Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Slab allocator functions that are independent of the allocator strategy
4 : *
5 : * (C) 2012 Christoph Lameter <cl@linux.com>
6 : */
7 : #include <linux/slab.h>
8 :
9 : #include <linux/mm.h>
10 : #include <linux/poison.h>
11 : #include <linux/interrupt.h>
12 : #include <linux/memory.h>
13 : #include <linux/cache.h>
14 : #include <linux/compiler.h>
15 : #include <linux/kfence.h>
16 : #include <linux/module.h>
17 : #include <linux/cpu.h>
18 : #include <linux/uaccess.h>
19 : #include <linux/seq_file.h>
20 : #include <linux/proc_fs.h>
21 : #include <linux/debugfs.h>
22 : #include <linux/kasan.h>
23 : #include <asm/cacheflush.h>
24 : #include <asm/tlbflush.h>
25 : #include <asm/page.h>
26 : #include <linux/memcontrol.h>
27 :
28 : #define CREATE_TRACE_POINTS
29 : #include <trace/events/kmem.h>
30 :
31 : #include "internal.h"
32 :
33 : #include "slab.h"
34 :
35 : enum slab_state slab_state;
36 : LIST_HEAD(slab_caches);
37 : DEFINE_MUTEX(slab_mutex);
38 : struct kmem_cache *kmem_cache;
39 :
40 : #ifdef CONFIG_HARDENED_USERCOPY
41 : bool usercopy_fallback __ro_after_init =
42 : IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
43 : module_param(usercopy_fallback, bool, 0400);
44 : MODULE_PARM_DESC(usercopy_fallback,
45 : "WARN instead of reject usercopy whitelist violations");
46 : #endif
47 :
48 : static LIST_HEAD(slab_caches_to_rcu_destroy);
49 : static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
50 : static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
51 : slab_caches_to_rcu_destroy_workfn);
52 :
53 : /*
54 : * Set of flags that will prevent slab merging
55 : */
56 : #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
57 : SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
58 : SLAB_FAILSLAB | kasan_never_merge())
59 :
60 : #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
61 : SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
62 :
63 : /*
64 : * Merge control. If this is set then no merging of slab caches will occur.
65 : */
66 : static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
67 :
68 0 : static int __init setup_slab_nomerge(char *str)
69 : {
70 0 : slab_nomerge = true;
71 0 : return 1;
72 : }
73 :
74 : #ifdef CONFIG_SLUB
75 : __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
76 : #endif
77 :
78 : __setup("slab_nomerge", setup_slab_nomerge);
79 :
80 : /*
81 : * Determine the size of a slab object
82 : */
83 0 : unsigned int kmem_cache_size(struct kmem_cache *s)
84 : {
85 0 : return s->object_size;
86 : }
87 : EXPORT_SYMBOL(kmem_cache_size);
88 :
89 : #ifdef CONFIG_DEBUG_VM
90 117 : static int kmem_cache_sanity_check(const char *name, unsigned int size)
91 : {
92 117 : if (!name || in_interrupt() || size < sizeof(void *) ||
93 : size > KMALLOC_MAX_SIZE) {
94 0 : pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 0 : return -EINVAL;
96 : }
97 :
98 117 : WARN_ON(strchr(name, ' ')); /* It confuses parsers */
99 : return 0;
100 : }
101 : #else
102 : static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
103 : {
104 : return 0;
105 : }
106 : #endif
107 :
108 0 : void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109 : {
110 0 : size_t i;
111 :
112 0 : for (i = 0; i < nr; i++) {
113 0 : if (s)
114 0 : kmem_cache_free(s, p[i]);
115 : else
116 0 : kfree(p[i]);
117 : }
118 0 : }
119 :
120 0 : int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
121 : void **p)
122 : {
123 0 : size_t i;
124 :
125 0 : for (i = 0; i < nr; i++) {
126 0 : void *x = p[i] = kmem_cache_alloc(s, flags);
127 0 : if (!x) {
128 0 : __kmem_cache_free_bulk(s, i, p);
129 0 : return 0;
130 : }
131 : }
132 0 : return i;
133 : }
134 :
135 : /*
136 : * Figure out what the alignment of the objects will be given a set of
137 : * flags, a user specified alignment and the size of the objects.
138 : */
139 145 : static unsigned int calculate_alignment(slab_flags_t flags,
140 : unsigned int align, unsigned int size)
141 : {
142 : /*
143 : * If the user wants hardware cache aligned objects then follow that
144 : * suggestion if the object is sufficiently large.
145 : *
146 : * The hardware cache alignment cannot override the specified
147 : * alignment though. If that is greater then use it.
148 : */
149 145 : if (flags & SLAB_HWCACHE_ALIGN) {
150 44 : unsigned int ralign;
151 :
152 44 : ralign = cache_line_size();
153 45 : while (size <= ralign / 2)
154 : ralign /= 2;
155 44 : align = max(align, ralign);
156 : }
157 :
158 145 : if (align < ARCH_SLAB_MINALIGN)
159 : align = ARCH_SLAB_MINALIGN;
160 :
161 145 : return ALIGN(align, sizeof(void *));
162 : }
163 :
164 : /*
165 : * Find a mergeable slab cache
166 : */
167 145 : int slab_unmergeable(struct kmem_cache *s)
168 : {
169 145 : if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
170 145 : return 1;
171 :
172 0 : if (s->ctor)
173 : return 1;
174 :
175 0 : if (s->usersize)
176 : return 1;
177 :
178 : /*
179 : * We may have set a slab to be unmergeable during bootstrap.
180 : */
181 0 : if (s->refcount < 0)
182 0 : return 1;
183 :
184 : return 0;
185 : }
186 :
187 109 : struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
188 : slab_flags_t flags, const char *name, void (*ctor)(void *))
189 : {
190 109 : struct kmem_cache *s;
191 :
192 109 : if (slab_nomerge)
193 : return NULL;
194 :
195 0 : if (ctor)
196 : return NULL;
197 :
198 0 : size = ALIGN(size, sizeof(void *));
199 0 : align = calculate_alignment(flags, align, size);
200 0 : size = ALIGN(size, align);
201 0 : flags = kmem_cache_flags(size, flags, name);
202 :
203 0 : if (flags & SLAB_NEVER_MERGE)
204 : return NULL;
205 :
206 0 : list_for_each_entry_reverse(s, &slab_caches, list) {
207 0 : if (slab_unmergeable(s))
208 0 : continue;
209 :
210 0 : if (size > s->size)
211 0 : continue;
212 :
213 0 : if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
214 0 : continue;
215 : /*
216 : * Check if alignment is compatible.
217 : * Courtesy of Adrian Drzewiecki
218 : */
219 0 : if ((s->size & ~(align - 1)) != s->size)
220 0 : continue;
221 :
222 0 : if (s->size - size >= sizeof(void *))
223 0 : continue;
224 :
225 : if (IS_ENABLED(CONFIG_SLAB) && align &&
226 : (align > s->align || s->align % align))
227 : continue;
228 :
229 : return s;
230 : }
231 : return NULL;
232 : }
233 :
234 117 : static struct kmem_cache *create_cache(const char *name,
235 : unsigned int object_size, unsigned int align,
236 : slab_flags_t flags, unsigned int useroffset,
237 : unsigned int usersize, void (*ctor)(void *),
238 : struct kmem_cache *root_cache)
239 : {
240 117 : struct kmem_cache *s;
241 117 : int err;
242 :
243 117 : if (WARN_ON(useroffset + usersize > object_size))
244 0 : useroffset = usersize = 0;
245 :
246 117 : err = -ENOMEM;
247 117 : s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
248 117 : if (!s)
249 0 : goto out;
250 :
251 117 : s->name = name;
252 117 : s->size = s->object_size = object_size;
253 117 : s->align = align;
254 117 : s->ctor = ctor;
255 117 : s->useroffset = useroffset;
256 117 : s->usersize = usersize;
257 :
258 117 : err = __kmem_cache_create(s, flags);
259 117 : if (err)
260 0 : goto out_free_cache;
261 :
262 117 : s->refcount = 1;
263 117 : list_add(&s->list, &slab_caches);
264 117 : out:
265 117 : if (err)
266 0 : return ERR_PTR(err);
267 : return s;
268 :
269 0 : out_free_cache:
270 0 : kmem_cache_free(kmem_cache, s);
271 0 : goto out;
272 : }
273 :
274 : /**
275 : * kmem_cache_create_usercopy - Create a cache with a region suitable
276 : * for copying to userspace
277 : * @name: A string which is used in /proc/slabinfo to identify this cache.
278 : * @size: The size of objects to be created in this cache.
279 : * @align: The required alignment for the objects.
280 : * @flags: SLAB flags
281 : * @useroffset: Usercopy region offset
282 : * @usersize: Usercopy region size
283 : * @ctor: A constructor for the objects.
284 : *
285 : * Cannot be called within a interrupt, but can be interrupted.
286 : * The @ctor is run when new pages are allocated by the cache.
287 : *
288 : * The flags are
289 : *
290 : * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
291 : * to catch references to uninitialised memory.
292 : *
293 : * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
294 : * for buffer overruns.
295 : *
296 : * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
297 : * cacheline. This can be beneficial if you're counting cycles as closely
298 : * as davem.
299 : *
300 : * Return: a pointer to the cache on success, NULL on failure.
301 : */
302 : struct kmem_cache *
303 117 : kmem_cache_create_usercopy(const char *name,
304 : unsigned int size, unsigned int align,
305 : slab_flags_t flags,
306 : unsigned int useroffset, unsigned int usersize,
307 : void (*ctor)(void *))
308 : {
309 117 : struct kmem_cache *s = NULL;
310 117 : const char *cache_name;
311 117 : int err;
312 :
313 117 : mutex_lock(&slab_mutex);
314 :
315 117 : err = kmem_cache_sanity_check(name, size);
316 117 : if (err) {
317 0 : goto out_unlock;
318 : }
319 :
320 : /* Refuse requests with allocator specific flags */
321 117 : if (flags & ~SLAB_FLAGS_PERMITTED) {
322 0 : err = -EINVAL;
323 0 : goto out_unlock;
324 : }
325 :
326 : /*
327 : * Some allocators will constraint the set of valid flags to a subset
328 : * of all flags. We expect them to define CACHE_CREATE_MASK in this
329 : * case, and we'll just provide them with a sanitized version of the
330 : * passed flags.
331 : */
332 117 : flags &= CACHE_CREATE_MASK;
333 :
334 : /* Fail closed on bad usersize of useroffset values. */
335 117 : if (WARN_ON(!usersize && useroffset) ||
336 234 : WARN_ON(size < usersize || size - usersize < useroffset))
337 : usersize = useroffset = 0;
338 :
339 117 : if (!usersize)
340 109 : s = __kmem_cache_alias(name, size, align, flags, ctor);
341 109 : if (s)
342 0 : goto out_unlock;
343 :
344 117 : cache_name = kstrdup_const(name, GFP_KERNEL);
345 117 : if (!cache_name) {
346 0 : err = -ENOMEM;
347 0 : goto out_unlock;
348 : }
349 :
350 159 : s = create_cache(cache_name, size,
351 : calculate_alignment(flags, align, size),
352 : flags, useroffset, usersize, ctor, NULL);
353 117 : if (IS_ERR(s)) {
354 0 : err = PTR_ERR(s);
355 0 : kfree_const(cache_name);
356 : }
357 :
358 117 : out_unlock:
359 117 : mutex_unlock(&slab_mutex);
360 :
361 117 : if (err) {
362 0 : if (flags & SLAB_PANIC)
363 0 : panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
364 : name, err);
365 : else {
366 0 : pr_warn("kmem_cache_create(%s) failed with error %d\n",
367 : name, err);
368 0 : dump_stack();
369 : }
370 0 : return NULL;
371 : }
372 : return s;
373 : }
374 : EXPORT_SYMBOL(kmem_cache_create_usercopy);
375 :
376 : /**
377 : * kmem_cache_create - Create a cache.
378 : * @name: A string which is used in /proc/slabinfo to identify this cache.
379 : * @size: The size of objects to be created in this cache.
380 : * @align: The required alignment for the objects.
381 : * @flags: SLAB flags
382 : * @ctor: A constructor for the objects.
383 : *
384 : * Cannot be called within a interrupt, but can be interrupted.
385 : * The @ctor is run when new pages are allocated by the cache.
386 : *
387 : * The flags are
388 : *
389 : * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
390 : * to catch references to uninitialised memory.
391 : *
392 : * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
393 : * for buffer overruns.
394 : *
395 : * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
396 : * cacheline. This can be beneficial if you're counting cycles as closely
397 : * as davem.
398 : *
399 : * Return: a pointer to the cache on success, NULL on failure.
400 : */
401 : struct kmem_cache *
402 104 : kmem_cache_create(const char *name, unsigned int size, unsigned int align,
403 : slab_flags_t flags, void (*ctor)(void *))
404 : {
405 104 : return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
406 : ctor);
407 : }
408 : EXPORT_SYMBOL(kmem_cache_create);
409 :
410 0 : static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
411 : {
412 0 : LIST_HEAD(to_destroy);
413 0 : struct kmem_cache *s, *s2;
414 :
415 : /*
416 : * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
417 : * @slab_caches_to_rcu_destroy list. The slab pages are freed
418 : * through RCU and the associated kmem_cache are dereferenced
419 : * while freeing the pages, so the kmem_caches should be freed only
420 : * after the pending RCU operations are finished. As rcu_barrier()
421 : * is a pretty slow operation, we batch all pending destructions
422 : * asynchronously.
423 : */
424 0 : mutex_lock(&slab_mutex);
425 0 : list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
426 0 : mutex_unlock(&slab_mutex);
427 :
428 0 : if (list_empty(&to_destroy))
429 0 : return;
430 :
431 0 : rcu_barrier();
432 :
433 0 : list_for_each_entry_safe(s, s2, &to_destroy, list) {
434 0 : kfence_shutdown_cache(s);
435 : #ifdef SLAB_SUPPORTS_SYSFS
436 0 : sysfs_slab_release(s);
437 : #else
438 : slab_kmem_cache_release(s);
439 : #endif
440 : }
441 : }
442 :
443 0 : static int shutdown_cache(struct kmem_cache *s)
444 : {
445 : /* free asan quarantined objects */
446 0 : kasan_cache_shutdown(s);
447 :
448 0 : if (__kmem_cache_shutdown(s) != 0)
449 : return -EBUSY;
450 :
451 0 : list_del(&s->list);
452 :
453 0 : if (s->flags & SLAB_TYPESAFE_BY_RCU) {
454 : #ifdef SLAB_SUPPORTS_SYSFS
455 0 : sysfs_slab_unlink(s);
456 : #endif
457 0 : list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
458 0 : schedule_work(&slab_caches_to_rcu_destroy_work);
459 : } else {
460 0 : kfence_shutdown_cache(s);
461 : #ifdef SLAB_SUPPORTS_SYSFS
462 0 : sysfs_slab_unlink(s);
463 0 : sysfs_slab_release(s);
464 : #else
465 : slab_kmem_cache_release(s);
466 : #endif
467 : }
468 :
469 : return 0;
470 : }
471 :
472 0 : void slab_kmem_cache_release(struct kmem_cache *s)
473 : {
474 0 : __kmem_cache_release(s);
475 0 : kfree_const(s->name);
476 0 : kmem_cache_free(kmem_cache, s);
477 0 : }
478 :
479 0 : void kmem_cache_destroy(struct kmem_cache *s)
480 : {
481 0 : int err;
482 :
483 0 : if (unlikely(!s))
484 : return;
485 :
486 0 : mutex_lock(&slab_mutex);
487 :
488 0 : s->refcount--;
489 0 : if (s->refcount)
490 0 : goto out_unlock;
491 :
492 0 : err = shutdown_cache(s);
493 0 : if (err) {
494 0 : pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
495 : s->name);
496 0 : dump_stack();
497 : }
498 0 : out_unlock:
499 0 : mutex_unlock(&slab_mutex);
500 : }
501 : EXPORT_SYMBOL(kmem_cache_destroy);
502 :
503 : /**
504 : * kmem_cache_shrink - Shrink a cache.
505 : * @cachep: The cache to shrink.
506 : *
507 : * Releases as many slabs as possible for a cache.
508 : * To help debugging, a zero exit status indicates all slabs were released.
509 : *
510 : * Return: %0 if all slabs were released, non-zero otherwise
511 : */
512 0 : int kmem_cache_shrink(struct kmem_cache *cachep)
513 : {
514 0 : int ret;
515 :
516 :
517 0 : kasan_cache_shrink(cachep);
518 0 : ret = __kmem_cache_shrink(cachep);
519 :
520 0 : return ret;
521 : }
522 : EXPORT_SYMBOL(kmem_cache_shrink);
523 :
524 376 : bool slab_is_available(void)
525 : {
526 376 : return slab_state >= UP;
527 : }
528 :
529 : /**
530 : * kmem_valid_obj - does the pointer reference a valid slab object?
531 : * @object: pointer to query.
532 : *
533 : * Return: %true if the pointer is to a not-yet-freed object from
534 : * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
535 : * is to an already-freed object, and %false otherwise.
536 : */
537 0 : bool kmem_valid_obj(void *object)
538 : {
539 0 : struct page *page;
540 :
541 : /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
542 0 : if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
543 0 : return false;
544 0 : page = virt_to_head_page(object);
545 0 : return PageSlab(page);
546 : }
547 :
548 : /**
549 : * kmem_dump_obj - Print available slab provenance information
550 : * @object: slab object for which to find provenance information.
551 : *
552 : * This function uses pr_cont(), so that the caller is expected to have
553 : * printed out whatever preamble is appropriate. The provenance information
554 : * depends on the type of object and on how much debugging is enabled.
555 : * For a slab-cache object, the fact that it is a slab object is printed,
556 : * and, if available, the slab name, return address, and stack trace from
557 : * the allocation of that object.
558 : *
559 : * This function will splat if passed a pointer to a non-slab object.
560 : * If you are not sure what type of object you have, you should instead
561 : * use mem_dump_obj().
562 : */
563 0 : void kmem_dump_obj(void *object)
564 : {
565 0 : char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
566 0 : int i;
567 0 : struct page *page;
568 0 : unsigned long ptroffset;
569 0 : struct kmem_obj_info kp = { };
570 :
571 0 : if (WARN_ON_ONCE(!virt_addr_valid(object)))
572 0 : return;
573 0 : page = virt_to_head_page(object);
574 0 : if (WARN_ON_ONCE(!PageSlab(page))) {
575 0 : pr_cont(" non-slab memory.\n");
576 0 : return;
577 : }
578 0 : kmem_obj_info(&kp, object, page);
579 0 : if (kp.kp_slab_cache)
580 0 : pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
581 : else
582 0 : pr_cont(" slab%s", cp);
583 0 : if (kp.kp_objp)
584 0 : pr_cont(" start %px", kp.kp_objp);
585 0 : if (kp.kp_data_offset)
586 0 : pr_cont(" data offset %lu", kp.kp_data_offset);
587 0 : if (kp.kp_objp) {
588 0 : ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
589 0 : pr_cont(" pointer offset %lu", ptroffset);
590 : }
591 0 : if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
592 0 : pr_cont(" size %u", kp.kp_slab_cache->usersize);
593 0 : if (kp.kp_ret)
594 0 : pr_cont(" allocated at %pS\n", kp.kp_ret);
595 : else
596 0 : pr_cont("\n");
597 0 : for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
598 0 : if (!kp.kp_stack[i])
599 : break;
600 0 : pr_info(" %pS\n", kp.kp_stack[i]);
601 : }
602 : }
603 :
604 : #ifndef CONFIG_SLOB
605 : /* Create a cache during boot when no slab services are available yet */
606 28 : void __init create_boot_cache(struct kmem_cache *s, const char *name,
607 : unsigned int size, slab_flags_t flags,
608 : unsigned int useroffset, unsigned int usersize)
609 : {
610 28 : int err;
611 28 : unsigned int align = ARCH_KMALLOC_MINALIGN;
612 :
613 28 : s->name = name;
614 28 : s->size = s->object_size = size;
615 :
616 : /*
617 : * For power of two sizes, guarantee natural alignment for kmalloc
618 : * caches, regardless of SL*B debugging options.
619 : */
620 56 : if (is_power_of_2(size))
621 22 : align = max(align, size);
622 28 : s->align = calculate_alignment(flags, align, size);
623 :
624 28 : s->useroffset = useroffset;
625 28 : s->usersize = usersize;
626 :
627 28 : err = __kmem_cache_create(s, flags);
628 :
629 28 : if (err)
630 0 : panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
631 : name, size, err);
632 :
633 28 : s->refcount = -1; /* Exempt from merging for now */
634 28 : }
635 :
636 26 : struct kmem_cache *__init create_kmalloc_cache(const char *name,
637 : unsigned int size, slab_flags_t flags,
638 : unsigned int useroffset, unsigned int usersize)
639 : {
640 26 : struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
641 :
642 26 : if (!s)
643 0 : panic("Out of memory when creating slab %s\n", name);
644 :
645 26 : create_boot_cache(s, name, size, flags, useroffset, usersize);
646 26 : kasan_cache_create_kmalloc(s);
647 26 : list_add(&s->list, &slab_caches);
648 26 : s->refcount = 1;
649 26 : return s;
650 : }
651 :
652 : struct kmem_cache *
653 : kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
654 : { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
655 : EXPORT_SYMBOL(kmalloc_caches);
656 :
657 : /*
658 : * Conversion table for small slabs sizes / 8 to the index in the
659 : * kmalloc array. This is necessary for slabs < 192 since we have non power
660 : * of two cache sizes there. The size of larger slabs can be determined using
661 : * fls.
662 : */
663 : static u8 size_index[24] __ro_after_init = {
664 : 3, /* 8 */
665 : 4, /* 16 */
666 : 5, /* 24 */
667 : 5, /* 32 */
668 : 6, /* 40 */
669 : 6, /* 48 */
670 : 6, /* 56 */
671 : 6, /* 64 */
672 : 1, /* 72 */
673 : 1, /* 80 */
674 : 1, /* 88 */
675 : 1, /* 96 */
676 : 7, /* 104 */
677 : 7, /* 112 */
678 : 7, /* 120 */
679 : 7, /* 128 */
680 : 2, /* 136 */
681 : 2, /* 144 */
682 : 2, /* 152 */
683 : 2, /* 160 */
684 : 2, /* 168 */
685 : 2, /* 176 */
686 : 2, /* 184 */
687 : 2 /* 192 */
688 : };
689 :
690 54739 : static inline unsigned int size_index_elem(unsigned int bytes)
691 : {
692 54739 : return (bytes - 1) / 8;
693 : }
694 :
695 : /*
696 : * Find the kmem_cache structure that serves a given size of
697 : * allocation
698 : */
699 65491 : struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
700 : {
701 65491 : unsigned int index;
702 :
703 65491 : if (size <= 192) {
704 54739 : if (!size)
705 : return ZERO_SIZE_PTR;
706 :
707 54739 : index = size_index[size_index_elem(size)];
708 : } else {
709 10752 : if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
710 : return NULL;
711 10752 : index = fls(size - 1);
712 : }
713 :
714 65491 : return kmalloc_caches[kmalloc_type(flags)][index];
715 : }
716 :
717 : #ifdef CONFIG_ZONE_DMA
718 : #define INIT_KMALLOC_INFO(__size, __short_size) \
719 : { \
720 : .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
721 : .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
722 : .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \
723 : .size = __size, \
724 : }
725 : #else
726 : #define INIT_KMALLOC_INFO(__size, __short_size) \
727 : { \
728 : .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
729 : .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
730 : .size = __size, \
731 : }
732 : #endif
733 :
734 : /*
735 : * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
736 : * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
737 : * kmalloc-67108864.
738 : */
739 : const struct kmalloc_info_struct kmalloc_info[] __initconst = {
740 : INIT_KMALLOC_INFO(0, 0),
741 : INIT_KMALLOC_INFO(96, 96),
742 : INIT_KMALLOC_INFO(192, 192),
743 : INIT_KMALLOC_INFO(8, 8),
744 : INIT_KMALLOC_INFO(16, 16),
745 : INIT_KMALLOC_INFO(32, 32),
746 : INIT_KMALLOC_INFO(64, 64),
747 : INIT_KMALLOC_INFO(128, 128),
748 : INIT_KMALLOC_INFO(256, 256),
749 : INIT_KMALLOC_INFO(512, 512),
750 : INIT_KMALLOC_INFO(1024, 1k),
751 : INIT_KMALLOC_INFO(2048, 2k),
752 : INIT_KMALLOC_INFO(4096, 4k),
753 : INIT_KMALLOC_INFO(8192, 8k),
754 : INIT_KMALLOC_INFO(16384, 16k),
755 : INIT_KMALLOC_INFO(32768, 32k),
756 : INIT_KMALLOC_INFO(65536, 64k),
757 : INIT_KMALLOC_INFO(131072, 128k),
758 : INIT_KMALLOC_INFO(262144, 256k),
759 : INIT_KMALLOC_INFO(524288, 512k),
760 : INIT_KMALLOC_INFO(1048576, 1M),
761 : INIT_KMALLOC_INFO(2097152, 2M),
762 : INIT_KMALLOC_INFO(4194304, 4M),
763 : INIT_KMALLOC_INFO(8388608, 8M),
764 : INIT_KMALLOC_INFO(16777216, 16M),
765 : INIT_KMALLOC_INFO(33554432, 32M),
766 : INIT_KMALLOC_INFO(67108864, 64M)
767 : };
768 :
769 : /*
770 : * Patch up the size_index table if we have strange large alignment
771 : * requirements for the kmalloc array. This is only the case for
772 : * MIPS it seems. The standard arches will not generate any code here.
773 : *
774 : * Largest permitted alignment is 256 bytes due to the way we
775 : * handle the index determination for the smaller caches.
776 : *
777 : * Make sure that nothing crazy happens if someone starts tinkering
778 : * around with ARCH_KMALLOC_MINALIGN
779 : */
780 1 : void __init setup_kmalloc_cache_index_table(void)
781 : {
782 1 : unsigned int i;
783 :
784 1 : BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
785 : (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
786 :
787 1 : for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
788 : unsigned int elem = size_index_elem(i);
789 :
790 : if (elem >= ARRAY_SIZE(size_index))
791 : break;
792 : size_index[elem] = KMALLOC_SHIFT_LOW;
793 : }
794 :
795 1 : if (KMALLOC_MIN_SIZE >= 64) {
796 : /*
797 : * The 96 byte size cache is not used if the alignment
798 : * is 64 byte.
799 : */
800 : for (i = 64 + 8; i <= 96; i += 8)
801 : size_index[size_index_elem(i)] = 7;
802 :
803 : }
804 :
805 1 : if (KMALLOC_MIN_SIZE >= 128) {
806 : /*
807 : * The 192 byte sized cache is not used if the alignment
808 : * is 128 byte. Redirect kmalloc to use the 256 byte cache
809 : * instead.
810 : */
811 : for (i = 128 + 8; i <= 192; i += 8)
812 : size_index[size_index_elem(i)] = 8;
813 : }
814 1 : }
815 :
816 : static void __init
817 26 : new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
818 : {
819 26 : if (type == KMALLOC_RECLAIM)
820 13 : flags |= SLAB_RECLAIM_ACCOUNT;
821 :
822 26 : kmalloc_caches[type][idx] = create_kmalloc_cache(
823 : kmalloc_info[idx].name[type],
824 : kmalloc_info[idx].size, flags, 0,
825 : kmalloc_info[idx].size);
826 26 : }
827 :
828 : /*
829 : * Create the kmalloc array. Some of the regular kmalloc arrays
830 : * may already have been created because they were needed to
831 : * enable allocations for slab creation.
832 : */
833 1 : void __init create_kmalloc_caches(slab_flags_t flags)
834 : {
835 1 : int i;
836 1 : enum kmalloc_cache_type type;
837 :
838 3 : for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
839 24 : for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
840 22 : if (!kmalloc_caches[type][i])
841 22 : new_kmalloc_cache(i, type, flags);
842 :
843 : /*
844 : * Caches that are not of the two-to-the-power-of size.
845 : * These have to be created immediately after the
846 : * earlier power of two caches
847 : */
848 22 : if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
849 2 : !kmalloc_caches[type][1])
850 2 : new_kmalloc_cache(1, type, flags);
851 22 : if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
852 2 : !kmalloc_caches[type][2])
853 2 : new_kmalloc_cache(2, type, flags);
854 : }
855 : }
856 :
857 : /* Kmalloc array is now usable */
858 1 : slab_state = UP;
859 :
860 : #ifdef CONFIG_ZONE_DMA
861 : for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
862 : struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
863 :
864 : if (s) {
865 : kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
866 : kmalloc_info[i].name[KMALLOC_DMA],
867 : kmalloc_info[i].size,
868 : SLAB_CACHE_DMA | flags, 0,
869 : kmalloc_info[i].size);
870 : }
871 : }
872 : #endif
873 1 : }
874 : #endif /* !CONFIG_SLOB */
875 :
876 0 : gfp_t kmalloc_fix_flags(gfp_t flags)
877 : {
878 0 : gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
879 :
880 0 : flags &= ~GFP_SLAB_BUG_MASK;
881 0 : pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
882 : invalid_mask, &invalid_mask, flags, &flags);
883 0 : dump_stack();
884 :
885 0 : return flags;
886 : }
887 :
888 : /*
889 : * To avoid unnecessary overhead, we pass through large allocation requests
890 : * directly to the page allocator. We use __GFP_COMP, because we will need to
891 : * know the allocation order to free the pages properly in kfree.
892 : */
893 25 : void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
894 : {
895 25 : void *ret = NULL;
896 25 : struct page *page;
897 :
898 25 : if (unlikely(flags & GFP_SLAB_BUG_MASK))
899 0 : flags = kmalloc_fix_flags(flags);
900 :
901 25 : flags |= __GFP_COMP;
902 25 : page = alloc_pages(flags, order);
903 25 : if (likely(page)) {
904 25 : ret = page_address(page);
905 25 : mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
906 25 : PAGE_SIZE << order);
907 : }
908 25 : ret = kasan_kmalloc_large(ret, size, flags);
909 : /* As ret might get tagged, call kmemleak hook after KASAN. */
910 25 : kmemleak_alloc(ret, size, 1, flags);
911 25 : return ret;
912 : }
913 : EXPORT_SYMBOL(kmalloc_order);
914 :
915 : #ifdef CONFIG_TRACING
916 25 : void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
917 : {
918 25 : void *ret = kmalloc_order(size, flags, order);
919 25 : trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
920 25 : return ret;
921 : }
922 : EXPORT_SYMBOL(kmalloc_order_trace);
923 : #endif
924 :
925 : #ifdef CONFIG_SLAB_FREELIST_RANDOM
926 : /* Randomize a generic freelist */
927 : static void freelist_randomize(struct rnd_state *state, unsigned int *list,
928 : unsigned int count)
929 : {
930 : unsigned int rand;
931 : unsigned int i;
932 :
933 : for (i = 0; i < count; i++)
934 : list[i] = i;
935 :
936 : /* Fisher-Yates shuffle */
937 : for (i = count - 1; i > 0; i--) {
938 : rand = prandom_u32_state(state);
939 : rand %= (i + 1);
940 : swap(list[i], list[rand]);
941 : }
942 : }
943 :
944 : /* Create a random sequence per cache */
945 : int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
946 : gfp_t gfp)
947 : {
948 : struct rnd_state state;
949 :
950 : if (count < 2 || cachep->random_seq)
951 : return 0;
952 :
953 : cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
954 : if (!cachep->random_seq)
955 : return -ENOMEM;
956 :
957 : /* Get best entropy at this stage of boot */
958 : prandom_seed_state(&state, get_random_long());
959 :
960 : freelist_randomize(&state, cachep->random_seq, count);
961 : return 0;
962 : }
963 :
964 : /* Destroy the per-cache random freelist sequence */
965 : void cache_random_seq_destroy(struct kmem_cache *cachep)
966 : {
967 : kfree(cachep->random_seq);
968 : cachep->random_seq = NULL;
969 : }
970 : #endif /* CONFIG_SLAB_FREELIST_RANDOM */
971 :
972 : #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
973 : #ifdef CONFIG_SLAB
974 : #define SLABINFO_RIGHTS (0600)
975 : #else
976 : #define SLABINFO_RIGHTS (0400)
977 : #endif
978 :
979 0 : static void print_slabinfo_header(struct seq_file *m)
980 : {
981 : /*
982 : * Output format version, so at least we can change it
983 : * without _too_ many complaints.
984 : */
985 : #ifdef CONFIG_DEBUG_SLAB
986 : seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
987 : #else
988 0 : seq_puts(m, "slabinfo - version: 2.1\n");
989 : #endif
990 0 : seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
991 0 : seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
992 0 : seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
993 : #ifdef CONFIG_DEBUG_SLAB
994 : seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
995 : seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
996 : #endif
997 0 : seq_putc(m, '\n');
998 0 : }
999 :
1000 0 : void *slab_start(struct seq_file *m, loff_t *pos)
1001 : {
1002 0 : mutex_lock(&slab_mutex);
1003 0 : return seq_list_start(&slab_caches, *pos);
1004 : }
1005 :
1006 0 : void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1007 : {
1008 0 : return seq_list_next(p, &slab_caches, pos);
1009 : }
1010 :
1011 0 : void slab_stop(struct seq_file *m, void *p)
1012 : {
1013 0 : mutex_unlock(&slab_mutex);
1014 0 : }
1015 :
1016 0 : static void cache_show(struct kmem_cache *s, struct seq_file *m)
1017 : {
1018 0 : struct slabinfo sinfo;
1019 :
1020 0 : memset(&sinfo, 0, sizeof(sinfo));
1021 0 : get_slabinfo(s, &sinfo);
1022 :
1023 0 : seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1024 : s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1025 0 : sinfo.objects_per_slab, (1 << sinfo.cache_order));
1026 :
1027 0 : seq_printf(m, " : tunables %4u %4u %4u",
1028 : sinfo.limit, sinfo.batchcount, sinfo.shared);
1029 0 : seq_printf(m, " : slabdata %6lu %6lu %6lu",
1030 : sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1031 0 : slabinfo_show_stats(m, s);
1032 0 : seq_putc(m, '\n');
1033 0 : }
1034 :
1035 0 : static int slab_show(struct seq_file *m, void *p)
1036 : {
1037 0 : struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1038 :
1039 0 : if (p == slab_caches.next)
1040 0 : print_slabinfo_header(m);
1041 0 : cache_show(s, m);
1042 0 : return 0;
1043 : }
1044 :
1045 0 : void dump_unreclaimable_slab(void)
1046 : {
1047 0 : struct kmem_cache *s;
1048 0 : struct slabinfo sinfo;
1049 :
1050 : /*
1051 : * Here acquiring slab_mutex is risky since we don't prefer to get
1052 : * sleep in oom path. But, without mutex hold, it may introduce a
1053 : * risk of crash.
1054 : * Use mutex_trylock to protect the list traverse, dump nothing
1055 : * without acquiring the mutex.
1056 : */
1057 0 : if (!mutex_trylock(&slab_mutex)) {
1058 0 : pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1059 0 : return;
1060 : }
1061 :
1062 0 : pr_info("Unreclaimable slab info:\n");
1063 0 : pr_info("Name Used Total\n");
1064 :
1065 0 : list_for_each_entry(s, &slab_caches, list) {
1066 0 : if (s->flags & SLAB_RECLAIM_ACCOUNT)
1067 0 : continue;
1068 :
1069 0 : get_slabinfo(s, &sinfo);
1070 :
1071 0 : if (sinfo.num_objs > 0)
1072 0 : pr_info("%-17s %10luKB %10luKB\n", s->name,
1073 : (sinfo.active_objs * s->size) / 1024,
1074 : (sinfo.num_objs * s->size) / 1024);
1075 : }
1076 0 : mutex_unlock(&slab_mutex);
1077 : }
1078 :
1079 : #if defined(CONFIG_MEMCG_KMEM)
1080 : int memcg_slab_show(struct seq_file *m, void *p)
1081 : {
1082 : /*
1083 : * Deprecated.
1084 : * Please, take a look at tools/cgroup/slabinfo.py .
1085 : */
1086 : return 0;
1087 : }
1088 : #endif
1089 :
1090 : /*
1091 : * slabinfo_op - iterator that generates /proc/slabinfo
1092 : *
1093 : * Output layout:
1094 : * cache-name
1095 : * num-active-objs
1096 : * total-objs
1097 : * object size
1098 : * num-active-slabs
1099 : * total-slabs
1100 : * num-pages-per-slab
1101 : * + further values on SMP and with statistics enabled
1102 : */
1103 : static const struct seq_operations slabinfo_op = {
1104 : .start = slab_start,
1105 : .next = slab_next,
1106 : .stop = slab_stop,
1107 : .show = slab_show,
1108 : };
1109 :
1110 0 : static int slabinfo_open(struct inode *inode, struct file *file)
1111 : {
1112 0 : return seq_open(file, &slabinfo_op);
1113 : }
1114 :
1115 : static const struct proc_ops slabinfo_proc_ops = {
1116 : .proc_flags = PROC_ENTRY_PERMANENT,
1117 : .proc_open = slabinfo_open,
1118 : .proc_read = seq_read,
1119 : .proc_write = slabinfo_write,
1120 : .proc_lseek = seq_lseek,
1121 : .proc_release = seq_release,
1122 : };
1123 :
1124 1 : static int __init slab_proc_init(void)
1125 : {
1126 1 : proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1127 1 : return 0;
1128 : }
1129 : module_init(slab_proc_init);
1130 :
1131 : #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1132 :
1133 228 : static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1134 : gfp_t flags)
1135 : {
1136 228 : void *ret;
1137 228 : size_t ks;
1138 :
1139 : /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1140 228 : if (likely(!ZERO_OR_NULL_PTR(p))) {
1141 440 : if (!kasan_check_byte(p))
1142 : return NULL;
1143 220 : ks = kfence_ksize(p) ?: __ksize(p);
1144 : } else
1145 : ks = 0;
1146 :
1147 : /* If the object still fits, repoison it precisely. */
1148 228 : if (ks >= new_size) {
1149 92 : p = kasan_krealloc((void *)p, new_size, flags);
1150 92 : return (void *)p;
1151 : }
1152 :
1153 136 : ret = kmalloc_track_caller(new_size, flags);
1154 136 : if (ret && p) {
1155 : /* Disable KASAN checks as the object's redzone is accessed. */
1156 128 : kasan_disable_current();
1157 128 : memcpy(ret, kasan_reset_tag(p), ks);
1158 128 : kasan_enable_current();
1159 : }
1160 :
1161 : return ret;
1162 : }
1163 :
1164 : /**
1165 : * krealloc - reallocate memory. The contents will remain unchanged.
1166 : * @p: object to reallocate memory for.
1167 : * @new_size: how many bytes of memory are required.
1168 : * @flags: the type of memory to allocate.
1169 : *
1170 : * The contents of the object pointed to are preserved up to the
1171 : * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1172 : * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1173 : * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1174 : *
1175 : * Return: pointer to the allocated memory or %NULL in case of error
1176 : */
1177 228 : void *krealloc(const void *p, size_t new_size, gfp_t flags)
1178 : {
1179 228 : void *ret;
1180 :
1181 228 : if (unlikely(!new_size)) {
1182 0 : kfree(p);
1183 0 : return ZERO_SIZE_PTR;
1184 : }
1185 :
1186 228 : ret = __do_krealloc(p, new_size, flags);
1187 228 : if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1188 136 : kfree(p);
1189 :
1190 : return ret;
1191 : }
1192 : EXPORT_SYMBOL(krealloc);
1193 :
1194 : /**
1195 : * kfree_sensitive - Clear sensitive information in memory before freeing
1196 : * @p: object to free memory of
1197 : *
1198 : * The memory of the object @p points to is zeroed before freed.
1199 : * If @p is %NULL, kfree_sensitive() does nothing.
1200 : *
1201 : * Note: this function zeroes the whole allocated buffer which can be a good
1202 : * deal bigger than the requested buffer size passed to kmalloc(). So be
1203 : * careful when using this function in performance sensitive code.
1204 : */
1205 1 : void kfree_sensitive(const void *p)
1206 : {
1207 1 : size_t ks;
1208 1 : void *mem = (void *)p;
1209 :
1210 1 : ks = ksize(mem);
1211 1 : if (ks)
1212 1 : memzero_explicit(mem, ks);
1213 1 : kfree(mem);
1214 1 : }
1215 : EXPORT_SYMBOL(kfree_sensitive);
1216 :
1217 : /**
1218 : * ksize - get the actual amount of memory allocated for a given object
1219 : * @objp: Pointer to the object
1220 : *
1221 : * kmalloc may internally round up allocations and return more memory
1222 : * than requested. ksize() can be used to determine the actual amount of
1223 : * memory allocated. The caller may use this additional memory, even though
1224 : * a smaller amount of memory was initially specified with the kmalloc call.
1225 : * The caller must guarantee that objp points to a valid object previously
1226 : * allocated with either kmalloc() or kmem_cache_alloc(). The object
1227 : * must not be freed during the duration of the call.
1228 : *
1229 : * Return: size of the actual memory used by @objp in bytes
1230 : */
1231 9861 : size_t ksize(const void *objp)
1232 : {
1233 9861 : size_t size;
1234 :
1235 : /*
1236 : * We need to first check that the pointer to the object is valid, and
1237 : * only then unpoison the memory. The report printed from ksize() is
1238 : * more useful, then when it's printed later when the behaviour could
1239 : * be undefined due to a potential use-after-free or double-free.
1240 : *
1241 : * We use kasan_check_byte(), which is supported for the hardware
1242 : * tag-based KASAN mode, unlike kasan_check_read/write().
1243 : *
1244 : * If the pointed to memory is invalid, we return 0 to avoid users of
1245 : * ksize() writing to and potentially corrupting the memory region.
1246 : *
1247 : * We want to perform the check before __ksize(), to avoid potentially
1248 : * crashing in __ksize() due to accessing invalid metadata.
1249 : */
1250 19722 : if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1251 0 : return 0;
1252 :
1253 9861 : size = kfence_ksize(objp) ?: __ksize(objp);
1254 : /*
1255 : * We assume that ksize callers could use whole allocated area,
1256 : * so we need to unpoison this area.
1257 : */
1258 9861 : kasan_unpoison_range(objp, size);
1259 9861 : return size;
1260 : }
1261 : EXPORT_SYMBOL(ksize);
1262 :
1263 : /* Tracepoints definitions. */
1264 : EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1265 : EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1266 : EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1267 : EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1268 : EXPORT_TRACEPOINT_SYMBOL(kfree);
1269 : EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1270 :
1271 1413833 : int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1272 : {
1273 1413833 : if (__should_failslab(s, gfpflags))
1274 : return -ENOMEM;
1275 1413833 : return 0;
1276 : }
1277 : ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
|