Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * mm/percpu-vm.c - vmalloc area based chunk allocation
4 : *
5 : * Copyright (C) 2010 SUSE Linux Products GmbH
6 : * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
7 : *
8 : * Chunks are mapped into vmalloc areas and populated page by page.
9 : * This is the default chunk allocator.
10 : */
11 :
12 0 : static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
13 : unsigned int cpu, int page_idx)
14 : {
15 : /* must not be used on pre-mapped chunk */
16 0 : WARN_ON(chunk->immutable);
17 :
18 0 : return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
19 : }
20 :
21 : /**
22 : * pcpu_get_pages - get temp pages array
23 : *
24 : * Returns pointer to array of pointers to struct page which can be indexed
25 : * with pcpu_page_idx(). Note that there is only one array and accesses
26 : * should be serialized by pcpu_alloc_mutex.
27 : *
28 : * RETURNS:
29 : * Pointer to temp pages array on success.
30 : */
31 1 : static struct page **pcpu_get_pages(void)
32 : {
33 1 : static struct page **pages;
34 1 : size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
35 :
36 3 : lockdep_assert_held(&pcpu_alloc_mutex);
37 :
38 1 : if (!pages)
39 1 : pages = pcpu_mem_zalloc(pages_size, GFP_KERNEL);
40 1 : return pages;
41 : }
42 :
43 : /**
44 : * pcpu_free_pages - free pages which were allocated for @chunk
45 : * @chunk: chunk pages were allocated for
46 : * @pages: array of pages to be freed, indexed by pcpu_page_idx()
47 : * @page_start: page index of the first page to be freed
48 : * @page_end: page index of the last page to be freed + 1
49 : *
50 : * Free pages [@page_start and @page_end) in @pages for all units.
51 : * The pages were allocated for @chunk.
52 : */
53 0 : static void pcpu_free_pages(struct pcpu_chunk *chunk,
54 : struct page **pages, int page_start, int page_end)
55 : {
56 0 : unsigned int cpu;
57 0 : int i;
58 :
59 0 : for_each_possible_cpu(cpu) {
60 0 : for (i = page_start; i < page_end; i++) {
61 0 : struct page *page = pages[pcpu_page_idx(cpu, i)];
62 :
63 0 : if (page)
64 0 : __free_page(page);
65 : }
66 : }
67 0 : }
68 :
69 : /**
70 : * pcpu_alloc_pages - allocates pages for @chunk
71 : * @chunk: target chunk
72 : * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
73 : * @page_start: page index of the first page to be allocated
74 : * @page_end: page index of the last page to be allocated + 1
75 : * @gfp: allocation flags passed to the underlying allocator
76 : *
77 : * Allocate pages [@page_start,@page_end) into @pages for all units.
78 : * The allocation is for @chunk. Percpu core doesn't care about the
79 : * content of @pages and will pass it verbatim to pcpu_map_pages().
80 : */
81 1 : static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
82 : struct page **pages, int page_start, int page_end,
83 : gfp_t gfp)
84 : {
85 1 : unsigned int cpu, tcpu;
86 1 : int i;
87 :
88 1 : gfp |= __GFP_HIGHMEM;
89 :
90 5 : for_each_possible_cpu(cpu) {
91 16 : for (i = page_start; i < page_end; i++) {
92 12 : struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
93 :
94 12 : *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
95 12 : if (!*pagep)
96 0 : goto err;
97 : }
98 : }
99 : return 0;
100 :
101 0 : err:
102 0 : while (--i >= page_start)
103 0 : __free_page(pages[pcpu_page_idx(cpu, i)]);
104 :
105 0 : for_each_possible_cpu(tcpu) {
106 0 : if (tcpu == cpu)
107 : break;
108 0 : for (i = page_start; i < page_end; i++)
109 0 : __free_page(pages[pcpu_page_idx(tcpu, i)]);
110 : }
111 : return -ENOMEM;
112 : }
113 :
114 : /**
115 : * pcpu_pre_unmap_flush - flush cache prior to unmapping
116 : * @chunk: chunk the regions to be flushed belongs to
117 : * @page_start: page index of the first page to be flushed
118 : * @page_end: page index of the last page to be flushed + 1
119 : *
120 : * Pages in [@page_start,@page_end) of @chunk are about to be
121 : * unmapped. Flush cache. As each flushing trial can be very
122 : * expensive, issue flush on the whole region at once rather than
123 : * doing it for each cpu. This could be an overkill but is more
124 : * scalable.
125 : */
126 0 : static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
127 : int page_start, int page_end)
128 : {
129 0 : flush_cache_vunmap(
130 : pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
131 : pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
132 : }
133 :
134 0 : static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
135 : {
136 0 : unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
137 0 : }
138 :
139 : /**
140 : * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
141 : * @chunk: chunk of interest
142 : * @pages: pages array which can be used to pass information to free
143 : * @page_start: page index of the first page to unmap
144 : * @page_end: page index of the last page to unmap + 1
145 : *
146 : * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
147 : * Corresponding elements in @pages were cleared by the caller and can
148 : * be used to carry information to pcpu_free_pages() which will be
149 : * called after all unmaps are finished. The caller should call
150 : * proper pre/post flush functions.
151 : */
152 0 : static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
153 : struct page **pages, int page_start, int page_end)
154 : {
155 0 : unsigned int cpu;
156 0 : int i;
157 :
158 0 : for_each_possible_cpu(cpu) {
159 0 : for (i = page_start; i < page_end; i++) {
160 0 : struct page *page;
161 :
162 0 : page = pcpu_chunk_page(chunk, cpu, i);
163 0 : WARN_ON(!page);
164 0 : pages[pcpu_page_idx(cpu, i)] = page;
165 : }
166 0 : __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
167 : page_end - page_start);
168 : }
169 0 : }
170 :
171 : /**
172 : * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
173 : * @chunk: pcpu_chunk the regions to be flushed belong to
174 : * @page_start: page index of the first page to be flushed
175 : * @page_end: page index of the last page to be flushed + 1
176 : *
177 : * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
178 : * TLB for the regions. This can be skipped if the area is to be
179 : * returned to vmalloc as vmalloc will handle TLB flushing lazily.
180 : *
181 : * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
182 : * for the whole region.
183 : */
184 0 : static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
185 : int page_start, int page_end)
186 : {
187 0 : flush_tlb_kernel_range(
188 : pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
189 : pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
190 0 : }
191 :
192 4 : static int __pcpu_map_pages(unsigned long addr, struct page **pages,
193 : int nr_pages)
194 : {
195 8 : return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
196 4 : PAGE_KERNEL, pages);
197 : }
198 :
199 : /**
200 : * pcpu_map_pages - map pages into a pcpu_chunk
201 : * @chunk: chunk of interest
202 : * @pages: pages array containing pages to be mapped
203 : * @page_start: page index of the first page to map
204 : * @page_end: page index of the last page to map + 1
205 : *
206 : * For each cpu, map pages [@page_start,@page_end) into @chunk. The
207 : * caller is responsible for calling pcpu_post_map_flush() after all
208 : * mappings are complete.
209 : *
210 : * This function is responsible for setting up whatever is necessary for
211 : * reverse lookup (addr -> chunk).
212 : */
213 1 : static int pcpu_map_pages(struct pcpu_chunk *chunk,
214 : struct page **pages, int page_start, int page_end)
215 : {
216 1 : unsigned int cpu, tcpu;
217 1 : int i, err;
218 :
219 5 : for_each_possible_cpu(cpu) {
220 4 : err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
221 4 : &pages[pcpu_page_idx(cpu, page_start)],
222 : page_end - page_start);
223 4 : if (err < 0)
224 0 : goto err;
225 :
226 16 : for (i = page_start; i < page_end; i++)
227 12 : pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
228 : chunk);
229 : }
230 : return 0;
231 0 : err:
232 0 : for_each_possible_cpu(tcpu) {
233 0 : if (tcpu == cpu)
234 : break;
235 0 : __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
236 : page_end - page_start);
237 : }
238 0 : pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
239 0 : return err;
240 : }
241 :
242 : /**
243 : * pcpu_post_map_flush - flush cache after mapping
244 : * @chunk: pcpu_chunk the regions to be flushed belong to
245 : * @page_start: page index of the first page to be flushed
246 : * @page_end: page index of the last page to be flushed + 1
247 : *
248 : * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
249 : * cache.
250 : *
251 : * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
252 : * for the whole region.
253 : */
254 : static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
255 : int page_start, int page_end)
256 : {
257 1 : flush_cache_vmap(
258 : pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
259 : pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
260 : }
261 :
262 : /**
263 : * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
264 : * @chunk: chunk of interest
265 : * @page_start: the start page
266 : * @page_end: the end page
267 : * @gfp: allocation flags passed to the underlying memory allocator
268 : *
269 : * For each cpu, populate and map pages [@page_start,@page_end) into
270 : * @chunk.
271 : *
272 : * CONTEXT:
273 : * pcpu_alloc_mutex, does GFP_KERNEL allocation.
274 : */
275 1 : static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
276 : int page_start, int page_end, gfp_t gfp)
277 : {
278 1 : struct page **pages;
279 :
280 1 : pages = pcpu_get_pages();
281 1 : if (!pages)
282 : return -ENOMEM;
283 :
284 1 : if (pcpu_alloc_pages(chunk, pages, page_start, page_end, gfp))
285 : return -ENOMEM;
286 :
287 1 : if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
288 0 : pcpu_free_pages(chunk, pages, page_start, page_end);
289 0 : return -ENOMEM;
290 : }
291 1 : pcpu_post_map_flush(chunk, page_start, page_end);
292 :
293 : return 0;
294 : }
295 :
296 : /**
297 : * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
298 : * @chunk: chunk to depopulate
299 : * @page_start: the start page
300 : * @page_end: the end page
301 : *
302 : * For each cpu, depopulate and unmap pages [@page_start,@page_end)
303 : * from @chunk.
304 : *
305 : * CONTEXT:
306 : * pcpu_alloc_mutex.
307 : */
308 0 : static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
309 : int page_start, int page_end)
310 : {
311 0 : struct page **pages;
312 :
313 : /*
314 : * If control reaches here, there must have been at least one
315 : * successful population attempt so the temp pages array must
316 : * be available now.
317 : */
318 0 : pages = pcpu_get_pages();
319 0 : BUG_ON(!pages);
320 :
321 : /* unmap and free */
322 0 : pcpu_pre_unmap_flush(chunk, page_start, page_end);
323 :
324 0 : pcpu_unmap_pages(chunk, pages, page_start, page_end);
325 :
326 : /* no need to flush tlb, vmalloc will handle it lazily */
327 :
328 0 : pcpu_free_pages(chunk, pages, page_start, page_end);
329 0 : }
330 :
331 1 : static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type,
332 : gfp_t gfp)
333 : {
334 1 : struct pcpu_chunk *chunk;
335 1 : struct vm_struct **vms;
336 :
337 1 : chunk = pcpu_alloc_chunk(type, gfp);
338 1 : if (!chunk)
339 : return NULL;
340 :
341 1 : vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
342 : pcpu_nr_groups, pcpu_atom_size);
343 1 : if (!vms) {
344 0 : pcpu_free_chunk(chunk);
345 0 : return NULL;
346 : }
347 :
348 1 : chunk->data = vms;
349 1 : chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
350 :
351 1 : pcpu_stats_chunk_alloc();
352 1 : trace_percpu_create_chunk(chunk->base_addr);
353 :
354 1 : return chunk;
355 : }
356 :
357 0 : static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
358 : {
359 0 : if (!chunk)
360 : return;
361 :
362 0 : pcpu_stats_chunk_dealloc();
363 0 : trace_percpu_destroy_chunk(chunk->base_addr);
364 :
365 0 : if (chunk->data)
366 0 : pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
367 0 : pcpu_free_chunk(chunk);
368 : }
369 :
370 127 : static struct page *pcpu_addr_to_page(void *addr)
371 : {
372 127 : return vmalloc_to_page(addr);
373 : }
374 :
375 1 : static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
376 : {
377 : /* no extra restriction */
378 1 : return 0;
379 : }
|