Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/mm/oom_kill.c
4 : *
5 : * Copyright (C) 1998,2000 Rik van Riel
6 : * Thanks go out to Claus Fischer for some serious inspiration and
7 : * for goading me into coding this file...
8 : * Copyright (C) 2010 Google, Inc.
9 : * Rewritten by David Rientjes
10 : *
11 : * The routines in this file are used to kill a process when
12 : * we're seriously out of memory. This gets called from __alloc_pages()
13 : * in mm/page_alloc.c when we really run out of memory.
14 : *
15 : * Since we won't call these routines often (on a well-configured
16 : * machine) this file will double as a 'coding guide' and a signpost
17 : * for newbie kernel hackers. It features several pointers to major
18 : * kernel subsystems and hints as to where to find out what things do.
19 : */
20 :
21 : #include <linux/oom.h>
22 : #include <linux/mm.h>
23 : #include <linux/err.h>
24 : #include <linux/gfp.h>
25 : #include <linux/sched.h>
26 : #include <linux/sched/mm.h>
27 : #include <linux/sched/coredump.h>
28 : #include <linux/sched/task.h>
29 : #include <linux/sched/debug.h>
30 : #include <linux/swap.h>
31 : #include <linux/timex.h>
32 : #include <linux/jiffies.h>
33 : #include <linux/cpuset.h>
34 : #include <linux/export.h>
35 : #include <linux/notifier.h>
36 : #include <linux/memcontrol.h>
37 : #include <linux/mempolicy.h>
38 : #include <linux/security.h>
39 : #include <linux/ptrace.h>
40 : #include <linux/freezer.h>
41 : #include <linux/ftrace.h>
42 : #include <linux/ratelimit.h>
43 : #include <linux/kthread.h>
44 : #include <linux/init.h>
45 : #include <linux/mmu_notifier.h>
46 :
47 : #include <asm/tlb.h>
48 : #include "internal.h"
49 : #include "slab.h"
50 :
51 : #define CREATE_TRACE_POINTS
52 : #include <trace/events/oom.h>
53 :
54 : int sysctl_panic_on_oom;
55 : int sysctl_oom_kill_allocating_task;
56 : int sysctl_oom_dump_tasks = 1;
57 :
58 : /*
59 : * Serializes oom killer invocations (out_of_memory()) from all contexts to
60 : * prevent from over eager oom killing (e.g. when the oom killer is invoked
61 : * from different domains).
62 : *
63 : * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
64 : * and mark_oom_victim
65 : */
66 : DEFINE_MUTEX(oom_lock);
67 : /* Serializes oom_score_adj and oom_score_adj_min updates */
68 : DEFINE_MUTEX(oom_adj_mutex);
69 :
70 0 : static inline bool is_memcg_oom(struct oom_control *oc)
71 : {
72 0 : return oc->memcg != NULL;
73 : }
74 :
75 : #ifdef CONFIG_NUMA
76 : /**
77 : * oom_cpuset_eligible() - check task eligiblity for kill
78 : * @start: task struct of which task to consider
79 : * @oc: pointer to struct oom_control
80 : *
81 : * Task eligibility is determined by whether or not a candidate task, @tsk,
82 : * shares the same mempolicy nodes as current if it is bound by such a policy
83 : * and whether or not it has the same set of allowed cpuset nodes.
84 : *
85 : * This function is assuming oom-killer context and 'current' has triggered
86 : * the oom-killer.
87 : */
88 0 : static bool oom_cpuset_eligible(struct task_struct *start,
89 : struct oom_control *oc)
90 : {
91 0 : struct task_struct *tsk;
92 0 : bool ret = false;
93 0 : const nodemask_t *mask = oc->nodemask;
94 :
95 0 : if (is_memcg_oom(oc))
96 : return true;
97 :
98 0 : rcu_read_lock();
99 0 : for_each_thread(start, tsk) {
100 0 : if (mask) {
101 : /*
102 : * If this is a mempolicy constrained oom, tsk's
103 : * cpuset is irrelevant. Only return true if its
104 : * mempolicy intersects current, otherwise it may be
105 : * needlessly killed.
106 : */
107 0 : ret = mempolicy_nodemask_intersects(tsk, mask);
108 : } else {
109 : /*
110 : * This is not a mempolicy constrained oom, so only
111 : * check the mems of tsk's cpuset.
112 : */
113 0 : ret = cpuset_mems_allowed_intersects(current, tsk);
114 : }
115 0 : if (ret)
116 : break;
117 : }
118 0 : rcu_read_unlock();
119 :
120 0 : return ret;
121 : }
122 : #else
123 : static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
124 : {
125 : return true;
126 : }
127 : #endif /* CONFIG_NUMA */
128 :
129 : /*
130 : * The process p may have detached its own ->mm while exiting or through
131 : * kthread_use_mm(), but one or more of its subthreads may still have a valid
132 : * pointer. Return p, or any of its subthreads with a valid ->mm, with
133 : * task_lock() held.
134 : */
135 17 : struct task_struct *find_lock_task_mm(struct task_struct *p)
136 : {
137 17 : struct task_struct *t;
138 :
139 17 : rcu_read_lock();
140 :
141 17 : for_each_thread(p, t) {
142 17 : task_lock(t);
143 17 : if (likely(t->mm))
144 17 : goto found;
145 0 : task_unlock(t);
146 : }
147 : t = NULL;
148 17 : found:
149 17 : rcu_read_unlock();
150 :
151 17 : return t;
152 : }
153 :
154 : /*
155 : * order == -1 means the oom kill is required by sysrq, otherwise only
156 : * for display purposes.
157 : */
158 0 : static inline bool is_sysrq_oom(struct oom_control *oc)
159 : {
160 0 : return oc->order == -1;
161 : }
162 :
163 : /* return true if the task is not adequate as candidate victim task. */
164 0 : static bool oom_unkillable_task(struct task_struct *p)
165 : {
166 0 : if (is_global_init(p))
167 : return true;
168 0 : if (p->flags & PF_KTHREAD)
169 : return true;
170 : return false;
171 : }
172 :
173 : /**
174 : * Check whether unreclaimable slab amount is greater than
175 : * all user memory(LRU pages).
176 : * dump_unreclaimable_slab() could help in the case that
177 : * oom due to too much unreclaimable slab used by kernel.
178 : */
179 0 : static bool should_dump_unreclaim_slab(void)
180 : {
181 0 : unsigned long nr_lru;
182 :
183 0 : nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
184 0 : global_node_page_state(NR_INACTIVE_ANON) +
185 0 : global_node_page_state(NR_ACTIVE_FILE) +
186 0 : global_node_page_state(NR_INACTIVE_FILE) +
187 0 : global_node_page_state(NR_ISOLATED_ANON) +
188 0 : global_node_page_state(NR_ISOLATED_FILE) +
189 0 : global_node_page_state(NR_UNEVICTABLE);
190 :
191 0 : return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
192 : }
193 :
194 : /**
195 : * oom_badness - heuristic function to determine which candidate task to kill
196 : * @p: task struct of which task we should calculate
197 : * @totalpages: total present RAM allowed for page allocation
198 : *
199 : * The heuristic for determining which task to kill is made to be as simple and
200 : * predictable as possible. The goal is to return the highest value for the
201 : * task consuming the most memory to avoid subsequent oom failures.
202 : */
203 0 : long oom_badness(struct task_struct *p, unsigned long totalpages)
204 : {
205 0 : long points;
206 0 : long adj;
207 :
208 0 : if (oom_unkillable_task(p))
209 : return LONG_MIN;
210 :
211 0 : p = find_lock_task_mm(p);
212 0 : if (!p)
213 : return LONG_MIN;
214 :
215 : /*
216 : * Do not even consider tasks which are explicitly marked oom
217 : * unkillable or have been already oom reaped or the are in
218 : * the middle of vfork
219 : */
220 0 : adj = (long)p->signal->oom_score_adj;
221 0 : if (adj == OOM_SCORE_ADJ_MIN ||
222 0 : test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
223 0 : in_vfork(p)) {
224 0 : task_unlock(p);
225 0 : return LONG_MIN;
226 : }
227 :
228 : /*
229 : * The baseline for the badness score is the proportion of RAM that each
230 : * task's rss, pagetable and swap space use.
231 : */
232 0 : points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
233 0 : mm_pgtables_bytes(p->mm) / PAGE_SIZE;
234 0 : task_unlock(p);
235 :
236 : /* Normalize to oom_score_adj units */
237 0 : adj *= totalpages / 1000;
238 0 : points += adj;
239 :
240 0 : return points;
241 : }
242 :
243 : static const char * const oom_constraint_text[] = {
244 : [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
245 : [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
246 : [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
247 : [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
248 : };
249 :
250 : /*
251 : * Determine the type of allocation constraint.
252 : */
253 0 : static enum oom_constraint constrained_alloc(struct oom_control *oc)
254 : {
255 0 : struct zone *zone;
256 0 : struct zoneref *z;
257 0 : enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
258 0 : bool cpuset_limited = false;
259 0 : int nid;
260 :
261 0 : if (is_memcg_oom(oc)) {
262 0 : oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
263 0 : return CONSTRAINT_MEMCG;
264 : }
265 :
266 : /* Default to all available memory */
267 0 : oc->totalpages = totalram_pages() + total_swap_pages;
268 :
269 0 : if (!IS_ENABLED(CONFIG_NUMA))
270 : return CONSTRAINT_NONE;
271 :
272 0 : if (!oc->zonelist)
273 : return CONSTRAINT_NONE;
274 : /*
275 : * Reach here only when __GFP_NOFAIL is used. So, we should avoid
276 : * to kill current.We have to random task kill in this case.
277 : * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
278 : */
279 0 : if (oc->gfp_mask & __GFP_THISNODE)
280 : return CONSTRAINT_NONE;
281 :
282 : /*
283 : * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
284 : * the page allocator means a mempolicy is in effect. Cpuset policy
285 : * is enforced in get_page_from_freelist().
286 : */
287 0 : if (oc->nodemask &&
288 0 : !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
289 0 : oc->totalpages = total_swap_pages;
290 0 : for_each_node_mask(nid, *oc->nodemask)
291 0 : oc->totalpages += node_present_pages(nid);
292 : return CONSTRAINT_MEMORY_POLICY;
293 : }
294 :
295 : /* Check this allocation failure is caused by cpuset's wall function */
296 0 : for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
297 : highest_zoneidx, oc->nodemask)
298 0 : if (!cpuset_zone_allowed(zone, oc->gfp_mask))
299 : cpuset_limited = true;
300 :
301 : if (cpuset_limited) {
302 : oc->totalpages = total_swap_pages;
303 : for_each_node_mask(nid, cpuset_current_mems_allowed)
304 : oc->totalpages += node_present_pages(nid);
305 : return CONSTRAINT_CPUSET;
306 : }
307 : return CONSTRAINT_NONE;
308 : }
309 :
310 0 : static int oom_evaluate_task(struct task_struct *task, void *arg)
311 : {
312 0 : struct oom_control *oc = arg;
313 0 : long points;
314 :
315 0 : if (oom_unkillable_task(task))
316 0 : goto next;
317 :
318 : /* p may not have freeable memory in nodemask */
319 0 : if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
320 0 : goto next;
321 :
322 : /*
323 : * This task already has access to memory reserves and is being killed.
324 : * Don't allow any other task to have access to the reserves unless
325 : * the task has MMF_OOM_SKIP because chances that it would release
326 : * any memory is quite low.
327 : */
328 0 : if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
329 0 : if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
330 0 : goto next;
331 0 : goto abort;
332 : }
333 :
334 : /*
335 : * If task is allocating a lot of memory and has been marked to be
336 : * killed first if it triggers an oom, then select it.
337 : */
338 0 : if (oom_task_origin(task)) {
339 0 : points = LONG_MAX;
340 0 : goto select;
341 : }
342 :
343 0 : points = oom_badness(task, oc->totalpages);
344 0 : if (points == LONG_MIN || points < oc->chosen_points)
345 0 : goto next;
346 :
347 0 : select:
348 0 : if (oc->chosen)
349 0 : put_task_struct(oc->chosen);
350 0 : get_task_struct(task);
351 0 : oc->chosen = task;
352 0 : oc->chosen_points = points;
353 : next:
354 : return 0;
355 0 : abort:
356 0 : if (oc->chosen)
357 0 : put_task_struct(oc->chosen);
358 0 : oc->chosen = (void *)-1UL;
359 0 : return 1;
360 : }
361 :
362 : /*
363 : * Simple selection loop. We choose the process with the highest number of
364 : * 'points'. In case scan was aborted, oc->chosen is set to -1.
365 : */
366 0 : static void select_bad_process(struct oom_control *oc)
367 : {
368 0 : oc->chosen_points = LONG_MIN;
369 :
370 0 : if (is_memcg_oom(oc))
371 0 : mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
372 : else {
373 0 : struct task_struct *p;
374 :
375 0 : rcu_read_lock();
376 0 : for_each_process(p)
377 0 : if (oom_evaluate_task(p, oc))
378 : break;
379 0 : rcu_read_unlock();
380 : }
381 0 : }
382 :
383 0 : static int dump_task(struct task_struct *p, void *arg)
384 : {
385 0 : struct oom_control *oc = arg;
386 0 : struct task_struct *task;
387 :
388 0 : if (oom_unkillable_task(p))
389 : return 0;
390 :
391 : /* p may not have freeable memory in nodemask */
392 0 : if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
393 : return 0;
394 :
395 0 : task = find_lock_task_mm(p);
396 0 : if (!task) {
397 : /*
398 : * All of p's threads have already detached their mm's. There's
399 : * no need to report them; they can't be oom killed anyway.
400 : */
401 : return 0;
402 : }
403 :
404 0 : pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
405 : task->pid, from_kuid(&init_user_ns, task_uid(task)),
406 : task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
407 : mm_pgtables_bytes(task->mm),
408 : get_mm_counter(task->mm, MM_SWAPENTS),
409 : task->signal->oom_score_adj, task->comm);
410 0 : task_unlock(task);
411 :
412 0 : return 0;
413 : }
414 :
415 : /**
416 : * dump_tasks - dump current memory state of all system tasks
417 : * @oc: pointer to struct oom_control
418 : *
419 : * Dumps the current memory state of all eligible tasks. Tasks not in the same
420 : * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421 : * are not shown.
422 : * State information includes task's pid, uid, tgid, vm size, rss,
423 : * pgtables_bytes, swapents, oom_score_adj value, and name.
424 : */
425 0 : static void dump_tasks(struct oom_control *oc)
426 : {
427 0 : pr_info("Tasks state (memory values in pages):\n");
428 0 : pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
429 :
430 0 : if (is_memcg_oom(oc))
431 0 : mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
432 : else {
433 0 : struct task_struct *p;
434 :
435 0 : rcu_read_lock();
436 0 : for_each_process(p)
437 0 : dump_task(p, oc);
438 0 : rcu_read_unlock();
439 : }
440 0 : }
441 :
442 0 : static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
443 : {
444 : /* one line summary of the oom killer context. */
445 0 : pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
446 : oom_constraint_text[oc->constraint],
447 : nodemask_pr_args(oc->nodemask));
448 0 : cpuset_print_current_mems_allowed();
449 0 : mem_cgroup_print_oom_context(oc->memcg, victim);
450 0 : pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
451 : from_kuid(&init_user_ns, task_uid(victim)));
452 0 : }
453 :
454 0 : static void dump_header(struct oom_control *oc, struct task_struct *p)
455 : {
456 0 : pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
457 : current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
458 : current->signal->oom_score_adj);
459 0 : if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
460 : pr_warn("COMPACTION is disabled!!!\n");
461 :
462 0 : dump_stack();
463 0 : if (is_memcg_oom(oc))
464 0 : mem_cgroup_print_oom_meminfo(oc->memcg);
465 : else {
466 0 : show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
467 0 : if (should_dump_unreclaim_slab())
468 0 : dump_unreclaimable_slab();
469 : }
470 0 : if (sysctl_oom_dump_tasks)
471 0 : dump_tasks(oc);
472 0 : if (p)
473 0 : dump_oom_summary(oc, p);
474 0 : }
475 :
476 : /*
477 : * Number of OOM victims in flight
478 : */
479 : static atomic_t oom_victims = ATOMIC_INIT(0);
480 : static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
481 :
482 : static bool oom_killer_disabled __read_mostly;
483 :
484 : #define K(x) ((x) << (PAGE_SHIFT-10))
485 :
486 : /*
487 : * task->mm can be NULL if the task is the exited group leader. So to
488 : * determine whether the task is using a particular mm, we examine all the
489 : * task's threads: if one of those is using this mm then this task was also
490 : * using it.
491 : */
492 0 : bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
493 : {
494 0 : struct task_struct *t;
495 :
496 0 : for_each_thread(p, t) {
497 0 : struct mm_struct *t_mm = READ_ONCE(t->mm);
498 0 : if (t_mm)
499 0 : return t_mm == mm;
500 : }
501 : return false;
502 : }
503 :
504 : #ifdef CONFIG_MMU
505 : /*
506 : * OOM Reaper kernel thread which tries to reap the memory used by the OOM
507 : * victim (if that is possible) to help the OOM killer to move on.
508 : */
509 : static struct task_struct *oom_reaper_th;
510 : static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
511 : static struct task_struct *oom_reaper_list;
512 : static DEFINE_SPINLOCK(oom_reaper_lock);
513 :
514 0 : bool __oom_reap_task_mm(struct mm_struct *mm)
515 : {
516 0 : struct vm_area_struct *vma;
517 0 : bool ret = true;
518 :
519 : /*
520 : * Tell all users of get_user/copy_from_user etc... that the content
521 : * is no longer stable. No barriers really needed because unmapping
522 : * should imply barriers already and the reader would hit a page fault
523 : * if it stumbled over a reaped memory.
524 : */
525 0 : set_bit(MMF_UNSTABLE, &mm->flags);
526 :
527 0 : for (vma = mm->mmap ; vma; vma = vma->vm_next) {
528 0 : if (!can_madv_lru_vma(vma))
529 0 : continue;
530 :
531 : /*
532 : * Only anonymous pages have a good chance to be dropped
533 : * without additional steps which we cannot afford as we
534 : * are OOM already.
535 : *
536 : * We do not even care about fs backed pages because all
537 : * which are reclaimable have already been reclaimed and
538 : * we do not want to block exit_mmap by keeping mm ref
539 : * count elevated without a good reason.
540 : */
541 0 : if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
542 0 : struct mmu_notifier_range range;
543 0 : struct mmu_gather tlb;
544 :
545 0 : mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
546 : vma, mm, vma->vm_start,
547 : vma->vm_end);
548 0 : tlb_gather_mmu(&tlb, mm);
549 0 : if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
550 : tlb_finish_mmu(&tlb);
551 : ret = false;
552 : continue;
553 : }
554 0 : unmap_page_range(&tlb, vma, range.start, range.end, NULL);
555 0 : mmu_notifier_invalidate_range_end(&range);
556 0 : tlb_finish_mmu(&tlb);
557 : }
558 : }
559 :
560 0 : return ret;
561 : }
562 :
563 : /*
564 : * Reaps the address space of the give task.
565 : *
566 : * Returns true on success and false if none or part of the address space
567 : * has been reclaimed and the caller should retry later.
568 : */
569 0 : static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
570 : {
571 0 : bool ret = true;
572 :
573 0 : if (!mmap_read_trylock(mm)) {
574 0 : trace_skip_task_reaping(tsk->pid);
575 0 : return false;
576 : }
577 :
578 : /*
579 : * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
580 : * work on the mm anymore. The check for MMF_OOM_SKIP must run
581 : * under mmap_lock for reading because it serializes against the
582 : * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
583 : */
584 0 : if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
585 0 : trace_skip_task_reaping(tsk->pid);
586 0 : goto out_unlock;
587 : }
588 :
589 0 : trace_start_task_reaping(tsk->pid);
590 :
591 : /* failed to reap part of the address space. Try again later */
592 0 : ret = __oom_reap_task_mm(mm);
593 0 : if (!ret)
594 0 : goto out_finish;
595 :
596 0 : pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
597 : task_pid_nr(tsk), tsk->comm,
598 : K(get_mm_counter(mm, MM_ANONPAGES)),
599 : K(get_mm_counter(mm, MM_FILEPAGES)),
600 : K(get_mm_counter(mm, MM_SHMEMPAGES)));
601 0 : out_finish:
602 0 : trace_finish_task_reaping(tsk->pid);
603 0 : out_unlock:
604 0 : mmap_read_unlock(mm);
605 :
606 0 : return ret;
607 : }
608 :
609 : #define MAX_OOM_REAP_RETRIES 10
610 0 : static void oom_reap_task(struct task_struct *tsk)
611 : {
612 0 : int attempts = 0;
613 0 : struct mm_struct *mm = tsk->signal->oom_mm;
614 :
615 : /* Retry the mmap_read_trylock(mm) a few times */
616 0 : while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
617 0 : schedule_timeout_idle(HZ/10);
618 :
619 0 : if (attempts <= MAX_OOM_REAP_RETRIES ||
620 0 : test_bit(MMF_OOM_SKIP, &mm->flags))
621 0 : goto done;
622 :
623 0 : pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
624 : task_pid_nr(tsk), tsk->comm);
625 0 : sched_show_task(tsk);
626 0 : debug_show_all_locks();
627 :
628 0 : done:
629 0 : tsk->oom_reaper_list = NULL;
630 :
631 : /*
632 : * Hide this mm from OOM killer because it has been either reaped or
633 : * somebody can't call mmap_write_unlock(mm).
634 : */
635 0 : set_bit(MMF_OOM_SKIP, &mm->flags);
636 :
637 : /* Drop a reference taken by wake_oom_reaper */
638 0 : put_task_struct(tsk);
639 0 : }
640 :
641 1 : static int oom_reaper(void *unused)
642 : {
643 1 : while (true) {
644 1 : struct task_struct *tsk = NULL;
645 :
646 1 : wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
647 0 : spin_lock(&oom_reaper_lock);
648 0 : if (oom_reaper_list != NULL) {
649 0 : tsk = oom_reaper_list;
650 0 : oom_reaper_list = tsk->oom_reaper_list;
651 : }
652 0 : spin_unlock(&oom_reaper_lock);
653 :
654 0 : if (tsk)
655 0 : oom_reap_task(tsk);
656 : }
657 :
658 : return 0;
659 : }
660 :
661 0 : static void wake_oom_reaper(struct task_struct *tsk)
662 : {
663 : /* mm is already queued? */
664 0 : if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
665 : return;
666 :
667 0 : get_task_struct(tsk);
668 :
669 0 : spin_lock(&oom_reaper_lock);
670 0 : tsk->oom_reaper_list = oom_reaper_list;
671 0 : oom_reaper_list = tsk;
672 0 : spin_unlock(&oom_reaper_lock);
673 0 : trace_wake_reaper(tsk->pid);
674 0 : wake_up(&oom_reaper_wait);
675 : }
676 :
677 1 : static int __init oom_init(void)
678 : {
679 1 : oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
680 1 : return 0;
681 : }
682 : subsys_initcall(oom_init)
683 : #else
684 : static inline void wake_oom_reaper(struct task_struct *tsk)
685 : {
686 : }
687 : #endif /* CONFIG_MMU */
688 :
689 : /**
690 : * mark_oom_victim - mark the given task as OOM victim
691 : * @tsk: task to mark
692 : *
693 : * Has to be called with oom_lock held and never after
694 : * oom has been disabled already.
695 : *
696 : * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
697 : * under task_lock or operate on the current).
698 : */
699 0 : static void mark_oom_victim(struct task_struct *tsk)
700 : {
701 0 : struct mm_struct *mm = tsk->mm;
702 :
703 0 : WARN_ON(oom_killer_disabled);
704 : /* OOM killer might race with memcg OOM */
705 0 : if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
706 : return;
707 :
708 : /* oom_mm is bound to the signal struct life time. */
709 0 : if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
710 0 : mmgrab(tsk->signal->oom_mm);
711 0 : set_bit(MMF_OOM_VICTIM, &mm->flags);
712 : }
713 :
714 : /*
715 : * Make sure that the task is woken up from uninterruptible sleep
716 : * if it is frozen because OOM killer wouldn't be able to free
717 : * any memory and livelock. freezing_slow_path will tell the freezer
718 : * that TIF_MEMDIE tasks should be ignored.
719 : */
720 0 : __thaw_task(tsk);
721 0 : atomic_inc(&oom_victims);
722 0 : trace_mark_victim(tsk->pid);
723 : }
724 :
725 : /**
726 : * exit_oom_victim - note the exit of an OOM victim
727 : */
728 0 : void exit_oom_victim(void)
729 : {
730 0 : clear_thread_flag(TIF_MEMDIE);
731 :
732 0 : if (!atomic_dec_return(&oom_victims))
733 0 : wake_up_all(&oom_victims_wait);
734 0 : }
735 :
736 : /**
737 : * oom_killer_enable - enable OOM killer
738 : */
739 0 : void oom_killer_enable(void)
740 : {
741 0 : oom_killer_disabled = false;
742 0 : pr_info("OOM killer enabled.\n");
743 0 : }
744 :
745 : /**
746 : * oom_killer_disable - disable OOM killer
747 : * @timeout: maximum timeout to wait for oom victims in jiffies
748 : *
749 : * Forces all page allocations to fail rather than trigger OOM killer.
750 : * Will block and wait until all OOM victims are killed or the given
751 : * timeout expires.
752 : *
753 : * The function cannot be called when there are runnable user tasks because
754 : * the userspace would see unexpected allocation failures as a result. Any
755 : * new usage of this function should be consulted with MM people.
756 : *
757 : * Returns true if successful and false if the OOM killer cannot be
758 : * disabled.
759 : */
760 0 : bool oom_killer_disable(signed long timeout)
761 : {
762 0 : signed long ret;
763 :
764 : /*
765 : * Make sure to not race with an ongoing OOM killer. Check that the
766 : * current is not killed (possibly due to sharing the victim's memory).
767 : */
768 0 : if (mutex_lock_killable(&oom_lock))
769 : return false;
770 0 : oom_killer_disabled = true;
771 0 : mutex_unlock(&oom_lock);
772 :
773 0 : ret = wait_event_interruptible_timeout(oom_victims_wait,
774 : !atomic_read(&oom_victims), timeout);
775 0 : if (ret <= 0) {
776 0 : oom_killer_enable();
777 0 : return false;
778 : }
779 0 : pr_info("OOM killer disabled.\n");
780 :
781 0 : return true;
782 : }
783 :
784 0 : static inline bool __task_will_free_mem(struct task_struct *task)
785 : {
786 0 : struct signal_struct *sig = task->signal;
787 :
788 : /*
789 : * A coredumping process may sleep for an extended period in exit_mm(),
790 : * so the oom killer cannot assume that the process will promptly exit
791 : * and release memory.
792 : */
793 0 : if (sig->flags & SIGNAL_GROUP_COREDUMP)
794 : return false;
795 :
796 0 : if (sig->flags & SIGNAL_GROUP_EXIT)
797 : return true;
798 :
799 0 : if (thread_group_empty(task) && (task->flags & PF_EXITING))
800 0 : return true;
801 :
802 : return false;
803 : }
804 :
805 : /*
806 : * Checks whether the given task is dying or exiting and likely to
807 : * release its address space. This means that all threads and processes
808 : * sharing the same mm have to be killed or exiting.
809 : * Caller has to make sure that task->mm is stable (hold task_lock or
810 : * it operates on the current).
811 : */
812 0 : static bool task_will_free_mem(struct task_struct *task)
813 : {
814 0 : struct mm_struct *mm = task->mm;
815 0 : struct task_struct *p;
816 0 : bool ret = true;
817 :
818 : /*
819 : * Skip tasks without mm because it might have passed its exit_mm and
820 : * exit_oom_victim. oom_reaper could have rescued that but do not rely
821 : * on that for now. We can consider find_lock_task_mm in future.
822 : */
823 0 : if (!mm)
824 : return false;
825 :
826 0 : if (!__task_will_free_mem(task))
827 : return false;
828 :
829 : /*
830 : * This task has already been drained by the oom reaper so there are
831 : * only small chances it will free some more
832 : */
833 0 : if (test_bit(MMF_OOM_SKIP, &mm->flags))
834 : return false;
835 :
836 0 : if (atomic_read(&mm->mm_users) <= 1)
837 : return true;
838 :
839 : /*
840 : * Make sure that all tasks which share the mm with the given tasks
841 : * are dying as well to make sure that a) nobody pins its mm and
842 : * b) the task is also reapable by the oom reaper.
843 : */
844 0 : rcu_read_lock();
845 0 : for_each_process(p) {
846 0 : if (!process_shares_mm(p, mm))
847 0 : continue;
848 0 : if (same_thread_group(task, p))
849 0 : continue;
850 0 : ret = __task_will_free_mem(p);
851 0 : if (!ret)
852 : break;
853 : }
854 0 : rcu_read_unlock();
855 :
856 0 : return ret;
857 : }
858 :
859 0 : static void __oom_kill_process(struct task_struct *victim, const char *message)
860 : {
861 0 : struct task_struct *p;
862 0 : struct mm_struct *mm;
863 0 : bool can_oom_reap = true;
864 :
865 0 : p = find_lock_task_mm(victim);
866 0 : if (!p) {
867 0 : pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
868 : message, task_pid_nr(victim), victim->comm);
869 0 : put_task_struct(victim);
870 0 : return;
871 0 : } else if (victim != p) {
872 0 : get_task_struct(p);
873 0 : put_task_struct(victim);
874 0 : victim = p;
875 : }
876 :
877 : /* Get a reference to safely compare mm after task_unlock(victim) */
878 0 : mm = victim->mm;
879 0 : mmgrab(mm);
880 :
881 : /* Raise event before sending signal: task reaper must see this */
882 0 : count_vm_event(OOM_KILL);
883 0 : memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
884 :
885 : /*
886 : * We should send SIGKILL before granting access to memory reserves
887 : * in order to prevent the OOM victim from depleting the memory
888 : * reserves from the user space under its control.
889 : */
890 0 : do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
891 0 : mark_oom_victim(victim);
892 0 : pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
893 : message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
894 : K(get_mm_counter(mm, MM_ANONPAGES)),
895 : K(get_mm_counter(mm, MM_FILEPAGES)),
896 : K(get_mm_counter(mm, MM_SHMEMPAGES)),
897 : from_kuid(&init_user_ns, task_uid(victim)),
898 : mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
899 0 : task_unlock(victim);
900 :
901 : /*
902 : * Kill all user processes sharing victim->mm in other thread groups, if
903 : * any. They don't get access to memory reserves, though, to avoid
904 : * depletion of all memory. This prevents mm->mmap_lock livelock when an
905 : * oom killed thread cannot exit because it requires the semaphore and
906 : * its contended by another thread trying to allocate memory itself.
907 : * That thread will now get access to memory reserves since it has a
908 : * pending fatal signal.
909 : */
910 0 : rcu_read_lock();
911 0 : for_each_process(p) {
912 0 : if (!process_shares_mm(p, mm))
913 0 : continue;
914 0 : if (same_thread_group(p, victim))
915 0 : continue;
916 0 : if (is_global_init(p)) {
917 0 : can_oom_reap = false;
918 0 : set_bit(MMF_OOM_SKIP, &mm->flags);
919 0 : pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
920 : task_pid_nr(victim), victim->comm,
921 : task_pid_nr(p), p->comm);
922 0 : continue;
923 : }
924 : /*
925 : * No kthead_use_mm() user needs to read from the userspace so
926 : * we are ok to reap it.
927 : */
928 0 : if (unlikely(p->flags & PF_KTHREAD))
929 0 : continue;
930 0 : do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
931 : }
932 0 : rcu_read_unlock();
933 :
934 0 : if (can_oom_reap)
935 0 : wake_oom_reaper(victim);
936 :
937 0 : mmdrop(mm);
938 0 : put_task_struct(victim);
939 : }
940 : #undef K
941 :
942 : /*
943 : * Kill provided task unless it's secured by setting
944 : * oom_score_adj to OOM_SCORE_ADJ_MIN.
945 : */
946 : static int oom_kill_memcg_member(struct task_struct *task, void *message)
947 : {
948 : if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
949 : !is_global_init(task)) {
950 : get_task_struct(task);
951 : __oom_kill_process(task, message);
952 : }
953 : return 0;
954 : }
955 :
956 0 : static void oom_kill_process(struct oom_control *oc, const char *message)
957 : {
958 0 : struct task_struct *victim = oc->chosen;
959 0 : struct mem_cgroup *oom_group;
960 0 : static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
961 : DEFAULT_RATELIMIT_BURST);
962 :
963 : /*
964 : * If the task is already exiting, don't alarm the sysadmin or kill
965 : * its children or threads, just give it access to memory reserves
966 : * so it can die quickly
967 : */
968 0 : task_lock(victim);
969 0 : if (task_will_free_mem(victim)) {
970 0 : mark_oom_victim(victim);
971 0 : wake_oom_reaper(victim);
972 0 : task_unlock(victim);
973 0 : put_task_struct(victim);
974 0 : return;
975 : }
976 0 : task_unlock(victim);
977 :
978 0 : if (__ratelimit(&oom_rs))
979 0 : dump_header(oc, victim);
980 :
981 : /*
982 : * Do we need to kill the entire memory cgroup?
983 : * Or even one of the ancestor memory cgroups?
984 : * Check this out before killing the victim task.
985 : */
986 0 : oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
987 :
988 0 : __oom_kill_process(victim, message);
989 :
990 : /*
991 : * If necessary, kill all tasks in the selected memory cgroup.
992 : */
993 0 : if (oom_group) {
994 0 : mem_cgroup_print_oom_group(oom_group);
995 0 : mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
996 : (void*)message);
997 0 : mem_cgroup_put(oom_group);
998 : }
999 : }
1000 :
1001 : /*
1002 : * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1003 : */
1004 0 : static void check_panic_on_oom(struct oom_control *oc)
1005 : {
1006 0 : if (likely(!sysctl_panic_on_oom))
1007 : return;
1008 0 : if (sysctl_panic_on_oom != 2) {
1009 : /*
1010 : * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1011 : * does not panic for cpuset, mempolicy, or memcg allocation
1012 : * failures.
1013 : */
1014 0 : if (oc->constraint != CONSTRAINT_NONE)
1015 : return;
1016 : }
1017 : /* Do not panic for oom kills triggered by sysrq */
1018 0 : if (is_sysrq_oom(oc))
1019 : return;
1020 0 : dump_header(oc, NULL);
1021 0 : panic("Out of memory: %s panic_on_oom is enabled\n",
1022 0 : sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1023 : }
1024 :
1025 : static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1026 :
1027 0 : int register_oom_notifier(struct notifier_block *nb)
1028 : {
1029 0 : return blocking_notifier_chain_register(&oom_notify_list, nb);
1030 : }
1031 : EXPORT_SYMBOL_GPL(register_oom_notifier);
1032 :
1033 0 : int unregister_oom_notifier(struct notifier_block *nb)
1034 : {
1035 0 : return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1036 : }
1037 : EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1038 :
1039 : /**
1040 : * out_of_memory - kill the "best" process when we run out of memory
1041 : * @oc: pointer to struct oom_control
1042 : *
1043 : * If we run out of memory, we have the choice between either
1044 : * killing a random task (bad), letting the system crash (worse)
1045 : * OR try to be smart about which process to kill. Note that we
1046 : * don't have to be perfect here, we just have to be good.
1047 : */
1048 0 : bool out_of_memory(struct oom_control *oc)
1049 : {
1050 0 : unsigned long freed = 0;
1051 :
1052 0 : if (oom_killer_disabled)
1053 : return false;
1054 :
1055 0 : if (!is_memcg_oom(oc)) {
1056 0 : blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1057 0 : if (freed > 0)
1058 : /* Got some memory back in the last second. */
1059 : return true;
1060 : }
1061 :
1062 : /*
1063 : * If current has a pending SIGKILL or is exiting, then automatically
1064 : * select it. The goal is to allow it to allocate so that it may
1065 : * quickly exit and free its memory.
1066 : */
1067 0 : if (task_will_free_mem(current)) {
1068 0 : mark_oom_victim(current);
1069 0 : wake_oom_reaper(current);
1070 0 : return true;
1071 : }
1072 :
1073 : /*
1074 : * The OOM killer does not compensate for IO-less reclaim.
1075 : * pagefault_out_of_memory lost its gfp context so we have to
1076 : * make sure exclude 0 mask - all other users should have at least
1077 : * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1078 : * invoke the OOM killer even if it is a GFP_NOFS allocation.
1079 : */
1080 0 : if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1081 : return true;
1082 :
1083 : /*
1084 : * Check if there were limitations on the allocation (only relevant for
1085 : * NUMA and memcg) that may require different handling.
1086 : */
1087 0 : oc->constraint = constrained_alloc(oc);
1088 0 : if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1089 0 : oc->nodemask = NULL;
1090 0 : check_panic_on_oom(oc);
1091 :
1092 0 : if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1093 0 : current->mm && !oom_unkillable_task(current) &&
1094 0 : oom_cpuset_eligible(current, oc) &&
1095 0 : current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1096 0 : get_task_struct(current);
1097 0 : oc->chosen = current;
1098 0 : oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1099 0 : return true;
1100 : }
1101 :
1102 0 : select_bad_process(oc);
1103 : /* Found nothing?!?! */
1104 0 : if (!oc->chosen) {
1105 0 : dump_header(oc, NULL);
1106 0 : pr_warn("Out of memory and no killable processes...\n");
1107 : /*
1108 : * If we got here due to an actual allocation at the
1109 : * system level, we cannot survive this and will enter
1110 : * an endless loop in the allocator. Bail out now.
1111 : */
1112 0 : if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1113 0 : panic("System is deadlocked on memory\n");
1114 : }
1115 0 : if (oc->chosen && oc->chosen != (void *)-1UL)
1116 0 : oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1117 : "Memory cgroup out of memory");
1118 0 : return !!oc->chosen;
1119 : }
1120 :
1121 : /*
1122 : * The pagefault handler calls here because it is out of memory, so kill a
1123 : * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1124 : * killing is already in progress so do nothing.
1125 : */
1126 0 : void pagefault_out_of_memory(void)
1127 : {
1128 0 : struct oom_control oc = {
1129 : .zonelist = NULL,
1130 : .nodemask = NULL,
1131 : .memcg = NULL,
1132 : .gfp_mask = 0,
1133 : .order = 0,
1134 : };
1135 :
1136 0 : if (mem_cgroup_oom_synchronize(true))
1137 0 : return;
1138 :
1139 0 : if (!mutex_trylock(&oom_lock))
1140 0 : return;
1141 0 : out_of_memory(&oc);
1142 0 : mutex_unlock(&oom_lock);
1143 : }
|