prev;
2702 16778 : vma_gap_update(vma);
2703 : } else
2704 0 : mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2705 16778 : tail_vma->vm_next = NULL;
2706 :
2707 : /* Kill the cache */
2708 16778 : vmacache_invalidate(mm);
2709 :
2710 : /*
2711 : * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2712 : * VM_GROWSUP VMA. Such VMAs can change their size under
2713 : * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2714 : */
2715 16778 : if (vma && (vma->vm_flags & VM_GROWSDOWN))
2716 1872 : return false;
2717 : if (prev && (prev->vm_flags & VM_GROWSUP))
2718 : return false;
2719 : return true;
2720 : }
2721 :
2722 : /*
2723 : * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2724 : * has already been checked or doesn't make sense to fail.
2725 : */
2726 25413 : int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2727 : unsigned long addr, int new_below)
2728 : {
2729 25413 : struct vm_area_struct *new;
2730 25413 : int err;
2731 :
2732 25413 : if (vma->vm_ops && vma->vm_ops->may_split) {
2733 0 : err = vma->vm_ops->may_split(vma, addr);
2734 0 : if (err)
2735 : return err;
2736 : }
2737 :
2738 25413 : new = vm_area_dup(vma);
2739 25413 : if (!new)
2740 : return -ENOMEM;
2741 :
2742 25413 : if (new_below)
2743 11263 : new->vm_end = addr;
2744 : else {
2745 14150 : new->vm_start = addr;
2746 14150 : new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2747 : }
2748 :
2749 25413 : err = vma_dup_policy(vma, new);
2750 25413 : if (err)
2751 0 : goto out_free_vma;
2752 :
2753 25413 : err = anon_vma_clone(new, vma);
2754 25413 : if (err)
2755 0 : goto out_free_mpol;
2756 :
2757 25413 : if (new->vm_file)
2758 25246 : get_file(new->vm_file);
2759 :
2760 25413 : if (new->vm_ops && new->vm_ops->open)
2761 0 : new->vm_ops->open(new);
2762 :
2763 25413 : if (new_below)
2764 11263 : err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2765 11263 : ((addr - new->vm_start) >> PAGE_SHIFT), new);
2766 : else
2767 14150 : err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2768 :
2769 : /* Success. */
2770 25413 : if (!err)
2771 : return 0;
2772 :
2773 : /* Clean everything up if vma_adjust failed. */
2774 0 : if (new->vm_ops && new->vm_ops->close)
2775 0 : new->vm_ops->close(new);
2776 0 : if (new->vm_file)
2777 0 : fput(new->vm_file);
2778 0 : unlink_anon_vmas(new);
2779 0 : out_free_mpol:
2780 0 : mpol_put(vma_policy(new));
2781 0 : out_free_vma:
2782 0 : vm_area_free(new);
2783 0 : return err;
2784 : }
2785 :
2786 : /*
2787 : * Split a vma into two pieces at address 'addr', a new vma is allocated
2788 : * either for the first part or the tail.
2789 : */
2790 9911 : int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2791 : unsigned long addr, int new_below)
2792 : {
2793 9911 : if (mm->map_count >= sysctl_max_map_count)
2794 : return -ENOMEM;
2795 :
2796 9911 : return __split_vma(mm, vma, addr, new_below);
2797 : }
2798 :
2799 : /* Munmap is split into 2 main parts -- this part which finds
2800 : * what needs doing, and the areas themselves, which do the
2801 : * work. This now handles partial unmappings.
2802 : * Jeremy Fitzhardinge <jeremy@goop.org>
2803 : */
2804 16778 : int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2805 : struct list_head *uf, bool downgrade)
2806 : {
2807 16778 : unsigned long end;
2808 16778 : struct vm_area_struct *vma, *prev, *last;
2809 :
2810 16778 : if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2811 0 : return -EINVAL;
2812 :
2813 16778 : len = PAGE_ALIGN(len);
2814 16778 : end = start + len;
2815 16778 : if (len == 0)
2816 : return -EINVAL;
2817 :
2818 : /*
2819 : * arch_unmap() might do unmaps itself. It must be called
2820 : * and finish any rbtree manipulation before this code
2821 : * runs and also starts to manipulate the rbtree.
2822 : */
2823 16778 : arch_unmap(mm, start, end);
2824 :
2825 : /* Find the first overlapping VMA */
2826 16778 : vma = find_vma(mm, start);
2827 16778 : if (!vma)
2828 : return 0;
2829 16778 : prev = vma->vm_prev;
2830 : /* we have start < vma->vm_end */
2831 :
2832 : /* if it doesn't overlap, we have nothing.. */
2833 16778 : if (vma->vm_start >= end)
2834 : return 0;
2835 :
2836 : /*
2837 : * If we need to split any vma, do it now to save pain later.
2838 : *
2839 : * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2840 : * unmapped vm_area_struct will remain in use: so lower split_vma
2841 : * places tmp vma above, and higher split_vma places tmp vma below.
2842 : */
2843 16778 : if (start > vma->vm_start) {
2844 6213 : int error;
2845 :
2846 : /*
2847 : * Make sure that map_count on return from munmap() will
2848 : * not exceed its limit; but let map_count go just above
2849 : * its limit temporarily, to help free resources as expected.
2850 : */
2851 6213 : if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2852 : return -ENOMEM;
2853 :
2854 6213 : error = __split_vma(mm, vma, start, 0);
2855 6213 : if (error)
2856 : return error;
2857 : prev = vma;
2858 : }
2859 :
2860 : /* Does it split the last one? */
2861 16778 : last = find_vma(mm, end);
2862 16778 : if (last && end > last->vm_start) {
2863 9289 : int error = __split_vma(mm, last, end, 1);
2864 9289 : if (error)
2865 : return error;
2866 : }
2867 16778 : vma = vma_next(mm, prev);
2868 :
2869 16778 : if (unlikely(uf)) {
2870 : /*
2871 : * If userfaultfd_unmap_prep returns an error the vmas
2872 : * will remain splitted, but userland will get a
2873 : * highly unexpected error anyway. This is no
2874 : * different than the case where the first of the two
2875 : * __split_vma fails, but we don't undo the first
2876 : * split, despite we could. This is unlikely enough
2877 : * failure that it's not worth optimizing it for.
2878 : */
2879 16778 : int error = userfaultfd_unmap_prep(vma, start, end, uf);
2880 : if (error)
2881 : return error;
2882 : }
2883 :
2884 : /*
2885 : * unlock any mlock()ed ranges before detaching vmas
2886 : */
2887 16778 : if (mm->locked_vm) {
2888 : struct vm_area_struct *tmp = vma;
2889 2 : while (tmp && tmp->vm_start < end) {
2890 1 : if (tmp->vm_flags & VM_LOCKED) {
2891 1 : mm->locked_vm -= vma_pages(tmp);
2892 1 : munlock_vma_pages_all(tmp);
2893 : }
2894 :
2895 1 : tmp = tmp->vm_next;
2896 : }
2897 : }
2898 :
2899 : /* Detach vmas from rbtree */
2900 16778 : if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2901 : downgrade = false;
2902 :
2903 14906 : if (downgrade)
2904 1574 : mmap_write_downgrade(mm);
2905 :
2906 16778 : unmap_region(mm, vma, prev, start, end);
2907 :
2908 : /* Fix up all other VM information */
2909 16778 : remove_vma_list(mm, vma);
2910 :
2911 16776 : return downgrade ? 1 : 0;
2912 : }
2913 :
2914 13332 : int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2915 : struct list_head *uf)
2916 : {
2917 13332 : return __do_munmap(mm, start, len, uf, false);
2918 : }
2919 :
2920 3354 : static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2921 : {
2922 3354 : int ret;
2923 3354 : struct mm_struct *mm = current->mm;
2924 3354 : LIST_HEAD(uf);
2925 :
2926 3354 : if (mmap_write_lock_killable(mm))
2927 : return -EINTR;
2928 :
2929 3354 : ret = __do_munmap(mm, start, len, &uf, downgrade);
2930 : /*
2931 : * Returning 1 indicates mmap_lock is downgraded.
2932 : * But 1 is not legal return value of vm_munmap() and munmap(), reset
2933 : * it to 0 before return.
2934 : */
2935 3354 : if (ret == 1) {
2936 1482 : mmap_read_unlock(mm);
2937 1482 : ret = 0;
2938 : } else
2939 1872 : mmap_write_unlock(mm);
2940 :
2941 3354 : userfaultfd_unmap_complete(mm, &uf);
2942 : return ret;
2943 : }
2944 :
2945 1872 : int vm_munmap(unsigned long start, size_t len)
2946 : {
2947 1872 : return __vm_munmap(start, len, false);
2948 : }
2949 : EXPORT_SYMBOL(vm_munmap);
2950 :
2951 2964 : SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2952 : {
2953 1482 : addr = untagged_addr(addr);
2954 1482 : profile_munmap(addr);
2955 1482 : return __vm_munmap(addr, len, true);
2956 : }
2957 :
2958 :
2959 : /*
2960 : * Emulation of deprecated remap_file_pages() syscall.
2961 : */
2962 0 : SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2963 : unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2964 : {
2965 :
2966 0 : struct mm_struct *mm = current->mm;
2967 0 : struct vm_area_struct *vma;
2968 0 : unsigned long populate = 0;
2969 0 : unsigned long ret = -EINVAL;
2970 0 : struct file *file;
2971 :
2972 0 : pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2973 : current->comm, current->pid);
2974 :
2975 0 : if (prot)
2976 : return ret;
2977 0 : start = start & PAGE_MASK;
2978 0 : size = size & PAGE_MASK;
2979 :
2980 0 : if (start + size <= start)
2981 : return ret;
2982 :
2983 : /* Does pgoff wrap? */
2984 0 : if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2985 : return ret;
2986 :
2987 0 : if (mmap_write_lock_killable(mm))
2988 : return -EINTR;
2989 :
2990 0 : vma = find_vma(mm, start);
2991 :
2992 0 : if (!vma || !(vma->vm_flags & VM_SHARED))
2993 0 : goto out;
2994 :
2995 0 : if (start < vma->vm_start)
2996 0 : goto out;
2997 :
2998 0 : if (start + size > vma->vm_end) {
2999 0 : struct vm_area_struct *next;
3000 :
3001 0 : for (next = vma->vm_next; next; next = next->vm_next) {
3002 : /* hole between vmas ? */
3003 0 : if (next->vm_start != next->vm_prev->vm_end)
3004 0 : goto out;
3005 :
3006 0 : if (next->vm_file != vma->vm_file)
3007 0 : goto out;
3008 :
3009 0 : if (next->vm_flags != vma->vm_flags)
3010 0 : goto out;
3011 :
3012 0 : if (start + size <= next->vm_end)
3013 : break;
3014 : }
3015 :
3016 0 : if (!next)
3017 0 : goto out;
3018 : }
3019 :
3020 0 : prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3021 0 : prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3022 0 : prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3023 :
3024 0 : flags &= MAP_NONBLOCK;
3025 0 : flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3026 0 : if (vma->vm_flags & VM_LOCKED) {
3027 0 : struct vm_area_struct *tmp;
3028 0 : flags |= MAP_LOCKED;
3029 :
3030 : /* drop PG_Mlocked flag for over-mapped range */
3031 0 : for (tmp = vma; tmp->vm_start >= start + size;
3032 0 : tmp = tmp->vm_next) {
3033 : /*
3034 : * Split pmd and munlock page on the border
3035 : * of the range.
3036 : */
3037 0 : vma_adjust_trans_huge(tmp, start, start + size, 0);
3038 :
3039 0 : munlock_vma_pages_range(tmp,
3040 0 : max(tmp->vm_start, start),
3041 0 : min(tmp->vm_end, start + size));
3042 : }
3043 : }
3044 :
3045 0 : file = get_file(vma->vm_file);
3046 0 : ret = do_mmap(vma->vm_file, start, size,
3047 : prot, flags, pgoff, &populate, NULL);
3048 0 : fput(file);
3049 0 : out:
3050 0 : mmap_write_unlock(mm);
3051 0 : if (populate)
3052 0 : mm_populate(ret, populate);
3053 0 : if (!IS_ERR_VALUE(ret))
3054 0 : ret = 0;
3055 0 : return ret;
3056 : }
3057 :
3058 : /*
3059 : * this is really a simplified "do_mmap". it only handles
3060 : * anonymous maps. eventually we may be able to do some
3061 : * brk-specific accounting here.
3062 : */
3063 2520 : static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3064 : {
3065 2520 : struct mm_struct *mm = current->mm;
3066 2520 : struct vm_area_struct *vma, *prev;
3067 2520 : struct rb_node **rb_link, *rb_parent;
3068 2520 : pgoff_t pgoff = addr >> PAGE_SHIFT;
3069 2520 : int error;
3070 2520 : unsigned long mapped_addr;
3071 :
3072 : /* Until we need other flags, refuse anything except VM_EXEC. */
3073 2520 : if ((flags & (~VM_EXEC)) != 0)
3074 : return -EINVAL;
3075 2520 : flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3076 :
3077 2520 : mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3078 2520 : if (IS_ERR_VALUE(mapped_addr))
3079 0 : return mapped_addr;
3080 :
3081 2520 : error = mlock_future_check(mm, mm->def_flags, len);
3082 2520 : if (error)
3083 : return error;
3084 :
3085 : /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3086 2520 : if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3087 : return -ENOMEM;
3088 :
3089 : /* Check against address space limits *after* clearing old maps... */
3090 2520 : if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3091 : return -ENOMEM;
3092 :
3093 2520 : if (mm->map_count > sysctl_max_map_count)
3094 : return -ENOMEM;
3095 :
3096 2520 : if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3097 : return -ENOMEM;
3098 :
3099 : /* Can we just expand an old private anonymous mapping? */
3100 2520 : vma = vma_merge(mm, prev, addr, addr + len, flags,
3101 : NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3102 2520 : if (vma)
3103 254 : goto out;
3104 :
3105 : /*
3106 : * create a vma struct for an anonymous mapping
3107 : */
3108 2266 : vma = vm_area_alloc(mm);
3109 2266 : if (!vma) {
3110 0 : vm_unacct_memory(len >> PAGE_SHIFT);
3111 0 : return -ENOMEM;
3112 : }
3113 :
3114 2266 : vma_set_anonymous(vma);
3115 2266 : vma->vm_start = addr;
3116 2266 : vma->vm_end = addr + len;
3117 2266 : vma->vm_pgoff = pgoff;
3118 2266 : vma->vm_flags = flags;
3119 2266 : vma->vm_page_prot = vm_get_page_prot(flags);
3120 2266 : vma_link(mm, vma, prev, rb_link, rb_parent);
3121 2520 : out:
3122 2520 : perf_event_mmap(vma);
3123 2520 : mm->total_vm += len >> PAGE_SHIFT;
3124 2520 : mm->data_vm += len >> PAGE_SHIFT;
3125 2520 : if (flags & VM_LOCKED)
3126 0 : mm->locked_vm += (len >> PAGE_SHIFT);
3127 2520 : vma->vm_flags |= VM_SOFTDIRTY;
3128 2520 : return 0;
3129 : }
3130 :
3131 1337 : int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3132 : {
3133 1337 : struct mm_struct *mm = current->mm;
3134 1337 : unsigned long len;
3135 1337 : int ret;
3136 1337 : bool populate;
3137 1337 : LIST_HEAD(uf);
3138 :
3139 1337 : len = PAGE_ALIGN(request);
3140 1337 : if (len < request)
3141 : return -ENOMEM;
3142 1337 : if (!len)
3143 : return 0;
3144 :
3145 1337 : if (mmap_write_lock_killable(mm))
3146 : return -EINTR;
3147 :
3148 1337 : ret = do_brk_flags(addr, len, flags, &uf);
3149 1337 : populate = ((mm->def_flags & VM_LOCKED) != 0);
3150 1337 : mmap_write_unlock(mm);
3151 1337 : userfaultfd_unmap_complete(mm, &uf);
3152 1337 : if (populate && !ret)
3153 0 : mm_populate(addr, len);
3154 : return ret;
3155 : }
3156 : EXPORT_SYMBOL(vm_brk_flags);
3157 :
3158 0 : int vm_brk(unsigned long addr, unsigned long len)
3159 : {
3160 0 : return vm_brk_flags(addr, len, 0);
3161 : }
3162 : EXPORT_SYMBOL(vm_brk);
3163 :
3164 : /* Release all mmaps. */
3165 3728 : void exit_mmap(struct mm_struct *mm)
3166 : {
3167 3728 : struct mmu_gather tlb;
3168 3728 : struct vm_area_struct *vma;
3169 3728 : unsigned long nr_accounted = 0;
3170 :
3171 : /* mm's last user has gone, and its about to be pulled down */
3172 3728 : mmu_notifier_release(mm);
3173 :
3174 3728 : if (unlikely(mm_is_oom_victim(mm))) {
3175 : /*
3176 : * Manually reap the mm to free as much memory as possible.
3177 : * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3178 : * this mm from further consideration. Taking mm->mmap_lock for
3179 : * write after setting MMF_OOM_SKIP will guarantee that the oom
3180 : * reaper will not run on this mm again after mmap_lock is
3181 : * dropped.
3182 : *
3183 : * Nothing can be holding mm->mmap_lock here and the above call
3184 : * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3185 : * __oom_reap_task_mm() will not block.
3186 : *
3187 : * This needs to be done before calling munlock_vma_pages_all(),
3188 : * which clears VM_LOCKED, otherwise the oom reaper cannot
3189 : * reliably test it.
3190 : */
3191 0 : (void)__oom_reap_task_mm(mm);
3192 :
3193 0 : set_bit(MMF_OOM_SKIP, &mm->flags);
3194 0 : mmap_write_lock(mm);
3195 0 : mmap_write_unlock(mm);
3196 : }
3197 :
3198 3728 : if (mm->locked_vm) {
3199 0 : vma = mm->mmap;
3200 0 : while (vma) {
3201 0 : if (vma->vm_flags & VM_LOCKED)
3202 0 : munlock_vma_pages_all(vma);
3203 0 : vma = vma->vm_next;
3204 : }
3205 : }
3206 :
3207 3728 : arch_exit_mmap(mm);
3208 :
3209 3728 : vma = mm->mmap;
3210 3728 : if (!vma) /* Can happen if dup_mmap() received an OOM */
3211 0 : return;
3212 :
3213 3728 : lru_add_drain();
3214 3728 : flush_cache_mm(mm);
3215 3728 : tlb_gather_mmu_fullmm(&tlb, mm);
3216 : /* update_hiwater_rss(mm) here? but nobody should be looking */
3217 : /* Use -1 here to ensure all VMAs in the mm are unmapped */
3218 3728 : unmap_vmas(&tlb, vma, 0, -1);
3219 3728 : free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3220 3728 : tlb_finish_mmu(&tlb);
3221 :
3222 : /*
3223 : * Walk the list again, actually closing and freeing it,
3224 : * with preemption enabled, without holding any MM locks.
3225 : */
3226 101045 : while (vma) {
3227 97317 : if (vma->vm_flags & VM_ACCOUNT)
3228 45297 : nr_accounted += vma_pages(vma);
3229 97317 : vma = remove_vma(vma);
3230 97311 : cond_resched();
3231 : }
3232 3728 : vm_unacct_memory(nr_accounted);
3233 : }
3234 :
3235 : /* Insert vm structure into process list sorted by address
3236 : * and into the inode's i_mmap tree. If vm_file is non-NULL
3237 : * then i_mmap_rwsem is taken here.
3238 : */
3239 4384 : int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3240 : {
3241 4384 : struct vm_area_struct *prev;
3242 4384 : struct rb_node **rb_link, *rb_parent;
3243 :
3244 8768 : if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3245 : &prev, &rb_link, &rb_parent))
3246 : return -ENOMEM;
3247 6892 : if ((vma->vm_flags & VM_ACCOUNT) &&
3248 2508 : security_vm_enough_memory_mm(mm, vma_pages(vma)))
3249 : return -ENOMEM;
3250 :
3251 : /*
3252 : * The vm_pgoff of a purely anonymous vma should be irrelevant
3253 : * until its first write fault, when page's anon_vma and index
3254 : * are set. But now set the vm_pgoff it will almost certainly
3255 : * end up with (unless mremap moves it elsewhere before that
3256 : * first wfault), so /proc/pid/maps tells a consistent story.
3257 : *
3258 : * By setting it to reflect the virtual start address of the
3259 : * vma, merges and splits can happen in a seamless way, just
3260 : * using the existing file pgoff checks and manipulations.
3261 : * Similarly in do_mmap and in do_brk_flags.
3262 : */
3263 4384 : if (vma_is_anonymous(vma)) {
3264 2508 : BUG_ON(vma->anon_vma);
3265 2508 : vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3266 : }
3267 :
3268 4384 : vma_link(mm, vma, prev, rb_link, rb_parent);
3269 4384 : return 0;
3270 : }
3271 :
3272 : /*
3273 : * Copy the vma structure to a new location in the same mm,
3274 : * prior to moving page table entries, to effect an mremap move.
3275 : */
3276 0 : struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3277 : unsigned long addr, unsigned long len, pgoff_t pgoff,
3278 : bool *need_rmap_locks)
3279 : {
3280 0 : struct vm_area_struct *vma = *vmap;
3281 0 : unsigned long vma_start = vma->vm_start;
3282 0 : struct mm_struct *mm = vma->vm_mm;
3283 0 : struct vm_area_struct *new_vma, *prev;
3284 0 : struct rb_node **rb_link, *rb_parent;
3285 0 : bool faulted_in_anon_vma = true;
3286 :
3287 : /*
3288 : * If anonymous vma has not yet been faulted, update new pgoff
3289 : * to match new location, to increase its chance of merging.
3290 : */
3291 0 : if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3292 0 : pgoff = addr >> PAGE_SHIFT;
3293 0 : faulted_in_anon_vma = false;
3294 : }
3295 :
3296 0 : if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3297 : return NULL; /* should never get here */
3298 0 : new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3299 : vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3300 : vma->vm_userfaultfd_ctx);
3301 0 : if (new_vma) {
3302 : /*
3303 : * Source vma may have been merged into new_vma
3304 : */
3305 0 : if (unlikely(vma_start >= new_vma->vm_start &&
3306 : vma_start < new_vma->vm_end)) {
3307 : /*
3308 : * The only way we can get a vma_merge with
3309 : * self during an mremap is if the vma hasn't
3310 : * been faulted in yet and we were allowed to
3311 : * reset the dst vma->vm_pgoff to the
3312 : * destination address of the mremap to allow
3313 : * the merge to happen. mremap must change the
3314 : * vm_pgoff linearity between src and dst vmas
3315 : * (in turn preventing a vma_merge) to be
3316 : * safe. It is only safe to keep the vm_pgoff
3317 : * linear if there are no pages mapped yet.
3318 : */
3319 0 : VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3320 0 : *vmap = vma = new_vma;
3321 : }
3322 0 : *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3323 : } else {
3324 0 : new_vma = vm_area_dup(vma);
3325 0 : if (!new_vma)
3326 0 : goto out;
3327 0 : new_vma->vm_start = addr;
3328 0 : new_vma->vm_end = addr + len;
3329 0 : new_vma->vm_pgoff = pgoff;
3330 0 : if (vma_dup_policy(vma, new_vma))
3331 0 : goto out_free_vma;
3332 0 : if (anon_vma_clone(new_vma, vma))
3333 0 : goto out_free_mempol;
3334 0 : if (new_vma->vm_file)
3335 0 : get_file(new_vma->vm_file);
3336 0 : if (new_vma->vm_ops && new_vma->vm_ops->open)
3337 0 : new_vma->vm_ops->open(new_vma);
3338 0 : vma_link(mm, new_vma, prev, rb_link, rb_parent);
3339 0 : *need_rmap_locks = false;
3340 : }
3341 : return new_vma;
3342 :
3343 0 : out_free_mempol:
3344 0 : mpol_put(vma_policy(new_vma));
3345 0 : out_free_vma:
3346 0 : vm_area_free(new_vma);
3347 : out:
3348 : return NULL;
3349 : }
3350 :
3351 : /*
3352 : * Return true if the calling process may expand its vm space by the passed
3353 : * number of pages
3354 : */
3355 32253 : bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3356 : {
3357 32253 : if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3358 : return false;
3359 :
3360 32253 : if (is_data_mapping(flags) &&
3361 12496 : mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3362 : /* Workaround for Valgrind */
3363 0 : if (rlimit(RLIMIT_DATA) == 0 &&
3364 0 : mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3365 : return true;
3366 :
3367 0 : pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3368 : current->comm, current->pid,
3369 : (mm->data_vm + npages) << PAGE_SHIFT,
3370 : rlimit(RLIMIT_DATA),
3371 : ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3372 :
3373 0 : if (!ignore_rlimit_data)
3374 0 : return false;
3375 : }
3376 :
3377 : return true;
3378 : }
3379 :
3380 64434 : void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3381 : {
3382 64434 : mm->total_vm += npages;
3383 :
3384 64434 : if (is_exec_mapping(flags))
3385 8015 : mm->exec_vm += npages;
3386 56419 : else if (is_stack_mapping(flags))
3387 954 : mm->stack_vm += npages;
3388 55465 : else if (is_data_mapping(flags))
3389 16349 : mm->data_vm += npages;
3390 64434 : }
3391 :
3392 : static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3393 :
3394 : /*
3395 : * Having a close hook prevents vma merging regardless of flags.
3396 : */
3397 4316 : static void special_mapping_close(struct vm_area_struct *vma)
3398 : {
3399 4316 : }
3400 :
3401 0 : static const char *special_mapping_name(struct vm_area_struct *vma)
3402 : {
3403 0 : return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3404 : }
3405 :
3406 0 : static int special_mapping_mremap(struct vm_area_struct *new_vma,
3407 : unsigned long flags)
3408 : {
3409 0 : struct vm_special_mapping *sm = new_vma->vm_private_data;
3410 :
3411 0 : if (flags & MREMAP_DONTUNMAP)
3412 : return -EINVAL;
3413 :
3414 0 : if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3415 : return -EFAULT;
3416 :
3417 0 : if (sm->mremap)
3418 0 : return sm->mremap(sm, new_vma);
3419 :
3420 : return 0;
3421 : }
3422 :
3423 0 : static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3424 : {
3425 : /*
3426 : * Forbid splitting special mappings - kernel has expectations over
3427 : * the number of pages in mapping. Together with VM_DONTEXPAND
3428 : * the size of vma should stay the same over the special mapping's
3429 : * lifetime.
3430 : */
3431 0 : return -EINVAL;
3432 : }
3433 :
3434 : static const struct vm_operations_struct special_mapping_vmops = {
3435 : .close = special_mapping_close,
3436 : .fault = special_mapping_fault,
3437 : .mremap = special_mapping_mremap,
3438 : .name = special_mapping_name,
3439 : /* vDSO code relies that VVAR can't be accessed remotely */
3440 : .access = NULL,
3441 : .may_split = special_mapping_split,
3442 : };
3443 :
3444 : static const struct vm_operations_struct legacy_special_mapping_vmops = {
3445 : .close = special_mapping_close,
3446 : .fault = special_mapping_fault,
3447 : };
3448 :
3449 1096 : static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3450 : {
3451 1096 : struct vm_area_struct *vma = vmf->vma;
3452 1096 : pgoff_t pgoff;
3453 1096 : struct page **pages;
3454 :
3455 1096 : if (vma->vm_ops == &legacy_special_mapping_vmops) {
3456 0 : pages = vma->vm_private_data;
3457 : } else {
3458 1096 : struct vm_special_mapping *sm = vma->vm_private_data;
3459 :
3460 1096 : if (sm->fault)
3461 1096 : return sm->fault(sm, vmf->vma, vmf);
3462 :
3463 0 : pages = sm->pages;
3464 : }
3465 :
3466 0 : for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3467 0 : pgoff--;
3468 :
3469 0 : if (*pages) {
3470 0 : struct page *page = *pages;
3471 0 : get_page(page);
3472 0 : vmf->page = page;
3473 0 : return 0;
3474 : }
3475 :
3476 : return VM_FAULT_SIGBUS;
3477 : }
3478 :
3479 1876 : static struct vm_area_struct *__install_special_mapping(
3480 : struct mm_struct *mm,
3481 : unsigned long addr, unsigned long len,
3482 : unsigned long vm_flags, void *priv,
3483 : const struct vm_operations_struct *ops)
3484 : {
3485 1876 : int ret;
3486 1876 : struct vm_area_struct *vma;
3487 :
3488 1876 : vma = vm_area_alloc(mm);
3489 1876 : if (unlikely(vma == NULL))
3490 1876 : return ERR_PTR(-ENOMEM);
3491 :
3492 1876 : vma->vm_start = addr;
3493 1876 : vma->vm_end = addr + len;
3494 :
3495 1876 : vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3496 1876 : vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3497 :
3498 1876 : vma->vm_ops = ops;
3499 1876 : vma->vm_private_data = priv;
3500 :
3501 1876 : ret = insert_vm_struct(mm, vma);
3502 1876 : if (ret)
3503 0 : goto out;
3504 :
3505 1876 : vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3506 :
3507 1876 : perf_event_mmap(vma);
3508 :
3509 1876 : return vma;
3510 :
3511 0 : out:
3512 0 : vm_area_free(vma);
3513 0 : return ERR_PTR(ret);
3514 : }
3515 :
3516 0 : bool vma_is_special_mapping(const struct vm_area_struct *vma,
3517 : const struct vm_special_mapping *sm)
3518 : {
3519 0 : return vma->vm_private_data == sm &&
3520 0 : (vma->vm_ops == &special_mapping_vmops ||
3521 : vma->vm_ops == &legacy_special_mapping_vmops);
3522 : }
3523 :
3524 : /*
3525 : * Called with mm->mmap_lock held for writing.
3526 : * Insert a new vma covering the given region, with the given flags.
3527 : * Its pages are supplied by the given array of struct page *.
3528 : * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3529 : * The region past the last page supplied will always produce SIGBUS.
3530 : * The array pointer and the pages it points to are assumed to stay alive
3531 : * for as long as this mapping might exist.
3532 : */
3533 1876 : struct vm_area_struct *_install_special_mapping(
3534 : struct mm_struct *mm,
3535 : unsigned long addr, unsigned long len,
3536 : unsigned long vm_flags, const struct vm_special_mapping *spec)
3537 : {
3538 1876 : return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3539 : &special_mapping_vmops);
3540 : }
3541 :
3542 0 : int install_special_mapping(struct mm_struct *mm,
3543 : unsigned long addr, unsigned long len,
3544 : unsigned long vm_flags, struct page **pages)
3545 : {
3546 0 : struct vm_area_struct *vma = __install_special_mapping(
3547 : mm, addr, len, vm_flags, (void *)pages,
3548 : &legacy_special_mapping_vmops);
3549 :
3550 0 : return PTR_ERR_OR_ZERO(vma);
3551 : }
3552 :
3553 : static DEFINE_MUTEX(mm_all_locks_mutex);
3554 :
3555 0 : static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3556 : {
3557 0 : if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3558 : /*
3559 : * The LSB of head.next can't change from under us
3560 : * because we hold the mm_all_locks_mutex.
3561 : */
3562 0 : down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3563 : /*
3564 : * We can safely modify head.next after taking the
3565 : * anon_vma->root->rwsem. If some other vma in this mm shares
3566 : * the same anon_vma we won't take it again.
3567 : *
3568 : * No need of atomic instructions here, head.next
3569 : * can't change from under us thanks to the
3570 : * anon_vma->root->rwsem.
3571 : */
3572 0 : if (__test_and_set_bit(0, (unsigned long *)
3573 0 : &anon_vma->root->rb_root.rb_root.rb_node))
3574 0 : BUG();
3575 : }
3576 0 : }
3577 :
3578 0 : static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3579 : {
3580 0 : if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3581 : /*
3582 : * AS_MM_ALL_LOCKS can't change from under us because
3583 : * we hold the mm_all_locks_mutex.
3584 : *
3585 : * Operations on ->flags have to be atomic because
3586 : * even if AS_MM_ALL_LOCKS is stable thanks to the
3587 : * mm_all_locks_mutex, there may be other cpus
3588 : * changing other bitflags in parallel to us.
3589 : */
3590 0 : if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3591 0 : BUG();
3592 0 : down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3593 : }
3594 0 : }
3595 :
3596 : /*
3597 : * This operation locks against the VM for all pte/vma/mm related
3598 : * operations that could ever happen on a certain mm. This includes
3599 : * vmtruncate, try_to_unmap, and all page faults.
3600 : *
3601 : * The caller must take the mmap_lock in write mode before calling
3602 : * mm_take_all_locks(). The caller isn't allowed to release the
3603 : * mmap_lock until mm_drop_all_locks() returns.
3604 : *
3605 : * mmap_lock in write mode is required in order to block all operations
3606 : * that could modify pagetables and free pages without need of
3607 : * altering the vma layout. It's also needed in write mode to avoid new
3608 : * anon_vmas to be associated with existing vmas.
3609 : *
3610 : * A single task can't take more than one mm_take_all_locks() in a row
3611 : * or it would deadlock.
3612 : *
3613 : * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3614 : * mapping->flags avoid to take the same lock twice, if more than one
3615 : * vma in this mm is backed by the same anon_vma or address_space.
3616 : *
3617 : * We take locks in following order, accordingly to comment at beginning
3618 : * of mm/rmap.c:
3619 : * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3620 : * hugetlb mapping);
3621 : * - all i_mmap_rwsem locks;
3622 : * - all anon_vma->rwseml
3623 : *
3624 : * We can take all locks within these types randomly because the VM code
3625 : * doesn't nest them and we protected from parallel mm_take_all_locks() by
3626 : * mm_all_locks_mutex.
3627 : *
3628 : * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3629 : * that may have to take thousand of locks.
3630 : *
3631 : * mm_take_all_locks() can fail if it's interrupted by signals.
3632 : */
3633 0 : int mm_take_all_locks(struct mm_struct *mm)
3634 : {
3635 0 : struct vm_area_struct *vma;
3636 0 : struct anon_vma_chain *avc;
3637 :
3638 0 : BUG_ON(mmap_read_trylock(mm));
3639 :
3640 0 : mutex_lock(&mm_all_locks_mutex);
3641 :
3642 0 : for (vma = mm->mmap; vma; vma = vma->vm_next) {
3643 0 : if (signal_pending(current))
3644 0 : goto out_unlock;
3645 0 : if (vma->vm_file && vma->vm_file->f_mapping &&
3646 0 : is_vm_hugetlb_page(vma))
3647 : vm_lock_mapping(mm, vma->vm_file->f_mapping);
3648 : }
3649 :
3650 0 : for (vma = mm->mmap; vma; vma = vma->vm_next) {
3651 0 : if (signal_pending(current))
3652 0 : goto out_unlock;
3653 0 : if (vma->vm_file && vma->vm_file->f_mapping &&
3654 0 : !is_vm_hugetlb_page(vma))
3655 0 : vm_lock_mapping(mm, vma->vm_file->f_mapping);
3656 : }
3657 :
3658 0 : for (vma = mm->mmap; vma; vma = vma->vm_next) {
3659 0 : if (signal_pending(current))
3660 0 : goto out_unlock;
3661 0 : if (vma->anon_vma)
3662 0 : list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3663 0 : vm_lock_anon_vma(mm, avc->anon_vma);
3664 : }
3665 :
3666 : return 0;
3667 :
3668 0 : out_unlock:
3669 0 : mm_drop_all_locks(mm);
3670 0 : return -EINTR;
3671 : }
3672 :
3673 0 : static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3674 : {
3675 0 : if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3676 : /*
3677 : * The LSB of head.next can't change to 0 from under
3678 : * us because we hold the mm_all_locks_mutex.
3679 : *
3680 : * We must however clear the bitflag before unlocking
3681 : * the vma so the users using the anon_vma->rb_root will
3682 : * never see our bitflag.
3683 : *
3684 : * No need of atomic instructions here, head.next
3685 : * can't change from under us until we release the
3686 : * anon_vma->root->rwsem.
3687 : */
3688 0 : if (!__test_and_clear_bit(0, (unsigned long *)
3689 0 : &anon_vma->root->rb_root.rb_root.rb_node))
3690 0 : BUG();
3691 0 : anon_vma_unlock_write(anon_vma);
3692 : }
3693 0 : }
3694 :
3695 0 : static void vm_unlock_mapping(struct address_space *mapping)
3696 : {
3697 0 : if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3698 : /*
3699 : * AS_MM_ALL_LOCKS can't change to 0 from under us
3700 : * because we hold the mm_all_locks_mutex.
3701 : */
3702 0 : i_mmap_unlock_write(mapping);
3703 0 : if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3704 : &mapping->flags))
3705 0 : BUG();
3706 : }
3707 0 : }
3708 :
3709 : /*
3710 : * The mmap_lock cannot be released by the caller until
3711 : * mm_drop_all_locks() returns.
3712 : */
3713 0 : void mm_drop_all_locks(struct mm_struct *mm)
3714 : {
3715 0 : struct vm_area_struct *vma;
3716 0 : struct anon_vma_chain *avc;
3717 :
3718 0 : BUG_ON(mmap_read_trylock(mm));
3719 0 : BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3720 :
3721 0 : for (vma = mm->mmap; vma; vma = vma->vm_next) {
3722 0 : if (vma->anon_vma)
3723 0 : list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3724 0 : vm_unlock_anon_vma(avc->anon_vma);
3725 0 : if (vma->vm_file && vma->vm_file->f_mapping)
3726 0 : vm_unlock_mapping(vma->vm_file->f_mapping);
3727 : }
3728 :
3729 0 : mutex_unlock(&mm_all_locks_mutex);
3730 0 : }
3731 :
3732 : /*
3733 : * initialise the percpu counter for VM
3734 : */
3735 1 : void __init mmap_init(void)
3736 : {
3737 1 : int ret;
3738 :
3739 1 : ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3740 1 : VM_BUG_ON(ret);
3741 1 : }
3742 :
3743 : /*
3744 : * Initialise sysctl_user_reserve_kbytes.
3745 : *
3746 : * This is intended to prevent a user from starting a single memory hogging
3747 : * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3748 : * mode.
3749 : *
3750 : * The default value is min(3% of free memory, 128MB)
3751 : * 128MB is enough to recover with sshd/login, bash, and top/kill.
3752 : */
3753 1 : static int init_user_reserve(void)
3754 : {
3755 1 : unsigned long free_kbytes;
3756 :
3757 1 : free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3758 :
3759 1 : sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3760 1 : return 0;
3761 : }
3762 : subsys_initcall(init_user_reserve);
3763 :
3764 : /*
3765 : * Initialise sysctl_admin_reserve_kbytes.
3766 : *
3767 : * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3768 : * to log in and kill a memory hogging process.
3769 : *
3770 : * Systems with more than 256MB will reserve 8MB, enough to recover
3771 : * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3772 : * only reserve 3% of free pages by default.
3773 : */
3774 1 : static int init_admin_reserve(void)
3775 : {
3776 1 : unsigned long free_kbytes;
3777 :
3778 1 : free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3779 :
3780 1 : sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3781 1 : return 0;
3782 : }
3783 : subsys_initcall(init_admin_reserve);
3784 :
3785 : /*
3786 : * Reinititalise user and admin reserves if memory is added or removed.
3787 : *
3788 : * The default user reserve max is 128MB, and the default max for the
3789 : * admin reserve is 8MB. These are usually, but not always, enough to
3790 : * enable recovery from a memory hogging process using login/sshd, a shell,
3791 : * and tools like top. It may make sense to increase or even disable the
3792 : * reserve depending on the existence of swap or variations in the recovery
3793 : * tools. So, the admin may have changed them.
3794 : *
3795 : * If memory is added and the reserves have been eliminated or increased above
3796 : * the default max, then we'll trust the admin.
3797 : *
3798 : * If memory is removed and there isn't enough free memory, then we
3799 : * need to reset the reserves.
3800 : *
3801 : * Otherwise keep the reserve set by the admin.
3802 : */
3803 : static int reserve_mem_notifier(struct notifier_block *nb,
3804 : unsigned long action, void *data)
3805 : {
3806 : unsigned long tmp, free_kbytes;
3807 :
3808 : switch (action) {
3809 : case MEM_ONLINE:
3810 : /* Default max is 128MB. Leave alone if modified by operator. */
3811 : tmp = sysctl_user_reserve_kbytes;
3812 : if (0 < tmp && tmp < (1UL << 17))
3813 : init_user_reserve();
3814 :
3815 : /* Default max is 8MB. Leave alone if modified by operator. */
3816 : tmp = sysctl_admin_reserve_kbytes;
3817 : if (0 < tmp && tmp < (1UL << 13))
3818 : init_admin_reserve();
3819 :
3820 : break;
3821 : case MEM_OFFLINE:
3822 : free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3823 :
3824 : if (sysctl_user_reserve_kbytes > free_kbytes) {
3825 : init_user_reserve();
3826 : pr_info("vm.user_reserve_kbytes reset to %lu\n",
3827 : sysctl_user_reserve_kbytes);
3828 : }
3829 :
3830 : if (sysctl_admin_reserve_kbytes > free_kbytes) {
3831 : init_admin_reserve();
3832 : pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3833 : sysctl_admin_reserve_kbytes);
3834 : }
3835 : break;
3836 : default:
3837 : break;
3838 : }
3839 : return NOTIFY_OK;
3840 : }
3841 :
3842 : static struct notifier_block reserve_mem_nb = {
3843 : .notifier_call = reserve_mem_notifier,
3844 : };
3845 :
3846 1 : static int __meminit init_reserve_notifier(void)
3847 : {
3848 1 : if (register_hotmemory_notifier(&reserve_mem_nb))
3849 : pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3850 :
3851 1 : return 0;
3852 : }
3853 : subsys_initcall(init_reserve_notifier);
|