LCOV - code coverage report
Current view: top level - mm - page-writeback.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 503 902 55.8 %
Date: 2021-04-22 12:43:58 Functions: 39 60 65.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * mm/page-writeback.c
       4             :  *
       5             :  * Copyright (C) 2002, Linus Torvalds.
       6             :  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
       7             :  *
       8             :  * Contains functions related to writing back dirty pages at the
       9             :  * address_space level.
      10             :  *
      11             :  * 10Apr2002    Andrew Morton
      12             :  *              Initial version
      13             :  */
      14             : 
      15             : #include <linux/kernel.h>
      16             : #include <linux/export.h>
      17             : #include <linux/spinlock.h>
      18             : #include <linux/fs.h>
      19             : #include <linux/mm.h>
      20             : #include <linux/swap.h>
      21             : #include <linux/slab.h>
      22             : #include <linux/pagemap.h>
      23             : #include <linux/writeback.h>
      24             : #include <linux/init.h>
      25             : #include <linux/backing-dev.h>
      26             : #include <linux/task_io_accounting_ops.h>
      27             : #include <linux/blkdev.h>
      28             : #include <linux/mpage.h>
      29             : #include <linux/rmap.h>
      30             : #include <linux/percpu.h>
      31             : #include <linux/smp.h>
      32             : #include <linux/sysctl.h>
      33             : #include <linux/cpu.h>
      34             : #include <linux/syscalls.h>
      35             : #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
      36             : #include <linux/pagevec.h>
      37             : #include <linux/timer.h>
      38             : #include <linux/sched/rt.h>
      39             : #include <linux/sched/signal.h>
      40             : #include <linux/mm_inline.h>
      41             : #include <trace/events/writeback.h>
      42             : 
      43             : #include "internal.h"
      44             : 
      45             : /*
      46             :  * Sleep at most 200ms at a time in balance_dirty_pages().
      47             :  */
      48             : #define MAX_PAUSE               max(HZ/5, 1)
      49             : 
      50             : /*
      51             :  * Try to keep balance_dirty_pages() call intervals higher than this many pages
      52             :  * by raising pause time to max_pause when falls below it.
      53             :  */
      54             : #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
      55             : 
      56             : /*
      57             :  * Estimate write bandwidth at 200ms intervals.
      58             :  */
      59             : #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
      60             : 
      61             : #define RATELIMIT_CALC_SHIFT    10
      62             : 
      63             : /*
      64             :  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
      65             :  * will look to see if it needs to force writeback or throttling.
      66             :  */
      67             : static long ratelimit_pages = 32;
      68             : 
      69             : /* The following parameters are exported via /proc/sys/vm */
      70             : 
      71             : /*
      72             :  * Start background writeback (via writeback threads) at this percentage
      73             :  */
      74             : int dirty_background_ratio = 10;
      75             : 
      76             : /*
      77             :  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
      78             :  * dirty_background_ratio * the amount of dirtyable memory
      79             :  */
      80             : unsigned long dirty_background_bytes;
      81             : 
      82             : /*
      83             :  * free highmem will not be subtracted from the total free memory
      84             :  * for calculating free ratios if vm_highmem_is_dirtyable is true
      85             :  */
      86             : int vm_highmem_is_dirtyable;
      87             : 
      88             : /*
      89             :  * The generator of dirty data starts writeback at this percentage
      90             :  */
      91             : int vm_dirty_ratio = 20;
      92             : 
      93             : /*
      94             :  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
      95             :  * vm_dirty_ratio * the amount of dirtyable memory
      96             :  */
      97             : unsigned long vm_dirty_bytes;
      98             : 
      99             : /*
     100             :  * The interval between `kupdate'-style writebacks
     101             :  */
     102             : unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
     103             : 
     104             : EXPORT_SYMBOL_GPL(dirty_writeback_interval);
     105             : 
     106             : /*
     107             :  * The longest time for which data is allowed to remain dirty
     108             :  */
     109             : unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
     110             : 
     111             : /*
     112             :  * Flag that makes the machine dump writes/reads and block dirtyings.
     113             :  */
     114             : int block_dump;
     115             : 
     116             : /*
     117             :  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
     118             :  * a full sync is triggered after this time elapses without any disk activity.
     119             :  */
     120             : int laptop_mode;
     121             : 
     122             : EXPORT_SYMBOL(laptop_mode);
     123             : 
     124             : /* End of sysctl-exported parameters */
     125             : 
     126             : struct wb_domain global_wb_domain;
     127             : 
     128             : /* consolidated parameters for balance_dirty_pages() and its subroutines */
     129             : struct dirty_throttle_control {
     130             : #ifdef CONFIG_CGROUP_WRITEBACK
     131             :         struct wb_domain        *dom;
     132             :         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
     133             : #endif
     134             :         struct bdi_writeback    *wb;
     135             :         struct fprop_local_percpu *wb_completions;
     136             : 
     137             :         unsigned long           avail;          /* dirtyable */
     138             :         unsigned long           dirty;          /* file_dirty + write + nfs */
     139             :         unsigned long           thresh;         /* dirty threshold */
     140             :         unsigned long           bg_thresh;      /* dirty background threshold */
     141             : 
     142             :         unsigned long           wb_dirty;       /* per-wb counterparts */
     143             :         unsigned long           wb_thresh;
     144             :         unsigned long           wb_bg_thresh;
     145             : 
     146             :         unsigned long           pos_ratio;
     147             : };
     148             : 
     149             : /*
     150             :  * Length of period for aging writeout fractions of bdis. This is an
     151             :  * arbitrarily chosen number. The longer the period, the slower fractions will
     152             :  * reflect changes in current writeout rate.
     153             :  */
     154             : #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
     155             : 
     156             : #ifdef CONFIG_CGROUP_WRITEBACK
     157             : 
     158             : #define GDTC_INIT(__wb)         .wb = (__wb),                           \
     159             :                                 .dom = &global_wb_domain,           \
     160             :                                 .wb_completions = &(__wb)->completions
     161             : 
     162             : #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
     163             : 
     164             : #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
     165             :                                 .dom = mem_cgroup_wb_domain(__wb),      \
     166             :                                 .wb_completions = &(__wb)->memcg_completions, \
     167             :                                 .gdtc = __gdtc
     168             : 
     169             : static bool mdtc_valid(struct dirty_throttle_control *dtc)
     170             : {
     171             :         return dtc->dom;
     172             : }
     173             : 
     174             : static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
     175             : {
     176             :         return dtc->dom;
     177             : }
     178             : 
     179             : static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
     180             : {
     181             :         return mdtc->gdtc;
     182             : }
     183             : 
     184             : static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
     185             : {
     186             :         return &wb->memcg_completions;
     187             : }
     188             : 
     189             : static void wb_min_max_ratio(struct bdi_writeback *wb,
     190             :                              unsigned long *minp, unsigned long *maxp)
     191             : {
     192             :         unsigned long this_bw = wb->avg_write_bandwidth;
     193             :         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
     194             :         unsigned long long min = wb->bdi->min_ratio;
     195             :         unsigned long long max = wb->bdi->max_ratio;
     196             : 
     197             :         /*
     198             :          * @wb may already be clean by the time control reaches here and
     199             :          * the total may not include its bw.
     200             :          */
     201             :         if (this_bw < tot_bw) {
     202             :                 if (min) {
     203             :                         min *= this_bw;
     204             :                         min = div64_ul(min, tot_bw);
     205             :                 }
     206             :                 if (max < 100) {
     207             :                         max *= this_bw;
     208             :                         max = div64_ul(max, tot_bw);
     209             :                 }
     210             :         }
     211             : 
     212             :         *minp = min;
     213             :         *maxp = max;
     214             : }
     215             : 
     216             : #else   /* CONFIG_CGROUP_WRITEBACK */
     217             : 
     218             : #define GDTC_INIT(__wb)         .wb = (__wb),                           \
     219             :                                 .wb_completions = &(__wb)->completions
     220             : #define GDTC_INIT_NO_WB
     221             : #define MDTC_INIT(__wb, __gdtc)
     222             : 
     223          32 : static bool mdtc_valid(struct dirty_throttle_control *dtc)
     224             : {
     225          32 :         return false;
     226             : }
     227             : 
     228           7 : static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
     229             : {
     230           7 :         return &global_wb_domain;
     231             : }
     232             : 
     233          36 : static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
     234             : {
     235          36 :         return NULL;
     236             : }
     237             : 
     238             : static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
     239             : {
     240             :         return NULL;
     241             : }
     242             : 
     243           7 : static void wb_min_max_ratio(struct bdi_writeback *wb,
     244             :                              unsigned long *minp, unsigned long *maxp)
     245             : {
     246           7 :         *minp = wb->bdi->min_ratio;
     247           7 :         *maxp = wb->bdi->max_ratio;
     248             : }
     249             : 
     250             : #endif  /* CONFIG_CGROUP_WRITEBACK */
     251             : 
     252             : /*
     253             :  * In a memory zone, there is a certain amount of pages we consider
     254             :  * available for the page cache, which is essentially the number of
     255             :  * free and reclaimable pages, minus some zone reserves to protect
     256             :  * lowmem and the ability to uphold the zone's watermarks without
     257             :  * requiring writeback.
     258             :  *
     259             :  * This number of dirtyable pages is the base value of which the
     260             :  * user-configurable dirty ratio is the effective number of pages that
     261             :  * are allowed to be actually dirtied.  Per individual zone, or
     262             :  * globally by using the sum of dirtyable pages over all zones.
     263             :  *
     264             :  * Because the user is allowed to specify the dirty limit globally as
     265             :  * absolute number of bytes, calculating the per-zone dirty limit can
     266             :  * require translating the configured limit into a percentage of
     267             :  * global dirtyable memory first.
     268             :  */
     269             : 
     270             : /**
     271             :  * node_dirtyable_memory - number of dirtyable pages in a node
     272             :  * @pgdat: the node
     273             :  *
     274             :  * Return: the node's number of pages potentially available for dirty
     275             :  * page cache.  This is the base value for the per-node dirty limits.
     276             :  */
     277        1509 : static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
     278             : {
     279        1509 :         unsigned long nr_pages = 0;
     280        1509 :         int z;
     281             : 
     282        6036 :         for (z = 0; z < MAX_NR_ZONES; z++) {
     283        4527 :                 struct zone *zone = pgdat->node_zones + z;
     284             : 
     285        4527 :                 if (!populated_zone(zone))
     286        3018 :                         continue;
     287             : 
     288        1509 :                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
     289             :         }
     290             : 
     291             :         /*
     292             :          * Pages reserved for the kernel should not be considered
     293             :          * dirtyable, to prevent a situation where reclaim has to
     294             :          * clean pages in order to balance the zones.
     295             :          */
     296        1509 :         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
     297             : 
     298        1509 :         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
     299        1509 :         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
     300             : 
     301        1509 :         return nr_pages;
     302             : }
     303             : 
     304             : static unsigned long highmem_dirtyable_memory(unsigned long total)
     305             : {
     306             : #ifdef CONFIG_HIGHMEM
     307             :         int node;
     308             :         unsigned long x = 0;
     309             :         int i;
     310             : 
     311             :         for_each_node_state(node, N_HIGH_MEMORY) {
     312             :                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
     313             :                         struct zone *z;
     314             :                         unsigned long nr_pages;
     315             : 
     316             :                         if (!is_highmem_idx(i))
     317             :                                 continue;
     318             : 
     319             :                         z = &NODE_DATA(node)->node_zones[i];
     320             :                         if (!populated_zone(z))
     321             :                                 continue;
     322             : 
     323             :                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
     324             :                         /* watch for underflows */
     325             :                         nr_pages -= min(nr_pages, high_wmark_pages(z));
     326             :                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
     327             :                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
     328             :                         x += nr_pages;
     329             :                 }
     330             :         }
     331             : 
     332             :         /*
     333             :          * Unreclaimable memory (kernel memory or anonymous memory
     334             :          * without swap) can bring down the dirtyable pages below
     335             :          * the zone's dirty balance reserve and the above calculation
     336             :          * will underflow.  However we still want to add in nodes
     337             :          * which are below threshold (negative values) to get a more
     338             :          * accurate calculation but make sure that the total never
     339             :          * underflows.
     340             :          */
     341             :         if ((long)x < 0)
     342             :                 x = 0;
     343             : 
     344             :         /*
     345             :          * Make sure that the number of highmem pages is never larger
     346             :          * than the number of the total dirtyable memory. This can only
     347             :          * occur in very strange VM situations but we want to make sure
     348             :          * that this does not occur.
     349             :          */
     350             :         return min(x, total);
     351             : #else
     352             :         return 0;
     353             : #endif
     354             : }
     355             : 
     356             : /**
     357             :  * global_dirtyable_memory - number of globally dirtyable pages
     358             :  *
     359             :  * Return: the global number of pages potentially available for dirty
     360             :  * page cache.  This is the base value for the global dirty limits.
     361             :  */
     362          36 : static unsigned long global_dirtyable_memory(void)
     363             : {
     364          36 :         unsigned long x;
     365             : 
     366          36 :         x = global_zone_page_state(NR_FREE_PAGES);
     367             :         /*
     368             :          * Pages reserved for the kernel should not be considered
     369             :          * dirtyable, to prevent a situation where reclaim has to
     370             :          * clean pages in order to balance the zones.
     371             :          */
     372          36 :         x -= min(x, totalreserve_pages);
     373             : 
     374          36 :         x += global_node_page_state(NR_INACTIVE_FILE);
     375          36 :         x += global_node_page_state(NR_ACTIVE_FILE);
     376             : 
     377          36 :         if (!vm_highmem_is_dirtyable)
     378          36 :                 x -= highmem_dirtyable_memory(x);
     379             : 
     380          36 :         return x + 1;   /* Ensure that we never return 0 */
     381             : }
     382             : 
     383             : /**
     384             :  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
     385             :  * @dtc: dirty_throttle_control of interest
     386             :  *
     387             :  * Calculate @dtc->thresh and ->bg_thresh considering
     388             :  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
     389             :  * must ensure that @dtc->avail is set before calling this function.  The
     390             :  * dirty limits will be lifted by 1/4 for real-time tasks.
     391             :  */
     392          36 : static void domain_dirty_limits(struct dirty_throttle_control *dtc)
     393             : {
     394          36 :         const unsigned long available_memory = dtc->avail;
     395          36 :         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
     396          36 :         unsigned long bytes = vm_dirty_bytes;
     397          36 :         unsigned long bg_bytes = dirty_background_bytes;
     398             :         /* convert ratios to per-PAGE_SIZE for higher precision */
     399          36 :         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
     400          36 :         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
     401          36 :         unsigned long thresh;
     402          36 :         unsigned long bg_thresh;
     403          36 :         struct task_struct *tsk;
     404             : 
     405             :         /* gdtc is !NULL iff @dtc is for memcg domain */
     406          36 :         if (gdtc) {
     407             :                 unsigned long global_avail = gdtc->avail;
     408             : 
     409             :                 /*
     410             :                  * The byte settings can't be applied directly to memcg
     411             :                  * domains.  Convert them to ratios by scaling against
     412             :                  * globally available memory.  As the ratios are in
     413             :                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
     414             :                  * number of pages.
     415             :                  */
     416             :                 if (bytes)
     417             :                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
     418             :                                     PAGE_SIZE);
     419             :                 if (bg_bytes)
     420             :                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
     421             :                                        PAGE_SIZE);
     422             :                 bytes = bg_bytes = 0;
     423             :         }
     424             : 
     425          36 :         if (bytes)
     426           0 :                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
     427             :         else
     428          36 :                 thresh = (ratio * available_memory) / PAGE_SIZE;
     429             : 
     430          36 :         if (bg_bytes)
     431           0 :                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
     432             :         else
     433          36 :                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
     434             : 
     435          36 :         if (bg_thresh >= thresh)
     436           0 :                 bg_thresh = thresh / 2;
     437          36 :         tsk = current;
     438          36 :         if (rt_task(tsk)) {
     439           0 :                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
     440           0 :                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
     441             :         }
     442          36 :         dtc->thresh = thresh;
     443          36 :         dtc->bg_thresh = bg_thresh;
     444             : 
     445             :         /* we should eventually report the domain in the TP */
     446          36 :         if (!gdtc)
     447          36 :                 trace_global_dirty_state(bg_thresh, thresh);
     448          36 : }
     449             : 
     450             : /**
     451             :  * global_dirty_limits - background-writeback and dirty-throttling thresholds
     452             :  * @pbackground: out parameter for bg_thresh
     453             :  * @pdirty: out parameter for thresh
     454             :  *
     455             :  * Calculate bg_thresh and thresh for global_wb_domain.  See
     456             :  * domain_dirty_limits() for details.
     457             :  */
     458           4 : void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
     459             : {
     460           4 :         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
     461             : 
     462           4 :         gdtc.avail = global_dirtyable_memory();
     463           4 :         domain_dirty_limits(&gdtc);
     464             : 
     465           4 :         *pbackground = gdtc.bg_thresh;
     466           4 :         *pdirty = gdtc.thresh;
     467           4 : }
     468             : 
     469             : /**
     470             :  * node_dirty_limit - maximum number of dirty pages allowed in a node
     471             :  * @pgdat: the node
     472             :  *
     473             :  * Return: the maximum number of dirty pages allowed in a node, based
     474             :  * on the node's dirtyable memory.
     475             :  */
     476        1509 : static unsigned long node_dirty_limit(struct pglist_data *pgdat)
     477             : {
     478        1509 :         unsigned long node_memory = node_dirtyable_memory(pgdat);
     479        1509 :         struct task_struct *tsk = current;
     480        1509 :         unsigned long dirty;
     481             : 
     482        1509 :         if (vm_dirty_bytes)
     483           0 :                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
     484           0 :                         node_memory / global_dirtyable_memory();
     485             :         else
     486        1509 :                 dirty = vm_dirty_ratio * node_memory / 100;
     487             : 
     488        1509 :         if (rt_task(tsk))
     489           0 :                 dirty += dirty / 4;
     490             : 
     491        1509 :         return dirty;
     492             : }
     493             : 
     494             : /**
     495             :  * node_dirty_ok - tells whether a node is within its dirty limits
     496             :  * @pgdat: the node to check
     497             :  *
     498             :  * Return: %true when the dirty pages in @pgdat are within the node's
     499             :  * dirty limit, %false if the limit is exceeded.
     500             :  */
     501        1509 : bool node_dirty_ok(struct pglist_data *pgdat)
     502             : {
     503        1509 :         unsigned long limit = node_dirty_limit(pgdat);
     504        1509 :         unsigned long nr_pages = 0;
     505             : 
     506        1509 :         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
     507        1509 :         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
     508             : 
     509        1509 :         return nr_pages <= limit;
     510             : }
     511             : 
     512           0 : int dirty_background_ratio_handler(struct ctl_table *table, int write,
     513             :                 void *buffer, size_t *lenp, loff_t *ppos)
     514             : {
     515           0 :         int ret;
     516             : 
     517           0 :         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
     518           0 :         if (ret == 0 && write)
     519           0 :                 dirty_background_bytes = 0;
     520           0 :         return ret;
     521             : }
     522             : 
     523           0 : int dirty_background_bytes_handler(struct ctl_table *table, int write,
     524             :                 void *buffer, size_t *lenp, loff_t *ppos)
     525             : {
     526           0 :         int ret;
     527             : 
     528           0 :         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
     529           0 :         if (ret == 0 && write)
     530           0 :                 dirty_background_ratio = 0;
     531           0 :         return ret;
     532             : }
     533             : 
     534           0 : int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
     535             :                 size_t *lenp, loff_t *ppos)
     536             : {
     537           0 :         int old_ratio = vm_dirty_ratio;
     538           0 :         int ret;
     539             : 
     540           0 :         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
     541           0 :         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
     542           0 :                 writeback_set_ratelimit();
     543           0 :                 vm_dirty_bytes = 0;
     544             :         }
     545           0 :         return ret;
     546             : }
     547             : 
     548           0 : int dirty_bytes_handler(struct ctl_table *table, int write,
     549             :                 void *buffer, size_t *lenp, loff_t *ppos)
     550             : {
     551           0 :         unsigned long old_bytes = vm_dirty_bytes;
     552           0 :         int ret;
     553             : 
     554           0 :         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
     555           0 :         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
     556           0 :                 writeback_set_ratelimit();
     557           0 :                 vm_dirty_ratio = 0;
     558             :         }
     559           0 :         return ret;
     560             : }
     561             : 
     562          11 : static unsigned long wp_next_time(unsigned long cur_time)
     563             : {
     564          11 :         cur_time += VM_COMPLETIONS_PERIOD_LEN;
     565             :         /* 0 has a special meaning... */
     566          11 :         if (!cur_time)
     567             :                 return 1;
     568             :         return cur_time;
     569             : }
     570             : 
     571        1284 : static void wb_domain_writeout_inc(struct wb_domain *dom,
     572             :                                    struct fprop_local_percpu *completions,
     573             :                                    unsigned int max_prop_frac)
     574             : {
     575        1284 :         __fprop_inc_percpu_max(&dom->completions, completions,
     576             :                                max_prop_frac);
     577             :         /* First event after period switching was turned off? */
     578        1284 :         if (unlikely(!dom->period_time)) {
     579             :                 /*
     580             :                  * We can race with other __bdi_writeout_inc calls here but
     581             :                  * it does not cause any harm since the resulting time when
     582             :                  * timer will fire and what is in writeout_period_time will be
     583             :                  * roughly the same.
     584             :                  */
     585           1 :                 dom->period_time = wp_next_time(jiffies);
     586           1 :                 mod_timer(&dom->period_timer, dom->period_time);
     587             :         }
     588        1284 : }
     589             : 
     590             : /*
     591             :  * Increment @wb's writeout completion count and the global writeout
     592             :  * completion count. Called from test_clear_page_writeback().
     593             :  */
     594        1284 : static inline void __wb_writeout_inc(struct bdi_writeback *wb)
     595             : {
     596        1284 :         struct wb_domain *cgdom;
     597             : 
     598        1284 :         inc_wb_stat(wb, WB_WRITTEN);
     599        1284 :         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
     600        1284 :                                wb->bdi->max_prop_frac);
     601             : 
     602        1284 :         cgdom = mem_cgroup_wb_domain(wb);
     603        1284 :         if (cgdom)
     604             :                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
     605             :                                        wb->bdi->max_prop_frac);
     606        1284 : }
     607             : 
     608           0 : void wb_writeout_inc(struct bdi_writeback *wb)
     609             : {
     610           0 :         unsigned long flags;
     611             : 
     612           0 :         local_irq_save(flags);
     613           0 :         __wb_writeout_inc(wb);
     614           0 :         local_irq_restore(flags);
     615           0 : }
     616             : EXPORT_SYMBOL_GPL(wb_writeout_inc);
     617             : 
     618             : /*
     619             :  * On idle system, we can be called long after we scheduled because we use
     620             :  * deferred timers so count with missed periods.
     621             :  */
     622          10 : static void writeout_period(struct timer_list *t)
     623             : {
     624          10 :         struct wb_domain *dom = from_timer(dom, t, period_timer);
     625          10 :         int miss_periods = (jiffies - dom->period_time) /
     626             :                                                  VM_COMPLETIONS_PERIOD_LEN;
     627             : 
     628          10 :         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
     629          10 :                 dom->period_time = wp_next_time(dom->period_time +
     630          10 :                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
     631          10 :                 mod_timer(&dom->period_timer, dom->period_time);
     632             :         } else {
     633             :                 /*
     634             :                  * Aging has zeroed all fractions. Stop wasting CPU on period
     635             :                  * updates.
     636             :                  */
     637           0 :                 dom->period_time = 0;
     638             :         }
     639          10 : }
     640             : 
     641           1 : int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
     642             : {
     643           1 :         memset(dom, 0, sizeof(*dom));
     644             : 
     645           1 :         spin_lock_init(&dom->lock);
     646             : 
     647           1 :         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
     648             : 
     649           1 :         dom->dirty_limit_tstamp = jiffies;
     650             : 
     651           1 :         return fprop_global_init(&dom->completions, gfp);
     652             : }
     653             : 
     654             : #ifdef CONFIG_CGROUP_WRITEBACK
     655             : void wb_domain_exit(struct wb_domain *dom)
     656             : {
     657             :         del_timer_sync(&dom->period_timer);
     658             :         fprop_global_destroy(&dom->completions);
     659             : }
     660             : #endif
     661             : 
     662             : /*
     663             :  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
     664             :  * registered backing devices, which, for obvious reasons, can not
     665             :  * exceed 100%.
     666             :  */
     667             : static unsigned int bdi_min_ratio;
     668             : 
     669           0 : int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
     670             : {
     671           0 :         int ret = 0;
     672             : 
     673           0 :         spin_lock_bh(&bdi_lock);
     674           0 :         if (min_ratio > bdi->max_ratio) {
     675             :                 ret = -EINVAL;
     676             :         } else {
     677           0 :                 min_ratio -= bdi->min_ratio;
     678           0 :                 if (bdi_min_ratio + min_ratio < 100) {
     679           0 :                         bdi_min_ratio += min_ratio;
     680           0 :                         bdi->min_ratio += min_ratio;
     681             :                 } else {
     682             :                         ret = -EINVAL;
     683             :                 }
     684             :         }
     685           0 :         spin_unlock_bh(&bdi_lock);
     686             : 
     687           0 :         return ret;
     688             : }
     689             : 
     690           0 : int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
     691             : {
     692           0 :         int ret = 0;
     693             : 
     694           0 :         if (max_ratio > 100)
     695             :                 return -EINVAL;
     696             : 
     697           0 :         spin_lock_bh(&bdi_lock);
     698           0 :         if (bdi->min_ratio > max_ratio) {
     699             :                 ret = -EINVAL;
     700             :         } else {
     701           0 :                 bdi->max_ratio = max_ratio;
     702           0 :                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
     703             :         }
     704           0 :         spin_unlock_bh(&bdi_lock);
     705             : 
     706           0 :         return ret;
     707             : }
     708             : EXPORT_SYMBOL(bdi_set_max_ratio);
     709             : 
     710          25 : static unsigned long dirty_freerun_ceiling(unsigned long thresh,
     711             :                                            unsigned long bg_thresh)
     712             : {
     713          25 :         return (thresh + bg_thresh) / 2;
     714             : }
     715             : 
     716           0 : static unsigned long hard_dirty_limit(struct wb_domain *dom,
     717             :                                       unsigned long thresh)
     718             : {
     719           0 :         return max(thresh, dom->dirty_limit);
     720             : }
     721             : 
     722             : /*
     723             :  * Memory which can be further allocated to a memcg domain is capped by
     724             :  * system-wide clean memory excluding the amount being used in the domain.
     725             :  */
     726             : static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
     727             :                             unsigned long filepages, unsigned long headroom)
     728             : {
     729             :         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
     730             :         unsigned long clean = filepages - min(filepages, mdtc->dirty);
     731             :         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
     732             :         unsigned long other_clean = global_clean - min(global_clean, clean);
     733             : 
     734             :         mdtc->avail = filepages + min(headroom, other_clean);
     735             : }
     736             : 
     737             : /**
     738             :  * __wb_calc_thresh - @wb's share of dirty throttling threshold
     739             :  * @dtc: dirty_throttle_context of interest
     740             :  *
     741             :  * Note that balance_dirty_pages() will only seriously take it as a hard limit
     742             :  * when sleeping max_pause per page is not enough to keep the dirty pages under
     743             :  * control. For example, when the device is completely stalled due to some error
     744             :  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
     745             :  * In the other normal situations, it acts more gently by throttling the tasks
     746             :  * more (rather than completely block them) when the wb dirty pages go high.
     747             :  *
     748             :  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
     749             :  * - starving fast devices
     750             :  * - piling up dirty pages (that will take long time to sync) on slow devices
     751             :  *
     752             :  * The wb's share of dirty limit will be adapting to its throughput and
     753             :  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
     754             :  *
     755             :  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
     756             :  * dirty balancing includes all PG_dirty and PG_writeback pages.
     757             :  */
     758           7 : static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
     759             : {
     760           7 :         struct wb_domain *dom = dtc_dom(dtc);
     761           7 :         unsigned long thresh = dtc->thresh;
     762           7 :         u64 wb_thresh;
     763           7 :         unsigned long numerator, denominator;
     764           7 :         unsigned long wb_min_ratio, wb_max_ratio;
     765             : 
     766             :         /*
     767             :          * Calculate this BDI's share of the thresh ratio.
     768             :          */
     769           7 :         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
     770             :                               &numerator, &denominator);
     771             : 
     772           7 :         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
     773           7 :         wb_thresh *= numerator;
     774           7 :         wb_thresh = div64_ul(wb_thresh, denominator);
     775             : 
     776           7 :         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
     777             : 
     778           7 :         wb_thresh += (thresh * wb_min_ratio) / 100;
     779           7 :         if (wb_thresh > (thresh * wb_max_ratio) / 100)
     780             :                 wb_thresh = thresh * wb_max_ratio / 100;
     781             : 
     782           7 :         return wb_thresh;
     783             : }
     784             : 
     785           7 : unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
     786             : {
     787           7 :         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
     788             :                                                .thresh = thresh };
     789           7 :         return __wb_calc_thresh(&gdtc);
     790             : }
     791             : 
     792             : /*
     793             :  *                           setpoint - dirty 3
     794             :  *        f(dirty) := 1.0 + (----------------)
     795             :  *                           limit - setpoint
     796             :  *
     797             :  * it's a 3rd order polynomial that subjects to
     798             :  *
     799             :  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
     800             :  * (2) f(setpoint) = 1.0 => the balance point
     801             :  * (3) f(limit)    = 0   => the hard limit
     802             :  * (4) df/dx      <= 0        => negative feedback control
     803             :  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
     804             :  *     => fast response on large errors; small oscillation near setpoint
     805             :  */
     806           0 : static long long pos_ratio_polynom(unsigned long setpoint,
     807             :                                           unsigned long dirty,
     808             :                                           unsigned long limit)
     809             : {
     810           0 :         long long pos_ratio;
     811           0 :         long x;
     812             : 
     813           0 :         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
     814           0 :                       (limit - setpoint) | 1);
     815           0 :         pos_ratio = x;
     816           0 :         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
     817           0 :         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
     818           0 :         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
     819             : 
     820           0 :         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
     821             : }
     822             : 
     823             : /*
     824             :  * Dirty position control.
     825             :  *
     826             :  * (o) global/bdi setpoints
     827             :  *
     828             :  * We want the dirty pages be balanced around the global/wb setpoints.
     829             :  * When the number of dirty pages is higher/lower than the setpoint, the
     830             :  * dirty position control ratio (and hence task dirty ratelimit) will be
     831             :  * decreased/increased to bring the dirty pages back to the setpoint.
     832             :  *
     833             :  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
     834             :  *
     835             :  *     if (dirty < setpoint) scale up   pos_ratio
     836             :  *     if (dirty > setpoint) scale down pos_ratio
     837             :  *
     838             :  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
     839             :  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
     840             :  *
     841             :  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
     842             :  *
     843             :  * (o) global control line
     844             :  *
     845             :  *     ^ pos_ratio
     846             :  *     |
     847             :  *     |            |<===== global dirty control scope ======>|
     848             :  * 2.0 .............*
     849             :  *     |            .*
     850             :  *     |            . *
     851             :  *     |            .   *
     852             :  *     |            .     *
     853             :  *     |            .        *
     854             :  *     |            .            *
     855             :  * 1.0 ................................*
     856             :  *     |            .                  .     *
     857             :  *     |            .                  .          *
     858             :  *     |            .                  .              *
     859             :  *     |            .                  .                 *
     860             :  *     |            .                  .                    *
     861             :  *   0 +------------.------------------.----------------------*------------->
     862             :  *           freerun^          setpoint^                 limit^   dirty pages
     863             :  *
     864             :  * (o) wb control line
     865             :  *
     866             :  *     ^ pos_ratio
     867             :  *     |
     868             :  *     |            *
     869             :  *     |              *
     870             :  *     |                *
     871             :  *     |                  *
     872             :  *     |                    * |<=========== span ============>|
     873             :  * 1.0 .......................*
     874             :  *     |                      . *
     875             :  *     |                      .   *
     876             :  *     |                      .     *
     877             :  *     |                      .       *
     878             :  *     |                      .         *
     879             :  *     |                      .           *
     880             :  *     |                      .             *
     881             :  *     |                      .               *
     882             :  *     |                      .                 *
     883             :  *     |                      .                   *
     884             :  *     |                      .                     *
     885             :  * 1/4 ...............................................* * * * * * * * * * * *
     886             :  *     |                      .                         .
     887             :  *     |                      .                           .
     888             :  *     |                      .                             .
     889             :  *   0 +----------------------.-------------------------------.------------->
     890             :  *                wb_setpoint^                    x_intercept^
     891             :  *
     892             :  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
     893             :  * be smoothly throttled down to normal if it starts high in situations like
     894             :  * - start writing to a slow SD card and a fast disk at the same time. The SD
     895             :  *   card's wb_dirty may rush to many times higher than wb_setpoint.
     896             :  * - the wb dirty thresh drops quickly due to change of JBOD workload
     897             :  */
     898           0 : static void wb_position_ratio(struct dirty_throttle_control *dtc)
     899             : {
     900           0 :         struct bdi_writeback *wb = dtc->wb;
     901           0 :         unsigned long write_bw = wb->avg_write_bandwidth;
     902           0 :         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
     903           0 :         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
     904           0 :         unsigned long wb_thresh = dtc->wb_thresh;
     905           0 :         unsigned long x_intercept;
     906           0 :         unsigned long setpoint;         /* dirty pages' target balance point */
     907           0 :         unsigned long wb_setpoint;
     908           0 :         unsigned long span;
     909           0 :         long long pos_ratio;            /* for scaling up/down the rate limit */
     910           0 :         long x;
     911             : 
     912           0 :         dtc->pos_ratio = 0;
     913             : 
     914           0 :         if (unlikely(dtc->dirty >= limit))
     915             :                 return;
     916             : 
     917             :         /*
     918             :          * global setpoint
     919             :          *
     920             :          * See comment for pos_ratio_polynom().
     921             :          */
     922           0 :         setpoint = (freerun + limit) / 2;
     923           0 :         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
     924             : 
     925             :         /*
     926             :          * The strictlimit feature is a tool preventing mistrusted filesystems
     927             :          * from growing a large number of dirty pages before throttling. For
     928             :          * such filesystems balance_dirty_pages always checks wb counters
     929             :          * against wb limits. Even if global "nr_dirty" is under "freerun".
     930             :          * This is especially important for fuse which sets bdi->max_ratio to
     931             :          * 1% by default. Without strictlimit feature, fuse writeback may
     932             :          * consume arbitrary amount of RAM because it is accounted in
     933             :          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
     934             :          *
     935             :          * Here, in wb_position_ratio(), we calculate pos_ratio based on
     936             :          * two values: wb_dirty and wb_thresh. Let's consider an example:
     937             :          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
     938             :          * limits are set by default to 10% and 20% (background and throttle).
     939             :          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
     940             :          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
     941             :          * about ~6K pages (as the average of background and throttle wb
     942             :          * limits). The 3rd order polynomial will provide positive feedback if
     943             :          * wb_dirty is under wb_setpoint and vice versa.
     944             :          *
     945             :          * Note, that we cannot use global counters in these calculations
     946             :          * because we want to throttle process writing to a strictlimit wb
     947             :          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
     948             :          * in the example above).
     949             :          */
     950           0 :         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
     951           0 :                 long long wb_pos_ratio;
     952             : 
     953           0 :                 if (dtc->wb_dirty < 8) {
     954           0 :                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
     955             :                                            2 << RATELIMIT_CALC_SHIFT);
     956           0 :                         return;
     957             :                 }
     958             : 
     959           0 :                 if (dtc->wb_dirty >= wb_thresh)
     960             :                         return;
     961             : 
     962           0 :                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
     963             :                                                     dtc->wb_bg_thresh);
     964             : 
     965           0 :                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
     966             :                         return;
     967             : 
     968           0 :                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
     969             :                                                  wb_thresh);
     970             : 
     971             :                 /*
     972             :                  * Typically, for strictlimit case, wb_setpoint << setpoint
     973             :                  * and pos_ratio >> wb_pos_ratio. In the other words global
     974             :                  * state ("dirty") is not limiting factor and we have to
     975             :                  * make decision based on wb counters. But there is an
     976             :                  * important case when global pos_ratio should get precedence:
     977             :                  * global limits are exceeded (e.g. due to activities on other
     978             :                  * wb's) while given strictlimit wb is below limit.
     979             :                  *
     980             :                  * "pos_ratio * wb_pos_ratio" would work for the case above,
     981             :                  * but it would look too non-natural for the case of all
     982             :                  * activity in the system coming from a single strictlimit wb
     983             :                  * with bdi->max_ratio == 100%.
     984             :                  *
     985             :                  * Note that min() below somewhat changes the dynamics of the
     986             :                  * control system. Normally, pos_ratio value can be well over 3
     987             :                  * (when globally we are at freerun and wb is well below wb
     988             :                  * setpoint). Now the maximum pos_ratio in the same situation
     989             :                  * is 2. We might want to tweak this if we observe the control
     990             :                  * system is too slow to adapt.
     991             :                  */
     992           0 :                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
     993           0 :                 return;
     994             :         }
     995             : 
     996             :         /*
     997             :          * We have computed basic pos_ratio above based on global situation. If
     998             :          * the wb is over/under its share of dirty pages, we want to scale
     999             :          * pos_ratio further down/up. That is done by the following mechanism.
    1000             :          */
    1001             : 
    1002             :         /*
    1003             :          * wb setpoint
    1004             :          *
    1005             :          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
    1006             :          *
    1007             :          *                        x_intercept - wb_dirty
    1008             :          *                     := --------------------------
    1009             :          *                        x_intercept - wb_setpoint
    1010             :          *
    1011             :          * The main wb control line is a linear function that subjects to
    1012             :          *
    1013             :          * (1) f(wb_setpoint) = 1.0
    1014             :          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
    1015             :          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
    1016             :          *
    1017             :          * For single wb case, the dirty pages are observed to fluctuate
    1018             :          * regularly within range
    1019             :          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
    1020             :          * for various filesystems, where (2) can yield in a reasonable 12.5%
    1021             :          * fluctuation range for pos_ratio.
    1022             :          *
    1023             :          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
    1024             :          * own size, so move the slope over accordingly and choose a slope that
    1025             :          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
    1026             :          */
    1027           0 :         if (unlikely(wb_thresh > dtc->thresh))
    1028           0 :                 wb_thresh = dtc->thresh;
    1029             :         /*
    1030             :          * It's very possible that wb_thresh is close to 0 not because the
    1031             :          * device is slow, but that it has remained inactive for long time.
    1032             :          * Honour such devices a reasonable good (hopefully IO efficient)
    1033             :          * threshold, so that the occasional writes won't be blocked and active
    1034             :          * writes can rampup the threshold quickly.
    1035             :          */
    1036           0 :         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
    1037             :         /*
    1038             :          * scale global setpoint to wb's:
    1039             :          *      wb_setpoint = setpoint * wb_thresh / thresh
    1040             :          */
    1041           0 :         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
    1042           0 :         wb_setpoint = setpoint * (u64)x >> 16;
    1043             :         /*
    1044             :          * Use span=(8*write_bw) in single wb case as indicated by
    1045             :          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
    1046             :          *
    1047             :          *        wb_thresh                    thresh - wb_thresh
    1048             :          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
    1049             :          *         thresh                           thresh
    1050             :          */
    1051           0 :         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
    1052           0 :         x_intercept = wb_setpoint + span;
    1053             : 
    1054           0 :         if (dtc->wb_dirty < x_intercept - span / 4) {
    1055           0 :                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
    1056           0 :                                       (x_intercept - wb_setpoint) | 1);
    1057             :         } else
    1058           0 :                 pos_ratio /= 4;
    1059             : 
    1060             :         /*
    1061             :          * wb reserve area, safeguard against dirty pool underrun and disk idle
    1062             :          * It may push the desired control point of global dirty pages higher
    1063             :          * than setpoint.
    1064             :          */
    1065           0 :         x_intercept = wb_thresh / 2;
    1066           0 :         if (dtc->wb_dirty < x_intercept) {
    1067           0 :                 if (dtc->wb_dirty > x_intercept / 8)
    1068           0 :                         pos_ratio = div_u64(pos_ratio * x_intercept,
    1069             :                                             dtc->wb_dirty);
    1070             :                 else
    1071           0 :                         pos_ratio *= 8;
    1072             :         }
    1073             : 
    1074           0 :         dtc->pos_ratio = pos_ratio;
    1075             : }
    1076             : 
    1077           0 : static void wb_update_write_bandwidth(struct bdi_writeback *wb,
    1078             :                                       unsigned long elapsed,
    1079             :                                       unsigned long written)
    1080             : {
    1081           0 :         const unsigned long period = roundup_pow_of_two(3 * HZ);
    1082           0 :         unsigned long avg = wb->avg_write_bandwidth;
    1083           0 :         unsigned long old = wb->write_bandwidth;
    1084           0 :         u64 bw;
    1085             : 
    1086             :         /*
    1087             :          * bw = written * HZ / elapsed
    1088             :          *
    1089             :          *                   bw * elapsed + write_bandwidth * (period - elapsed)
    1090             :          * write_bandwidth = ---------------------------------------------------
    1091             :          *                                          period
    1092             :          *
    1093             :          * @written may have decreased due to account_page_redirty().
    1094             :          * Avoid underflowing @bw calculation.
    1095             :          */
    1096           0 :         bw = written - min(written, wb->written_stamp);
    1097           0 :         bw *= HZ;
    1098           0 :         if (unlikely(elapsed > period)) {
    1099           0 :                 bw = div64_ul(bw, elapsed);
    1100           0 :                 avg = bw;
    1101           0 :                 goto out;
    1102             :         }
    1103           0 :         bw += (u64)wb->write_bandwidth * (period - elapsed);
    1104           0 :         bw >>= ilog2(period);
    1105             : 
    1106             :         /*
    1107             :          * one more level of smoothing, for filtering out sudden spikes
    1108             :          */
    1109           0 :         if (avg > old && old >= (unsigned long)bw)
    1110           0 :                 avg -= (avg - old) >> 3;
    1111             : 
    1112           0 :         if (avg < old && old <= (unsigned long)bw)
    1113           0 :                 avg += (old - avg) >> 3;
    1114             : 
    1115           0 : out:
    1116             :         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
    1117           0 :         avg = max(avg, 1LU);
    1118           0 :         if (wb_has_dirty_io(wb)) {
    1119           0 :                 long delta = avg - wb->avg_write_bandwidth;
    1120           0 :                 WARN_ON_ONCE(atomic_long_add_return(delta,
    1121             :                                         &wb->bdi->tot_write_bandwidth) <= 0);
    1122             :         }
    1123           0 :         wb->write_bandwidth = bw;
    1124           0 :         wb->avg_write_bandwidth = avg;
    1125           0 : }
    1126             : 
    1127           0 : static void update_dirty_limit(struct dirty_throttle_control *dtc)
    1128             : {
    1129           0 :         struct wb_domain *dom = dtc_dom(dtc);
    1130           0 :         unsigned long thresh = dtc->thresh;
    1131           0 :         unsigned long limit = dom->dirty_limit;
    1132             : 
    1133             :         /*
    1134             :          * Follow up in one step.
    1135             :          */
    1136           0 :         if (limit < thresh) {
    1137           0 :                 limit = thresh;
    1138           0 :                 goto update;
    1139             :         }
    1140             : 
    1141             :         /*
    1142             :          * Follow down slowly. Use the higher one as the target, because thresh
    1143             :          * may drop below dirty. This is exactly the reason to introduce
    1144             :          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
    1145             :          */
    1146           0 :         thresh = max(thresh, dtc->dirty);
    1147           0 :         if (limit > thresh) {
    1148           0 :                 limit -= (limit - thresh) >> 5;
    1149           0 :                 goto update;
    1150             :         }
    1151             :         return;
    1152           0 : update:
    1153           0 :         dom->dirty_limit = limit;
    1154             : }
    1155             : 
    1156           0 : static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
    1157             :                                     unsigned long now)
    1158             : {
    1159           0 :         struct wb_domain *dom = dtc_dom(dtc);
    1160             : 
    1161             :         /*
    1162             :          * check locklessly first to optimize away locking for the most time
    1163             :          */
    1164           0 :         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
    1165             :                 return;
    1166             : 
    1167           0 :         spin_lock(&dom->lock);
    1168           0 :         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
    1169           0 :                 update_dirty_limit(dtc);
    1170           0 :                 dom->dirty_limit_tstamp = now;
    1171             :         }
    1172           0 :         spin_unlock(&dom->lock);
    1173             : }
    1174             : 
    1175             : /*
    1176             :  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
    1177             :  *
    1178             :  * Normal wb tasks will be curbed at or below it in long term.
    1179             :  * Obviously it should be around (write_bw / N) when there are N dd tasks.
    1180             :  */
    1181           0 : static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
    1182             :                                       unsigned long dirtied,
    1183             :                                       unsigned long elapsed)
    1184             : {
    1185           0 :         struct bdi_writeback *wb = dtc->wb;
    1186           0 :         unsigned long dirty = dtc->dirty;
    1187           0 :         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
    1188           0 :         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
    1189           0 :         unsigned long setpoint = (freerun + limit) / 2;
    1190           0 :         unsigned long write_bw = wb->avg_write_bandwidth;
    1191           0 :         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
    1192           0 :         unsigned long dirty_rate;
    1193           0 :         unsigned long task_ratelimit;
    1194           0 :         unsigned long balanced_dirty_ratelimit;
    1195           0 :         unsigned long step;
    1196           0 :         unsigned long x;
    1197           0 :         unsigned long shift;
    1198             : 
    1199             :         /*
    1200             :          * The dirty rate will match the writeout rate in long term, except
    1201             :          * when dirty pages are truncated by userspace or re-dirtied by FS.
    1202             :          */
    1203           0 :         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
    1204             : 
    1205             :         /*
    1206             :          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
    1207             :          */
    1208           0 :         task_ratelimit = (u64)dirty_ratelimit *
    1209           0 :                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
    1210           0 :         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
    1211             : 
    1212             :         /*
    1213             :          * A linear estimation of the "balanced" throttle rate. The theory is,
    1214             :          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
    1215             :          * dirty_rate will be measured to be (N * task_ratelimit). So the below
    1216             :          * formula will yield the balanced rate limit (write_bw / N).
    1217             :          *
    1218             :          * Note that the expanded form is not a pure rate feedback:
    1219             :          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
    1220             :          * but also takes pos_ratio into account:
    1221             :          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
    1222             :          *
    1223             :          * (1) is not realistic because pos_ratio also takes part in balancing
    1224             :          * the dirty rate.  Consider the state
    1225             :          *      pos_ratio = 0.5                                              (3)
    1226             :          *      rate = 2 * (write_bw / N)                                    (4)
    1227             :          * If (1) is used, it will stuck in that state! Because each dd will
    1228             :          * be throttled at
    1229             :          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
    1230             :          * yielding
    1231             :          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
    1232             :          * put (6) into (1) we get
    1233             :          *      rate_(i+1) = rate_(i)                                        (7)
    1234             :          *
    1235             :          * So we end up using (2) to always keep
    1236             :          *      rate_(i+1) ~= (write_bw / N)                                 (8)
    1237             :          * regardless of the value of pos_ratio. As long as (8) is satisfied,
    1238             :          * pos_ratio is able to drive itself to 1.0, which is not only where
    1239             :          * the dirty count meet the setpoint, but also where the slope of
    1240             :          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
    1241             :          */
    1242           0 :         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
    1243             :                                            dirty_rate | 1);
    1244             :         /*
    1245             :          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
    1246             :          */
    1247           0 :         if (unlikely(balanced_dirty_ratelimit > write_bw))
    1248           0 :                 balanced_dirty_ratelimit = write_bw;
    1249             : 
    1250             :         /*
    1251             :          * We could safely do this and return immediately:
    1252             :          *
    1253             :          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
    1254             :          *
    1255             :          * However to get a more stable dirty_ratelimit, the below elaborated
    1256             :          * code makes use of task_ratelimit to filter out singular points and
    1257             :          * limit the step size.
    1258             :          *
    1259             :          * The below code essentially only uses the relative value of
    1260             :          *
    1261             :          *      task_ratelimit - dirty_ratelimit
    1262             :          *      = (pos_ratio - 1) * dirty_ratelimit
    1263             :          *
    1264             :          * which reflects the direction and size of dirty position error.
    1265             :          */
    1266             : 
    1267             :         /*
    1268             :          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
    1269             :          * task_ratelimit is on the same side of dirty_ratelimit, too.
    1270             :          * For example, when
    1271             :          * - dirty_ratelimit > balanced_dirty_ratelimit
    1272             :          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
    1273             :          * lowering dirty_ratelimit will help meet both the position and rate
    1274             :          * control targets. Otherwise, don't update dirty_ratelimit if it will
    1275             :          * only help meet the rate target. After all, what the users ultimately
    1276             :          * feel and care are stable dirty rate and small position error.
    1277             :          *
    1278             :          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
    1279             :          * and filter out the singular points of balanced_dirty_ratelimit. Which
    1280             :          * keeps jumping around randomly and can even leap far away at times
    1281             :          * due to the small 200ms estimation period of dirty_rate (we want to
    1282             :          * keep that period small to reduce time lags).
    1283             :          */
    1284           0 :         step = 0;
    1285             : 
    1286             :         /*
    1287             :          * For strictlimit case, calculations above were based on wb counters
    1288             :          * and limits (starting from pos_ratio = wb_position_ratio() and up to
    1289             :          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
    1290             :          * Hence, to calculate "step" properly, we have to use wb_dirty as
    1291             :          * "dirty" and wb_setpoint as "setpoint".
    1292             :          *
    1293             :          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
    1294             :          * it's possible that wb_thresh is close to zero due to inactivity
    1295             :          * of backing device.
    1296             :          */
    1297           0 :         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
    1298           0 :                 dirty = dtc->wb_dirty;
    1299           0 :                 if (dtc->wb_dirty < 8)
    1300           0 :                         setpoint = dtc->wb_dirty + 1;
    1301             :                 else
    1302           0 :                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
    1303             :         }
    1304             : 
    1305           0 :         if (dirty < setpoint) {
    1306           0 :                 x = min3(wb->balanced_dirty_ratelimit,
    1307             :                          balanced_dirty_ratelimit, task_ratelimit);
    1308           0 :                 if (dirty_ratelimit < x)
    1309           0 :                         step = x - dirty_ratelimit;
    1310             :         } else {
    1311           0 :                 x = max3(wb->balanced_dirty_ratelimit,
    1312             :                          balanced_dirty_ratelimit, task_ratelimit);
    1313           0 :                 if (dirty_ratelimit > x)
    1314           0 :                         step = dirty_ratelimit - x;
    1315             :         }
    1316             : 
    1317             :         /*
    1318             :          * Don't pursue 100% rate matching. It's impossible since the balanced
    1319             :          * rate itself is constantly fluctuating. So decrease the track speed
    1320             :          * when it gets close to the target. Helps eliminate pointless tremors.
    1321             :          */
    1322           0 :         shift = dirty_ratelimit / (2 * step + 1);
    1323           0 :         if (shift < BITS_PER_LONG)
    1324           0 :                 step = DIV_ROUND_UP(step >> shift, 8);
    1325             :         else
    1326             :                 step = 0;
    1327             : 
    1328           0 :         if (dirty_ratelimit < balanced_dirty_ratelimit)
    1329           0 :                 dirty_ratelimit += step;
    1330             :         else
    1331           0 :                 dirty_ratelimit -= step;
    1332             : 
    1333           0 :         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
    1334           0 :         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
    1335             : 
    1336           0 :         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
    1337           0 : }
    1338             : 
    1339          13 : static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
    1340             :                                   struct dirty_throttle_control *mdtc,
    1341             :                                   unsigned long start_time,
    1342             :                                   bool update_ratelimit)
    1343             : {
    1344          13 :         struct bdi_writeback *wb = gdtc->wb;
    1345          13 :         unsigned long now = jiffies;
    1346          13 :         unsigned long elapsed = now - wb->bw_time_stamp;
    1347          13 :         unsigned long dirtied;
    1348          13 :         unsigned long written;
    1349             : 
    1350          26 :         lockdep_assert_held(&wb->list_lock);
    1351             : 
    1352             :         /*
    1353             :          * rate-limit, only update once every 200ms.
    1354             :          */
    1355          13 :         if (elapsed < BANDWIDTH_INTERVAL)
    1356             :                 return;
    1357             : 
    1358           7 :         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
    1359           7 :         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
    1360             : 
    1361             :         /*
    1362             :          * Skip quiet periods when disk bandwidth is under-utilized.
    1363             :          * (at least 1s idle time between two flusher runs)
    1364             :          */
    1365           7 :         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
    1366           7 :                 goto snapshot;
    1367             : 
    1368           0 :         if (update_ratelimit) {
    1369           0 :                 domain_update_bandwidth(gdtc, now);
    1370           0 :                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
    1371             : 
    1372             :                 /*
    1373             :                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
    1374             :                  * compiler has no way to figure that out.  Help it.
    1375             :                  */
    1376           0 :                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
    1377             :                         domain_update_bandwidth(mdtc, now);
    1378             :                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
    1379             :                 }
    1380             :         }
    1381           0 :         wb_update_write_bandwidth(wb, elapsed, written);
    1382             : 
    1383           7 : snapshot:
    1384           7 :         wb->dirtied_stamp = dirtied;
    1385           7 :         wb->written_stamp = written;
    1386           7 :         wb->bw_time_stamp = now;
    1387             : }
    1388             : 
    1389          13 : void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
    1390             : {
    1391          13 :         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
    1392             : 
    1393          13 :         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
    1394          13 : }
    1395             : 
    1396             : /*
    1397             :  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
    1398             :  * will look to see if it needs to start dirty throttling.
    1399             :  *
    1400             :  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
    1401             :  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
    1402             :  * (the number of pages we may dirty without exceeding the dirty limits).
    1403             :  */
    1404          25 : static unsigned long dirty_poll_interval(unsigned long dirty,
    1405             :                                          unsigned long thresh)
    1406             : {
    1407          25 :         if (thresh > dirty)
    1408          25 :                 return 1UL << (ilog2(thresh - dirty) >> 1);
    1409             : 
    1410             :         return 1;
    1411             : }
    1412             : 
    1413           0 : static unsigned long wb_max_pause(struct bdi_writeback *wb,
    1414             :                                   unsigned long wb_dirty)
    1415             : {
    1416           0 :         unsigned long bw = wb->avg_write_bandwidth;
    1417           0 :         unsigned long t;
    1418             : 
    1419             :         /*
    1420             :          * Limit pause time for small memory systems. If sleeping for too long
    1421             :          * time, a small pool of dirty/writeback pages may go empty and disk go
    1422             :          * idle.
    1423             :          *
    1424             :          * 8 serves as the safety ratio.
    1425             :          */
    1426           0 :         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
    1427           0 :         t++;
    1428             : 
    1429           0 :         return min_t(unsigned long, t, MAX_PAUSE);
    1430             : }
    1431             : 
    1432           0 : static long wb_min_pause(struct bdi_writeback *wb,
    1433             :                          long max_pause,
    1434             :                          unsigned long task_ratelimit,
    1435             :                          unsigned long dirty_ratelimit,
    1436             :                          int *nr_dirtied_pause)
    1437             : {
    1438           0 :         long hi = ilog2(wb->avg_write_bandwidth);
    1439           0 :         long lo = ilog2(wb->dirty_ratelimit);
    1440           0 :         long t;         /* target pause */
    1441           0 :         long pause;     /* estimated next pause */
    1442           0 :         int pages;      /* target nr_dirtied_pause */
    1443             : 
    1444             :         /* target for 10ms pause on 1-dd case */
    1445           0 :         t = max(1, HZ / 100);
    1446             : 
    1447             :         /*
    1448             :          * Scale up pause time for concurrent dirtiers in order to reduce CPU
    1449             :          * overheads.
    1450             :          *
    1451             :          * (N * 10ms) on 2^N concurrent tasks.
    1452             :          */
    1453           0 :         if (hi > lo)
    1454           0 :                 t += (hi - lo) * (10 * HZ) / 1024;
    1455             : 
    1456             :         /*
    1457             :          * This is a bit convoluted. We try to base the next nr_dirtied_pause
    1458             :          * on the much more stable dirty_ratelimit. However the next pause time
    1459             :          * will be computed based on task_ratelimit and the two rate limits may
    1460             :          * depart considerably at some time. Especially if task_ratelimit goes
    1461             :          * below dirty_ratelimit/2 and the target pause is max_pause, the next
    1462             :          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
    1463             :          * result task_ratelimit won't be executed faithfully, which could
    1464             :          * eventually bring down dirty_ratelimit.
    1465             :          *
    1466             :          * We apply two rules to fix it up:
    1467             :          * 1) try to estimate the next pause time and if necessary, use a lower
    1468             :          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
    1469             :          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
    1470             :          * 2) limit the target pause time to max_pause/2, so that the normal
    1471             :          *    small fluctuations of task_ratelimit won't trigger rule (1) and
    1472             :          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
    1473             :          */
    1474           0 :         t = min(t, 1 + max_pause / 2);
    1475           0 :         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
    1476             : 
    1477             :         /*
    1478             :          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
    1479             :          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
    1480             :          * When the 16 consecutive reads are often interrupted by some dirty
    1481             :          * throttling pause during the async writes, cfq will go into idles
    1482             :          * (deadline is fine). So push nr_dirtied_pause as high as possible
    1483             :          * until reaches DIRTY_POLL_THRESH=32 pages.
    1484             :          */
    1485           0 :         if (pages < DIRTY_POLL_THRESH) {
    1486           0 :                 t = max_pause;
    1487           0 :                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
    1488           0 :                 if (pages > DIRTY_POLL_THRESH) {
    1489           0 :                         pages = DIRTY_POLL_THRESH;
    1490           0 :                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
    1491             :                 }
    1492             :         }
    1493             : 
    1494           0 :         pause = HZ * pages / (task_ratelimit + 1);
    1495           0 :         if (pause > max_pause) {
    1496           0 :                 t = max_pause;
    1497           0 :                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
    1498             :         }
    1499             : 
    1500           0 :         *nr_dirtied_pause = pages;
    1501             :         /*
    1502             :          * The minimal pause time will normally be half the target pause time.
    1503             :          */
    1504           0 :         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
    1505             : }
    1506             : 
    1507           0 : static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
    1508             : {
    1509           0 :         struct bdi_writeback *wb = dtc->wb;
    1510           0 :         unsigned long wb_reclaimable;
    1511             : 
    1512             :         /*
    1513             :          * wb_thresh is not treated as some limiting factor as
    1514             :          * dirty_thresh, due to reasons
    1515             :          * - in JBOD setup, wb_thresh can fluctuate a lot
    1516             :          * - in a system with HDD and USB key, the USB key may somehow
    1517             :          *   go into state (wb_dirty >> wb_thresh) either because
    1518             :          *   wb_dirty starts high, or because wb_thresh drops low.
    1519             :          *   In this case we don't want to hard throttle the USB key
    1520             :          *   dirtiers for 100 seconds until wb_dirty drops under
    1521             :          *   wb_thresh. Instead the auxiliary wb control line in
    1522             :          *   wb_position_ratio() will let the dirtier task progress
    1523             :          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
    1524             :          */
    1525           0 :         dtc->wb_thresh = __wb_calc_thresh(dtc);
    1526           0 :         dtc->wb_bg_thresh = dtc->thresh ?
    1527           0 :                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
    1528             : 
    1529             :         /*
    1530             :          * In order to avoid the stacked BDI deadlock we need
    1531             :          * to ensure we accurately count the 'dirty' pages when
    1532             :          * the threshold is low.
    1533             :          *
    1534             :          * Otherwise it would be possible to get thresh+n pages
    1535             :          * reported dirty, even though there are thresh-m pages
    1536             :          * actually dirty; with m+n sitting in the percpu
    1537             :          * deltas.
    1538             :          */
    1539           0 :         if (dtc->wb_thresh < 2 * wb_stat_error()) {
    1540           0 :                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
    1541           0 :                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
    1542             :         } else {
    1543           0 :                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
    1544           0 :                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
    1545             :         }
    1546           0 : }
    1547             : 
    1548             : /*
    1549             :  * balance_dirty_pages() must be called by processes which are generating dirty
    1550             :  * data.  It looks at the number of dirty pages in the machine and will force
    1551             :  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
    1552             :  * If we're over `background_thresh' then the writeback threads are woken to
    1553             :  * perform some writeout.
    1554             :  */
    1555          25 : static void balance_dirty_pages(struct bdi_writeback *wb,
    1556             :                                 unsigned long pages_dirtied)
    1557             : {
    1558          25 :         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
    1559          25 :         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
    1560          25 :         struct dirty_throttle_control * const gdtc = &gdtc_stor;
    1561          25 :         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
    1562             :                                                      &mdtc_stor : NULL;
    1563          25 :         struct dirty_throttle_control *sdtc;
    1564          25 :         unsigned long nr_reclaimable;   /* = file_dirty */
    1565          25 :         long period;
    1566          25 :         long pause;
    1567          25 :         long max_pause;
    1568          25 :         long min_pause;
    1569          25 :         int nr_dirtied_pause;
    1570          25 :         bool dirty_exceeded = false;
    1571          25 :         unsigned long task_ratelimit;
    1572          25 :         unsigned long dirty_ratelimit;
    1573          25 :         struct backing_dev_info *bdi = wb->bdi;
    1574          25 :         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
    1575          25 :         unsigned long start_time = jiffies;
    1576             : 
    1577          25 :         for (;;) {
    1578          25 :                 unsigned long now = jiffies;
    1579          25 :                 unsigned long dirty, thresh, bg_thresh;
    1580          25 :                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
    1581          25 :                 unsigned long m_thresh = 0;
    1582          25 :                 unsigned long m_bg_thresh = 0;
    1583             : 
    1584          25 :                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
    1585          25 :                 gdtc->avail = global_dirtyable_memory();
    1586          25 :                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
    1587             : 
    1588          25 :                 domain_dirty_limits(gdtc);
    1589             : 
    1590          25 :                 if (unlikely(strictlimit)) {
    1591           0 :                         wb_dirty_limits(gdtc);
    1592             : 
    1593           0 :                         dirty = gdtc->wb_dirty;
    1594           0 :                         thresh = gdtc->wb_thresh;
    1595           0 :                         bg_thresh = gdtc->wb_bg_thresh;
    1596             :                 } else {
    1597          25 :                         dirty = gdtc->dirty;
    1598          25 :                         thresh = gdtc->thresh;
    1599          25 :                         bg_thresh = gdtc->bg_thresh;
    1600             :                 }
    1601             : 
    1602          25 :                 if (mdtc) {
    1603             :                         unsigned long filepages, headroom, writeback;
    1604             : 
    1605             :                         /*
    1606             :                          * If @wb belongs to !root memcg, repeat the same
    1607             :                          * basic calculations for the memcg domain.
    1608             :                          */
    1609             :                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
    1610             :                                             &mdtc->dirty, &writeback);
    1611             :                         mdtc->dirty += writeback;
    1612             :                         mdtc_calc_avail(mdtc, filepages, headroom);
    1613             : 
    1614             :                         domain_dirty_limits(mdtc);
    1615             : 
    1616             :                         if (unlikely(strictlimit)) {
    1617             :                                 wb_dirty_limits(mdtc);
    1618             :                                 m_dirty = mdtc->wb_dirty;
    1619             :                                 m_thresh = mdtc->wb_thresh;
    1620             :                                 m_bg_thresh = mdtc->wb_bg_thresh;
    1621             :                         } else {
    1622             :                                 m_dirty = mdtc->dirty;
    1623             :                                 m_thresh = mdtc->thresh;
    1624             :                                 m_bg_thresh = mdtc->bg_thresh;
    1625             :                         }
    1626             :                 }
    1627             : 
    1628             :                 /*
    1629             :                  * Throttle it only when the background writeback cannot
    1630             :                  * catch-up. This avoids (excessively) small writeouts
    1631             :                  * when the wb limits are ramping up in case of !strictlimit.
    1632             :                  *
    1633             :                  * In strictlimit case make decision based on the wb counters
    1634             :                  * and limits. Small writeouts when the wb limits are ramping
    1635             :                  * up are the price we consciously pay for strictlimit-ing.
    1636             :                  *
    1637             :                  * If memcg domain is in effect, @dirty should be under
    1638             :                  * both global and memcg freerun ceilings.
    1639             :                  */
    1640          25 :                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
    1641             :                     (!mdtc ||
    1642             :                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
    1643          25 :                         unsigned long intv;
    1644          25 :                         unsigned long m_intv;
    1645             : 
    1646          25 : free_running:
    1647          25 :                         intv = dirty_poll_interval(dirty, thresh);
    1648          25 :                         m_intv = ULONG_MAX;
    1649             : 
    1650          25 :                         current->dirty_paused_when = now;
    1651          25 :                         current->nr_dirtied = 0;
    1652          25 :                         if (mdtc)
    1653             :                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
    1654          25 :                         current->nr_dirtied_pause = min(intv, m_intv);
    1655          25 :                         break;
    1656             :                 }
    1657             : 
    1658           0 :                 if (unlikely(!writeback_in_progress(wb)))
    1659           0 :                         wb_start_background_writeback(wb);
    1660             : 
    1661           0 :                 mem_cgroup_flush_foreign(wb);
    1662             : 
    1663             :                 /*
    1664             :                  * Calculate global domain's pos_ratio and select the
    1665             :                  * global dtc by default.
    1666             :                  */
    1667           0 :                 if (!strictlimit) {
    1668           0 :                         wb_dirty_limits(gdtc);
    1669             : 
    1670           0 :                         if ((current->flags & PF_LOCAL_THROTTLE) &&
    1671           0 :                             gdtc->wb_dirty <
    1672           0 :                             dirty_freerun_ceiling(gdtc->wb_thresh,
    1673             :                                                   gdtc->wb_bg_thresh))
    1674             :                                 /*
    1675             :                                  * LOCAL_THROTTLE tasks must not be throttled
    1676             :                                  * when below the per-wb freerun ceiling.
    1677             :                                  */
    1678           0 :                                 goto free_running;
    1679             :                 }
    1680             : 
    1681           0 :                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
    1682           0 :                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
    1683             : 
    1684           0 :                 wb_position_ratio(gdtc);
    1685           0 :                 sdtc = gdtc;
    1686             : 
    1687           0 :                 if (mdtc) {
    1688             :                         /*
    1689             :                          * If memcg domain is in effect, calculate its
    1690             :                          * pos_ratio.  @wb should satisfy constraints from
    1691             :                          * both global and memcg domains.  Choose the one
    1692             :                          * w/ lower pos_ratio.
    1693             :                          */
    1694             :                         if (!strictlimit) {
    1695             :                                 wb_dirty_limits(mdtc);
    1696             : 
    1697             :                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
    1698             :                                     mdtc->wb_dirty <
    1699             :                                     dirty_freerun_ceiling(mdtc->wb_thresh,
    1700             :                                                           mdtc->wb_bg_thresh))
    1701             :                                         /*
    1702             :                                          * LOCAL_THROTTLE tasks must not be
    1703             :                                          * throttled when below the per-wb
    1704             :                                          * freerun ceiling.
    1705             :                                          */
    1706             :                                         goto free_running;
    1707             :                         }
    1708             :                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
    1709             :                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
    1710             : 
    1711             :                         wb_position_ratio(mdtc);
    1712             :                         if (mdtc->pos_ratio < gdtc->pos_ratio)
    1713             :                                 sdtc = mdtc;
    1714             :                 }
    1715             : 
    1716           0 :                 if (dirty_exceeded && !wb->dirty_exceeded)
    1717           0 :                         wb->dirty_exceeded = 1;
    1718             : 
    1719           0 :                 if (time_is_before_jiffies(wb->bw_time_stamp +
    1720             :                                            BANDWIDTH_INTERVAL)) {
    1721           0 :                         spin_lock(&wb->list_lock);
    1722           0 :                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
    1723           0 :                         spin_unlock(&wb->list_lock);
    1724             :                 }
    1725             : 
    1726             :                 /* throttle according to the chosen dtc */
    1727           0 :                 dirty_ratelimit = wb->dirty_ratelimit;
    1728           0 :                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
    1729             :                                                         RATELIMIT_CALC_SHIFT;
    1730           0 :                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
    1731           0 :                 min_pause = wb_min_pause(wb, max_pause,
    1732             :                                          task_ratelimit, dirty_ratelimit,
    1733             :                                          &nr_dirtied_pause);
    1734             : 
    1735           0 :                 if (unlikely(task_ratelimit == 0)) {
    1736           0 :                         period = max_pause;
    1737           0 :                         pause = max_pause;
    1738           0 :                         goto pause;
    1739             :                 }
    1740           0 :                 period = HZ * pages_dirtied / task_ratelimit;
    1741           0 :                 pause = period;
    1742           0 :                 if (current->dirty_paused_when)
    1743           0 :                         pause -= now - current->dirty_paused_when;
    1744             :                 /*
    1745             :                  * For less than 1s think time (ext3/4 may block the dirtier
    1746             :                  * for up to 800ms from time to time on 1-HDD; so does xfs,
    1747             :                  * however at much less frequency), try to compensate it in
    1748             :                  * future periods by updating the virtual time; otherwise just
    1749             :                  * do a reset, as it may be a light dirtier.
    1750             :                  */
    1751           0 :                 if (pause < min_pause) {
    1752           0 :                         trace_balance_dirty_pages(wb,
    1753             :                                                   sdtc->thresh,
    1754             :                                                   sdtc->bg_thresh,
    1755             :                                                   sdtc->dirty,
    1756             :                                                   sdtc->wb_thresh,
    1757             :                                                   sdtc->wb_dirty,
    1758             :                                                   dirty_ratelimit,
    1759             :                                                   task_ratelimit,
    1760             :                                                   pages_dirtied,
    1761             :                                                   period,
    1762           0 :                                                   min(pause, 0L),
    1763             :                                                   start_time);
    1764           0 :                         if (pause < -HZ) {
    1765           0 :                                 current->dirty_paused_when = now;
    1766           0 :                                 current->nr_dirtied = 0;
    1767           0 :                         } else if (period) {
    1768           0 :                                 current->dirty_paused_when += period;
    1769           0 :                                 current->nr_dirtied = 0;
    1770           0 :                         } else if (current->nr_dirtied_pause <= pages_dirtied)
    1771           0 :                                 current->nr_dirtied_pause += pages_dirtied;
    1772             :                         break;
    1773             :                 }
    1774           0 :                 if (unlikely(pause > max_pause)) {
    1775             :                         /* for occasional dropped task_ratelimit */
    1776           0 :                         now += min(pause - max_pause, max_pause);
    1777           0 :                         pause = max_pause;
    1778             :                 }
    1779             : 
    1780           0 : pause:
    1781           0 :                 trace_balance_dirty_pages(wb,
    1782             :                                           sdtc->thresh,
    1783             :                                           sdtc->bg_thresh,
    1784             :                                           sdtc->dirty,
    1785             :                                           sdtc->wb_thresh,
    1786             :                                           sdtc->wb_dirty,
    1787             :                                           dirty_ratelimit,
    1788             :                                           task_ratelimit,
    1789             :                                           pages_dirtied,
    1790             :                                           period,
    1791             :                                           pause,
    1792             :                                           start_time);
    1793           0 :                 __set_current_state(TASK_KILLABLE);
    1794           0 :                 wb->dirty_sleep = now;
    1795           0 :                 io_schedule_timeout(pause);
    1796             : 
    1797           0 :                 current->dirty_paused_when = now + pause;
    1798           0 :                 current->nr_dirtied = 0;
    1799           0 :                 current->nr_dirtied_pause = nr_dirtied_pause;
    1800             : 
    1801             :                 /*
    1802             :                  * This is typically equal to (dirty < thresh) and can also
    1803             :                  * keep "1000+ dd on a slow USB stick" under control.
    1804             :                  */
    1805           0 :                 if (task_ratelimit)
    1806             :                         break;
    1807             : 
    1808             :                 /*
    1809             :                  * In the case of an unresponding NFS server and the NFS dirty
    1810             :                  * pages exceeds dirty_thresh, give the other good wb's a pipe
    1811             :                  * to go through, so that tasks on them still remain responsive.
    1812             :                  *
    1813             :                  * In theory 1 page is enough to keep the consumer-producer
    1814             :                  * pipe going: the flusher cleans 1 page => the task dirties 1
    1815             :                  * more page. However wb_dirty has accounting errors.  So use
    1816             :                  * the larger and more IO friendly wb_stat_error.
    1817             :                  */
    1818           0 :                 if (sdtc->wb_dirty <= wb_stat_error())
    1819             :                         break;
    1820             : 
    1821           0 :                 if (fatal_signal_pending(current))
    1822             :                         break;
    1823             :         }
    1824             : 
    1825          25 :         if (!dirty_exceeded && wb->dirty_exceeded)
    1826           0 :                 wb->dirty_exceeded = 0;
    1827             : 
    1828          25 :         if (writeback_in_progress(wb))
    1829           0 :                 return;
    1830             : 
    1831             :         /*
    1832             :          * In laptop mode, we wait until hitting the higher threshold before
    1833             :          * starting background writeout, and then write out all the way down
    1834             :          * to the lower threshold.  So slow writers cause minimal disk activity.
    1835             :          *
    1836             :          * In normal mode, we start background writeout at the lower
    1837             :          * background_thresh, to keep the amount of dirty memory low.
    1838             :          */
    1839          25 :         if (laptop_mode)
    1840             :                 return;
    1841             : 
    1842          25 :         if (nr_reclaimable > gdtc->bg_thresh)
    1843           0 :                 wb_start_background_writeback(wb);
    1844             : }
    1845             : 
    1846             : static DEFINE_PER_CPU(int, bdp_ratelimits);
    1847             : 
    1848             : /*
    1849             :  * Normal tasks are throttled by
    1850             :  *      loop {
    1851             :  *              dirty tsk->nr_dirtied_pause pages;
    1852             :  *              take a snap in balance_dirty_pages();
    1853             :  *      }
    1854             :  * However there is a worst case. If every task exit immediately when dirtied
    1855             :  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
    1856             :  * called to throttle the page dirties. The solution is to save the not yet
    1857             :  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
    1858             :  * randomly into the running tasks. This works well for the above worst case,
    1859             :  * as the new task will pick up and accumulate the old task's leaked dirty
    1860             :  * count and eventually get throttled.
    1861             :  */
    1862             : DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
    1863             : 
    1864             : /**
    1865             :  * balance_dirty_pages_ratelimited - balance dirty memory state
    1866             :  * @mapping: address_space which was dirtied
    1867             :  *
    1868             :  * Processes which are dirtying memory should call in here once for each page
    1869             :  * which was newly dirtied.  The function will periodically check the system's
    1870             :  * dirty state and will initiate writeback if needed.
    1871             :  *
    1872             :  * On really big machines, get_writeback_state is expensive, so try to avoid
    1873             :  * calling it too often (ratelimiting).  But once we're over the dirty memory
    1874             :  * limit we decrease the ratelimiting by a lot, to prevent individual processes
    1875             :  * from overshooting the limit by (ratelimit_pages) each.
    1876             :  */
    1877        2896 : void balance_dirty_pages_ratelimited(struct address_space *mapping)
    1878             : {
    1879        2896 :         struct inode *inode = mapping->host;
    1880        2896 :         struct backing_dev_info *bdi = inode_to_bdi(inode);
    1881        2896 :         struct bdi_writeback *wb = NULL;
    1882        2896 :         int ratelimit;
    1883        2896 :         int *p;
    1884             : 
    1885        2896 :         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
    1886             :                 return;
    1887             : 
    1888        2181 :         if (inode_cgwb_enabled(inode))
    1889             :                 wb = wb_get_create_current(bdi, GFP_KERNEL);
    1890        2181 :         if (!wb)
    1891        2181 :                 wb = &bdi->wb;
    1892             : 
    1893        2181 :         ratelimit = current->nr_dirtied_pause;
    1894        2181 :         if (wb->dirty_exceeded)
    1895           0 :                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
    1896             : 
    1897        2181 :         preempt_disable();
    1898             :         /*
    1899             :          * This prevents one CPU to accumulate too many dirtied pages without
    1900             :          * calling into balance_dirty_pages(), which can happen when there are
    1901             :          * 1000+ tasks, all of them start dirtying pages at exactly the same
    1902             :          * time, hence all honoured too large initial task->nr_dirtied_pause.
    1903             :          */
    1904        2181 :         p =  this_cpu_ptr(&bdp_ratelimits);
    1905        2181 :         if (unlikely(current->nr_dirtied >= ratelimit))
    1906          14 :                 *p = 0;
    1907        2167 :         else if (unlikely(*p >= ratelimit_pages)) {
    1908           1 :                 *p = 0;
    1909           1 :                 ratelimit = 0;
    1910             :         }
    1911             :         /*
    1912             :          * Pick up the dirtied pages by the exited tasks. This avoids lots of
    1913             :          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
    1914             :          * the dirty throttling and livelock other long-run dirtiers.
    1915             :          */
    1916        2181 :         p = this_cpu_ptr(&dirty_throttle_leaks);
    1917        2181 :         if (*p > 0 && current->nr_dirtied < ratelimit) {
    1918         192 :                 unsigned long nr_pages_dirtied;
    1919         192 :                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
    1920         192 :                 *p -= nr_pages_dirtied;
    1921         192 :                 current->nr_dirtied += nr_pages_dirtied;
    1922             :         }
    1923        2181 :         preempt_enable();
    1924             : 
    1925        2181 :         if (unlikely(current->nr_dirtied >= ratelimit))
    1926          25 :                 balance_dirty_pages(wb, current->nr_dirtied);
    1927             : 
    1928        2896 :         wb_put(wb);
    1929             : }
    1930             : EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
    1931             : 
    1932             : /**
    1933             :  * wb_over_bg_thresh - does @wb need to be written back?
    1934             :  * @wb: bdi_writeback of interest
    1935             :  *
    1936             :  * Determines whether background writeback should keep writing @wb or it's
    1937             :  * clean enough.
    1938             :  *
    1939             :  * Return: %true if writeback should continue.
    1940             :  */
    1941           7 : bool wb_over_bg_thresh(struct bdi_writeback *wb)
    1942             : {
    1943           7 :         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
    1944           7 :         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
    1945           7 :         struct dirty_throttle_control * const gdtc = &gdtc_stor;
    1946           7 :         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
    1947             :                                                      &mdtc_stor : NULL;
    1948             : 
    1949             :         /*
    1950             :          * Similar to balance_dirty_pages() but ignores pages being written
    1951             :          * as we're trying to decide whether to put more under writeback.
    1952             :          */
    1953           7 :         gdtc->avail = global_dirtyable_memory();
    1954           7 :         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
    1955           7 :         domain_dirty_limits(gdtc);
    1956             : 
    1957           7 :         if (gdtc->dirty > gdtc->bg_thresh)
    1958             :                 return true;
    1959             : 
    1960           7 :         if (wb_stat(wb, WB_RECLAIMABLE) >
    1961           7 :             wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
    1962           0 :                 return true;
    1963             : 
    1964             :         if (mdtc) {
    1965             :                 unsigned long filepages, headroom, writeback;
    1966             : 
    1967             :                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
    1968             :                                     &writeback);
    1969             :                 mdtc_calc_avail(mdtc, filepages, headroom);
    1970             :                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
    1971             : 
    1972             :                 if (mdtc->dirty > mdtc->bg_thresh)
    1973             :                         return true;
    1974             : 
    1975             :                 if (wb_stat(wb, WB_RECLAIMABLE) >
    1976             :                     wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
    1977             :                         return true;
    1978             :         }
    1979             : 
    1980             :         return false;
    1981             : }
    1982             : 
    1983             : /*
    1984             :  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
    1985             :  */
    1986           0 : int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
    1987             :                 void *buffer, size_t *length, loff_t *ppos)
    1988             : {
    1989           0 :         unsigned int old_interval = dirty_writeback_interval;
    1990           0 :         int ret;
    1991             : 
    1992           0 :         ret = proc_dointvec(table, write, buffer, length, ppos);
    1993             : 
    1994             :         /*
    1995             :          * Writing 0 to dirty_writeback_interval will disable periodic writeback
    1996             :          * and a different non-zero value will wakeup the writeback threads.
    1997             :          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
    1998             :          * iterate over all bdis and wbs.
    1999             :          * The reason we do this is to make the change take effect immediately.
    2000             :          */
    2001           0 :         if (!ret && write && dirty_writeback_interval &&
    2002             :                 dirty_writeback_interval != old_interval)
    2003           0 :                 wakeup_flusher_threads(WB_REASON_PERIODIC);
    2004             : 
    2005           0 :         return ret;
    2006             : }
    2007             : 
    2008             : #ifdef CONFIG_BLOCK
    2009           0 : void laptop_mode_timer_fn(struct timer_list *t)
    2010             : {
    2011           0 :         struct backing_dev_info *backing_dev_info =
    2012           0 :                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
    2013             : 
    2014           0 :         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
    2015           0 : }
    2016             : 
    2017             : /*
    2018             :  * We've spun up the disk and we're in laptop mode: schedule writeback
    2019             :  * of all dirty data a few seconds from now.  If the flush is already scheduled
    2020             :  * then push it back - the user is still using the disk.
    2021             :  */
    2022           0 : void laptop_io_completion(struct backing_dev_info *info)
    2023             : {
    2024           0 :         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
    2025           0 : }
    2026             : 
    2027             : /*
    2028             :  * We're in laptop mode and we've just synced. The sync's writes will have
    2029             :  * caused another writeback to be scheduled by laptop_io_completion.
    2030             :  * Nothing needs to be written back anymore, so we unschedule the writeback.
    2031             :  */
    2032           0 : void laptop_sync_completion(void)
    2033             : {
    2034           0 :         struct backing_dev_info *bdi;
    2035             : 
    2036           0 :         rcu_read_lock();
    2037             : 
    2038           0 :         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
    2039           0 :                 del_timer(&bdi->laptop_mode_wb_timer);
    2040             : 
    2041           0 :         rcu_read_unlock();
    2042           0 : }
    2043             : #endif
    2044             : 
    2045             : /*
    2046             :  * If ratelimit_pages is too high then we can get into dirty-data overload
    2047             :  * if a large number of processes all perform writes at the same time.
    2048             :  * If it is too low then SMP machines will call the (expensive)
    2049             :  * get_writeback_state too often.
    2050             :  *
    2051             :  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
    2052             :  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
    2053             :  * thresholds.
    2054             :  */
    2055             : 
    2056           4 : void writeback_set_ratelimit(void)
    2057             : {
    2058           4 :         struct wb_domain *dom = &global_wb_domain;
    2059           4 :         unsigned long background_thresh;
    2060           4 :         unsigned long dirty_thresh;
    2061             : 
    2062           4 :         global_dirty_limits(&background_thresh, &dirty_thresh);
    2063           4 :         dom->dirty_limit = dirty_thresh;
    2064           4 :         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
    2065           4 :         if (ratelimit_pages < 16)
    2066           0 :                 ratelimit_pages = 16;
    2067           4 : }
    2068             : 
    2069           4 : static int page_writeback_cpu_online(unsigned int cpu)
    2070             : {
    2071           4 :         writeback_set_ratelimit();
    2072           4 :         return 0;
    2073             : }
    2074             : 
    2075             : /*
    2076             :  * Called early on to tune the page writeback dirty limits.
    2077             :  *
    2078             :  * We used to scale dirty pages according to how total memory
    2079             :  * related to pages that could be allocated for buffers.
    2080             :  *
    2081             :  * However, that was when we used "dirty_ratio" to scale with
    2082             :  * all memory, and we don't do that any more. "dirty_ratio"
    2083             :  * is now applied to total non-HIGHPAGE memory, and as such we can't
    2084             :  * get into the old insane situation any more where we had
    2085             :  * large amounts of dirty pages compared to a small amount of
    2086             :  * non-HIGHMEM memory.
    2087             :  *
    2088             :  * But we might still want to scale the dirty_ratio by how
    2089             :  * much memory the box has..
    2090             :  */
    2091           1 : void __init page_writeback_init(void)
    2092             : {
    2093           1 :         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
    2094             : 
    2095           1 :         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
    2096             :                           page_writeback_cpu_online, NULL);
    2097           1 :         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
    2098             :                           page_writeback_cpu_online);
    2099           1 : }
    2100             : 
    2101             : /**
    2102             :  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
    2103             :  * @mapping: address space structure to write
    2104             :  * @start: starting page index
    2105             :  * @end: ending page index (inclusive)
    2106             :  *
    2107             :  * This function scans the page range from @start to @end (inclusive) and tags
    2108             :  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
    2109             :  * that write_cache_pages (or whoever calls this function) will then use
    2110             :  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
    2111             :  * used to avoid livelocking of writeback by a process steadily creating new
    2112             :  * dirty pages in the file (thus it is important for this function to be quick
    2113             :  * so that it can tag pages faster than a dirtying process can create them).
    2114             :  */
    2115          69 : void tag_pages_for_writeback(struct address_space *mapping,
    2116             :                              pgoff_t start, pgoff_t end)
    2117             : {
    2118          69 :         XA_STATE(xas, &mapping->i_pages, start);
    2119          69 :         unsigned int tagged = 0;
    2120          69 :         void *page;
    2121             : 
    2122          69 :         xas_lock_irq(&xas);
    2123         433 :         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
    2124         364 :                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
    2125         364 :                 if (++tagged % XA_CHECK_SCHED)
    2126         364 :                         continue;
    2127             : 
    2128           0 :                 xas_pause(&xas);
    2129           0 :                 xas_unlock_irq(&xas);
    2130           0 :                 cond_resched();
    2131         364 :                 xas_lock_irq(&xas);
    2132             :         }
    2133          69 :         xas_unlock_irq(&xas);
    2134          69 : }
    2135             : EXPORT_SYMBOL(tag_pages_for_writeback);
    2136             : 
    2137             : /**
    2138             :  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
    2139             :  * @mapping: address space structure to write
    2140             :  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
    2141             :  * @writepage: function called for each page
    2142             :  * @data: data passed to writepage function
    2143             :  *
    2144             :  * If a page is already under I/O, write_cache_pages() skips it, even
    2145             :  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
    2146             :  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
    2147             :  * and msync() need to guarantee that all the data which was dirty at the time
    2148             :  * the call was made get new I/O started against them.  If wbc->sync_mode is
    2149             :  * WB_SYNC_ALL then we were called for data integrity and we must wait for
    2150             :  * existing IO to complete.
    2151             :  *
    2152             :  * To avoid livelocks (when other process dirties new pages), we first tag
    2153             :  * pages which should be written back with TOWRITE tag and only then start
    2154             :  * writing them. For data-integrity sync we have to be careful so that we do
    2155             :  * not miss some pages (e.g., because some other process has cleared TOWRITE
    2156             :  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
    2157             :  * by the process clearing the DIRTY tag (and submitting the page for IO).
    2158             :  *
    2159             :  * To avoid deadlocks between range_cyclic writeback and callers that hold
    2160             :  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
    2161             :  * we do not loop back to the start of the file. Doing so causes a page
    2162             :  * lock/page writeback access order inversion - we should only ever lock
    2163             :  * multiple pages in ascending page->index order, and looping back to the start
    2164             :  * of the file violates that rule and causes deadlocks.
    2165             :  *
    2166             :  * Return: %0 on success, negative error code otherwise
    2167             :  */
    2168           3 : int write_cache_pages(struct address_space *mapping,
    2169             :                       struct writeback_control *wbc, writepage_t writepage,
    2170             :                       void *data)
    2171             : {
    2172           3 :         int ret = 0;
    2173           3 :         int done = 0;
    2174           3 :         int error;
    2175           3 :         struct pagevec pvec;
    2176           3 :         int nr_pages;
    2177           3 :         pgoff_t index;
    2178           3 :         pgoff_t end;            /* Inclusive */
    2179           3 :         pgoff_t done_index;
    2180           3 :         int range_whole = 0;
    2181           3 :         xa_mark_t tag;
    2182             : 
    2183           3 :         pagevec_init(&pvec);
    2184           3 :         if (wbc->range_cyclic) {
    2185           1 :                 index = mapping->writeback_index; /* prev offset */
    2186           1 :                 end = -1;
    2187             :         } else {
    2188           2 :                 index = wbc->range_start >> PAGE_SHIFT;
    2189           2 :                 end = wbc->range_end >> PAGE_SHIFT;
    2190           2 :                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
    2191           0 :                         range_whole = 1;
    2192             :         }
    2193           3 :         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
    2194           2 :                 tag_pages_for_writeback(mapping, index, end);
    2195           2 :                 tag = PAGECACHE_TAG_TOWRITE;
    2196             :         } else {
    2197             :                 tag = PAGECACHE_TAG_DIRTY;
    2198             :         }
    2199           3 :         done_index = index;
    2200          64 :         while (!done && (index <= end)) {
    2201          62 :                 int i;
    2202             : 
    2203          62 :                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
    2204             :                                 tag);
    2205          62 :                 if (nr_pages == 0)
    2206             :                         break;
    2207             : 
    2208         935 :                 for (i = 0; i < nr_pages; i++) {
    2209         874 :                         struct page *page = pvec.pages[i];
    2210             : 
    2211         874 :                         done_index = page->index;
    2212             : 
    2213         874 :                         lock_page(page);
    2214             : 
    2215             :                         /*
    2216             :                          * Page truncated or invalidated. We can freely skip it
    2217             :                          * then, even for data integrity operations: the page
    2218             :                          * has disappeared concurrently, so there could be no
    2219             :                          * real expectation of this data interity operation
    2220             :                          * even if there is now a new, dirty page at the same
    2221             :                          * pagecache address.
    2222             :                          */
    2223         874 :                         if (unlikely(page->mapping != mapping)) {
    2224           0 : continue_unlock:
    2225           0 :                                 unlock_page(page);
    2226           0 :                                 continue;
    2227             :                         }
    2228             : 
    2229        1748 :                         if (!PageDirty(page)) {
    2230             :                                 /* someone wrote it for us */
    2231           0 :                                 goto continue_unlock;
    2232             :                         }
    2233             : 
    2234        1748 :                         if (PageWriteback(page)) {
    2235           0 :                                 if (wbc->sync_mode != WB_SYNC_NONE)
    2236           0 :                                         wait_on_page_writeback(page);
    2237             :                                 else
    2238           0 :                                         goto continue_unlock;
    2239             :                         }
    2240             : 
    2241        1748 :                         BUG_ON(PageWriteback(page));
    2242         874 :                         if (!clear_page_dirty_for_io(page))
    2243           0 :                                 goto continue_unlock;
    2244             : 
    2245         874 :                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
    2246         874 :                         error = (*writepage)(page, wbc, data);
    2247         874 :                         if (unlikely(error)) {
    2248             :                                 /*
    2249             :                                  * Handle errors according to the type of
    2250             :                                  * writeback. There's no need to continue for
    2251             :                                  * background writeback. Just push done_index
    2252             :                                  * past this page so media errors won't choke
    2253             :                                  * writeout for the entire file. For integrity
    2254             :                                  * writeback, we must process the entire dirty
    2255             :                                  * set regardless of errors because the fs may
    2256             :                                  * still have state to clear for each page. In
    2257             :                                  * that case we continue processing and return
    2258             :                                  * the first error.
    2259             :                                  */
    2260           0 :                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
    2261           0 :                                         unlock_page(page);
    2262           0 :                                         error = 0;
    2263           0 :                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
    2264           0 :                                         ret = error;
    2265           0 :                                         done_index = page->index + 1;
    2266           0 :                                         done = 1;
    2267           0 :                                         break;
    2268             :                                 }
    2269           0 :                                 if (!ret)
    2270           0 :                                         ret = error;
    2271             :                         }
    2272             : 
    2273             :                         /*
    2274             :                          * We stop writing back only if we are not doing
    2275             :                          * integrity sync. In case of integrity sync we have to
    2276             :                          * keep going until we have written all the pages
    2277             :                          * we tagged for writeback prior to entering this loop.
    2278             :                          */
    2279         874 :                         if (--wbc->nr_to_write <= 0 &&
    2280           0 :                             wbc->sync_mode == WB_SYNC_NONE) {
    2281             :                                 done = 1;
    2282             :                                 break;
    2283             :                         }
    2284             :                 }
    2285          61 :                 pagevec_release(&pvec);
    2286          61 :                 cond_resched();
    2287             :         }
    2288             : 
    2289             :         /*
    2290             :          * If we hit the last page and there is more work to be done: wrap
    2291             :          * back the index back to the start of the file for the next
    2292             :          * time we are called.
    2293             :          */
    2294           3 :         if (wbc->range_cyclic && !done)
    2295           1 :                 done_index = 0;
    2296           3 :         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
    2297           1 :                 mapping->writeback_index = done_index;
    2298             : 
    2299           3 :         return ret;
    2300             : }
    2301             : EXPORT_SYMBOL(write_cache_pages);
    2302             : 
    2303             : /*
    2304             :  * Function used by generic_writepages to call the real writepage
    2305             :  * function and set the mapping flags on error
    2306             :  */
    2307         874 : static int __writepage(struct page *page, struct writeback_control *wbc,
    2308             :                        void *data)
    2309             : {
    2310         874 :         struct address_space *mapping = data;
    2311         874 :         int ret = mapping->a_ops->writepage(page, wbc);
    2312         874 :         mapping_set_error(mapping, ret);
    2313         874 :         return ret;
    2314             : }
    2315             : 
    2316             : /**
    2317             :  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
    2318             :  * @mapping: address space structure to write
    2319             :  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
    2320             :  *
    2321             :  * This is a library function, which implements the writepages()
    2322             :  * address_space_operation.
    2323             :  *
    2324             :  * Return: %0 on success, negative error code otherwise
    2325             :  */
    2326         479 : int generic_writepages(struct address_space *mapping,
    2327             :                        struct writeback_control *wbc)
    2328             : {
    2329         479 :         struct blk_plug plug;
    2330         479 :         int ret;
    2331             : 
    2332             :         /* deal with chardevs and other special file */
    2333         479 :         if (!mapping->a_ops->writepage)
    2334             :                 return 0;
    2335             : 
    2336           3 :         blk_start_plug(&plug);
    2337           3 :         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
    2338           3 :         blk_finish_plug(&plug);
    2339           3 :         return ret;
    2340             : }
    2341             : 
    2342             : EXPORT_SYMBOL(generic_writepages);
    2343             : 
    2344         878 : int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
    2345             : {
    2346         878 :         int ret;
    2347             : 
    2348         878 :         if (wbc->nr_to_write <= 0)
    2349             :                 return 0;
    2350         878 :         while (1) {
    2351         878 :                 if (mapping->a_ops->writepages)
    2352         402 :                         ret = mapping->a_ops->writepages(mapping, wbc);
    2353             :                 else
    2354         476 :                         ret = generic_writepages(mapping, wbc);
    2355         878 :                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
    2356             :                         break;
    2357           0 :                 cond_resched();
    2358           0 :                 congestion_wait(BLK_RW_ASYNC, HZ/50);
    2359             :         }
    2360             :         return ret;
    2361             : }
    2362             : 
    2363             : /**
    2364             :  * write_one_page - write out a single page and wait on I/O
    2365             :  * @page: the page to write
    2366             :  *
    2367             :  * The page must be locked by the caller and will be unlocked upon return.
    2368             :  *
    2369             :  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
    2370             :  * function returns.
    2371             :  *
    2372             :  * Return: %0 on success, negative error code otherwise
    2373             :  */
    2374           0 : int write_one_page(struct page *page)
    2375             : {
    2376           0 :         struct address_space *mapping = page->mapping;
    2377           0 :         int ret = 0;
    2378           0 :         struct writeback_control wbc = {
    2379             :                 .sync_mode = WB_SYNC_ALL,
    2380             :                 .nr_to_write = 1,
    2381             :         };
    2382             : 
    2383           0 :         BUG_ON(!PageLocked(page));
    2384             : 
    2385           0 :         wait_on_page_writeback(page);
    2386             : 
    2387           0 :         if (clear_page_dirty_for_io(page)) {
    2388           0 :                 get_page(page);
    2389           0 :                 ret = mapping->a_ops->writepage(page, &wbc);
    2390           0 :                 if (ret == 0)
    2391           0 :                         wait_on_page_writeback(page);
    2392           0 :                 put_page(page);
    2393             :         } else {
    2394           0 :                 unlock_page(page);
    2395             :         }
    2396             : 
    2397           0 :         if (!ret)
    2398           0 :                 ret = filemap_check_errors(mapping);
    2399           0 :         return ret;
    2400             : }
    2401             : EXPORT_SYMBOL(write_one_page);
    2402             : 
    2403             : /*
    2404             :  * For address_spaces which do not use buffers nor write back.
    2405             :  */
    2406        2149 : int __set_page_dirty_no_writeback(struct page *page)
    2407             : {
    2408        4298 :         if (!PageDirty(page))
    2409        3970 :                 return !TestSetPageDirty(page);
    2410             :         return 0;
    2411             : }
    2412             : 
    2413             : /*
    2414             :  * Helper function for set_page_dirty family.
    2415             :  *
    2416             :  * Caller must hold lock_page_memcg().
    2417             :  *
    2418             :  * NOTE: This relies on being atomic wrt interrupts.
    2419             :  */
    2420        2493 : void account_page_dirtied(struct page *page, struct address_space *mapping)
    2421             : {
    2422        2493 :         struct inode *inode = mapping->host;
    2423             : 
    2424        2493 :         trace_writeback_dirty_page(page, mapping);
    2425             : 
    2426        2493 :         if (mapping_can_writeback(mapping)) {
    2427        2493 :                 struct bdi_writeback *wb;
    2428             : 
    2429        2493 :                 inode_attach_wb(inode, page);
    2430        2493 :                 wb = inode_to_wb(inode);
    2431             : 
    2432        2493 :                 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
    2433        2493 :                 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
    2434        2493 :                 __inc_node_page_state(page, NR_DIRTIED);
    2435        2493 :                 inc_wb_stat(wb, WB_RECLAIMABLE);
    2436        2493 :                 inc_wb_stat(wb, WB_DIRTIED);
    2437        2493 :                 task_io_account_write(PAGE_SIZE);
    2438        2493 :                 current->nr_dirtied++;
    2439        2493 :                 this_cpu_inc(bdp_ratelimits);
    2440             : 
    2441        2493 :                 mem_cgroup_track_foreign_dirty(page, wb);
    2442             :         }
    2443        2493 : }
    2444             : 
    2445             : /*
    2446             :  * Helper function for deaccounting dirty page without writeback.
    2447             :  *
    2448             :  * Caller must hold lock_page_memcg().
    2449             :  */
    2450         496 : void account_page_cleaned(struct page *page, struct address_space *mapping,
    2451             :                           struct bdi_writeback *wb)
    2452             : {
    2453         496 :         if (mapping_can_writeback(mapping)) {
    2454         496 :                 dec_lruvec_page_state(page, NR_FILE_DIRTY);
    2455         496 :                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
    2456         496 :                 dec_wb_stat(wb, WB_RECLAIMABLE);
    2457         496 :                 task_io_account_cancelled_write(PAGE_SIZE);
    2458             :         }
    2459         496 : }
    2460             : 
    2461             : /*
    2462             :  * For address_spaces which do not use buffers.  Just tag the page as dirty in
    2463             :  * the xarray.
    2464             :  *
    2465             :  * This is also used when a single buffer is being dirtied: we want to set the
    2466             :  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
    2467             :  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
    2468             :  *
    2469             :  * The caller must ensure this doesn't race with truncation.  Most will simply
    2470             :  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
    2471             :  * the pte lock held, which also locks out truncation.
    2472             :  */
    2473           2 : int __set_page_dirty_nobuffers(struct page *page)
    2474             : {
    2475           2 :         lock_page_memcg(page);
    2476           4 :         if (!TestSetPageDirty(page)) {
    2477           2 :                 struct address_space *mapping = page_mapping(page);
    2478           2 :                 unsigned long flags;
    2479             : 
    2480           2 :                 if (!mapping) {
    2481           2 :                         unlock_page_memcg(page);
    2482             :                         return 1;
    2483             :                 }
    2484             : 
    2485           2 :                 xa_lock_irqsave(&mapping->i_pages, flags);
    2486           2 :                 BUG_ON(page_mapping(page) != mapping);
    2487           2 :                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
    2488           2 :                 account_page_dirtied(page, mapping);
    2489           2 :                 __xa_set_mark(&mapping->i_pages, page_index(page),
    2490             :                                    PAGECACHE_TAG_DIRTY);
    2491           2 :                 xa_unlock_irqrestore(&mapping->i_pages, flags);
    2492           2 :                 unlock_page_memcg(page);
    2493             : 
    2494           2 :                 if (mapping->host) {
    2495             :                         /* !PageAnon && !swapper_space */
    2496           2 :                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
    2497             :                 }
    2498           2 :                 return 1;
    2499             :         }
    2500           2 :         unlock_page_memcg(page);
    2501             :         return 0;
    2502             : }
    2503             : EXPORT_SYMBOL(__set_page_dirty_nobuffers);
    2504             : 
    2505             : /*
    2506             :  * Call this whenever redirtying a page, to de-account the dirty counters
    2507             :  * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
    2508             :  * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
    2509             :  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
    2510             :  * control.
    2511             :  */
    2512           2 : void account_page_redirty(struct page *page)
    2513             : {
    2514           2 :         struct address_space *mapping = page->mapping;
    2515             : 
    2516           4 :         if (mapping && mapping_can_writeback(mapping)) {
    2517           2 :                 struct inode *inode = mapping->host;
    2518           2 :                 struct bdi_writeback *wb;
    2519           2 :                 struct wb_lock_cookie cookie = {};
    2520             : 
    2521           2 :                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
    2522           2 :                 current->nr_dirtied--;
    2523           2 :                 dec_node_page_state(page, NR_DIRTIED);
    2524           2 :                 dec_wb_stat(wb, WB_DIRTIED);
    2525           2 :                 unlocked_inode_to_wb_end(inode, &cookie);
    2526             :         }
    2527           2 : }
    2528             : EXPORT_SYMBOL(account_page_redirty);
    2529             : 
    2530             : /*
    2531             :  * When a writepage implementation decides that it doesn't want to write this
    2532             :  * page for some reason, it should redirty the locked page via
    2533             :  * redirty_page_for_writepage() and it should then unlock the page and return 0
    2534             :  */
    2535           2 : int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
    2536             : {
    2537           2 :         int ret;
    2538             : 
    2539           2 :         wbc->pages_skipped++;
    2540           2 :         ret = __set_page_dirty_nobuffers(page);
    2541           2 :         account_page_redirty(page);
    2542           2 :         return ret;
    2543             : }
    2544             : EXPORT_SYMBOL(redirty_page_for_writepage);
    2545             : 
    2546             : /*
    2547             :  * Dirty a page.
    2548             :  *
    2549             :  * For pages with a mapping this should be done under the page lock
    2550             :  * for the benefit of asynchronous memory errors who prefer a consistent
    2551             :  * dirty state. This rule can be broken in some special cases,
    2552             :  * but should be better not to.
    2553             :  *
    2554             :  * If the mapping doesn't provide a set_page_dirty a_op, then
    2555             :  * just fall through and assume that it wants buffer_heads.
    2556             :  */
    2557        3061 : int set_page_dirty(struct page *page)
    2558             : {
    2559        3061 :         struct address_space *mapping = page_mapping(page);
    2560             : 
    2561        3061 :         page = compound_head(page);
    2562        3061 :         if (likely(mapping)) {
    2563        3061 :                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
    2564             :                 /*
    2565             :                  * readahead/lru_deactivate_page could remain
    2566             :                  * PG_readahead/PG_reclaim due to race with end_page_writeback
    2567             :                  * About readahead, if the page is written, the flags would be
    2568             :                  * reset. So no problem.
    2569             :                  * About lru_deactivate_page, if the page is redirty, the flag
    2570             :                  * will be reset. So no problem. but if the page is used by readahead
    2571             :                  * it will confuse readahead and make it restart the size rampup
    2572             :                  * process. But it's a trivial problem.
    2573             :                  */
    2574        6122 :                 if (PageReclaim(page))
    2575           0 :                         ClearPageReclaim(page);
    2576             : #ifdef CONFIG_BLOCK
    2577        3061 :                 if (!spd)
    2578           0 :                         spd = __set_page_dirty_buffers;
    2579             : #endif
    2580        3061 :                 return (*spd)(page);
    2581             :         }
    2582           0 :         if (!PageDirty(page)) {
    2583           0 :                 if (!TestSetPageDirty(page))
    2584           0 :                         return 1;
    2585             :         }
    2586             :         return 0;
    2587             : }
    2588             : EXPORT_SYMBOL(set_page_dirty);
    2589             : 
    2590             : /*
    2591             :  * set_page_dirty() is racy if the caller has no reference against
    2592             :  * page->mapping->host, and if the page is unlocked.  This is because another
    2593             :  * CPU could truncate the page off the mapping and then free the mapping.
    2594             :  *
    2595             :  * Usually, the page _is_ locked, or the caller is a user-space process which
    2596             :  * holds a reference on the inode by having an open file.
    2597             :  *
    2598             :  * In other cases, the page should be locked before running set_page_dirty().
    2599             :  */
    2600           0 : int set_page_dirty_lock(struct page *page)
    2601             : {
    2602           0 :         int ret;
    2603             : 
    2604           0 :         lock_page(page);
    2605           0 :         ret = set_page_dirty(page);
    2606           0 :         unlock_page(page);
    2607           0 :         return ret;
    2608             : }
    2609             : EXPORT_SYMBOL(set_page_dirty_lock);
    2610             : 
    2611             : /*
    2612             :  * This cancels just the dirty bit on the kernel page itself, it does NOT
    2613             :  * actually remove dirty bits on any mmap's that may be around. It also
    2614             :  * leaves the page tagged dirty, so any sync activity will still find it on
    2615             :  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
    2616             :  * look at the dirty bits in the VM.
    2617             :  *
    2618             :  * Doing this should *normally* only ever be done when a page is truncated,
    2619             :  * and is not actually mapped anywhere at all. However, fs/buffer.c does
    2620             :  * this when it notices that somebody has cleaned out all the buffers on a
    2621             :  * page without actually doing it through the VM. Can you say "ext3 is
    2622             :  * horribly ugly"? Thought you could.
    2623             :  */
    2624        1164 : void __cancel_dirty_page(struct page *page)
    2625             : {
    2626        1164 :         struct address_space *mapping = page_mapping(page);
    2627             : 
    2628        1164 :         if (mapping_can_writeback(mapping)) {
    2629         496 :                 struct inode *inode = mapping->host;
    2630         496 :                 struct bdi_writeback *wb;
    2631         496 :                 struct wb_lock_cookie cookie = {};
    2632             : 
    2633         496 :                 lock_page_memcg(page);
    2634         496 :                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
    2635             : 
    2636         992 :                 if (TestClearPageDirty(page))
    2637         496 :                         account_page_cleaned(page, mapping, wb);
    2638             : 
    2639         496 :                 unlocked_inode_to_wb_end(inode, &cookie);
    2640         496 :                 unlock_page_memcg(page);
    2641             :         } else {
    2642         668 :                 ClearPageDirty(page);
    2643             :         }
    2644        1164 : }
    2645             : EXPORT_SYMBOL(__cancel_dirty_page);
    2646             : 
    2647             : /*
    2648             :  * Clear a page's dirty flag, while caring for dirty memory accounting.
    2649             :  * Returns true if the page was previously dirty.
    2650             :  *
    2651             :  * This is for preparing to put the page under writeout.  We leave the page
    2652             :  * tagged as dirty in the xarray so that a concurrent write-for-sync
    2653             :  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
    2654             :  * implementation will run either set_page_writeback() or set_page_dirty(),
    2655             :  * at which stage we bring the page's dirty flag and xarray dirty tag
    2656             :  * back into sync.
    2657             :  *
    2658             :  * This incoherency between the page's dirty flag and xarray tag is
    2659             :  * unfortunate, but it only exists while the page is locked.
    2660             :  */
    2661        1286 : int clear_page_dirty_for_io(struct page *page)
    2662             : {
    2663        1286 :         struct address_space *mapping = page_mapping(page);
    2664        1286 :         int ret = 0;
    2665             : 
    2666        2572 :         VM_BUG_ON_PAGE(!PageLocked(page), page);
    2667             : 
    2668        2572 :         if (mapping && mapping_can_writeback(mapping)) {
    2669        1286 :                 struct inode *inode = mapping->host;
    2670        1286 :                 struct bdi_writeback *wb;
    2671        1286 :                 struct wb_lock_cookie cookie = {};
    2672             : 
    2673             :                 /*
    2674             :                  * Yes, Virginia, this is indeed insane.
    2675             :                  *
    2676             :                  * We use this sequence to make sure that
    2677             :                  *  (a) we account for dirty stats properly
    2678             :                  *  (b) we tell the low-level filesystem to
    2679             :                  *      mark the whole page dirty if it was
    2680             :                  *      dirty in a pagetable. Only to then
    2681             :                  *  (c) clean the page again and return 1 to
    2682             :                  *      cause the writeback.
    2683             :                  *
    2684             :                  * This way we avoid all nasty races with the
    2685             :                  * dirty bit in multiple places and clearing
    2686             :                  * them concurrently from different threads.
    2687             :                  *
    2688             :                  * Note! Normally the "set_page_dirty(page)"
    2689             :                  * has no effect on the actual dirty bit - since
    2690             :                  * that will already usually be set. But we
    2691             :                  * need the side effects, and it can help us
    2692             :                  * avoid races.
    2693             :                  *
    2694             :                  * We basically use the page "master dirty bit"
    2695             :                  * as a serialization point for all the different
    2696             :                  * threads doing their things.
    2697             :                  */
    2698        1286 :                 if (page_mkclean(page))
    2699          68 :                         set_page_dirty(page);
    2700             :                 /*
    2701             :                  * We carefully synchronise fault handlers against
    2702             :                  * installing a dirty pte and marking the page dirty
    2703             :                  * at this point.  We do this by having them hold the
    2704             :                  * page lock while dirtying the page, and pages are
    2705             :                  * always locked coming in here, so we get the desired
    2706             :                  * exclusion.
    2707             :                  */
    2708        1286 :                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
    2709        2572 :                 if (TestClearPageDirty(page)) {
    2710        1286 :                         dec_lruvec_page_state(page, NR_FILE_DIRTY);
    2711        1286 :                         dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
    2712        1286 :                         dec_wb_stat(wb, WB_RECLAIMABLE);
    2713        1286 :                         ret = 1;
    2714             :                 }
    2715        1286 :                 unlocked_inode_to_wb_end(inode, &cookie);
    2716        1286 :                 return ret;
    2717             :         }
    2718           0 :         return TestClearPageDirty(page);
    2719             : }
    2720             : EXPORT_SYMBOL(clear_page_dirty_for_io);
    2721             : 
    2722        1284 : int test_clear_page_writeback(struct page *page)
    2723             : {
    2724        1284 :         struct address_space *mapping = page_mapping(page);
    2725        1284 :         struct mem_cgroup *memcg;
    2726        1284 :         struct lruvec *lruvec;
    2727        1284 :         int ret;
    2728             : 
    2729        1284 :         memcg = lock_page_memcg(page);
    2730        1284 :         lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
    2731        2568 :         if (mapping && mapping_use_writeback_tags(mapping)) {
    2732        1284 :                 struct inode *inode = mapping->host;
    2733        1284 :                 struct backing_dev_info *bdi = inode_to_bdi(inode);
    2734        1284 :                 unsigned long flags;
    2735             : 
    2736        1284 :                 xa_lock_irqsave(&mapping->i_pages, flags);
    2737        1284 :                 ret = TestClearPageWriteback(page);
    2738        1284 :                 if (ret) {
    2739        1284 :                         __xa_clear_mark(&mapping->i_pages, page_index(page),
    2740             :                                                 PAGECACHE_TAG_WRITEBACK);
    2741        1284 :                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
    2742        1284 :                                 struct bdi_writeback *wb = inode_to_wb(inode);
    2743             : 
    2744        1284 :                                 dec_wb_stat(wb, WB_WRITEBACK);
    2745        1284 :                                 __wb_writeout_inc(wb);
    2746             :                         }
    2747             :                 }
    2748             : 
    2749        1284 :                 if (mapping->host && !mapping_tagged(mapping,
    2750             :                                                      PAGECACHE_TAG_WRITEBACK))
    2751          83 :                         sb_clear_inode_writeback(mapping->host);
    2752             : 
    2753        1284 :                 xa_unlock_irqrestore(&mapping->i_pages, flags);
    2754             :         } else {
    2755           0 :                 ret = TestClearPageWriteback(page);
    2756             :         }
    2757        1284 :         if (ret) {
    2758        1284 :                 dec_lruvec_state(lruvec, NR_WRITEBACK);
    2759        1284 :                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
    2760        1284 :                 inc_node_page_state(page, NR_WRITTEN);
    2761             :         }
    2762        1284 :         __unlock_page_memcg(memcg);
    2763        1284 :         return ret;
    2764             : }
    2765             : 
    2766        1284 : int __test_set_page_writeback(struct page *page, bool keep_write)
    2767             : {
    2768        1284 :         struct address_space *mapping = page_mapping(page);
    2769        1284 :         int ret, access_ret;
    2770             : 
    2771        1284 :         lock_page_memcg(page);
    2772        2568 :         if (mapping && mapping_use_writeback_tags(mapping)) {
    2773        1284 :                 XA_STATE(xas, &mapping->i_pages, page_index(page));
    2774        1284 :                 struct inode *inode = mapping->host;
    2775        1284 :                 struct backing_dev_info *bdi = inode_to_bdi(inode);
    2776        1284 :                 unsigned long flags;
    2777             : 
    2778        1284 :                 xas_lock_irqsave(&xas, flags);
    2779        1284 :                 xas_load(&xas);
    2780        1284 :                 ret = TestSetPageWriteback(page);
    2781        1284 :                 if (!ret) {
    2782        1284 :                         bool on_wblist;
    2783             : 
    2784        1284 :                         on_wblist = mapping_tagged(mapping,
    2785             :                                                    PAGECACHE_TAG_WRITEBACK);
    2786             : 
    2787        1284 :                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
    2788        1284 :                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT)
    2789        1284 :                                 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
    2790             : 
    2791             :                         /*
    2792             :                          * We can come through here when swapping anonymous
    2793             :                          * pages, so we don't necessarily have an inode to track
    2794             :                          * for sync.
    2795             :                          */
    2796        1284 :                         if (mapping->host && !on_wblist)
    2797          83 :                                 sb_mark_inode_writeback(mapping->host);
    2798             :                 }
    2799        2568 :                 if (!PageDirty(page))
    2800        1284 :                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
    2801        1284 :                 if (!keep_write)
    2802        1284 :                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
    2803        1284 :                 xas_unlock_irqrestore(&xas, flags);
    2804             :         } else {
    2805           0 :                 ret = TestSetPageWriteback(page);
    2806             :         }
    2807        1284 :         if (!ret) {
    2808        1284 :                 inc_lruvec_page_state(page, NR_WRITEBACK);
    2809        1284 :                 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
    2810             :         }
    2811        1284 :         unlock_page_memcg(page);
    2812        1284 :         access_ret = arch_make_page_accessible(page);
    2813             :         /*
    2814             :          * If writeback has been triggered on a page that cannot be made
    2815             :          * accessible, it is too late to recover here.
    2816             :          */
    2817        1284 :         VM_BUG_ON_PAGE(access_ret != 0, page);
    2818             : 
    2819        1284 :         return ret;
    2820             : 
    2821             : }
    2822             : EXPORT_SYMBOL(__test_set_page_writeback);
    2823             : 
    2824             : /*
    2825             :  * Wait for a page to complete writeback
    2826             :  */
    2827        1311 : void wait_on_page_writeback(struct page *page)
    2828             : {
    2829        2788 :         while (PageWriteback(page)) {
    2830          83 :                 trace_wait_on_page_writeback(page, page_mapping(page));
    2831          83 :                 wait_on_page_bit(page, PG_writeback);
    2832             :         }
    2833        1311 : }
    2834             : EXPORT_SYMBOL_GPL(wait_on_page_writeback);
    2835             : 
    2836             : /**
    2837             :  * wait_for_stable_page() - wait for writeback to finish, if necessary.
    2838             :  * @page:       The page to wait on.
    2839             :  *
    2840             :  * This function determines if the given page is related to a backing device
    2841             :  * that requires page contents to be held stable during writeback.  If so, then
    2842             :  * it will wait for any pending writeback to complete.
    2843             :  */
    2844        4058 : void wait_for_stable_page(struct page *page)
    2845             : {
    2846        4058 :         page = thp_head(page);
    2847        4058 :         if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
    2848           0 :                 wait_on_page_writeback(page);
    2849        4058 : }
    2850             : EXPORT_SYMBOL_GPL(wait_for_stable_page);

Generated by: LCOV version 1.14