LCOV - code coverage report
Current view: top level - mm - vmscan.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 113 1394 8.1 %
Date: 2021-04-22 12:43:58 Functions: 13 63 20.6 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
       4             :  *
       5             :  *  Swap reorganised 29.12.95, Stephen Tweedie.
       6             :  *  kswapd added: 7.1.96  sct
       7             :  *  Removed kswapd_ctl limits, and swap out as many pages as needed
       8             :  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
       9             :  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
      10             :  *  Multiqueue VM started 5.8.00, Rik van Riel.
      11             :  */
      12             : 
      13             : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      14             : 
      15             : #include <linux/mm.h>
      16             : #include <linux/sched/mm.h>
      17             : #include <linux/module.h>
      18             : #include <linux/gfp.h>
      19             : #include <linux/kernel_stat.h>
      20             : #include <linux/swap.h>
      21             : #include <linux/pagemap.h>
      22             : #include <linux/init.h>
      23             : #include <linux/highmem.h>
      24             : #include <linux/vmpressure.h>
      25             : #include <linux/vmstat.h>
      26             : #include <linux/file.h>
      27             : #include <linux/writeback.h>
      28             : #include <linux/blkdev.h>
      29             : #include <linux/buffer_head.h>    /* for try_to_release_page(),
      30             :                                         buffer_heads_over_limit */
      31             : #include <linux/mm_inline.h>
      32             : #include <linux/backing-dev.h>
      33             : #include <linux/rmap.h>
      34             : #include <linux/topology.h>
      35             : #include <linux/cpu.h>
      36             : #include <linux/cpuset.h>
      37             : #include <linux/compaction.h>
      38             : #include <linux/notifier.h>
      39             : #include <linux/rwsem.h>
      40             : #include <linux/delay.h>
      41             : #include <linux/kthread.h>
      42             : #include <linux/freezer.h>
      43             : #include <linux/memcontrol.h>
      44             : #include <linux/delayacct.h>
      45             : #include <linux/sysctl.h>
      46             : #include <linux/oom.h>
      47             : #include <linux/pagevec.h>
      48             : #include <linux/prefetch.h>
      49             : #include <linux/printk.h>
      50             : #include <linux/dax.h>
      51             : #include <linux/psi.h>
      52             : 
      53             : #include <asm/tlbflush.h>
      54             : #include <asm/div64.h>
      55             : 
      56             : #include <linux/swapops.h>
      57             : #include <linux/balloon_compaction.h>
      58             : 
      59             : #include "internal.h"
      60             : 
      61             : #define CREATE_TRACE_POINTS
      62             : #include <trace/events/vmscan.h>
      63             : 
      64             : struct scan_control {
      65             :         /* How many pages shrink_list() should reclaim */
      66             :         unsigned long nr_to_reclaim;
      67             : 
      68             :         /*
      69             :          * Nodemask of nodes allowed by the caller. If NULL, all nodes
      70             :          * are scanned.
      71             :          */
      72             :         nodemask_t      *nodemask;
      73             : 
      74             :         /*
      75             :          * The memory cgroup that hit its limit and as a result is the
      76             :          * primary target of this reclaim invocation.
      77             :          */
      78             :         struct mem_cgroup *target_mem_cgroup;
      79             : 
      80             :         /*
      81             :          * Scan pressure balancing between anon and file LRUs
      82             :          */
      83             :         unsigned long   anon_cost;
      84             :         unsigned long   file_cost;
      85             : 
      86             :         /* Can active pages be deactivated as part of reclaim? */
      87             : #define DEACTIVATE_ANON 1
      88             : #define DEACTIVATE_FILE 2
      89             :         unsigned int may_deactivate:2;
      90             :         unsigned int force_deactivate:1;
      91             :         unsigned int skipped_deactivate:1;
      92             : 
      93             :         /* Writepage batching in laptop mode; RECLAIM_WRITE */
      94             :         unsigned int may_writepage:1;
      95             : 
      96             :         /* Can mapped pages be reclaimed? */
      97             :         unsigned int may_unmap:1;
      98             : 
      99             :         /* Can pages be swapped as part of reclaim? */
     100             :         unsigned int may_swap:1;
     101             : 
     102             :         /*
     103             :          * Cgroups are not reclaimed below their configured memory.low,
     104             :          * unless we threaten to OOM. If any cgroups are skipped due to
     105             :          * memory.low and nothing was reclaimed, go back for memory.low.
     106             :          */
     107             :         unsigned int memcg_low_reclaim:1;
     108             :         unsigned int memcg_low_skipped:1;
     109             : 
     110             :         unsigned int hibernation_mode:1;
     111             : 
     112             :         /* One of the zones is ready for compaction */
     113             :         unsigned int compaction_ready:1;
     114             : 
     115             :         /* There is easily reclaimable cold cache in the current node */
     116             :         unsigned int cache_trim_mode:1;
     117             : 
     118             :         /* The file pages on the current node are dangerously low */
     119             :         unsigned int file_is_tiny:1;
     120             : 
     121             :         /* Allocation order */
     122             :         s8 order;
     123             : 
     124             :         /* Scan (total_size >> priority) pages at once */
     125             :         s8 priority;
     126             : 
     127             :         /* The highest zone to isolate pages for reclaim from */
     128             :         s8 reclaim_idx;
     129             : 
     130             :         /* This context's GFP mask */
     131             :         gfp_t gfp_mask;
     132             : 
     133             :         /* Incremented by the number of inactive pages that were scanned */
     134             :         unsigned long nr_scanned;
     135             : 
     136             :         /* Number of pages freed so far during a call to shrink_zones() */
     137             :         unsigned long nr_reclaimed;
     138             : 
     139             :         struct {
     140             :                 unsigned int dirty;
     141             :                 unsigned int unqueued_dirty;
     142             :                 unsigned int congested;
     143             :                 unsigned int writeback;
     144             :                 unsigned int immediate;
     145             :                 unsigned int file_taken;
     146             :                 unsigned int taken;
     147             :         } nr;
     148             : 
     149             :         /* for recording the reclaimed slab by now */
     150             :         struct reclaim_state reclaim_state;
     151             : };
     152             : 
     153             : #ifdef ARCH_HAS_PREFETCHW
     154             : #define prefetchw_prev_lru_page(_page, _base, _field)                   \
     155             :         do {                                                            \
     156             :                 if ((_page)->lru.prev != _base) {                    \
     157             :                         struct page *prev;                              \
     158             :                                                                         \
     159             :                         prev = lru_to_page(&(_page->lru));               \
     160             :                         prefetchw(&prev->_field);                        \
     161             :                 }                                                       \
     162             :         } while (0)
     163             : #else
     164             : #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
     165             : #endif
     166             : 
     167             : /*
     168             :  * From 0 .. 200.  Higher means more swappy.
     169             :  */
     170             : int vm_swappiness = 60;
     171             : 
     172           0 : static void set_task_reclaim_state(struct task_struct *task,
     173             :                                    struct reclaim_state *rs)
     174             : {
     175             :         /* Check for an overwrite */
     176           0 :         WARN_ON_ONCE(rs && task->reclaim_state);
     177             : 
     178             :         /* Check for the nulling of an already-nulled member */
     179           0 :         WARN_ON_ONCE(!rs && !task->reclaim_state);
     180             : 
     181           0 :         task->reclaim_state = rs;
     182           0 : }
     183             : 
     184             : static LIST_HEAD(shrinker_list);
     185             : static DECLARE_RWSEM(shrinker_rwsem);
     186             : 
     187             : #ifdef CONFIG_MEMCG
     188             : /*
     189             :  * We allow subsystems to populate their shrinker-related
     190             :  * LRU lists before register_shrinker_prepared() is called
     191             :  * for the shrinker, since we don't want to impose
     192             :  * restrictions on their internal registration order.
     193             :  * In this case shrink_slab_memcg() may find corresponding
     194             :  * bit is set in the shrinkers map.
     195             :  *
     196             :  * This value is used by the function to detect registering
     197             :  * shrinkers and to skip do_shrink_slab() calls for them.
     198             :  */
     199             : #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
     200             : 
     201             : static DEFINE_IDR(shrinker_idr);
     202             : static int shrinker_nr_max;
     203             : 
     204             : static int prealloc_memcg_shrinker(struct shrinker *shrinker)
     205             : {
     206             :         int id, ret = -ENOMEM;
     207             : 
     208             :         down_write(&shrinker_rwsem);
     209             :         /* This may call shrinker, so it must use down_read_trylock() */
     210             :         id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
     211             :         if (id < 0)
     212             :                 goto unlock;
     213             : 
     214             :         if (id >= shrinker_nr_max) {
     215             :                 if (memcg_expand_shrinker_maps(id)) {
     216             :                         idr_remove(&shrinker_idr, id);
     217             :                         goto unlock;
     218             :                 }
     219             : 
     220             :                 shrinker_nr_max = id + 1;
     221             :         }
     222             :         shrinker->id = id;
     223             :         ret = 0;
     224             : unlock:
     225             :         up_write(&shrinker_rwsem);
     226             :         return ret;
     227             : }
     228             : 
     229             : static void unregister_memcg_shrinker(struct shrinker *shrinker)
     230             : {
     231             :         int id = shrinker->id;
     232             : 
     233             :         BUG_ON(id < 0);
     234             : 
     235             :         down_write(&shrinker_rwsem);
     236             :         idr_remove(&shrinker_idr, id);
     237             :         up_write(&shrinker_rwsem);
     238             : }
     239             : 
     240             : static bool cgroup_reclaim(struct scan_control *sc)
     241             : {
     242             :         return sc->target_mem_cgroup;
     243             : }
     244             : 
     245             : /**
     246             :  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
     247             :  * @sc: scan_control in question
     248             :  *
     249             :  * The normal page dirty throttling mechanism in balance_dirty_pages() is
     250             :  * completely broken with the legacy memcg and direct stalling in
     251             :  * shrink_page_list() is used for throttling instead, which lacks all the
     252             :  * niceties such as fairness, adaptive pausing, bandwidth proportional
     253             :  * allocation and configurability.
     254             :  *
     255             :  * This function tests whether the vmscan currently in progress can assume
     256             :  * that the normal dirty throttling mechanism is operational.
     257             :  */
     258             : static bool writeback_throttling_sane(struct scan_control *sc)
     259             : {
     260             :         if (!cgroup_reclaim(sc))
     261             :                 return true;
     262             : #ifdef CONFIG_CGROUP_WRITEBACK
     263             :         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
     264             :                 return true;
     265             : #endif
     266             :         return false;
     267             : }
     268             : #else
     269             : static int prealloc_memcg_shrinker(struct shrinker *shrinker)
     270             : {
     271             :         return 0;
     272             : }
     273             : 
     274             : static void unregister_memcg_shrinker(struct shrinker *shrinker)
     275             : {
     276             : }
     277             : 
     278           0 : static bool cgroup_reclaim(struct scan_control *sc)
     279             : {
     280           0 :         return false;
     281             : }
     282             : 
     283           0 : static bool writeback_throttling_sane(struct scan_control *sc)
     284             : {
     285           0 :         return true;
     286             : }
     287             : #endif
     288             : 
     289             : /*
     290             :  * This misses isolated pages which are not accounted for to save counters.
     291             :  * As the data only determines if reclaim or compaction continues, it is
     292             :  * not expected that isolated pages will be a dominating factor.
     293             :  */
     294           0 : unsigned long zone_reclaimable_pages(struct zone *zone)
     295             : {
     296           0 :         unsigned long nr;
     297             : 
     298           0 :         nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
     299           0 :                 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
     300           0 :         if (get_nr_swap_pages() > 0)
     301             :                 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
     302             :                         zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
     303             : 
     304           0 :         return nr;
     305             : }
     306             : 
     307             : /**
     308             :  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
     309             :  * @lruvec: lru vector
     310             :  * @lru: lru to use
     311             :  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
     312             :  */
     313           0 : static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
     314             :                                      int zone_idx)
     315             : {
     316           0 :         unsigned long size = 0;
     317           0 :         int zid;
     318             : 
     319           0 :         for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
     320           0 :                 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
     321             : 
     322           0 :                 if (!managed_zone(zone))
     323           0 :                         continue;
     324             : 
     325           0 :                 if (!mem_cgroup_disabled())
     326             :                         size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
     327             :                 else
     328           0 :                         size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
     329             :         }
     330           0 :         return size;
     331             : }
     332             : 
     333             : /*
     334             :  * Add a shrinker callback to be called from the vm.
     335             :  */
     336         129 : int prealloc_shrinker(struct shrinker *shrinker)
     337             : {
     338         129 :         unsigned int size = sizeof(*shrinker->nr_deferred);
     339             : 
     340         129 :         if (shrinker->flags & SHRINKER_NUMA_AWARE)
     341         125 :                 size *= nr_node_ids;
     342             : 
     343         129 :         shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
     344         129 :         if (!shrinker->nr_deferred)
     345           0 :                 return -ENOMEM;
     346             : 
     347             :         if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
     348         129 :                 if (prealloc_memcg_shrinker(shrinker))
     349             :                         goto free_deferred;
     350             :         }
     351             : 
     352             :         return 0;
     353             : 
     354             : free_deferred:
     355             :         kfree(shrinker->nr_deferred);
     356             :         shrinker->nr_deferred = NULL;
     357             :         return -ENOMEM;
     358             : }
     359             : 
     360           0 : void free_prealloced_shrinker(struct shrinker *shrinker)
     361             : {
     362           0 :         if (!shrinker->nr_deferred)
     363             :                 return;
     364             : 
     365           0 :         if (shrinker->flags & SHRINKER_MEMCG_AWARE)
     366           0 :                 unregister_memcg_shrinker(shrinker);
     367             : 
     368           0 :         kfree(shrinker->nr_deferred);
     369           0 :         shrinker->nr_deferred = NULL;
     370             : }
     371             : 
     372         129 : void register_shrinker_prepared(struct shrinker *shrinker)
     373             : {
     374         129 :         down_write(&shrinker_rwsem);
     375         129 :         list_add_tail(&shrinker->list, &shrinker_list);
     376             : #ifdef CONFIG_MEMCG
     377             :         if (shrinker->flags & SHRINKER_MEMCG_AWARE)
     378             :                 idr_replace(&shrinker_idr, shrinker, shrinker->id);
     379             : #endif
     380         129 :         up_write(&shrinker_rwsem);
     381         129 : }
     382             : 
     383           5 : int register_shrinker(struct shrinker *shrinker)
     384             : {
     385           5 :         int err = prealloc_shrinker(shrinker);
     386             : 
     387           5 :         if (err)
     388             :                 return err;
     389           5 :         register_shrinker_prepared(shrinker);
     390           5 :         return 0;
     391             : }
     392             : EXPORT_SYMBOL(register_shrinker);
     393             : 
     394             : /*
     395             :  * Remove one
     396             :  */
     397          99 : void unregister_shrinker(struct shrinker *shrinker)
     398             : {
     399          99 :         if (!shrinker->nr_deferred)
     400             :                 return;
     401          99 :         if (shrinker->flags & SHRINKER_MEMCG_AWARE)
     402          99 :                 unregister_memcg_shrinker(shrinker);
     403          99 :         down_write(&shrinker_rwsem);
     404          99 :         list_del(&shrinker->list);
     405          99 :         up_write(&shrinker_rwsem);
     406          99 :         kfree(shrinker->nr_deferred);
     407          99 :         shrinker->nr_deferred = NULL;
     408             : }
     409             : EXPORT_SYMBOL(unregister_shrinker);
     410             : 
     411             : #define SHRINK_BATCH 128
     412             : 
     413           0 : static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
     414             :                                     struct shrinker *shrinker, int priority)
     415             : {
     416           0 :         unsigned long freed = 0;
     417           0 :         unsigned long long delta;
     418           0 :         long total_scan;
     419           0 :         long freeable;
     420           0 :         long nr;
     421           0 :         long new_nr;
     422           0 :         int nid = shrinkctl->nid;
     423           0 :         long batch_size = shrinker->batch ? shrinker->batch
     424           0 :                                           : SHRINK_BATCH;
     425           0 :         long scanned = 0, next_deferred;
     426             : 
     427           0 :         if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
     428           0 :                 nid = 0;
     429             : 
     430           0 :         freeable = shrinker->count_objects(shrinker, shrinkctl);
     431           0 :         if (freeable == 0 || freeable == SHRINK_EMPTY)
     432             :                 return freeable;
     433             : 
     434             :         /*
     435             :          * copy the current shrinker scan count into a local variable
     436             :          * and zero it so that other concurrent shrinker invocations
     437             :          * don't also do this scanning work.
     438             :          */
     439           0 :         nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
     440             : 
     441           0 :         total_scan = nr;
     442           0 :         if (shrinker->seeks) {
     443           0 :                 delta = freeable >> priority;
     444           0 :                 delta *= 4;
     445           0 :                 do_div(delta, shrinker->seeks);
     446             :         } else {
     447             :                 /*
     448             :                  * These objects don't require any IO to create. Trim
     449             :                  * them aggressively under memory pressure to keep
     450             :                  * them from causing refetches in the IO caches.
     451             :                  */
     452           0 :                 delta = freeable / 2;
     453             :         }
     454             : 
     455           0 :         total_scan += delta;
     456           0 :         if (total_scan < 0) {
     457           0 :                 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
     458             :                        shrinker->scan_objects, total_scan);
     459           0 :                 total_scan = freeable;
     460           0 :                 next_deferred = nr;
     461             :         } else
     462             :                 next_deferred = total_scan;
     463             : 
     464             :         /*
     465             :          * We need to avoid excessive windup on filesystem shrinkers
     466             :          * due to large numbers of GFP_NOFS allocations causing the
     467             :          * shrinkers to return -1 all the time. This results in a large
     468             :          * nr being built up so when a shrink that can do some work
     469             :          * comes along it empties the entire cache due to nr >>>
     470             :          * freeable. This is bad for sustaining a working set in
     471             :          * memory.
     472             :          *
     473             :          * Hence only allow the shrinker to scan the entire cache when
     474             :          * a large delta change is calculated directly.
     475             :          */
     476           0 :         if (delta < freeable / 4)
     477           0 :                 total_scan = min(total_scan, freeable / 2);
     478             : 
     479             :         /*
     480             :          * Avoid risking looping forever due to too large nr value:
     481             :          * never try to free more than twice the estimate number of
     482             :          * freeable entries.
     483             :          */
     484           0 :         if (total_scan > freeable * 2)
     485             :                 total_scan = freeable * 2;
     486             : 
     487           0 :         trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
     488             :                                    freeable, delta, total_scan, priority);
     489             : 
     490             :         /*
     491             :          * Normally, we should not scan less than batch_size objects in one
     492             :          * pass to avoid too frequent shrinker calls, but if the slab has less
     493             :          * than batch_size objects in total and we are really tight on memory,
     494             :          * we will try to reclaim all available objects, otherwise we can end
     495             :          * up failing allocations although there are plenty of reclaimable
     496             :          * objects spread over several slabs with usage less than the
     497             :          * batch_size.
     498             :          *
     499             :          * We detect the "tight on memory" situations by looking at the total
     500             :          * number of objects we want to scan (total_scan). If it is greater
     501             :          * than the total number of objects on slab (freeable), we must be
     502             :          * scanning at high prio and therefore should try to reclaim as much as
     503             :          * possible.
     504             :          */
     505           0 :         while (total_scan >= batch_size ||
     506             :                total_scan >= freeable) {
     507           0 :                 unsigned long ret;
     508           0 :                 unsigned long nr_to_scan = min(batch_size, total_scan);
     509             : 
     510           0 :                 shrinkctl->nr_to_scan = nr_to_scan;
     511           0 :                 shrinkctl->nr_scanned = nr_to_scan;
     512           0 :                 ret = shrinker->scan_objects(shrinker, shrinkctl);
     513           0 :                 if (ret == SHRINK_STOP)
     514             :                         break;
     515           0 :                 freed += ret;
     516             : 
     517           0 :                 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
     518           0 :                 total_scan -= shrinkctl->nr_scanned;
     519           0 :                 scanned += shrinkctl->nr_scanned;
     520             : 
     521           0 :                 cond_resched();
     522             :         }
     523             : 
     524           0 :         if (next_deferred >= scanned)
     525           0 :                 next_deferred -= scanned;
     526             :         else
     527             :                 next_deferred = 0;
     528             :         /*
     529             :          * move the unused scan count back into the shrinker in a
     530             :          * manner that handles concurrent updates. If we exhausted the
     531             :          * scan, there is no need to do an update.
     532             :          */
     533           0 :         if (next_deferred > 0)
     534           0 :                 new_nr = atomic_long_add_return(next_deferred,
     535           0 :                                                 &shrinker->nr_deferred[nid]);
     536             :         else
     537           0 :                 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
     538             : 
     539           0 :         trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
     540           0 :         return freed;
     541             : }
     542             : 
     543             : #ifdef CONFIG_MEMCG
     544             : static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
     545             :                         struct mem_cgroup *memcg, int priority)
     546             : {
     547             :         struct memcg_shrinker_map *map;
     548             :         unsigned long ret, freed = 0;
     549             :         int i;
     550             : 
     551             :         if (!mem_cgroup_online(memcg))
     552             :                 return 0;
     553             : 
     554             :         if (!down_read_trylock(&shrinker_rwsem))
     555             :                 return 0;
     556             : 
     557             :         map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
     558             :                                         true);
     559             :         if (unlikely(!map))
     560             :                 goto unlock;
     561             : 
     562             :         for_each_set_bit(i, map->map, shrinker_nr_max) {
     563             :                 struct shrink_control sc = {
     564             :                         .gfp_mask = gfp_mask,
     565             :                         .nid = nid,
     566             :                         .memcg = memcg,
     567             :                 };
     568             :                 struct shrinker *shrinker;
     569             : 
     570             :                 shrinker = idr_find(&shrinker_idr, i);
     571             :                 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
     572             :                         if (!shrinker)
     573             :                                 clear_bit(i, map->map);
     574             :                         continue;
     575             :                 }
     576             : 
     577             :                 /* Call non-slab shrinkers even though kmem is disabled */
     578             :                 if (!memcg_kmem_enabled() &&
     579             :                     !(shrinker->flags & SHRINKER_NONSLAB))
     580             :                         continue;
     581             : 
     582             :                 ret = do_shrink_slab(&sc, shrinker, priority);
     583             :                 if (ret == SHRINK_EMPTY) {
     584             :                         clear_bit(i, map->map);
     585             :                         /*
     586             :                          * After the shrinker reported that it had no objects to
     587             :                          * free, but before we cleared the corresponding bit in
     588             :                          * the memcg shrinker map, a new object might have been
     589             :                          * added. To make sure, we have the bit set in this
     590             :                          * case, we invoke the shrinker one more time and reset
     591             :                          * the bit if it reports that it is not empty anymore.
     592             :                          * The memory barrier here pairs with the barrier in
     593             :                          * memcg_set_shrinker_bit():
     594             :                          *
     595             :                          * list_lru_add()     shrink_slab_memcg()
     596             :                          *   list_add_tail()    clear_bit()
     597             :                          *   <MB>               <MB>
     598             :                          *   set_bit()          do_shrink_slab()
     599             :                          */
     600             :                         smp_mb__after_atomic();
     601             :                         ret = do_shrink_slab(&sc, shrinker, priority);
     602             :                         if (ret == SHRINK_EMPTY)
     603             :                                 ret = 0;
     604             :                         else
     605             :                                 memcg_set_shrinker_bit(memcg, nid, i);
     606             :                 }
     607             :                 freed += ret;
     608             : 
     609             :                 if (rwsem_is_contended(&shrinker_rwsem)) {
     610             :                         freed = freed ? : 1;
     611             :                         break;
     612             :                 }
     613             :         }
     614             : unlock:
     615             :         up_read(&shrinker_rwsem);
     616             :         return freed;
     617             : }
     618             : #else /* CONFIG_MEMCG */
     619             : static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
     620             :                         struct mem_cgroup *memcg, int priority)
     621             : {
     622             :         return 0;
     623             : }
     624             : #endif /* CONFIG_MEMCG */
     625             : 
     626             : /**
     627             :  * shrink_slab - shrink slab caches
     628             :  * @gfp_mask: allocation context
     629             :  * @nid: node whose slab caches to target
     630             :  * @memcg: memory cgroup whose slab caches to target
     631             :  * @priority: the reclaim priority
     632             :  *
     633             :  * Call the shrink functions to age shrinkable caches.
     634             :  *
     635             :  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
     636             :  * unaware shrinkers will receive a node id of 0 instead.
     637             :  *
     638             :  * @memcg specifies the memory cgroup to target. Unaware shrinkers
     639             :  * are called only if it is the root cgroup.
     640             :  *
     641             :  * @priority is sc->priority, we take the number of objects and >> by priority
     642             :  * in order to get the scan target.
     643             :  *
     644             :  * Returns the number of reclaimed slab objects.
     645             :  */
     646           0 : static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
     647             :                                  struct mem_cgroup *memcg,
     648             :                                  int priority)
     649             : {
     650           0 :         unsigned long ret, freed = 0;
     651           0 :         struct shrinker *shrinker;
     652             : 
     653             :         /*
     654             :          * The root memcg might be allocated even though memcg is disabled
     655             :          * via "cgroup_disable=memory" boot parameter.  This could make
     656             :          * mem_cgroup_is_root() return false, then just run memcg slab
     657             :          * shrink, but skip global shrink.  This may result in premature
     658             :          * oom.
     659             :          */
     660           0 :         if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
     661             :                 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
     662             : 
     663           0 :         if (!down_read_trylock(&shrinker_rwsem))
     664           0 :                 goto out;
     665             : 
     666           0 :         list_for_each_entry(shrinker, &shrinker_list, list) {
     667           0 :                 struct shrink_control sc = {
     668             :                         .gfp_mask = gfp_mask,
     669             :                         .nid = nid,
     670             :                         .memcg = memcg,
     671             :                 };
     672             : 
     673           0 :                 ret = do_shrink_slab(&sc, shrinker, priority);
     674           0 :                 if (ret == SHRINK_EMPTY)
     675           0 :                         ret = 0;
     676           0 :                 freed += ret;
     677             :                 /*
     678             :                  * Bail out if someone want to register a new shrinker to
     679             :                  * prevent the registration from being stalled for long periods
     680             :                  * by parallel ongoing shrinking.
     681             :                  */
     682           0 :                 if (rwsem_is_contended(&shrinker_rwsem)) {
     683           0 :                         freed = freed ? : 1;
     684           0 :                         break;
     685             :                 }
     686             :         }
     687             : 
     688           0 :         up_read(&shrinker_rwsem);
     689           0 : out:
     690           0 :         cond_resched();
     691           0 :         return freed;
     692             : }
     693             : 
     694           0 : void drop_slab_node(int nid)
     695             : {
     696           0 :         unsigned long freed;
     697             : 
     698           0 :         do {
     699           0 :                 struct mem_cgroup *memcg = NULL;
     700             : 
     701           0 :                 if (fatal_signal_pending(current))
     702             :                         return;
     703             : 
     704           0 :                 freed = 0;
     705           0 :                 memcg = mem_cgroup_iter(NULL, NULL, NULL);
     706           0 :                 do {
     707           0 :                         freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
     708           0 :                 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
     709           0 :         } while (freed > 10);
     710             : }
     711             : 
     712           0 : void drop_slab(void)
     713             : {
     714           0 :         int nid;
     715             : 
     716           0 :         for_each_online_node(nid)
     717           0 :                 drop_slab_node(nid);
     718           0 : }
     719             : 
     720           0 : static inline int is_page_cache_freeable(struct page *page)
     721             : {
     722             :         /*
     723             :          * A freeable page cache page is referenced only by the caller
     724             :          * that isolated the page, the page cache and optional buffer
     725             :          * heads at page->private.
     726             :          */
     727           0 :         int page_cache_pins = thp_nr_pages(page);
     728           0 :         return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
     729             : }
     730             : 
     731           0 : static int may_write_to_inode(struct inode *inode)
     732             : {
     733           0 :         if (current->flags & PF_SWAPWRITE)
     734             :                 return 1;
     735           0 :         if (!inode_write_congested(inode))
     736             :                 return 1;
     737           0 :         if (inode_to_bdi(inode) == current->backing_dev_info)
     738           0 :                 return 1;
     739             :         return 0;
     740             : }
     741             : 
     742             : /*
     743             :  * We detected a synchronous write error writing a page out.  Probably
     744             :  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
     745             :  * fsync(), msync() or close().
     746             :  *
     747             :  * The tricky part is that after writepage we cannot touch the mapping: nothing
     748             :  * prevents it from being freed up.  But we have a ref on the page and once
     749             :  * that page is locked, the mapping is pinned.
     750             :  *
     751             :  * We're allowed to run sleeping lock_page() here because we know the caller has
     752             :  * __GFP_FS.
     753             :  */
     754           0 : static void handle_write_error(struct address_space *mapping,
     755             :                                 struct page *page, int error)
     756             : {
     757           0 :         lock_page(page);
     758           0 :         if (page_mapping(page) == mapping)
     759           0 :                 mapping_set_error(mapping, error);
     760           0 :         unlock_page(page);
     761           0 : }
     762             : 
     763             : /* possible outcome of pageout() */
     764             : typedef enum {
     765             :         /* failed to write page out, page is locked */
     766             :         PAGE_KEEP,
     767             :         /* move page to the active list, page is locked */
     768             :         PAGE_ACTIVATE,
     769             :         /* page has been sent to the disk successfully, page is unlocked */
     770             :         PAGE_SUCCESS,
     771             :         /* page is clean and locked */
     772             :         PAGE_CLEAN,
     773             : } pageout_t;
     774             : 
     775             : /*
     776             :  * pageout is called by shrink_page_list() for each dirty page.
     777             :  * Calls ->writepage().
     778             :  */
     779           0 : static pageout_t pageout(struct page *page, struct address_space *mapping)
     780             : {
     781             :         /*
     782             :          * If the page is dirty, only perform writeback if that write
     783             :          * will be non-blocking.  To prevent this allocation from being
     784             :          * stalled by pagecache activity.  But note that there may be
     785             :          * stalls if we need to run get_block().  We could test
     786             :          * PagePrivate for that.
     787             :          *
     788             :          * If this process is currently in __generic_file_write_iter() against
     789             :          * this page's queue, we can perform writeback even if that
     790             :          * will block.
     791             :          *
     792             :          * If the page is swapcache, write it back even if that would
     793             :          * block, for some throttling. This happens by accident, because
     794             :          * swap_backing_dev_info is bust: it doesn't reflect the
     795             :          * congestion state of the swapdevs.  Easy to fix, if needed.
     796             :          */
     797           0 :         if (!is_page_cache_freeable(page))
     798             :                 return PAGE_KEEP;
     799           0 :         if (!mapping) {
     800             :                 /*
     801             :                  * Some data journaling orphaned pages can have
     802             :                  * page->mapping == NULL while being dirty with clean buffers.
     803             :                  */
     804           0 :                 if (page_has_private(page)) {
     805           0 :                         if (try_to_free_buffers(page)) {
     806           0 :                                 ClearPageDirty(page);
     807           0 :                                 pr_info("%s: orphaned page\n", __func__);
     808           0 :                                 return PAGE_CLEAN;
     809             :                         }
     810             :                 }
     811           0 :                 return PAGE_KEEP;
     812             :         }
     813           0 :         if (mapping->a_ops->writepage == NULL)
     814             :                 return PAGE_ACTIVATE;
     815           0 :         if (!may_write_to_inode(mapping->host))
     816             :                 return PAGE_KEEP;
     817             : 
     818           0 :         if (clear_page_dirty_for_io(page)) {
     819           0 :                 int res;
     820           0 :                 struct writeback_control wbc = {
     821             :                         .sync_mode = WB_SYNC_NONE,
     822             :                         .nr_to_write = SWAP_CLUSTER_MAX,
     823             :                         .range_start = 0,
     824             :                         .range_end = LLONG_MAX,
     825             :                         .for_reclaim = 1,
     826             :                 };
     827             : 
     828           0 :                 SetPageReclaim(page);
     829           0 :                 res = mapping->a_ops->writepage(page, &wbc);
     830           0 :                 if (res < 0)
     831           0 :                         handle_write_error(mapping, page, res);
     832           0 :                 if (res == AOP_WRITEPAGE_ACTIVATE) {
     833           0 :                         ClearPageReclaim(page);
     834           0 :                         return PAGE_ACTIVATE;
     835             :                 }
     836             : 
     837           0 :                 if (!PageWriteback(page)) {
     838             :                         /* synchronous write or broken a_ops? */
     839           0 :                         ClearPageReclaim(page);
     840             :                 }
     841           0 :                 trace_mm_vmscan_writepage(page);
     842           0 :                 inc_node_page_state(page, NR_VMSCAN_WRITE);
     843           0 :                 return PAGE_SUCCESS;
     844             :         }
     845             : 
     846             :         return PAGE_CLEAN;
     847             : }
     848             : 
     849             : /*
     850             :  * Same as remove_mapping, but if the page is removed from the mapping, it
     851             :  * gets returned with a refcount of 0.
     852             :  */
     853           0 : static int __remove_mapping(struct address_space *mapping, struct page *page,
     854             :                             bool reclaimed, struct mem_cgroup *target_memcg)
     855             : {
     856           0 :         unsigned long flags;
     857           0 :         int refcount;
     858           0 :         void *shadow = NULL;
     859             : 
     860           0 :         BUG_ON(!PageLocked(page));
     861           0 :         BUG_ON(mapping != page_mapping(page));
     862             : 
     863           0 :         xa_lock_irqsave(&mapping->i_pages, flags);
     864             :         /*
     865             :          * The non racy check for a busy page.
     866             :          *
     867             :          * Must be careful with the order of the tests. When someone has
     868             :          * a ref to the page, it may be possible that they dirty it then
     869             :          * drop the reference. So if PageDirty is tested before page_count
     870             :          * here, then the following race may occur:
     871             :          *
     872             :          * get_user_pages(&page);
     873             :          * [user mapping goes away]
     874             :          * write_to(page);
     875             :          *                              !PageDirty(page)    [good]
     876             :          * SetPageDirty(page);
     877             :          * put_page(page);
     878             :          *                              !page_count(page)   [good, discard it]
     879             :          *
     880             :          * [oops, our write_to data is lost]
     881             :          *
     882             :          * Reversing the order of the tests ensures such a situation cannot
     883             :          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
     884             :          * load is not satisfied before that of page->_refcount.
     885             :          *
     886             :          * Note that if SetPageDirty is always performed via set_page_dirty,
     887             :          * and thus under the i_pages lock, then this ordering is not required.
     888             :          */
     889           0 :         refcount = 1 + compound_nr(page);
     890           0 :         if (!page_ref_freeze(page, refcount))
     891           0 :                 goto cannot_free;
     892             :         /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
     893           0 :         if (unlikely(PageDirty(page))) {
     894           0 :                 page_ref_unfreeze(page, refcount);
     895           0 :                 goto cannot_free;
     896             :         }
     897             : 
     898           0 :         if (PageSwapCache(page)) {
     899             :                 swp_entry_t swap = { .val = page_private(page) };
     900             :                 mem_cgroup_swapout(page, swap);
     901             :                 if (reclaimed && !mapping_exiting(mapping))
     902             :                         shadow = workingset_eviction(page, target_memcg);
     903             :                 __delete_from_swap_cache(page, swap, shadow);
     904             :                 xa_unlock_irqrestore(&mapping->i_pages, flags);
     905             :                 put_swap_page(page, swap);
     906             :         } else {
     907           0 :                 void (*freepage)(struct page *);
     908             : 
     909           0 :                 freepage = mapping->a_ops->freepage;
     910             :                 /*
     911             :                  * Remember a shadow entry for reclaimed file cache in
     912             :                  * order to detect refaults, thus thrashing, later on.
     913             :                  *
     914             :                  * But don't store shadows in an address space that is
     915             :                  * already exiting.  This is not just an optimization,
     916             :                  * inode reclaim needs to empty out the radix tree or
     917             :                  * the nodes are lost.  Don't plant shadows behind its
     918             :                  * back.
     919             :                  *
     920             :                  * We also don't store shadows for DAX mappings because the
     921             :                  * only page cache pages found in these are zero pages
     922             :                  * covering holes, and because we don't want to mix DAX
     923             :                  * exceptional entries and shadow exceptional entries in the
     924             :                  * same address_space.
     925             :                  */
     926           0 :                 if (reclaimed && page_is_file_lru(page) &&
     927           0 :                     !mapping_exiting(mapping) && !dax_mapping(mapping))
     928           0 :                         shadow = workingset_eviction(page, target_memcg);
     929           0 :                 __delete_from_page_cache(page, shadow);
     930           0 :                 xa_unlock_irqrestore(&mapping->i_pages, flags);
     931             : 
     932           0 :                 if (freepage != NULL)
     933           0 :                         freepage(page);
     934             :         }
     935             : 
     936             :         return 1;
     937             : 
     938           0 : cannot_free:
     939           0 :         xa_unlock_irqrestore(&mapping->i_pages, flags);
     940           0 :         return 0;
     941             : }
     942             : 
     943             : /*
     944             :  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
     945             :  * someone else has a ref on the page, abort and return 0.  If it was
     946             :  * successfully detached, return 1.  Assumes the caller has a single ref on
     947             :  * this page.
     948             :  */
     949           0 : int remove_mapping(struct address_space *mapping, struct page *page)
     950             : {
     951           0 :         if (__remove_mapping(mapping, page, false, NULL)) {
     952             :                 /*
     953             :                  * Unfreezing the refcount with 1 rather than 2 effectively
     954             :                  * drops the pagecache ref for us without requiring another
     955             :                  * atomic operation.
     956             :                  */
     957           0 :                 page_ref_unfreeze(page, 1);
     958           0 :                 return 1;
     959             :         }
     960             :         return 0;
     961             : }
     962             : 
     963             : /**
     964             :  * putback_lru_page - put previously isolated page onto appropriate LRU list
     965             :  * @page: page to be put back to appropriate lru list
     966             :  *
     967             :  * Add previously isolated @page to appropriate LRU list.
     968             :  * Page may still be unevictable for other reasons.
     969             :  *
     970             :  * lru_lock must not be held, interrupts must be enabled.
     971             :  */
     972          11 : void putback_lru_page(struct page *page)
     973             : {
     974          11 :         lru_cache_add(page);
     975          11 :         put_page(page);         /* drop ref from isolate */
     976           0 : }
     977             : 
     978             : enum page_references {
     979             :         PAGEREF_RECLAIM,
     980             :         PAGEREF_RECLAIM_CLEAN,
     981             :         PAGEREF_KEEP,
     982             :         PAGEREF_ACTIVATE,
     983             : };
     984             : 
     985           0 : static enum page_references page_check_references(struct page *page,
     986             :                                                   struct scan_control *sc)
     987             : {
     988           0 :         int referenced_ptes, referenced_page;
     989           0 :         unsigned long vm_flags;
     990             : 
     991           0 :         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
     992             :                                           &vm_flags);
     993           0 :         referenced_page = TestClearPageReferenced(page);
     994             : 
     995             :         /*
     996             :          * Mlock lost the isolation race with us.  Let try_to_unmap()
     997             :          * move the page to the unevictable list.
     998             :          */
     999           0 :         if (vm_flags & VM_LOCKED)
    1000             :                 return PAGEREF_RECLAIM;
    1001             : 
    1002           0 :         if (referenced_ptes) {
    1003             :                 /*
    1004             :                  * All mapped pages start out with page table
    1005             :                  * references from the instantiating fault, so we need
    1006             :                  * to look twice if a mapped file page is used more
    1007             :                  * than once.
    1008             :                  *
    1009             :                  * Mark it and spare it for another trip around the
    1010             :                  * inactive list.  Another page table reference will
    1011             :                  * lead to its activation.
    1012             :                  *
    1013             :                  * Note: the mark is set for activated pages as well
    1014             :                  * so that recently deactivated but used pages are
    1015             :                  * quickly recovered.
    1016             :                  */
    1017           0 :                 SetPageReferenced(page);
    1018             : 
    1019           0 :                 if (referenced_page || referenced_ptes > 1)
    1020             :                         return PAGEREF_ACTIVATE;
    1021             : 
    1022             :                 /*
    1023             :                  * Activate file-backed executable pages after first usage.
    1024             :                  */
    1025           0 :                 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
    1026             :                         return PAGEREF_ACTIVATE;
    1027             : 
    1028           0 :                 return PAGEREF_KEEP;
    1029             :         }
    1030             : 
    1031             :         /* Reclaim if clean, defer dirty pages to writeback */
    1032           0 :         if (referenced_page && !PageSwapBacked(page))
    1033           0 :                 return PAGEREF_RECLAIM_CLEAN;
    1034             : 
    1035             :         return PAGEREF_RECLAIM;
    1036             : }
    1037             : 
    1038             : /* Check if a page is dirty or under writeback */
    1039           0 : static void page_check_dirty_writeback(struct page *page,
    1040             :                                        bool *dirty, bool *writeback)
    1041             : {
    1042           0 :         struct address_space *mapping;
    1043             : 
    1044             :         /*
    1045             :          * Anonymous pages are not handled by flushers and must be written
    1046             :          * from reclaim context. Do not stall reclaim based on them
    1047             :          */
    1048           0 :         if (!page_is_file_lru(page) ||
    1049           0 :             (PageAnon(page) && !PageSwapBacked(page))) {
    1050           0 :                 *dirty = false;
    1051           0 :                 *writeback = false;
    1052           0 :                 return;
    1053             :         }
    1054             : 
    1055             :         /* By default assume that the page flags are accurate */
    1056           0 :         *dirty = PageDirty(page);
    1057           0 :         *writeback = PageWriteback(page);
    1058             : 
    1059             :         /* Verify dirty/writeback state if the filesystem supports it */
    1060           0 :         if (!page_has_private(page))
    1061             :                 return;
    1062             : 
    1063           0 :         mapping = page_mapping(page);
    1064           0 :         if (mapping && mapping->a_ops->is_dirty_writeback)
    1065           0 :                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
    1066             : }
    1067             : 
    1068             : /*
    1069             :  * shrink_page_list() returns the number of reclaimed pages
    1070             :  */
    1071           0 : static unsigned int shrink_page_list(struct list_head *page_list,
    1072             :                                      struct pglist_data *pgdat,
    1073             :                                      struct scan_control *sc,
    1074             :                                      struct reclaim_stat *stat,
    1075             :                                      bool ignore_references)
    1076             : {
    1077           0 :         LIST_HEAD(ret_pages);
    1078           0 :         LIST_HEAD(free_pages);
    1079           0 :         unsigned int nr_reclaimed = 0;
    1080           0 :         unsigned int pgactivate = 0;
    1081             : 
    1082           0 :         memset(stat, 0, sizeof(*stat));
    1083           0 :         cond_resched();
    1084             : 
    1085           0 :         while (!list_empty(page_list)) {
    1086           0 :                 struct address_space *mapping;
    1087           0 :                 struct page *page;
    1088           0 :                 enum page_references references = PAGEREF_RECLAIM;
    1089           0 :                 bool dirty, writeback, may_enter_fs;
    1090           0 :                 unsigned int nr_pages;
    1091             : 
    1092           0 :                 cond_resched();
    1093             : 
    1094           0 :                 page = lru_to_page(page_list);
    1095           0 :                 list_del(&page->lru);
    1096             : 
    1097           0 :                 if (!trylock_page(page))
    1098           0 :                         goto keep;
    1099             : 
    1100           0 :                 VM_BUG_ON_PAGE(PageActive(page), page);
    1101             : 
    1102           0 :                 nr_pages = compound_nr(page);
    1103             : 
    1104             :                 /* Account the number of base pages even though THP */
    1105           0 :                 sc->nr_scanned += nr_pages;
    1106             : 
    1107           0 :                 if (unlikely(!page_evictable(page)))
    1108           0 :                         goto activate_locked;
    1109             : 
    1110           0 :                 if (!sc->may_unmap && page_mapped(page))
    1111           0 :                         goto keep_locked;
    1112             : 
    1113           0 :                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
    1114           0 :                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
    1115             : 
    1116             :                 /*
    1117             :                  * The number of dirty pages determines if a node is marked
    1118             :                  * reclaim_congested which affects wait_iff_congested. kswapd
    1119             :                  * will stall and start writing pages if the tail of the LRU
    1120             :                  * is all dirty unqueued pages.
    1121             :                  */
    1122           0 :                 page_check_dirty_writeback(page, &dirty, &writeback);
    1123           0 :                 if (dirty || writeback)
    1124           0 :                         stat->nr_dirty++;
    1125             : 
    1126           0 :                 if (dirty && !writeback)
    1127           0 :                         stat->nr_unqueued_dirty++;
    1128             : 
    1129             :                 /*
    1130             :                  * Treat this page as congested if the underlying BDI is or if
    1131             :                  * pages are cycling through the LRU so quickly that the
    1132             :                  * pages marked for immediate reclaim are making it to the
    1133             :                  * end of the LRU a second time.
    1134             :                  */
    1135           0 :                 mapping = page_mapping(page);
    1136           0 :                 if (((dirty || writeback) && mapping &&
    1137           0 :                      inode_write_congested(mapping->host)) ||
    1138           0 :                     (writeback && PageReclaim(page)))
    1139           0 :                         stat->nr_congested++;
    1140             : 
    1141             :                 /*
    1142             :                  * If a page at the tail of the LRU is under writeback, there
    1143             :                  * are three cases to consider.
    1144             :                  *
    1145             :                  * 1) If reclaim is encountering an excessive number of pages
    1146             :                  *    under writeback and this page is both under writeback and
    1147             :                  *    PageReclaim then it indicates that pages are being queued
    1148             :                  *    for IO but are being recycled through the LRU before the
    1149             :                  *    IO can complete. Waiting on the page itself risks an
    1150             :                  *    indefinite stall if it is impossible to writeback the
    1151             :                  *    page due to IO error or disconnected storage so instead
    1152             :                  *    note that the LRU is being scanned too quickly and the
    1153             :                  *    caller can stall after page list has been processed.
    1154             :                  *
    1155             :                  * 2) Global or new memcg reclaim encounters a page that is
    1156             :                  *    not marked for immediate reclaim, or the caller does not
    1157             :                  *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
    1158             :                  *    not to fs). In this case mark the page for immediate
    1159             :                  *    reclaim and continue scanning.
    1160             :                  *
    1161             :                  *    Require may_enter_fs because we would wait on fs, which
    1162             :                  *    may not have submitted IO yet. And the loop driver might
    1163             :                  *    enter reclaim, and deadlock if it waits on a page for
    1164             :                  *    which it is needed to do the write (loop masks off
    1165             :                  *    __GFP_IO|__GFP_FS for this reason); but more thought
    1166             :                  *    would probably show more reasons.
    1167             :                  *
    1168             :                  * 3) Legacy memcg encounters a page that is already marked
    1169             :                  *    PageReclaim. memcg does not have any dirty pages
    1170             :                  *    throttling so we could easily OOM just because too many
    1171             :                  *    pages are in writeback and there is nothing else to
    1172             :                  *    reclaim. Wait for the writeback to complete.
    1173             :                  *
    1174             :                  * In cases 1) and 2) we activate the pages to get them out of
    1175             :                  * the way while we continue scanning for clean pages on the
    1176             :                  * inactive list and refilling from the active list. The
    1177             :                  * observation here is that waiting for disk writes is more
    1178             :                  * expensive than potentially causing reloads down the line.
    1179             :                  * Since they're marked for immediate reclaim, they won't put
    1180             :                  * memory pressure on the cache working set any longer than it
    1181             :                  * takes to write them to disk.
    1182             :                  */
    1183           0 :                 if (PageWriteback(page)) {
    1184             :                         /* Case 1 above */
    1185           0 :                         if (current_is_kswapd() &&
    1186           0 :                             PageReclaim(page) &&
    1187           0 :                             test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
    1188           0 :                                 stat->nr_immediate++;
    1189           0 :                                 goto activate_locked;
    1190             : 
    1191             :                         /* Case 2 above */
    1192           0 :                         } else if (writeback_throttling_sane(sc) ||
    1193             :                             !PageReclaim(page) || !may_enter_fs) {
    1194             :                                 /*
    1195             :                                  * This is slightly racy - end_page_writeback()
    1196             :                                  * might have just cleared PageReclaim, then
    1197             :                                  * setting PageReclaim here end up interpreted
    1198             :                                  * as PageReadahead - but that does not matter
    1199             :                                  * enough to care.  What we do want is for this
    1200             :                                  * page to have PageReclaim set next time memcg
    1201             :                                  * reclaim reaches the tests above, so it will
    1202             :                                  * then wait_on_page_writeback() to avoid OOM;
    1203             :                                  * and it's also appropriate in global reclaim.
    1204             :                                  */
    1205           0 :                                 SetPageReclaim(page);
    1206           0 :                                 stat->nr_writeback++;
    1207           0 :                                 goto activate_locked;
    1208             : 
    1209             :                         /* Case 3 above */
    1210             :                         } else {
    1211             :                                 unlock_page(page);
    1212             :                                 wait_on_page_writeback(page);
    1213             :                                 /* then go back and try same page again */
    1214             :                                 list_add_tail(&page->lru, page_list);
    1215           0 :                                 continue;
    1216             :                         }
    1217             :                 }
    1218             : 
    1219           0 :                 if (!ignore_references)
    1220           0 :                         references = page_check_references(page, sc);
    1221             : 
    1222           0 :                 switch (references) {
    1223           0 :                 case PAGEREF_ACTIVATE:
    1224           0 :                         goto activate_locked;
    1225           0 :                 case PAGEREF_KEEP:
    1226           0 :                         stat->nr_ref_keep += nr_pages;
    1227           0 :                         goto keep_locked;
    1228             :                 case PAGEREF_RECLAIM:
    1229             :                 case PAGEREF_RECLAIM_CLEAN:
    1230           0 :                         ; /* try to reclaim the page below */
    1231             :                 }
    1232             : 
    1233             :                 /*
    1234             :                  * Anonymous process memory has backing store?
    1235             :                  * Try to allocate it some swap space here.
    1236             :                  * Lazyfree page could be freed directly
    1237             :                  */
    1238           0 :                 if (PageAnon(page) && PageSwapBacked(page)) {
    1239           0 :                         if (!PageSwapCache(page)) {
    1240           0 :                                 if (!(sc->gfp_mask & __GFP_IO))
    1241           0 :                                         goto keep_locked;
    1242           0 :                                 if (page_maybe_dma_pinned(page))
    1243           0 :                                         goto keep_locked;
    1244           0 :                                 if (PageTransHuge(page)) {
    1245             :                                         /* cannot split THP, skip it */
    1246           0 :                                         if (!can_split_huge_page(page, NULL))
    1247           0 :                                                 goto activate_locked;
    1248             :                                         /*
    1249             :                                          * Split pages without a PMD map right
    1250             :                                          * away. Chances are some or all of the
    1251             :                                          * tail pages can be freed without IO.
    1252             :                                          */
    1253           0 :                                         if (!compound_mapcount(page) &&
    1254           0 :                                             split_huge_page_to_list(page,
    1255             :                                                                     page_list))
    1256           0 :                                                 goto activate_locked;
    1257             :                                 }
    1258           0 :                                 if (!add_to_swap(page)) {
    1259           0 :                                         if (!PageTransHuge(page))
    1260           0 :                                                 goto activate_locked_split;
    1261             :                                         /* Fallback to swap normal pages */
    1262           0 :                                         if (split_huge_page_to_list(page,
    1263             :                                                                     page_list))
    1264           0 :                                                 goto activate_locked;
    1265             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1266           0 :                                         count_vm_event(THP_SWPOUT_FALLBACK);
    1267             : #endif
    1268           0 :                                         if (!add_to_swap(page))
    1269           0 :                                                 goto activate_locked_split;
    1270             :                                 }
    1271             : 
    1272             :                                 may_enter_fs = true;
    1273             : 
    1274             :                                 /* Adding to swap updated mapping */
    1275             :                                 mapping = page_mapping(page);
    1276             :                         }
    1277           0 :                 } else if (unlikely(PageTransHuge(page))) {
    1278             :                         /* Split file THP */
    1279           0 :                         if (split_huge_page_to_list(page, page_list))
    1280           0 :                                 goto keep_locked;
    1281             :                 }
    1282             : 
    1283             :                 /*
    1284             :                  * THP may get split above, need minus tail pages and update
    1285             :                  * nr_pages to avoid accounting tail pages twice.
    1286             :                  *
    1287             :                  * The tail pages that are added into swap cache successfully
    1288             :                  * reach here.
    1289             :                  */
    1290           0 :                 if ((nr_pages > 1) && !PageTransHuge(page)) {
    1291           0 :                         sc->nr_scanned -= (nr_pages - 1);
    1292           0 :                         nr_pages = 1;
    1293             :                 }
    1294             : 
    1295             :                 /*
    1296             :                  * The page is mapped into the page tables of one or more
    1297             :                  * processes. Try to unmap it here.
    1298             :                  */
    1299           0 :                 if (page_mapped(page)) {
    1300           0 :                         enum ttu_flags flags = TTU_BATCH_FLUSH;
    1301           0 :                         bool was_swapbacked = PageSwapBacked(page);
    1302             : 
    1303           0 :                         if (unlikely(PageTransHuge(page)))
    1304           0 :                                 flags |= TTU_SPLIT_HUGE_PMD;
    1305             : 
    1306           0 :                         if (!try_to_unmap(page, flags)) {
    1307           0 :                                 stat->nr_unmap_fail += nr_pages;
    1308           0 :                                 if (!was_swapbacked && PageSwapBacked(page))
    1309           0 :                                         stat->nr_lazyfree_fail += nr_pages;
    1310           0 :                                 goto activate_locked;
    1311             :                         }
    1312             :                 }
    1313             : 
    1314           0 :                 if (PageDirty(page)) {
    1315             :                         /*
    1316             :                          * Only kswapd can writeback filesystem pages
    1317             :                          * to avoid risk of stack overflow. But avoid
    1318             :                          * injecting inefficient single-page IO into
    1319             :                          * flusher writeback as much as possible: only
    1320             :                          * write pages when we've encountered many
    1321             :                          * dirty pages, and when we've already scanned
    1322             :                          * the rest of the LRU for clean pages and see
    1323             :                          * the same dirty pages again (PageReclaim).
    1324             :                          */
    1325           0 :                         if (page_is_file_lru(page) &&
    1326           0 :                             (!current_is_kswapd() || !PageReclaim(page) ||
    1327           0 :                              !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
    1328             :                                 /*
    1329             :                                  * Immediately reclaim when written back.
    1330             :                                  * Similar in principal to deactivate_page()
    1331             :                                  * except we already have the page isolated
    1332             :                                  * and know it's dirty
    1333             :                                  */
    1334           0 :                                 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
    1335           0 :                                 SetPageReclaim(page);
    1336             : 
    1337           0 :                                 goto activate_locked;
    1338             :                         }
    1339             : 
    1340           0 :                         if (references == PAGEREF_RECLAIM_CLEAN)
    1341           0 :                                 goto keep_locked;
    1342           0 :                         if (!may_enter_fs)
    1343           0 :                                 goto keep_locked;
    1344           0 :                         if (!sc->may_writepage)
    1345           0 :                                 goto keep_locked;
    1346             : 
    1347             :                         /*
    1348             :                          * Page is dirty. Flush the TLB if a writable entry
    1349             :                          * potentially exists to avoid CPU writes after IO
    1350             :                          * starts and then write it out here.
    1351             :                          */
    1352           0 :                         try_to_unmap_flush_dirty();
    1353           0 :                         switch (pageout(page, mapping)) {
    1354           0 :                         case PAGE_KEEP:
    1355           0 :                                 goto keep_locked;
    1356           0 :                         case PAGE_ACTIVATE:
    1357           0 :                                 goto activate_locked;
    1358             :                         case PAGE_SUCCESS:
    1359           0 :                                 stat->nr_pageout += thp_nr_pages(page);
    1360             : 
    1361           0 :                                 if (PageWriteback(page))
    1362           0 :                                         goto keep;
    1363           0 :                                 if (PageDirty(page))
    1364           0 :                                         goto keep;
    1365             : 
    1366             :                                 /*
    1367             :                                  * A synchronous write - probably a ramdisk.  Go
    1368             :                                  * ahead and try to reclaim the page.
    1369             :                                  */
    1370           0 :                                 if (!trylock_page(page))
    1371           0 :                                         goto keep;
    1372           0 :                                 if (PageDirty(page) || PageWriteback(page))
    1373           0 :                                         goto keep_locked;
    1374           0 :                                 mapping = page_mapping(page);
    1375           0 :                                 fallthrough;
    1376           0 :                         case PAGE_CLEAN:
    1377           0 :                                 ; /* try to free the page below */
    1378             :                         }
    1379             :                 }
    1380             : 
    1381             :                 /*
    1382             :                  * If the page has buffers, try to free the buffer mappings
    1383             :                  * associated with this page. If we succeed we try to free
    1384             :                  * the page as well.
    1385             :                  *
    1386             :                  * We do this even if the page is PageDirty().
    1387             :                  * try_to_release_page() does not perform I/O, but it is
    1388             :                  * possible for a page to have PageDirty set, but it is actually
    1389             :                  * clean (all its buffers are clean).  This happens if the
    1390             :                  * buffers were written out directly, with submit_bh(). ext3
    1391             :                  * will do this, as well as the blockdev mapping.
    1392             :                  * try_to_release_page() will discover that cleanness and will
    1393             :                  * drop the buffers and mark the page clean - it can be freed.
    1394             :                  *
    1395             :                  * Rarely, pages can have buffers and no ->mapping.  These are
    1396             :                  * the pages which were not successfully invalidated in
    1397             :                  * truncate_cleanup_page().  We try to drop those buffers here
    1398             :                  * and if that worked, and the page is no longer mapped into
    1399             :                  * process address space (page_count == 1) it can be freed.
    1400             :                  * Otherwise, leave the page on the LRU so it is swappable.
    1401             :                  */
    1402           0 :                 if (page_has_private(page)) {
    1403           0 :                         if (!try_to_release_page(page, sc->gfp_mask))
    1404           0 :                                 goto activate_locked;
    1405           0 :                         if (!mapping && page_count(page) == 1) {
    1406           0 :                                 unlock_page(page);
    1407           0 :                                 if (put_page_testzero(page))
    1408           0 :                                         goto free_it;
    1409             :                                 else {
    1410             :                                         /*
    1411             :                                          * rare race with speculative reference.
    1412             :                                          * the speculative reference will free
    1413             :                                          * this page shortly, so we may
    1414             :                                          * increment nr_reclaimed here (and
    1415             :                                          * leave it off the LRU).
    1416             :                                          */
    1417           0 :                                         nr_reclaimed++;
    1418           0 :                                         continue;
    1419             :                                 }
    1420             :                         }
    1421             :                 }
    1422             : 
    1423           0 :                 if (PageAnon(page) && !PageSwapBacked(page)) {
    1424             :                         /* follow __remove_mapping for reference */
    1425           0 :                         if (!page_ref_freeze(page, 1))
    1426           0 :                                 goto keep_locked;
    1427           0 :                         if (PageDirty(page)) {
    1428           0 :                                 page_ref_unfreeze(page, 1);
    1429           0 :                                 goto keep_locked;
    1430             :                         }
    1431             : 
    1432           0 :                         count_vm_event(PGLAZYFREED);
    1433           0 :                         count_memcg_page_event(page, PGLAZYFREED);
    1434           0 :                 } else if (!mapping || !__remove_mapping(mapping, page, true,
    1435             :                                                          sc->target_mem_cgroup))
    1436           0 :                         goto keep_locked;
    1437             : 
    1438           0 :                 unlock_page(page);
    1439           0 : free_it:
    1440             :                 /*
    1441             :                  * THP may get swapped out in a whole, need account
    1442             :                  * all base pages.
    1443             :                  */
    1444           0 :                 nr_reclaimed += nr_pages;
    1445             : 
    1446             :                 /*
    1447             :                  * Is there need to periodically free_page_list? It would
    1448             :                  * appear not as the counts should be low
    1449             :                  */
    1450           0 :                 if (unlikely(PageTransHuge(page)))
    1451           0 :                         destroy_compound_page(page);
    1452             :                 else
    1453           0 :                         list_add(&page->lru, &free_pages);
    1454           0 :                 continue;
    1455             : 
    1456           0 : activate_locked_split:
    1457             :                 /*
    1458             :                  * The tail pages that are failed to add into swap cache
    1459             :                  * reach here.  Fixup nr_scanned and nr_pages.
    1460             :                  */
    1461           0 :                 if (nr_pages > 1) {
    1462           0 :                         sc->nr_scanned -= (nr_pages - 1);
    1463           0 :                         nr_pages = 1;
    1464             :                 }
    1465           0 : activate_locked:
    1466             :                 /* Not a candidate for swapping, so reclaim swap space. */
    1467           0 :                 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
    1468             :                                                 PageMlocked(page)))
    1469           0 :                         try_to_free_swap(page);
    1470           0 :                 VM_BUG_ON_PAGE(PageActive(page), page);
    1471           0 :                 if (!PageMlocked(page)) {
    1472           0 :                         int type = page_is_file_lru(page);
    1473           0 :                         SetPageActive(page);
    1474           0 :                         stat->nr_activate[type] += nr_pages;
    1475           0 :                         count_memcg_page_event(page, PGACTIVATE);
    1476             :                 }
    1477           0 : keep_locked:
    1478           0 :                 unlock_page(page);
    1479           0 : keep:
    1480           0 :                 list_add(&page->lru, &ret_pages);
    1481           0 :                 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
    1482             :         }
    1483             : 
    1484           0 :         pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
    1485             : 
    1486           0 :         mem_cgroup_uncharge_list(&free_pages);
    1487           0 :         try_to_unmap_flush();
    1488           0 :         free_unref_page_list(&free_pages);
    1489             : 
    1490           0 :         list_splice(&ret_pages, page_list);
    1491           0 :         count_vm_events(PGACTIVATE, pgactivate);
    1492             : 
    1493           0 :         return nr_reclaimed;
    1494             : }
    1495             : 
    1496           0 : unsigned int reclaim_clean_pages_from_list(struct zone *zone,
    1497             :                                             struct list_head *page_list)
    1498             : {
    1499           0 :         struct scan_control sc = {
    1500             :                 .gfp_mask = GFP_KERNEL,
    1501             :                 .priority = DEF_PRIORITY,
    1502             :                 .may_unmap = 1,
    1503             :         };
    1504           0 :         struct reclaim_stat stat;
    1505           0 :         unsigned int nr_reclaimed;
    1506           0 :         struct page *page, *next;
    1507           0 :         LIST_HEAD(clean_pages);
    1508             : 
    1509           0 :         list_for_each_entry_safe(page, next, page_list, lru) {
    1510           0 :                 if (page_is_file_lru(page) && !PageDirty(page) &&
    1511           0 :                     !__PageMovable(page) && !PageUnevictable(page)) {
    1512           0 :                         ClearPageActive(page);
    1513           0 :                         list_move(&page->lru, &clean_pages);
    1514             :                 }
    1515             :         }
    1516             : 
    1517           0 :         nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
    1518             :                                         &stat, true);
    1519           0 :         list_splice(&clean_pages, page_list);
    1520           0 :         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
    1521           0 :                             -(long)nr_reclaimed);
    1522             :         /*
    1523             :          * Since lazyfree pages are isolated from file LRU from the beginning,
    1524             :          * they will rotate back to anonymous LRU in the end if it failed to
    1525             :          * discard so isolated count will be mismatched.
    1526             :          * Compensate the isolated count for both LRU lists.
    1527             :          */
    1528           0 :         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
    1529           0 :                             stat.nr_lazyfree_fail);
    1530           0 :         mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
    1531           0 :                             -(long)stat.nr_lazyfree_fail);
    1532           0 :         return nr_reclaimed;
    1533             : }
    1534             : 
    1535             : /*
    1536             :  * Attempt to remove the specified page from its LRU.  Only take this page
    1537             :  * if it is of the appropriate PageActive status.  Pages which are being
    1538             :  * freed elsewhere are also ignored.
    1539             :  *
    1540             :  * page:        page to consider
    1541             :  * mode:        one of the LRU isolation modes defined above
    1542             :  *
    1543             :  * returns true on success, false on failure.
    1544             :  */
    1545           0 : bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
    1546             : {
    1547             :         /* Only take pages on the LRU. */
    1548           0 :         if (!PageLRU(page))
    1549             :                 return false;
    1550             : 
    1551             :         /* Compaction should not handle unevictable pages but CMA can do so */
    1552           0 :         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
    1553             :                 return false;
    1554             : 
    1555             :         /*
    1556             :          * To minimise LRU disruption, the caller can indicate that it only
    1557             :          * wants to isolate pages it will be able to operate on without
    1558             :          * blocking - clean pages for the most part.
    1559             :          *
    1560             :          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
    1561             :          * that it is possible to migrate without blocking
    1562             :          */
    1563           0 :         if (mode & ISOLATE_ASYNC_MIGRATE) {
    1564             :                 /* All the caller can do on PageWriteback is block */
    1565           0 :                 if (PageWriteback(page))
    1566             :                         return false;
    1567             : 
    1568           0 :                 if (PageDirty(page)) {
    1569           0 :                         struct address_space *mapping;
    1570           0 :                         bool migrate_dirty;
    1571             : 
    1572             :                         /*
    1573             :                          * Only pages without mappings or that have a
    1574             :                          * ->migratepage callback are possible to migrate
    1575             :                          * without blocking. However, we can be racing with
    1576             :                          * truncation so it's necessary to lock the page
    1577             :                          * to stabilise the mapping as truncation holds
    1578             :                          * the page lock until after the page is removed
    1579             :                          * from the page cache.
    1580             :                          */
    1581           0 :                         if (!trylock_page(page))
    1582             :                                 return false;
    1583             : 
    1584           0 :                         mapping = page_mapping(page);
    1585           0 :                         migrate_dirty = !mapping || mapping->a_ops->migratepage;
    1586           0 :                         unlock_page(page);
    1587           0 :                         if (!migrate_dirty)
    1588             :                                 return false;
    1589             :                 }
    1590             :         }
    1591             : 
    1592           0 :         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
    1593           0 :                 return false;
    1594             : 
    1595             :         return true;
    1596             : }
    1597             : 
    1598             : /*
    1599             :  * Update LRU sizes after isolating pages. The LRU size updates must
    1600             :  * be complete before mem_cgroup_update_lru_size due to a sanity check.
    1601             :  */
    1602           0 : static __always_inline void update_lru_sizes(struct lruvec *lruvec,
    1603             :                         enum lru_list lru, unsigned long *nr_zone_taken)
    1604             : {
    1605           0 :         int zid;
    1606             : 
    1607           0 :         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    1608           0 :                 if (!nr_zone_taken[zid])
    1609           0 :                         continue;
    1610             : 
    1611           0 :                 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
    1612             :         }
    1613             : 
    1614             : }
    1615             : 
    1616             : /**
    1617             :  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
    1618             :  *
    1619             :  * lruvec->lru_lock is heavily contended.  Some of the functions that
    1620             :  * shrink the lists perform better by taking out a batch of pages
    1621             :  * and working on them outside the LRU lock.
    1622             :  *
    1623             :  * For pagecache intensive workloads, this function is the hottest
    1624             :  * spot in the kernel (apart from copy_*_user functions).
    1625             :  *
    1626             :  * Lru_lock must be held before calling this function.
    1627             :  *
    1628             :  * @nr_to_scan: The number of eligible pages to look through on the list.
    1629             :  * @lruvec:     The LRU vector to pull pages from.
    1630             :  * @dst:        The temp list to put pages on to.
    1631             :  * @nr_scanned: The number of pages that were scanned.
    1632             :  * @sc:         The scan_control struct for this reclaim session
    1633             :  * @lru:        LRU list id for isolating
    1634             :  *
    1635             :  * returns how many pages were moved onto *@dst.
    1636             :  */
    1637           0 : static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
    1638             :                 struct lruvec *lruvec, struct list_head *dst,
    1639             :                 unsigned long *nr_scanned, struct scan_control *sc,
    1640             :                 enum lru_list lru)
    1641             : {
    1642           0 :         struct list_head *src = &lruvec->lists[lru];
    1643           0 :         unsigned long nr_taken = 0;
    1644           0 :         unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
    1645           0 :         unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
    1646           0 :         unsigned long skipped = 0;
    1647           0 :         unsigned long scan, total_scan, nr_pages;
    1648           0 :         LIST_HEAD(pages_skipped);
    1649           0 :         isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
    1650             : 
    1651           0 :         total_scan = 0;
    1652           0 :         scan = 0;
    1653           0 :         while (scan < nr_to_scan && !list_empty(src)) {
    1654           0 :                 struct page *page;
    1655             : 
    1656           0 :                 page = lru_to_page(src);
    1657           0 :                 prefetchw_prev_lru_page(page, src, flags);
    1658             : 
    1659           0 :                 nr_pages = compound_nr(page);
    1660           0 :                 total_scan += nr_pages;
    1661             : 
    1662           0 :                 if (page_zonenum(page) > sc->reclaim_idx) {
    1663           0 :                         list_move(&page->lru, &pages_skipped);
    1664           0 :                         nr_skipped[page_zonenum(page)] += nr_pages;
    1665           0 :                         continue;
    1666             :                 }
    1667             : 
    1668             :                 /*
    1669             :                  * Do not count skipped pages because that makes the function
    1670             :                  * return with no isolated pages if the LRU mostly contains
    1671             :                  * ineligible pages.  This causes the VM to not reclaim any
    1672             :                  * pages, triggering a premature OOM.
    1673             :                  *
    1674             :                  * Account all tail pages of THP.  This would not cause
    1675             :                  * premature OOM since __isolate_lru_page() returns -EBUSY
    1676             :                  * only when the page is being freed somewhere else.
    1677             :                  */
    1678           0 :                 scan += nr_pages;
    1679           0 :                 if (!__isolate_lru_page_prepare(page, mode)) {
    1680             :                         /* It is being freed elsewhere */
    1681           0 :                         list_move(&page->lru, src);
    1682           0 :                         continue;
    1683             :                 }
    1684             :                 /*
    1685             :                  * Be careful not to clear PageLRU until after we're
    1686             :                  * sure the page is not being freed elsewhere -- the
    1687             :                  * page release code relies on it.
    1688             :                  */
    1689           0 :                 if (unlikely(!get_page_unless_zero(page))) {
    1690           0 :                         list_move(&page->lru, src);
    1691           0 :                         continue;
    1692             :                 }
    1693             : 
    1694           0 :                 if (!TestClearPageLRU(page)) {
    1695             :                         /* Another thread is already isolating this page */
    1696           0 :                         put_page(page);
    1697           0 :                         list_move(&page->lru, src);
    1698           0 :                         continue;
    1699             :                 }
    1700             : 
    1701           0 :                 nr_taken += nr_pages;
    1702           0 :                 nr_zone_taken[page_zonenum(page)] += nr_pages;
    1703           0 :                 list_move(&page->lru, dst);
    1704             :         }
    1705             : 
    1706             :         /*
    1707             :          * Splice any skipped pages to the start of the LRU list. Note that
    1708             :          * this disrupts the LRU order when reclaiming for lower zones but
    1709             :          * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
    1710             :          * scanning would soon rescan the same pages to skip and put the
    1711             :          * system at risk of premature OOM.
    1712             :          */
    1713           0 :         if (!list_empty(&pages_skipped)) {
    1714           0 :                 int zid;
    1715             : 
    1716           0 :                 list_splice(&pages_skipped, src);
    1717           0 :                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    1718           0 :                         if (!nr_skipped[zid])
    1719           0 :                                 continue;
    1720             : 
    1721           0 :                         __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
    1722           0 :                         skipped += nr_skipped[zid];
    1723             :                 }
    1724             :         }
    1725           0 :         *nr_scanned = total_scan;
    1726           0 :         trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
    1727             :                                     total_scan, skipped, nr_taken, mode, lru);
    1728           0 :         update_lru_sizes(lruvec, lru, nr_zone_taken);
    1729           0 :         return nr_taken;
    1730             : }
    1731             : 
    1732             : /**
    1733             :  * isolate_lru_page - tries to isolate a page from its LRU list
    1734             :  * @page: page to isolate from its LRU list
    1735             :  *
    1736             :  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
    1737             :  * vmstat statistic corresponding to whatever LRU list the page was on.
    1738             :  *
    1739             :  * Returns 0 if the page was removed from an LRU list.
    1740             :  * Returns -EBUSY if the page was not on an LRU list.
    1741             :  *
    1742             :  * The returned page will have PageLRU() cleared.  If it was found on
    1743             :  * the active list, it will have PageActive set.  If it was found on
    1744             :  * the unevictable list, it will have the PageUnevictable bit set. That flag
    1745             :  * may need to be cleared by the caller before letting the page go.
    1746             :  *
    1747             :  * The vmstat statistic corresponding to the list on which the page was
    1748             :  * found will be decremented.
    1749             :  *
    1750             :  * Restrictions:
    1751             :  *
    1752             :  * (1) Must be called with an elevated refcount on the page. This is a
    1753             :  *     fundamental difference from isolate_lru_pages (which is called
    1754             :  *     without a stable reference).
    1755             :  * (2) the lru_lock must not be held.
    1756             :  * (3) interrupts must be enabled.
    1757             :  */
    1758          11 : int isolate_lru_page(struct page *page)
    1759             : {
    1760          11 :         int ret = -EBUSY;
    1761             : 
    1762          11 :         VM_BUG_ON_PAGE(!page_count(page), page);
    1763          11 :         WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
    1764             : 
    1765          22 :         if (TestClearPageLRU(page)) {
    1766          11 :                 struct lruvec *lruvec;
    1767             : 
    1768          11 :                 get_page(page);
    1769          11 :                 lruvec = lock_page_lruvec_irq(page);
    1770          11 :                 del_page_from_lru_list(page, lruvec);
    1771          11 :                 unlock_page_lruvec_irq(lruvec);
    1772          11 :                 ret = 0;
    1773             :         }
    1774             : 
    1775          11 :         return ret;
    1776             : }
    1777             : 
    1778             : /*
    1779             :  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
    1780             :  * then get rescheduled. When there are massive number of tasks doing page
    1781             :  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
    1782             :  * the LRU list will go small and be scanned faster than necessary, leading to
    1783             :  * unnecessary swapping, thrashing and OOM.
    1784             :  */
    1785           0 : static int too_many_isolated(struct pglist_data *pgdat, int file,
    1786             :                 struct scan_control *sc)
    1787             : {
    1788           0 :         unsigned long inactive, isolated;
    1789             : 
    1790           0 :         if (current_is_kswapd())
    1791             :                 return 0;
    1792             : 
    1793           0 :         if (!writeback_throttling_sane(sc))
    1794             :                 return 0;
    1795             : 
    1796           0 :         if (file) {
    1797           0 :                 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
    1798           0 :                 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
    1799             :         } else {
    1800           0 :                 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
    1801           0 :                 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
    1802             :         }
    1803             : 
    1804             :         /*
    1805             :          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
    1806             :          * won't get blocked by normal direct-reclaimers, forming a circular
    1807             :          * deadlock.
    1808             :          */
    1809           0 :         if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
    1810           0 :                 inactive >>= 3;
    1811             : 
    1812           0 :         return isolated > inactive;
    1813             : }
    1814             : 
    1815             : /*
    1816             :  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
    1817             :  * On return, @list is reused as a list of pages to be freed by the caller.
    1818             :  *
    1819             :  * Returns the number of pages moved to the given lruvec.
    1820             :  */
    1821           0 : static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
    1822             :                                                      struct list_head *list)
    1823             : {
    1824           0 :         int nr_pages, nr_moved = 0;
    1825           0 :         LIST_HEAD(pages_to_free);
    1826           0 :         struct page *page;
    1827             : 
    1828           0 :         while (!list_empty(list)) {
    1829           0 :                 page = lru_to_page(list);
    1830           0 :                 VM_BUG_ON_PAGE(PageLRU(page), page);
    1831           0 :                 list_del(&page->lru);
    1832           0 :                 if (unlikely(!page_evictable(page))) {
    1833           0 :                         spin_unlock_irq(&lruvec->lru_lock);
    1834           0 :                         putback_lru_page(page);
    1835           0 :                         spin_lock_irq(&lruvec->lru_lock);
    1836           0 :                         continue;
    1837             :                 }
    1838             : 
    1839             :                 /*
    1840             :                  * The SetPageLRU needs to be kept here for list integrity.
    1841             :                  * Otherwise:
    1842             :                  *   #0 move_pages_to_lru             #1 release_pages
    1843             :                  *   if !put_page_testzero
    1844             :                  *                                    if (put_page_testzero())
    1845             :                  *                                      !PageLRU //skip lru_lock
    1846             :                  *     SetPageLRU()
    1847             :                  *     list_add(&page->lru,)
    1848             :                  *                                        list_add(&page->lru,)
    1849             :                  */
    1850           0 :                 SetPageLRU(page);
    1851             : 
    1852           0 :                 if (unlikely(put_page_testzero(page))) {
    1853           0 :                         __clear_page_lru_flags(page);
    1854             : 
    1855           0 :                         if (unlikely(PageCompound(page))) {
    1856           0 :                                 spin_unlock_irq(&lruvec->lru_lock);
    1857           0 :                                 destroy_compound_page(page);
    1858           0 :                                 spin_lock_irq(&lruvec->lru_lock);
    1859             :                         } else
    1860           0 :                                 list_add(&page->lru, &pages_to_free);
    1861             : 
    1862           0 :                         continue;
    1863             :                 }
    1864             : 
    1865             :                 /*
    1866             :                  * All pages were isolated from the same lruvec (and isolation
    1867             :                  * inhibits memcg migration).
    1868             :                  */
    1869           0 :                 VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page);
    1870           0 :                 add_page_to_lru_list(page, lruvec);
    1871           0 :                 nr_pages = thp_nr_pages(page);
    1872           0 :                 nr_moved += nr_pages;
    1873           0 :                 if (PageActive(page))
    1874           0 :                         workingset_age_nonresident(lruvec, nr_pages);
    1875             :         }
    1876             : 
    1877             :         /*
    1878             :          * To save our caller's stack, now use input list for pages to free.
    1879             :          */
    1880           0 :         list_splice(&pages_to_free, list);
    1881             : 
    1882           0 :         return nr_moved;
    1883             : }
    1884             : 
    1885             : /*
    1886             :  * If a kernel thread (such as nfsd for loop-back mounts) services
    1887             :  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
    1888             :  * In that case we should only throttle if the backing device it is
    1889             :  * writing to is congested.  In other cases it is safe to throttle.
    1890             :  */
    1891           0 : static int current_may_throttle(void)
    1892             : {
    1893           0 :         return !(current->flags & PF_LOCAL_THROTTLE) ||
    1894           0 :                 current->backing_dev_info == NULL ||
    1895           0 :                 bdi_write_congested(current->backing_dev_info);
    1896             : }
    1897             : 
    1898             : /*
    1899             :  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
    1900             :  * of reclaimed pages
    1901             :  */
    1902             : static noinline_for_stack unsigned long
    1903           0 : shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
    1904             :                      struct scan_control *sc, enum lru_list lru)
    1905             : {
    1906           0 :         LIST_HEAD(page_list);
    1907           0 :         unsigned long nr_scanned;
    1908           0 :         unsigned int nr_reclaimed = 0;
    1909           0 :         unsigned long nr_taken;
    1910           0 :         struct reclaim_stat stat;
    1911           0 :         bool file = is_file_lru(lru);
    1912           0 :         enum vm_event_item item;
    1913           0 :         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
    1914           0 :         bool stalled = false;
    1915             : 
    1916           0 :         while (unlikely(too_many_isolated(pgdat, file, sc))) {
    1917           0 :                 if (stalled)
    1918             :                         return 0;
    1919             : 
    1920             :                 /* wait a bit for the reclaimer. */
    1921           0 :                 msleep(100);
    1922           0 :                 stalled = true;
    1923             : 
    1924             :                 /* We are about to die and free our memory. Return now. */
    1925           0 :                 if (fatal_signal_pending(current))
    1926             :                         return SWAP_CLUSTER_MAX;
    1927             :         }
    1928             : 
    1929           0 :         lru_add_drain();
    1930             : 
    1931           0 :         spin_lock_irq(&lruvec->lru_lock);
    1932             : 
    1933           0 :         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
    1934             :                                      &nr_scanned, sc, lru);
    1935             : 
    1936           0 :         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
    1937           0 :         item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
    1938           0 :         if (!cgroup_reclaim(sc))
    1939           0 :                 __count_vm_events(item, nr_scanned);
    1940           0 :         __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
    1941           0 :         __count_vm_events(PGSCAN_ANON + file, nr_scanned);
    1942             : 
    1943           0 :         spin_unlock_irq(&lruvec->lru_lock);
    1944             : 
    1945           0 :         if (nr_taken == 0)
    1946             :                 return 0;
    1947             : 
    1948           0 :         nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
    1949             : 
    1950           0 :         spin_lock_irq(&lruvec->lru_lock);
    1951           0 :         move_pages_to_lru(lruvec, &page_list);
    1952             : 
    1953           0 :         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
    1954           0 :         item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
    1955           0 :         if (!cgroup_reclaim(sc))
    1956           0 :                 __count_vm_events(item, nr_reclaimed);
    1957           0 :         __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
    1958           0 :         __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
    1959           0 :         spin_unlock_irq(&lruvec->lru_lock);
    1960             : 
    1961           0 :         lru_note_cost(lruvec, file, stat.nr_pageout);
    1962           0 :         mem_cgroup_uncharge_list(&page_list);
    1963           0 :         free_unref_page_list(&page_list);
    1964             : 
    1965             :         /*
    1966             :          * If dirty pages are scanned that are not queued for IO, it
    1967             :          * implies that flushers are not doing their job. This can
    1968             :          * happen when memory pressure pushes dirty pages to the end of
    1969             :          * the LRU before the dirty limits are breached and the dirty
    1970             :          * data has expired. It can also happen when the proportion of
    1971             :          * dirty pages grows not through writes but through memory
    1972             :          * pressure reclaiming all the clean cache. And in some cases,
    1973             :          * the flushers simply cannot keep up with the allocation
    1974             :          * rate. Nudge the flusher threads in case they are asleep.
    1975             :          */
    1976           0 :         if (stat.nr_unqueued_dirty == nr_taken)
    1977           0 :                 wakeup_flusher_threads(WB_REASON_VMSCAN);
    1978             : 
    1979           0 :         sc->nr.dirty += stat.nr_dirty;
    1980           0 :         sc->nr.congested += stat.nr_congested;
    1981           0 :         sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
    1982           0 :         sc->nr.writeback += stat.nr_writeback;
    1983           0 :         sc->nr.immediate += stat.nr_immediate;
    1984           0 :         sc->nr.taken += nr_taken;
    1985           0 :         if (file)
    1986           0 :                 sc->nr.file_taken += nr_taken;
    1987             : 
    1988           0 :         trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
    1989           0 :                         nr_scanned, nr_reclaimed, &stat, sc->priority, file);
    1990           0 :         return nr_reclaimed;
    1991             : }
    1992             : 
    1993             : /*
    1994             :  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
    1995             :  *
    1996             :  * We move them the other way if the page is referenced by one or more
    1997             :  * processes.
    1998             :  *
    1999             :  * If the pages are mostly unmapped, the processing is fast and it is
    2000             :  * appropriate to hold lru_lock across the whole operation.  But if
    2001             :  * the pages are mapped, the processing is slow (page_referenced()), so
    2002             :  * we should drop lru_lock around each page.  It's impossible to balance
    2003             :  * this, so instead we remove the pages from the LRU while processing them.
    2004             :  * It is safe to rely on PG_active against the non-LRU pages in here because
    2005             :  * nobody will play with that bit on a non-LRU page.
    2006             :  *
    2007             :  * The downside is that we have to touch page->_refcount against each page.
    2008             :  * But we had to alter page->flags anyway.
    2009             :  */
    2010           0 : static void shrink_active_list(unsigned long nr_to_scan,
    2011             :                                struct lruvec *lruvec,
    2012             :                                struct scan_control *sc,
    2013             :                                enum lru_list lru)
    2014             : {
    2015           0 :         unsigned long nr_taken;
    2016           0 :         unsigned long nr_scanned;
    2017           0 :         unsigned long vm_flags;
    2018           0 :         LIST_HEAD(l_hold);      /* The pages which were snipped off */
    2019           0 :         LIST_HEAD(l_active);
    2020           0 :         LIST_HEAD(l_inactive);
    2021           0 :         struct page *page;
    2022           0 :         unsigned nr_deactivate, nr_activate;
    2023           0 :         unsigned nr_rotated = 0;
    2024           0 :         int file = is_file_lru(lru);
    2025           0 :         struct pglist_data *pgdat = lruvec_pgdat(lruvec);
    2026             : 
    2027           0 :         lru_add_drain();
    2028             : 
    2029           0 :         spin_lock_irq(&lruvec->lru_lock);
    2030             : 
    2031           0 :         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
    2032             :                                      &nr_scanned, sc, lru);
    2033             : 
    2034           0 :         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
    2035             : 
    2036           0 :         if (!cgroup_reclaim(sc))
    2037           0 :                 __count_vm_events(PGREFILL, nr_scanned);
    2038           0 :         __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
    2039             : 
    2040           0 :         spin_unlock_irq(&lruvec->lru_lock);
    2041             : 
    2042           0 :         while (!list_empty(&l_hold)) {
    2043           0 :                 cond_resched();
    2044           0 :                 page = lru_to_page(&l_hold);
    2045           0 :                 list_del(&page->lru);
    2046             : 
    2047           0 :                 if (unlikely(!page_evictable(page))) {
    2048           0 :                         putback_lru_page(page);
    2049           0 :                         continue;
    2050             :                 }
    2051             : 
    2052           0 :                 if (unlikely(buffer_heads_over_limit)) {
    2053           0 :                         if (page_has_private(page) && trylock_page(page)) {
    2054           0 :                                 if (page_has_private(page))
    2055           0 :                                         try_to_release_page(page, 0);
    2056           0 :                                 unlock_page(page);
    2057             :                         }
    2058             :                 }
    2059             : 
    2060           0 :                 if (page_referenced(page, 0, sc->target_mem_cgroup,
    2061             :                                     &vm_flags)) {
    2062             :                         /*
    2063             :                          * Identify referenced, file-backed active pages and
    2064             :                          * give them one more trip around the active list. So
    2065             :                          * that executable code get better chances to stay in
    2066             :                          * memory under moderate memory pressure.  Anon pages
    2067             :                          * are not likely to be evicted by use-once streaming
    2068             :                          * IO, plus JVM can create lots of anon VM_EXEC pages,
    2069             :                          * so we ignore them here.
    2070             :                          */
    2071           0 :                         if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
    2072           0 :                                 nr_rotated += thp_nr_pages(page);
    2073           0 :                                 list_add(&page->lru, &l_active);
    2074           0 :                                 continue;
    2075             :                         }
    2076             :                 }
    2077             : 
    2078           0 :                 ClearPageActive(page);  /* we are de-activating */
    2079           0 :                 SetPageWorkingset(page);
    2080           0 :                 list_add(&page->lru, &l_inactive);
    2081             :         }
    2082             : 
    2083             :         /*
    2084             :          * Move pages back to the lru list.
    2085             :          */
    2086           0 :         spin_lock_irq(&lruvec->lru_lock);
    2087             : 
    2088           0 :         nr_activate = move_pages_to_lru(lruvec, &l_active);
    2089           0 :         nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
    2090             :         /* Keep all free pages in l_active list */
    2091           0 :         list_splice(&l_inactive, &l_active);
    2092             : 
    2093           0 :         __count_vm_events(PGDEACTIVATE, nr_deactivate);
    2094           0 :         __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
    2095             : 
    2096           0 :         __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
    2097           0 :         spin_unlock_irq(&lruvec->lru_lock);
    2098             : 
    2099           0 :         mem_cgroup_uncharge_list(&l_active);
    2100           0 :         free_unref_page_list(&l_active);
    2101           0 :         trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
    2102           0 :                         nr_deactivate, nr_rotated, sc->priority, file);
    2103           0 : }
    2104             : 
    2105           0 : unsigned long reclaim_pages(struct list_head *page_list)
    2106             : {
    2107           0 :         int nid = NUMA_NO_NODE;
    2108           0 :         unsigned int nr_reclaimed = 0;
    2109           0 :         LIST_HEAD(node_page_list);
    2110           0 :         struct reclaim_stat dummy_stat;
    2111           0 :         struct page *page;
    2112           0 :         struct scan_control sc = {
    2113             :                 .gfp_mask = GFP_KERNEL,
    2114             :                 .priority = DEF_PRIORITY,
    2115             :                 .may_writepage = 1,
    2116             :                 .may_unmap = 1,
    2117             :                 .may_swap = 1,
    2118             :         };
    2119             : 
    2120           0 :         while (!list_empty(page_list)) {
    2121           0 :                 page = lru_to_page(page_list);
    2122           0 :                 if (nid == NUMA_NO_NODE) {
    2123           0 :                         nid = page_to_nid(page);
    2124           0 :                         INIT_LIST_HEAD(&node_page_list);
    2125             :                 }
    2126             : 
    2127           0 :                 if (nid == page_to_nid(page)) {
    2128           0 :                         ClearPageActive(page);
    2129           0 :                         list_move(&page->lru, &node_page_list);
    2130           0 :                         continue;
    2131             :                 }
    2132             : 
    2133           0 :                 nr_reclaimed += shrink_page_list(&node_page_list,
    2134             :                                                 NODE_DATA(nid),
    2135             :                                                 &sc, &dummy_stat, false);
    2136           0 :                 while (!list_empty(&node_page_list)) {
    2137           0 :                         page = lru_to_page(&node_page_list);
    2138           0 :                         list_del(&page->lru);
    2139           0 :                         putback_lru_page(page);
    2140             :                 }
    2141             : 
    2142             :                 nid = NUMA_NO_NODE;
    2143             :         }
    2144             : 
    2145           0 :         if (!list_empty(&node_page_list)) {
    2146           0 :                 nr_reclaimed += shrink_page_list(&node_page_list,
    2147             :                                                 NODE_DATA(nid),
    2148             :                                                 &sc, &dummy_stat, false);
    2149           0 :                 while (!list_empty(&node_page_list)) {
    2150           0 :                         page = lru_to_page(&node_page_list);
    2151           0 :                         list_del(&page->lru);
    2152           0 :                         putback_lru_page(page);
    2153             :                 }
    2154             :         }
    2155             : 
    2156           0 :         return nr_reclaimed;
    2157             : }
    2158             : 
    2159           0 : static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
    2160             :                                  struct lruvec *lruvec, struct scan_control *sc)
    2161             : {
    2162           0 :         if (is_active_lru(lru)) {
    2163           0 :                 if (sc->may_deactivate & (1 << is_file_lru(lru)))
    2164           0 :                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
    2165             :                 else
    2166           0 :                         sc->skipped_deactivate = 1;
    2167           0 :                 return 0;
    2168             :         }
    2169             : 
    2170           0 :         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
    2171             : }
    2172             : 
    2173             : /*
    2174             :  * The inactive anon list should be small enough that the VM never has
    2175             :  * to do too much work.
    2176             :  *
    2177             :  * The inactive file list should be small enough to leave most memory
    2178             :  * to the established workingset on the scan-resistant active list,
    2179             :  * but large enough to avoid thrashing the aggregate readahead window.
    2180             :  *
    2181             :  * Both inactive lists should also be large enough that each inactive
    2182             :  * page has a chance to be referenced again before it is reclaimed.
    2183             :  *
    2184             :  * If that fails and refaulting is observed, the inactive list grows.
    2185             :  *
    2186             :  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
    2187             :  * on this LRU, maintained by the pageout code. An inactive_ratio
    2188             :  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
    2189             :  *
    2190             :  * total     target    max
    2191             :  * memory    ratio     inactive
    2192             :  * -------------------------------------
    2193             :  *   10MB       1         5MB
    2194             :  *  100MB       1        50MB
    2195             :  *    1GB       3       250MB
    2196             :  *   10GB      10       0.9GB
    2197             :  *  100GB      31         3GB
    2198             :  *    1TB     101        10GB
    2199             :  *   10TB     320        32GB
    2200             :  */
    2201           0 : static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
    2202             : {
    2203           0 :         enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
    2204           0 :         unsigned long inactive, active;
    2205           0 :         unsigned long inactive_ratio;
    2206           0 :         unsigned long gb;
    2207             : 
    2208           0 :         inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
    2209           0 :         active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
    2210             : 
    2211           0 :         gb = (inactive + active) >> (30 - PAGE_SHIFT);
    2212           0 :         if (gb)
    2213           0 :                 inactive_ratio = int_sqrt(10 * gb);
    2214             :         else
    2215             :                 inactive_ratio = 1;
    2216             : 
    2217           0 :         return inactive * inactive_ratio < active;
    2218             : }
    2219             : 
    2220             : enum scan_balance {
    2221             :         SCAN_EQUAL,
    2222             :         SCAN_FRACT,
    2223             :         SCAN_ANON,
    2224             :         SCAN_FILE,
    2225             : };
    2226             : 
    2227             : /*
    2228             :  * Determine how aggressively the anon and file LRU lists should be
    2229             :  * scanned.  The relative value of each set of LRU lists is determined
    2230             :  * by looking at the fraction of the pages scanned we did rotate back
    2231             :  * onto the active list instead of evict.
    2232             :  *
    2233             :  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
    2234             :  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
    2235             :  */
    2236           0 : static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
    2237             :                            unsigned long *nr)
    2238             : {
    2239           0 :         struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    2240           0 :         unsigned long anon_cost, file_cost, total_cost;
    2241           0 :         int swappiness = mem_cgroup_swappiness(memcg);
    2242           0 :         u64 fraction[ANON_AND_FILE];
    2243           0 :         u64 denominator = 0;    /* gcc */
    2244           0 :         enum scan_balance scan_balance;
    2245           0 :         unsigned long ap, fp;
    2246           0 :         enum lru_list lru;
    2247             : 
    2248             :         /* If we have no swap space, do not bother scanning anon pages. */
    2249           0 :         if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
    2250           0 :                 scan_balance = SCAN_FILE;
    2251           0 :                 goto out;
    2252             :         }
    2253             : 
    2254             :         /*
    2255             :          * Global reclaim will swap to prevent OOM even with no
    2256             :          * swappiness, but memcg users want to use this knob to
    2257             :          * disable swapping for individual groups completely when
    2258             :          * using the memory controller's swap limit feature would be
    2259             :          * too expensive.
    2260             :          */
    2261             :         if (cgroup_reclaim(sc) && !swappiness) {
    2262             :                 scan_balance = SCAN_FILE;
    2263             :                 goto out;
    2264             :         }
    2265             : 
    2266             :         /*
    2267             :          * Do not apply any pressure balancing cleverness when the
    2268             :          * system is close to OOM, scan both anon and file equally
    2269             :          * (unless the swappiness setting disagrees with swapping).
    2270             :          */
    2271             :         if (!sc->priority && swappiness) {
    2272             :                 scan_balance = SCAN_EQUAL;
    2273             :                 goto out;
    2274             :         }
    2275             : 
    2276             :         /*
    2277             :          * If the system is almost out of file pages, force-scan anon.
    2278             :          */
    2279             :         if (sc->file_is_tiny) {
    2280             :                 scan_balance = SCAN_ANON;
    2281             :                 goto out;
    2282             :         }
    2283             : 
    2284             :         /*
    2285             :          * If there is enough inactive page cache, we do not reclaim
    2286             :          * anything from the anonymous working right now.
    2287             :          */
    2288             :         if (sc->cache_trim_mode) {
    2289             :                 scan_balance = SCAN_FILE;
    2290             :                 goto out;
    2291             :         }
    2292             : 
    2293             :         scan_balance = SCAN_FRACT;
    2294             :         /*
    2295             :          * Calculate the pressure balance between anon and file pages.
    2296             :          *
    2297             :          * The amount of pressure we put on each LRU is inversely
    2298             :          * proportional to the cost of reclaiming each list, as
    2299             :          * determined by the share of pages that are refaulting, times
    2300             :          * the relative IO cost of bringing back a swapped out
    2301             :          * anonymous page vs reloading a filesystem page (swappiness).
    2302             :          *
    2303             :          * Although we limit that influence to ensure no list gets
    2304             :          * left behind completely: at least a third of the pressure is
    2305             :          * applied, before swappiness.
    2306             :          *
    2307             :          * With swappiness at 100, anon and file have equal IO cost.
    2308             :          */
    2309             :         total_cost = sc->anon_cost + sc->file_cost;
    2310             :         anon_cost = total_cost + sc->anon_cost;
    2311             :         file_cost = total_cost + sc->file_cost;
    2312             :         total_cost = anon_cost + file_cost;
    2313             : 
    2314             :         ap = swappiness * (total_cost + 1);
    2315             :         ap /= anon_cost + 1;
    2316             : 
    2317             :         fp = (200 - swappiness) * (total_cost + 1);
    2318             :         fp /= file_cost + 1;
    2319             : 
    2320             :         fraction[0] = ap;
    2321             :         fraction[1] = fp;
    2322             :         denominator = ap + fp;
    2323           0 : out:
    2324           0 :         for_each_evictable_lru(lru) {
    2325           0 :                 int file = is_file_lru(lru);
    2326           0 :                 unsigned long lruvec_size;
    2327           0 :                 unsigned long scan;
    2328           0 :                 unsigned long protection;
    2329             : 
    2330           0 :                 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
    2331           0 :                 protection = mem_cgroup_protection(sc->target_mem_cgroup,
    2332             :                                                    memcg,
    2333           0 :                                                    sc->memcg_low_reclaim);
    2334             : 
    2335           0 :                 if (protection) {
    2336             :                         /*
    2337             :                          * Scale a cgroup's reclaim pressure by proportioning
    2338             :                          * its current usage to its memory.low or memory.min
    2339             :                          * setting.
    2340             :                          *
    2341             :                          * This is important, as otherwise scanning aggression
    2342             :                          * becomes extremely binary -- from nothing as we
    2343             :                          * approach the memory protection threshold, to totally
    2344             :                          * nominal as we exceed it.  This results in requiring
    2345             :                          * setting extremely liberal protection thresholds. It
    2346             :                          * also means we simply get no protection at all if we
    2347             :                          * set it too low, which is not ideal.
    2348             :                          *
    2349             :                          * If there is any protection in place, we reduce scan
    2350             :                          * pressure by how much of the total memory used is
    2351             :                          * within protection thresholds.
    2352             :                          *
    2353             :                          * There is one special case: in the first reclaim pass,
    2354             :                          * we skip over all groups that are within their low
    2355             :                          * protection. If that fails to reclaim enough pages to
    2356             :                          * satisfy the reclaim goal, we come back and override
    2357             :                          * the best-effort low protection. However, we still
    2358             :                          * ideally want to honor how well-behaved groups are in
    2359             :                          * that case instead of simply punishing them all
    2360             :                          * equally. As such, we reclaim them based on how much
    2361             :                          * memory they are using, reducing the scan pressure
    2362             :                          * again by how much of the total memory used is under
    2363             :                          * hard protection.
    2364             :                          */
    2365             :                         unsigned long cgroup_size = mem_cgroup_size(memcg);
    2366             : 
    2367             :                         /* Avoid TOCTOU with earlier protection check */
    2368             :                         cgroup_size = max(cgroup_size, protection);
    2369             : 
    2370             :                         scan = lruvec_size - lruvec_size * protection /
    2371             :                                 cgroup_size;
    2372             : 
    2373             :                         /*
    2374             :                          * Minimally target SWAP_CLUSTER_MAX pages to keep
    2375             :                          * reclaim moving forwards, avoiding decrementing
    2376             :                          * sc->priority further than desirable.
    2377             :                          */
    2378             :                         scan = max(scan, SWAP_CLUSTER_MAX);
    2379             :                 } else {
    2380           0 :                         scan = lruvec_size;
    2381             :                 }
    2382             : 
    2383           0 :                 scan >>= sc->priority;
    2384             : 
    2385             :                 /*
    2386             :                  * If the cgroup's already been deleted, make sure to
    2387             :                  * scrape out the remaining cache.
    2388             :                  */
    2389           0 :                 if (!scan && !mem_cgroup_online(memcg))
    2390             :                         scan = min(lruvec_size, SWAP_CLUSTER_MAX);
    2391             : 
    2392           0 :                 switch (scan_balance) {
    2393             :                 case SCAN_EQUAL:
    2394             :                         /* Scan lists relative to size */
    2395             :                         break;
    2396             :                 case SCAN_FRACT:
    2397             :                         /*
    2398             :                          * Scan types proportional to swappiness and
    2399             :                          * their relative recent reclaim efficiency.
    2400             :                          * Make sure we don't miss the last page on
    2401             :                          * the offlined memory cgroups because of a
    2402             :                          * round-off error.
    2403             :                          */
    2404             :                         scan = mem_cgroup_online(memcg) ?
    2405             :                                div64_u64(scan * fraction[file], denominator) :
    2406             :                                DIV64_U64_ROUND_UP(scan * fraction[file],
    2407             :                                                   denominator);
    2408             :                         break;
    2409             :                 case SCAN_FILE:
    2410             :                 case SCAN_ANON:
    2411             :                         /* Scan one type exclusively */
    2412           0 :                         if ((scan_balance == SCAN_FILE) != file)
    2413           0 :                                 scan = 0;
    2414             :                         break;
    2415             :                 default:
    2416             :                         /* Look ma, no brain */
    2417           0 :                         BUG();
    2418             :                 }
    2419             : 
    2420           0 :                 nr[lru] = scan;
    2421             :         }
    2422           0 : }
    2423             : 
    2424           0 : static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
    2425             : {
    2426           0 :         unsigned long nr[NR_LRU_LISTS];
    2427           0 :         unsigned long targets[NR_LRU_LISTS];
    2428           0 :         unsigned long nr_to_scan;
    2429           0 :         enum lru_list lru;
    2430           0 :         unsigned long nr_reclaimed = 0;
    2431           0 :         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
    2432           0 :         struct blk_plug plug;
    2433           0 :         bool scan_adjusted;
    2434             : 
    2435           0 :         get_scan_count(lruvec, sc, nr);
    2436             : 
    2437             :         /* Record the original scan target for proportional adjustments later */
    2438           0 :         memcpy(targets, nr, sizeof(nr));
    2439             : 
    2440             :         /*
    2441             :          * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
    2442             :          * event that can occur when there is little memory pressure e.g.
    2443             :          * multiple streaming readers/writers. Hence, we do not abort scanning
    2444             :          * when the requested number of pages are reclaimed when scanning at
    2445             :          * DEF_PRIORITY on the assumption that the fact we are direct
    2446             :          * reclaiming implies that kswapd is not keeping up and it is best to
    2447             :          * do a batch of work at once. For memcg reclaim one check is made to
    2448             :          * abort proportional reclaim if either the file or anon lru has already
    2449             :          * dropped to zero at the first pass.
    2450             :          */
    2451           0 :         scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
    2452           0 :                          sc->priority == DEF_PRIORITY);
    2453             : 
    2454           0 :         blk_start_plug(&plug);
    2455           0 :         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
    2456           0 :                                         nr[LRU_INACTIVE_FILE]) {
    2457             :                 unsigned long nr_anon, nr_file, percentage;
    2458             :                 unsigned long nr_scanned;
    2459             : 
    2460           0 :                 for_each_evictable_lru(lru) {
    2461           0 :                         if (nr[lru]) {
    2462           0 :                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
    2463           0 :                                 nr[lru] -= nr_to_scan;
    2464             : 
    2465           0 :                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
    2466             :                                                             lruvec, sc);
    2467             :                         }
    2468             :                 }
    2469             : 
    2470           0 :                 cond_resched();
    2471             : 
    2472           0 :                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
    2473           0 :                         continue;
    2474             : 
    2475             :                 /*
    2476             :                  * For kswapd and memcg, reclaim at least the number of pages
    2477             :                  * requested. Ensure that the anon and file LRUs are scanned
    2478             :                  * proportionally what was requested by get_scan_count(). We
    2479             :                  * stop reclaiming one LRU and reduce the amount scanning
    2480             :                  * proportional to the original scan target.
    2481             :                  */
    2482           0 :                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
    2483           0 :                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
    2484             : 
    2485             :                 /*
    2486             :                  * It's just vindictive to attack the larger once the smaller
    2487             :                  * has gone to zero.  And given the way we stop scanning the
    2488             :                  * smaller below, this makes sure that we only make one nudge
    2489             :                  * towards proportionality once we've got nr_to_reclaim.
    2490             :                  */
    2491           0 :                 if (!nr_file || !nr_anon)
    2492             :                         break;
    2493             : 
    2494           0 :                 if (nr_file > nr_anon) {
    2495           0 :                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
    2496           0 :                                                 targets[LRU_ACTIVE_ANON] + 1;
    2497           0 :                         lru = LRU_BASE;
    2498           0 :                         percentage = nr_anon * 100 / scan_target;
    2499             :                 } else {
    2500           0 :                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
    2501           0 :                                                 targets[LRU_ACTIVE_FILE] + 1;
    2502           0 :                         lru = LRU_FILE;
    2503           0 :                         percentage = nr_file * 100 / scan_target;
    2504             :                 }
    2505             : 
    2506             :                 /* Stop scanning the smaller of the LRU */
    2507           0 :                 nr[lru] = 0;
    2508           0 :                 nr[lru + LRU_ACTIVE] = 0;
    2509             : 
    2510             :                 /*
    2511             :                  * Recalculate the other LRU scan count based on its original
    2512             :                  * scan target and the percentage scanning already complete
    2513             :                  */
    2514           0 :                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
    2515           0 :                 nr_scanned = targets[lru] - nr[lru];
    2516           0 :                 nr[lru] = targets[lru] * (100 - percentage) / 100;
    2517           0 :                 nr[lru] -= min(nr[lru], nr_scanned);
    2518             : 
    2519           0 :                 lru += LRU_ACTIVE;
    2520           0 :                 nr_scanned = targets[lru] - nr[lru];
    2521           0 :                 nr[lru] = targets[lru] * (100 - percentage) / 100;
    2522           0 :                 nr[lru] -= min(nr[lru], nr_scanned);
    2523             : 
    2524           0 :                 scan_adjusted = true;
    2525             :         }
    2526           0 :         blk_finish_plug(&plug);
    2527           0 :         sc->nr_reclaimed += nr_reclaimed;
    2528             : 
    2529             :         /*
    2530             :          * Even if we did not try to evict anon pages at all, we want to
    2531             :          * rebalance the anon lru active/inactive ratio.
    2532             :          */
    2533           0 :         if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
    2534             :                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
    2535             :                                    sc, LRU_ACTIVE_ANON);
    2536           0 : }
    2537             : 
    2538             : /* Use reclaim/compaction for costly allocs or under memory pressure */
    2539           0 : static bool in_reclaim_compaction(struct scan_control *sc)
    2540             : {
    2541           0 :         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
    2542           0 :                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
    2543           0 :                          sc->priority < DEF_PRIORITY - 2))
    2544           0 :                 return true;
    2545             : 
    2546             :         return false;
    2547             : }
    2548             : 
    2549             : /*
    2550             :  * Reclaim/compaction is used for high-order allocation requests. It reclaims
    2551             :  * order-0 pages before compacting the zone. should_continue_reclaim() returns
    2552             :  * true if more pages should be reclaimed such that when the page allocator
    2553             :  * calls try_to_compact_pages() that it will have enough free pages to succeed.
    2554             :  * It will give up earlier than that if there is difficulty reclaiming pages.
    2555             :  */
    2556           0 : static inline bool should_continue_reclaim(struct pglist_data *pgdat,
    2557             :                                         unsigned long nr_reclaimed,
    2558             :                                         struct scan_control *sc)
    2559             : {
    2560           0 :         unsigned long pages_for_compaction;
    2561           0 :         unsigned long inactive_lru_pages;
    2562           0 :         int z;
    2563             : 
    2564             :         /* If not in reclaim/compaction mode, stop */
    2565           0 :         if (!in_reclaim_compaction(sc))
    2566             :                 return false;
    2567             : 
    2568             :         /*
    2569             :          * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
    2570             :          * number of pages that were scanned. This will return to the caller
    2571             :          * with the risk reclaim/compaction and the resulting allocation attempt
    2572             :          * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
    2573             :          * allocations through requiring that the full LRU list has been scanned
    2574             :          * first, by assuming that zero delta of sc->nr_scanned means full LRU
    2575             :          * scan, but that approximation was wrong, and there were corner cases
    2576             :          * where always a non-zero amount of pages were scanned.
    2577             :          */
    2578           0 :         if (!nr_reclaimed)
    2579             :                 return false;
    2580             : 
    2581             :         /* If compaction would go ahead or the allocation would succeed, stop */
    2582           0 :         for (z = 0; z <= sc->reclaim_idx; z++) {
    2583           0 :                 struct zone *zone = &pgdat->node_zones[z];
    2584           0 :                 if (!managed_zone(zone))
    2585           0 :                         continue;
    2586             : 
    2587           0 :                 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
    2588             :                 case COMPACT_SUCCESS:
    2589             :                 case COMPACT_CONTINUE:
    2590             :                         return false;
    2591           0 :                 default:
    2592             :                         /* check next zone */
    2593           0 :                         ;
    2594             :                 }
    2595             :         }
    2596             : 
    2597             :         /*
    2598             :          * If we have not reclaimed enough pages for compaction and the
    2599             :          * inactive lists are large enough, continue reclaiming
    2600             :          */
    2601           0 :         pages_for_compaction = compact_gap(sc->order);
    2602           0 :         inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
    2603           0 :         if (get_nr_swap_pages() > 0)
    2604             :                 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
    2605             : 
    2606           0 :         return inactive_lru_pages > pages_for_compaction;
    2607             : }
    2608             : 
    2609           0 : static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
    2610             : {
    2611           0 :         struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
    2612           0 :         struct mem_cgroup *memcg;
    2613             : 
    2614           0 :         memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
    2615           0 :         do {
    2616           0 :                 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
    2617           0 :                 unsigned long reclaimed;
    2618           0 :                 unsigned long scanned;
    2619             : 
    2620             :                 /*
    2621             :                  * This loop can become CPU-bound when target memcgs
    2622             :                  * aren't eligible for reclaim - either because they
    2623             :                  * don't have any reclaimable pages, or because their
    2624             :                  * memory is explicitly protected. Avoid soft lockups.
    2625             :                  */
    2626           0 :                 cond_resched();
    2627             : 
    2628           0 :                 mem_cgroup_calculate_protection(target_memcg, memcg);
    2629             : 
    2630           0 :                 if (mem_cgroup_below_min(memcg)) {
    2631             :                         /*
    2632             :                          * Hard protection.
    2633             :                          * If there is no reclaimable memory, OOM.
    2634             :                          */
    2635             :                         continue;
    2636           0 :                 } else if (mem_cgroup_below_low(memcg)) {
    2637             :                         /*
    2638             :                          * Soft protection.
    2639             :                          * Respect the protection only as long as
    2640             :                          * there is an unprotected supply
    2641             :                          * of reclaimable memory from other cgroups.
    2642             :                          */
    2643             :                         if (!sc->memcg_low_reclaim) {
    2644             :                                 sc->memcg_low_skipped = 1;
    2645             :                                 continue;
    2646             :                         }
    2647           0 :                         memcg_memory_event(memcg, MEMCG_LOW);
    2648             :                 }
    2649             : 
    2650           0 :                 reclaimed = sc->nr_reclaimed;
    2651           0 :                 scanned = sc->nr_scanned;
    2652             : 
    2653           0 :                 shrink_lruvec(lruvec, sc);
    2654             : 
    2655           0 :                 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
    2656           0 :                             sc->priority);
    2657             : 
    2658             :                 /* Record the group's reclaim efficiency */
    2659           0 :                 vmpressure(sc->gfp_mask, memcg, false,
    2660           0 :                            sc->nr_scanned - scanned,
    2661           0 :                            sc->nr_reclaimed - reclaimed);
    2662             : 
    2663           0 :         } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
    2664           0 : }
    2665             : 
    2666           0 : static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
    2667             : {
    2668           0 :         struct reclaim_state *reclaim_state = current->reclaim_state;
    2669           0 :         unsigned long nr_reclaimed, nr_scanned;
    2670           0 :         struct lruvec *target_lruvec;
    2671           0 :         bool reclaimable = false;
    2672           0 :         unsigned long file;
    2673             : 
    2674           0 :         target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
    2675             : 
    2676           0 : again:
    2677           0 :         memset(&sc->nr, 0, sizeof(sc->nr));
    2678             : 
    2679           0 :         nr_reclaimed = sc->nr_reclaimed;
    2680           0 :         nr_scanned = sc->nr_scanned;
    2681             : 
    2682             :         /*
    2683             :          * Determine the scan balance between anon and file LRUs.
    2684             :          */
    2685           0 :         spin_lock_irq(&target_lruvec->lru_lock);
    2686           0 :         sc->anon_cost = target_lruvec->anon_cost;
    2687           0 :         sc->file_cost = target_lruvec->file_cost;
    2688           0 :         spin_unlock_irq(&target_lruvec->lru_lock);
    2689             : 
    2690             :         /*
    2691             :          * Target desirable inactive:active list ratios for the anon
    2692             :          * and file LRU lists.
    2693             :          */
    2694           0 :         if (!sc->force_deactivate) {
    2695           0 :                 unsigned long refaults;
    2696             : 
    2697           0 :                 refaults = lruvec_page_state(target_lruvec,
    2698             :                                 WORKINGSET_ACTIVATE_ANON);
    2699           0 :                 if (refaults != target_lruvec->refaults[0] ||
    2700           0 :                         inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
    2701           0 :                         sc->may_deactivate |= DEACTIVATE_ANON;
    2702             :                 else
    2703           0 :                         sc->may_deactivate &= ~DEACTIVATE_ANON;
    2704             : 
    2705             :                 /*
    2706             :                  * When refaults are being observed, it means a new
    2707             :                  * workingset is being established. Deactivate to get
    2708             :                  * rid of any stale active pages quickly.
    2709             :                  */
    2710           0 :                 refaults = lruvec_page_state(target_lruvec,
    2711             :                                 WORKINGSET_ACTIVATE_FILE);
    2712           0 :                 if (refaults != target_lruvec->refaults[1] ||
    2713           0 :                     inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
    2714           0 :                         sc->may_deactivate |= DEACTIVATE_FILE;
    2715             :                 else
    2716           0 :                         sc->may_deactivate &= ~DEACTIVATE_FILE;
    2717             :         } else
    2718           0 :                 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
    2719             : 
    2720             :         /*
    2721             :          * If we have plenty of inactive file pages that aren't
    2722             :          * thrashing, try to reclaim those first before touching
    2723             :          * anonymous pages.
    2724             :          */
    2725           0 :         file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
    2726           0 :         if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
    2727           0 :                 sc->cache_trim_mode = 1;
    2728             :         else
    2729           0 :                 sc->cache_trim_mode = 0;
    2730             : 
    2731             :         /*
    2732             :          * Prevent the reclaimer from falling into the cache trap: as
    2733             :          * cache pages start out inactive, every cache fault will tip
    2734             :          * the scan balance towards the file LRU.  And as the file LRU
    2735             :          * shrinks, so does the window for rotation from references.
    2736             :          * This means we have a runaway feedback loop where a tiny
    2737             :          * thrashing file LRU becomes infinitely more attractive than
    2738             :          * anon pages.  Try to detect this based on file LRU size.
    2739             :          */
    2740           0 :         if (!cgroup_reclaim(sc)) {
    2741           0 :                 unsigned long total_high_wmark = 0;
    2742           0 :                 unsigned long free, anon;
    2743           0 :                 int z;
    2744             : 
    2745           0 :                 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
    2746           0 :                 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
    2747           0 :                            node_page_state(pgdat, NR_INACTIVE_FILE);
    2748             : 
    2749           0 :                 for (z = 0; z < MAX_NR_ZONES; z++) {
    2750           0 :                         struct zone *zone = &pgdat->node_zones[z];
    2751           0 :                         if (!managed_zone(zone))
    2752           0 :                                 continue;
    2753             : 
    2754           0 :                         total_high_wmark += high_wmark_pages(zone);
    2755             :                 }
    2756             : 
    2757             :                 /*
    2758             :                  * Consider anon: if that's low too, this isn't a
    2759             :                  * runaway file reclaim problem, but rather just
    2760             :                  * extreme pressure. Reclaim as per usual then.
    2761             :                  */
    2762           0 :                 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
    2763             : 
    2764           0 :                 sc->file_is_tiny =
    2765           0 :                         file + free <= total_high_wmark &&
    2766           0 :                         !(sc->may_deactivate & DEACTIVATE_ANON) &&
    2767           0 :                         anon >> sc->priority;
    2768             :         }
    2769             : 
    2770           0 :         shrink_node_memcgs(pgdat, sc);
    2771             : 
    2772           0 :         if (reclaim_state) {
    2773           0 :                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
    2774           0 :                 reclaim_state->reclaimed_slab = 0;
    2775             :         }
    2776             : 
    2777             :         /* Record the subtree's reclaim efficiency */
    2778           0 :         vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
    2779           0 :                    sc->nr_scanned - nr_scanned,
    2780           0 :                    sc->nr_reclaimed - nr_reclaimed);
    2781             : 
    2782           0 :         if (sc->nr_reclaimed - nr_reclaimed)
    2783           0 :                 reclaimable = true;
    2784             : 
    2785           0 :         if (current_is_kswapd()) {
    2786             :                 /*
    2787             :                  * If reclaim is isolating dirty pages under writeback,
    2788             :                  * it implies that the long-lived page allocation rate
    2789             :                  * is exceeding the page laundering rate. Either the
    2790             :                  * global limits are not being effective at throttling
    2791             :                  * processes due to the page distribution throughout
    2792             :                  * zones or there is heavy usage of a slow backing
    2793             :                  * device. The only option is to throttle from reclaim
    2794             :                  * context which is not ideal as there is no guarantee
    2795             :                  * the dirtying process is throttled in the same way
    2796             :                  * balance_dirty_pages() manages.
    2797             :                  *
    2798             :                  * Once a node is flagged PGDAT_WRITEBACK, kswapd will
    2799             :                  * count the number of pages under pages flagged for
    2800             :                  * immediate reclaim and stall if any are encountered
    2801             :                  * in the nr_immediate check below.
    2802             :                  */
    2803           0 :                 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
    2804           0 :                         set_bit(PGDAT_WRITEBACK, &pgdat->flags);
    2805             : 
    2806             :                 /* Allow kswapd to start writing pages during reclaim.*/
    2807           0 :                 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
    2808           0 :                         set_bit(PGDAT_DIRTY, &pgdat->flags);
    2809             : 
    2810             :                 /*
    2811             :                  * If kswapd scans pages marked for immediate
    2812             :                  * reclaim and under writeback (nr_immediate), it
    2813             :                  * implies that pages are cycling through the LRU
    2814             :                  * faster than they are written so also forcibly stall.
    2815             :                  */
    2816           0 :                 if (sc->nr.immediate)
    2817           0 :                         congestion_wait(BLK_RW_ASYNC, HZ/10);
    2818             :         }
    2819             : 
    2820             :         /*
    2821             :          * Tag a node/memcg as congested if all the dirty pages
    2822             :          * scanned were backed by a congested BDI and
    2823             :          * wait_iff_congested will stall.
    2824             :          *
    2825             :          * Legacy memcg will stall in page writeback so avoid forcibly
    2826             :          * stalling in wait_iff_congested().
    2827             :          */
    2828           0 :         if ((current_is_kswapd() ||
    2829           0 :              (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
    2830           0 :             sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
    2831           0 :                 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
    2832             : 
    2833             :         /*
    2834             :          * Stall direct reclaim for IO completions if underlying BDIs
    2835             :          * and node is congested. Allow kswapd to continue until it
    2836             :          * starts encountering unqueued dirty pages or cycling through
    2837             :          * the LRU too quickly.
    2838             :          */
    2839           0 :         if (!current_is_kswapd() && current_may_throttle() &&
    2840           0 :             !sc->hibernation_mode &&
    2841           0 :             test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
    2842           0 :                 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
    2843             : 
    2844           0 :         if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
    2845             :                                     sc))
    2846           0 :                 goto again;
    2847             : 
    2848             :         /*
    2849             :          * Kswapd gives up on balancing particular nodes after too
    2850             :          * many failures to reclaim anything from them and goes to
    2851             :          * sleep. On reclaim progress, reset the failure counter. A
    2852             :          * successful direct reclaim run will revive a dormant kswapd.
    2853             :          */
    2854           0 :         if (reclaimable)
    2855           0 :                 pgdat->kswapd_failures = 0;
    2856           0 : }
    2857             : 
    2858             : /*
    2859             :  * Returns true if compaction should go ahead for a costly-order request, or
    2860             :  * the allocation would already succeed without compaction. Return false if we
    2861             :  * should reclaim first.
    2862             :  */
    2863           0 : static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
    2864             : {
    2865           0 :         unsigned long watermark;
    2866           0 :         enum compact_result suitable;
    2867             : 
    2868           0 :         suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
    2869           0 :         if (suitable == COMPACT_SUCCESS)
    2870             :                 /* Allocation should succeed already. Don't reclaim. */
    2871             :                 return true;
    2872           0 :         if (suitable == COMPACT_SKIPPED)
    2873             :                 /* Compaction cannot yet proceed. Do reclaim. */
    2874             :                 return false;
    2875             : 
    2876             :         /*
    2877             :          * Compaction is already possible, but it takes time to run and there
    2878             :          * are potentially other callers using the pages just freed. So proceed
    2879             :          * with reclaim to make a buffer of free pages available to give
    2880             :          * compaction a reasonable chance of completing and allocating the page.
    2881             :          * Note that we won't actually reclaim the whole buffer in one attempt
    2882             :          * as the target watermark in should_continue_reclaim() is lower. But if
    2883             :          * we are already above the high+gap watermark, don't reclaim at all.
    2884             :          */
    2885           0 :         watermark = high_wmark_pages(zone) + compact_gap(sc->order);
    2886             : 
    2887           0 :         return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
    2888             : }
    2889             : 
    2890             : /*
    2891             :  * This is the direct reclaim path, for page-allocating processes.  We only
    2892             :  * try to reclaim pages from zones which will satisfy the caller's allocation
    2893             :  * request.
    2894             :  *
    2895             :  * If a zone is deemed to be full of pinned pages then just give it a light
    2896             :  * scan then give up on it.
    2897             :  */
    2898           0 : static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
    2899             : {
    2900           0 :         struct zoneref *z;
    2901           0 :         struct zone *zone;
    2902           0 :         unsigned long nr_soft_reclaimed;
    2903           0 :         unsigned long nr_soft_scanned;
    2904           0 :         gfp_t orig_mask;
    2905           0 :         pg_data_t *last_pgdat = NULL;
    2906             : 
    2907             :         /*
    2908             :          * If the number of buffer_heads in the machine exceeds the maximum
    2909             :          * allowed level, force direct reclaim to scan the highmem zone as
    2910             :          * highmem pages could be pinning lowmem pages storing buffer_heads
    2911             :          */
    2912           0 :         orig_mask = sc->gfp_mask;
    2913           0 :         if (buffer_heads_over_limit) {
    2914           0 :                 sc->gfp_mask |= __GFP_HIGHMEM;
    2915           0 :                 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
    2916             :         }
    2917             : 
    2918           0 :         for_each_zone_zonelist_nodemask(zone, z, zonelist,
    2919             :                                         sc->reclaim_idx, sc->nodemask) {
    2920             :                 /*
    2921             :                  * Take care memory controller reclaiming has small influence
    2922             :                  * to global LRU.
    2923             :                  */
    2924           0 :                 if (!cgroup_reclaim(sc)) {
    2925           0 :                         if (!cpuset_zone_allowed(zone,
    2926             :                                                  GFP_KERNEL | __GFP_HARDWALL))
    2927             :                                 continue;
    2928             : 
    2929             :                         /*
    2930             :                          * If we already have plenty of memory free for
    2931             :                          * compaction in this zone, don't free any more.
    2932             :                          * Even though compaction is invoked for any
    2933             :                          * non-zero order, only frequent costly order
    2934             :                          * reclamation is disruptive enough to become a
    2935             :                          * noticeable problem, like transparent huge
    2936             :                          * page allocations.
    2937             :                          */
    2938           0 :                         if (IS_ENABLED(CONFIG_COMPACTION) &&
    2939           0 :                             sc->order > PAGE_ALLOC_COSTLY_ORDER &&
    2940           0 :                             compaction_ready(zone, sc)) {
    2941           0 :                                 sc->compaction_ready = true;
    2942           0 :                                 continue;
    2943             :                         }
    2944             : 
    2945             :                         /*
    2946             :                          * Shrink each node in the zonelist once. If the
    2947             :                          * zonelist is ordered by zone (not the default) then a
    2948             :                          * node may be shrunk multiple times but in that case
    2949             :                          * the user prefers lower zones being preserved.
    2950             :                          */
    2951           0 :                         if (zone->zone_pgdat == last_pgdat)
    2952           0 :                                 continue;
    2953             : 
    2954             :                         /*
    2955             :                          * This steals pages from memory cgroups over softlimit
    2956             :                          * and returns the number of reclaimed pages and
    2957             :                          * scanned pages. This works for global memory pressure
    2958             :                          * and balancing, not for a memcg's limit.
    2959             :                          */
    2960           0 :                         nr_soft_scanned = 0;
    2961           0 :                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
    2962           0 :                                                 sc->order, sc->gfp_mask,
    2963             :                                                 &nr_soft_scanned);
    2964           0 :                         sc->nr_reclaimed += nr_soft_reclaimed;
    2965           0 :                         sc->nr_scanned += nr_soft_scanned;
    2966             :                         /* need some check for avoid more shrink_zone() */
    2967             :                 }
    2968             : 
    2969             :                 /* See comment about same check for global reclaim above */
    2970           0 :                 if (zone->zone_pgdat == last_pgdat)
    2971             :                         continue;
    2972           0 :                 last_pgdat = zone->zone_pgdat;
    2973           0 :                 shrink_node(zone->zone_pgdat, sc);
    2974             :         }
    2975             : 
    2976             :         /*
    2977             :          * Restore to original mask to avoid the impact on the caller if we
    2978             :          * promoted it to __GFP_HIGHMEM.
    2979             :          */
    2980           0 :         sc->gfp_mask = orig_mask;
    2981           0 : }
    2982             : 
    2983           0 : static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
    2984             : {
    2985           0 :         struct lruvec *target_lruvec;
    2986           0 :         unsigned long refaults;
    2987             : 
    2988           0 :         target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
    2989           0 :         refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
    2990           0 :         target_lruvec->refaults[0] = refaults;
    2991           0 :         refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
    2992           0 :         target_lruvec->refaults[1] = refaults;
    2993           0 : }
    2994             : 
    2995             : /*
    2996             :  * This is the main entry point to direct page reclaim.
    2997             :  *
    2998             :  * If a full scan of the inactive list fails to free enough memory then we
    2999             :  * are "out of memory" and something needs to be killed.
    3000             :  *
    3001             :  * If the caller is !__GFP_FS then the probability of a failure is reasonably
    3002             :  * high - the zone may be full of dirty or under-writeback pages, which this
    3003             :  * caller can't do much about.  We kick the writeback threads and take explicit
    3004             :  * naps in the hope that some of these pages can be written.  But if the
    3005             :  * allocating task holds filesystem locks which prevent writeout this might not
    3006             :  * work, and the allocation attempt will fail.
    3007             :  *
    3008             :  * returns:     0, if no pages reclaimed
    3009             :  *              else, the number of pages reclaimed
    3010             :  */
    3011           0 : static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
    3012             :                                           struct scan_control *sc)
    3013             : {
    3014           0 :         int initial_priority = sc->priority;
    3015           0 :         pg_data_t *last_pgdat;
    3016           0 :         struct zoneref *z;
    3017           0 :         struct zone *zone;
    3018             : retry:
    3019           0 :         delayacct_freepages_start();
    3020             : 
    3021           0 :         if (!cgroup_reclaim(sc))
    3022           0 :                 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
    3023             : 
    3024           0 :         do {
    3025           0 :                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
    3026           0 :                                 sc->priority);
    3027           0 :                 sc->nr_scanned = 0;
    3028           0 :                 shrink_zones(zonelist, sc);
    3029             : 
    3030           0 :                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
    3031             :                         break;
    3032             : 
    3033           0 :                 if (sc->compaction_ready)
    3034             :                         break;
    3035             : 
    3036             :                 /*
    3037             :                  * If we're getting trouble reclaiming, start doing
    3038             :                  * writepage even in laptop mode.
    3039             :                  */
    3040           0 :                 if (sc->priority < DEF_PRIORITY - 2)
    3041           0 :                         sc->may_writepage = 1;
    3042           0 :         } while (--sc->priority >= 0);
    3043             : 
    3044           0 :         last_pgdat = NULL;
    3045           0 :         for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
    3046             :                                         sc->nodemask) {
    3047           0 :                 if (zone->zone_pgdat == last_pgdat)
    3048           0 :                         continue;
    3049           0 :                 last_pgdat = zone->zone_pgdat;
    3050             : 
    3051           0 :                 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
    3052             : 
    3053           0 :                 if (cgroup_reclaim(sc)) {
    3054             :                         struct lruvec *lruvec;
    3055             : 
    3056             :                         lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
    3057             :                                                    zone->zone_pgdat);
    3058             :                         clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
    3059             :                 }
    3060             :         }
    3061             : 
    3062           0 :         delayacct_freepages_end();
    3063             : 
    3064           0 :         if (sc->nr_reclaimed)
    3065           0 :                 return sc->nr_reclaimed;
    3066             : 
    3067             :         /* Aborted reclaim to try compaction? don't OOM, then */
    3068           0 :         if (sc->compaction_ready)
    3069             :                 return 1;
    3070             : 
    3071             :         /*
    3072             :          * We make inactive:active ratio decisions based on the node's
    3073             :          * composition of memory, but a restrictive reclaim_idx or a
    3074             :          * memory.low cgroup setting can exempt large amounts of
    3075             :          * memory from reclaim. Neither of which are very common, so
    3076             :          * instead of doing costly eligibility calculations of the
    3077             :          * entire cgroup subtree up front, we assume the estimates are
    3078             :          * good, and retry with forcible deactivation if that fails.
    3079             :          */
    3080           0 :         if (sc->skipped_deactivate) {
    3081           0 :                 sc->priority = initial_priority;
    3082           0 :                 sc->force_deactivate = 1;
    3083           0 :                 sc->skipped_deactivate = 0;
    3084           0 :                 goto retry;
    3085             :         }
    3086             : 
    3087             :         /* Untapped cgroup reserves?  Don't OOM, retry. */
    3088           0 :         if (sc->memcg_low_skipped) {
    3089           0 :                 sc->priority = initial_priority;
    3090           0 :                 sc->force_deactivate = 0;
    3091           0 :                 sc->memcg_low_reclaim = 1;
    3092           0 :                 sc->memcg_low_skipped = 0;
    3093           0 :                 goto retry;
    3094             :         }
    3095             : 
    3096             :         return 0;
    3097             : }
    3098             : 
    3099           0 : static bool allow_direct_reclaim(pg_data_t *pgdat)
    3100             : {
    3101           0 :         struct zone *zone;
    3102           0 :         unsigned long pfmemalloc_reserve = 0;
    3103           0 :         unsigned long free_pages = 0;
    3104           0 :         int i;
    3105           0 :         bool wmark_ok;
    3106             : 
    3107           0 :         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
    3108             :                 return true;
    3109             : 
    3110           0 :         for (i = 0; i <= ZONE_NORMAL; i++) {
    3111           0 :                 zone = &pgdat->node_zones[i];
    3112           0 :                 if (!managed_zone(zone))
    3113           0 :                         continue;
    3114             : 
    3115           0 :                 if (!zone_reclaimable_pages(zone))
    3116           0 :                         continue;
    3117             : 
    3118           0 :                 pfmemalloc_reserve += min_wmark_pages(zone);
    3119           0 :                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
    3120             :         }
    3121             : 
    3122             :         /* If there are no reserves (unexpected config) then do not throttle */
    3123           0 :         if (!pfmemalloc_reserve)
    3124             :                 return true;
    3125             : 
    3126           0 :         wmark_ok = free_pages > pfmemalloc_reserve / 2;
    3127             : 
    3128             :         /* kswapd must be awake if processes are being throttled */
    3129           0 :         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
    3130           0 :                 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
    3131           0 :                         WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
    3132             : 
    3133           0 :                 wake_up_interruptible(&pgdat->kswapd_wait);
    3134             :         }
    3135             : 
    3136             :         return wmark_ok;
    3137             : }
    3138             : 
    3139             : /*
    3140             :  * Throttle direct reclaimers if backing storage is backed by the network
    3141             :  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
    3142             :  * depleted. kswapd will continue to make progress and wake the processes
    3143             :  * when the low watermark is reached.
    3144             :  *
    3145             :  * Returns true if a fatal signal was delivered during throttling. If this
    3146             :  * happens, the page allocator should not consider triggering the OOM killer.
    3147             :  */
    3148           0 : static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
    3149             :                                         nodemask_t *nodemask)
    3150             : {
    3151           0 :         struct zoneref *z;
    3152           0 :         struct zone *zone;
    3153           0 :         pg_data_t *pgdat = NULL;
    3154             : 
    3155             :         /*
    3156             :          * Kernel threads should not be throttled as they may be indirectly
    3157             :          * responsible for cleaning pages necessary for reclaim to make forward
    3158             :          * progress. kjournald for example may enter direct reclaim while
    3159             :          * committing a transaction where throttling it could forcing other
    3160             :          * processes to block on log_wait_commit().
    3161             :          */
    3162           0 :         if (current->flags & PF_KTHREAD)
    3163           0 :                 goto out;
    3164             : 
    3165             :         /*
    3166             :          * If a fatal signal is pending, this process should not throttle.
    3167             :          * It should return quickly so it can exit and free its memory
    3168             :          */
    3169           0 :         if (fatal_signal_pending(current))
    3170           0 :                 goto out;
    3171             : 
    3172             :         /*
    3173             :          * Check if the pfmemalloc reserves are ok by finding the first node
    3174             :          * with a usable ZONE_NORMAL or lower zone. The expectation is that
    3175             :          * GFP_KERNEL will be required for allocating network buffers when
    3176             :          * swapping over the network so ZONE_HIGHMEM is unusable.
    3177             :          *
    3178             :          * Throttling is based on the first usable node and throttled processes
    3179             :          * wait on a queue until kswapd makes progress and wakes them. There
    3180             :          * is an affinity then between processes waking up and where reclaim
    3181             :          * progress has been made assuming the process wakes on the same node.
    3182             :          * More importantly, processes running on remote nodes will not compete
    3183             :          * for remote pfmemalloc reserves and processes on different nodes
    3184             :          * should make reasonable progress.
    3185             :          */
    3186           0 :         for_each_zone_zonelist_nodemask(zone, z, zonelist,
    3187             :                                         gfp_zone(gfp_mask), nodemask) {
    3188           0 :                 if (zone_idx(zone) > ZONE_NORMAL)
    3189           0 :                         continue;
    3190             : 
    3191             :                 /* Throttle based on the first usable node */
    3192           0 :                 pgdat = zone->zone_pgdat;
    3193           0 :                 if (allow_direct_reclaim(pgdat))
    3194           0 :                         goto out;
    3195             :                 break;
    3196             :         }
    3197             : 
    3198             :         /* If no zone was usable by the allocation flags then do not throttle */
    3199           0 :         if (!pgdat)
    3200           0 :                 goto out;
    3201             : 
    3202             :         /* Account for the throttling */
    3203           0 :         count_vm_event(PGSCAN_DIRECT_THROTTLE);
    3204             : 
    3205             :         /*
    3206             :          * If the caller cannot enter the filesystem, it's possible that it
    3207             :          * is due to the caller holding an FS lock or performing a journal
    3208             :          * transaction in the case of a filesystem like ext[3|4]. In this case,
    3209             :          * it is not safe to block on pfmemalloc_wait as kswapd could be
    3210             :          * blocked waiting on the same lock. Instead, throttle for up to a
    3211             :          * second before continuing.
    3212             :          */
    3213           0 :         if (!(gfp_mask & __GFP_FS)) {
    3214           0 :                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
    3215             :                         allow_direct_reclaim(pgdat), HZ);
    3216             : 
    3217           0 :                 goto check_pending;
    3218             :         }
    3219             : 
    3220             :         /* Throttle until kswapd wakes the process */
    3221           0 :         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
    3222             :                 allow_direct_reclaim(pgdat));
    3223             : 
    3224           0 : check_pending:
    3225           0 :         if (fatal_signal_pending(current))
    3226           0 :                 return true;
    3227             : 
    3228           0 : out:
    3229             :         return false;
    3230             : }
    3231             : 
    3232           0 : unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
    3233             :                                 gfp_t gfp_mask, nodemask_t *nodemask)
    3234             : {
    3235           0 :         unsigned long nr_reclaimed;
    3236           0 :         struct scan_control sc = {
    3237             :                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
    3238           0 :                 .gfp_mask = current_gfp_context(gfp_mask),
    3239           0 :                 .reclaim_idx = gfp_zone(gfp_mask),
    3240             :                 .order = order,
    3241             :                 .nodemask = nodemask,
    3242             :                 .priority = DEF_PRIORITY,
    3243           0 :                 .may_writepage = !laptop_mode,
    3244             :                 .may_unmap = 1,
    3245             :                 .may_swap = 1,
    3246             :         };
    3247             : 
    3248             :         /*
    3249             :          * scan_control uses s8 fields for order, priority, and reclaim_idx.
    3250             :          * Confirm they are large enough for max values.
    3251             :          */
    3252           0 :         BUILD_BUG_ON(MAX_ORDER > S8_MAX);
    3253           0 :         BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
    3254           0 :         BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
    3255             : 
    3256             :         /*
    3257             :          * Do not enter reclaim if fatal signal was delivered while throttled.
    3258             :          * 1 is returned so that the page allocator does not OOM kill at this
    3259             :          * point.
    3260             :          */
    3261           0 :         if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
    3262             :                 return 1;
    3263             : 
    3264           0 :         set_task_reclaim_state(current, &sc.reclaim_state);
    3265           0 :         trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
    3266             : 
    3267           0 :         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
    3268             : 
    3269           0 :         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
    3270           0 :         set_task_reclaim_state(current, NULL);
    3271             : 
    3272           0 :         return nr_reclaimed;
    3273             : }
    3274             : 
    3275             : #ifdef CONFIG_MEMCG
    3276             : 
    3277             : /* Only used by soft limit reclaim. Do not reuse for anything else. */
    3278             : unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
    3279             :                                                 gfp_t gfp_mask, bool noswap,
    3280             :                                                 pg_data_t *pgdat,
    3281             :                                                 unsigned long *nr_scanned)
    3282             : {
    3283             :         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
    3284             :         struct scan_control sc = {
    3285             :                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
    3286             :                 .target_mem_cgroup = memcg,
    3287             :                 .may_writepage = !laptop_mode,
    3288             :                 .may_unmap = 1,
    3289             :                 .reclaim_idx = MAX_NR_ZONES - 1,
    3290             :                 .may_swap = !noswap,
    3291             :         };
    3292             : 
    3293             :         WARN_ON_ONCE(!current->reclaim_state);
    3294             : 
    3295             :         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
    3296             :                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
    3297             : 
    3298             :         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
    3299             :                                                       sc.gfp_mask);
    3300             : 
    3301             :         /*
    3302             :          * NOTE: Although we can get the priority field, using it
    3303             :          * here is not a good idea, since it limits the pages we can scan.
    3304             :          * if we don't reclaim here, the shrink_node from balance_pgdat
    3305             :          * will pick up pages from other mem cgroup's as well. We hack
    3306             :          * the priority and make it zero.
    3307             :          */
    3308             :         shrink_lruvec(lruvec, &sc);
    3309             : 
    3310             :         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
    3311             : 
    3312             :         *nr_scanned = sc.nr_scanned;
    3313             : 
    3314             :         return sc.nr_reclaimed;
    3315             : }
    3316             : 
    3317             : unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
    3318             :                                            unsigned long nr_pages,
    3319             :                                            gfp_t gfp_mask,
    3320             :                                            bool may_swap)
    3321             : {
    3322             :         unsigned long nr_reclaimed;
    3323             :         unsigned int noreclaim_flag;
    3324             :         struct scan_control sc = {
    3325             :                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
    3326             :                 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
    3327             :                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
    3328             :                 .reclaim_idx = MAX_NR_ZONES - 1,
    3329             :                 .target_mem_cgroup = memcg,
    3330             :                 .priority = DEF_PRIORITY,
    3331             :                 .may_writepage = !laptop_mode,
    3332             :                 .may_unmap = 1,
    3333             :                 .may_swap = may_swap,
    3334             :         };
    3335             :         /*
    3336             :          * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
    3337             :          * equal pressure on all the nodes. This is based on the assumption that
    3338             :          * the reclaim does not bail out early.
    3339             :          */
    3340             :         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
    3341             : 
    3342             :         set_task_reclaim_state(current, &sc.reclaim_state);
    3343             :         trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
    3344             :         noreclaim_flag = memalloc_noreclaim_save();
    3345             : 
    3346             :         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
    3347             : 
    3348             :         memalloc_noreclaim_restore(noreclaim_flag);
    3349             :         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
    3350             :         set_task_reclaim_state(current, NULL);
    3351             : 
    3352             :         return nr_reclaimed;
    3353             : }
    3354             : #endif
    3355             : 
    3356           0 : static void age_active_anon(struct pglist_data *pgdat,
    3357             :                                 struct scan_control *sc)
    3358             : {
    3359           0 :         struct mem_cgroup *memcg;
    3360           0 :         struct lruvec *lruvec;
    3361             : 
    3362           0 :         if (!total_swap_pages)
    3363           0 :                 return;
    3364             : 
    3365             :         lruvec = mem_cgroup_lruvec(NULL, pgdat);
    3366             :         if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
    3367             :                 return;
    3368             : 
    3369             :         memcg = mem_cgroup_iter(NULL, NULL, NULL);
    3370             :         do {
    3371             :                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
    3372             :                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
    3373             :                                    sc, LRU_ACTIVE_ANON);
    3374             :                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
    3375             :         } while (memcg);
    3376             : }
    3377             : 
    3378           0 : static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
    3379             : {
    3380           0 :         int i;
    3381           0 :         struct zone *zone;
    3382             : 
    3383             :         /*
    3384             :          * Check for watermark boosts top-down as the higher zones
    3385             :          * are more likely to be boosted. Both watermarks and boosts
    3386             :          * should not be checked at the same time as reclaim would
    3387             :          * start prematurely when there is no boosting and a lower
    3388             :          * zone is balanced.
    3389             :          */
    3390           0 :         for (i = highest_zoneidx; i >= 0; i--) {
    3391           0 :                 zone = pgdat->node_zones + i;
    3392           0 :                 if (!managed_zone(zone))
    3393           0 :                         continue;
    3394             : 
    3395           0 :                 if (zone->watermark_boost)
    3396             :                         return true;
    3397             :         }
    3398             : 
    3399             :         return false;
    3400             : }
    3401             : 
    3402             : /*
    3403             :  * Returns true if there is an eligible zone balanced for the request order
    3404             :  * and highest_zoneidx
    3405             :  */
    3406           2 : static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
    3407             : {
    3408           2 :         int i;
    3409           2 :         unsigned long mark = -1;
    3410           2 :         struct zone *zone;
    3411             : 
    3412             :         /*
    3413             :          * Check watermarks bottom-up as lower zones are more likely to
    3414             :          * meet watermarks.
    3415             :          */
    3416           2 :         for (i = 0; i <= highest_zoneidx; i++) {
    3417           2 :                 zone = pgdat->node_zones + i;
    3418             : 
    3419           2 :                 if (!managed_zone(zone))
    3420           0 :                         continue;
    3421             : 
    3422           2 :                 mark = high_wmark_pages(zone);
    3423           2 :                 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
    3424             :                         return true;
    3425             :         }
    3426             : 
    3427             :         /*
    3428             :          * If a node has no populated zone within highest_zoneidx, it does not
    3429             :          * need balancing by definition. This can happen if a zone-restricted
    3430             :          * allocation tries to wake a remote kswapd.
    3431             :          */
    3432           0 :         if (mark == -1)
    3433           0 :                 return true;
    3434             : 
    3435             :         return false;
    3436             : }
    3437             : 
    3438             : /* Clear pgdat state for congested, dirty or under writeback. */
    3439           2 : static void clear_pgdat_congested(pg_data_t *pgdat)
    3440             : {
    3441           2 :         struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
    3442             : 
    3443           2 :         clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
    3444           2 :         clear_bit(PGDAT_DIRTY, &pgdat->flags);
    3445           2 :         clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
    3446           2 : }
    3447             : 
    3448             : /*
    3449             :  * Prepare kswapd for sleeping. This verifies that there are no processes
    3450             :  * waiting in throttle_direct_reclaim() and that watermarks have been met.
    3451             :  *
    3452             :  * Returns true if kswapd is ready to sleep
    3453             :  */
    3454           2 : static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
    3455             :                                 int highest_zoneidx)
    3456             : {
    3457             :         /*
    3458             :          * The throttled processes are normally woken up in balance_pgdat() as
    3459             :          * soon as allow_direct_reclaim() is true. But there is a potential
    3460             :          * race between when kswapd checks the watermarks and a process gets
    3461             :          * throttled. There is also a potential race if processes get
    3462             :          * throttled, kswapd wakes, a large process exits thereby balancing the
    3463             :          * zones, which causes kswapd to exit balance_pgdat() before reaching
    3464             :          * the wake up checks. If kswapd is going to sleep, no process should
    3465             :          * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
    3466             :          * the wake up is premature, processes will wake kswapd and get
    3467             :          * throttled again. The difference from wake ups in balance_pgdat() is
    3468             :          * that here we are under prepare_to_wait().
    3469             :          */
    3470           2 :         if (waitqueue_active(&pgdat->pfmemalloc_wait))
    3471           0 :                 wake_up_all(&pgdat->pfmemalloc_wait);
    3472             : 
    3473             :         /* Hopeless node, leave it to direct reclaim */
    3474           2 :         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
    3475             :                 return true;
    3476             : 
    3477           2 :         if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
    3478           2 :                 clear_pgdat_congested(pgdat);
    3479           2 :                 return true;
    3480             :         }
    3481             : 
    3482             :         return false;
    3483             : }
    3484             : 
    3485             : /*
    3486             :  * kswapd shrinks a node of pages that are at or below the highest usable
    3487             :  * zone that is currently unbalanced.
    3488             :  *
    3489             :  * Returns true if kswapd scanned at least the requested number of pages to
    3490             :  * reclaim or if the lack of progress was due to pages under writeback.
    3491             :  * This is used to determine if the scanning priority needs to be raised.
    3492             :  */
    3493           0 : static bool kswapd_shrink_node(pg_data_t *pgdat,
    3494             :                                struct scan_control *sc)
    3495             : {
    3496           0 :         struct zone *zone;
    3497           0 :         int z;
    3498             : 
    3499             :         /* Reclaim a number of pages proportional to the number of zones */
    3500           0 :         sc->nr_to_reclaim = 0;
    3501           0 :         for (z = 0; z <= sc->reclaim_idx; z++) {
    3502           0 :                 zone = pgdat->node_zones + z;
    3503           0 :                 if (!managed_zone(zone))
    3504           0 :                         continue;
    3505             : 
    3506           0 :                 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
    3507             :         }
    3508             : 
    3509             :         /*
    3510             :          * Historically care was taken to put equal pressure on all zones but
    3511             :          * now pressure is applied based on node LRU order.
    3512             :          */
    3513           0 :         shrink_node(pgdat, sc);
    3514             : 
    3515             :         /*
    3516             :          * Fragmentation may mean that the system cannot be rebalanced for
    3517             :          * high-order allocations. If twice the allocation size has been
    3518             :          * reclaimed then recheck watermarks only at order-0 to prevent
    3519             :          * excessive reclaim. Assume that a process requested a high-order
    3520             :          * can direct reclaim/compact.
    3521             :          */
    3522           0 :         if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
    3523           0 :                 sc->order = 0;
    3524             : 
    3525           0 :         return sc->nr_scanned >= sc->nr_to_reclaim;
    3526             : }
    3527             : 
    3528             : /*
    3529             :  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
    3530             :  * that are eligible for use by the caller until at least one zone is
    3531             :  * balanced.
    3532             :  *
    3533             :  * Returns the order kswapd finished reclaiming at.
    3534             :  *
    3535             :  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
    3536             :  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
    3537             :  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
    3538             :  * or lower is eligible for reclaim until at least one usable zone is
    3539             :  * balanced.
    3540             :  */
    3541           0 : static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
    3542             : {
    3543           0 :         int i;
    3544           0 :         unsigned long nr_soft_reclaimed;
    3545           0 :         unsigned long nr_soft_scanned;
    3546           0 :         unsigned long pflags;
    3547           0 :         unsigned long nr_boost_reclaim;
    3548           0 :         unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
    3549           0 :         bool boosted;
    3550           0 :         struct zone *zone;
    3551           0 :         struct scan_control sc = {
    3552             :                 .gfp_mask = GFP_KERNEL,
    3553             :                 .order = order,
    3554             :                 .may_unmap = 1,
    3555             :         };
    3556             : 
    3557           0 :         set_task_reclaim_state(current, &sc.reclaim_state);
    3558           0 :         psi_memstall_enter(&pflags);
    3559           0 :         __fs_reclaim_acquire();
    3560             : 
    3561           0 :         count_vm_event(PAGEOUTRUN);
    3562             : 
    3563             :         /*
    3564             :          * Account for the reclaim boost. Note that the zone boost is left in
    3565             :          * place so that parallel allocations that are near the watermark will
    3566             :          * stall or direct reclaim until kswapd is finished.
    3567             :          */
    3568           0 :         nr_boost_reclaim = 0;
    3569           0 :         for (i = 0; i <= highest_zoneidx; i++) {
    3570           0 :                 zone = pgdat->node_zones + i;
    3571           0 :                 if (!managed_zone(zone))
    3572           0 :                         continue;
    3573             : 
    3574           0 :                 nr_boost_reclaim += zone->watermark_boost;
    3575           0 :                 zone_boosts[i] = zone->watermark_boost;
    3576             :         }
    3577           0 :         boosted = nr_boost_reclaim;
    3578             : 
    3579           0 : restart:
    3580           0 :         sc.priority = DEF_PRIORITY;
    3581           0 :         do {
    3582           0 :                 unsigned long nr_reclaimed = sc.nr_reclaimed;
    3583           0 :                 bool raise_priority = true;
    3584           0 :                 bool balanced;
    3585           0 :                 bool ret;
    3586             : 
    3587           0 :                 sc.reclaim_idx = highest_zoneidx;
    3588             : 
    3589             :                 /*
    3590             :                  * If the number of buffer_heads exceeds the maximum allowed
    3591             :                  * then consider reclaiming from all zones. This has a dual
    3592             :                  * purpose -- on 64-bit systems it is expected that
    3593             :                  * buffer_heads are stripped during active rotation. On 32-bit
    3594             :                  * systems, highmem pages can pin lowmem memory and shrinking
    3595             :                  * buffers can relieve lowmem pressure. Reclaim may still not
    3596             :                  * go ahead if all eligible zones for the original allocation
    3597             :                  * request are balanced to avoid excessive reclaim from kswapd.
    3598             :                  */
    3599           0 :                 if (buffer_heads_over_limit) {
    3600           0 :                         for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
    3601           0 :                                 zone = pgdat->node_zones + i;
    3602           0 :                                 if (!managed_zone(zone))
    3603           0 :                                         continue;
    3604             : 
    3605           0 :                                 sc.reclaim_idx = i;
    3606           0 :                                 break;
    3607             :                         }
    3608             :                 }
    3609             : 
    3610             :                 /*
    3611             :                  * If the pgdat is imbalanced then ignore boosting and preserve
    3612             :                  * the watermarks for a later time and restart. Note that the
    3613             :                  * zone watermarks will be still reset at the end of balancing
    3614             :                  * on the grounds that the normal reclaim should be enough to
    3615             :                  * re-evaluate if boosting is required when kswapd next wakes.
    3616             :                  */
    3617           0 :                 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
    3618           0 :                 if (!balanced && nr_boost_reclaim) {
    3619           0 :                         nr_boost_reclaim = 0;
    3620           0 :                         goto restart;
    3621             :                 }
    3622             : 
    3623             :                 /*
    3624             :                  * If boosting is not active then only reclaim if there are no
    3625             :                  * eligible zones. Note that sc.reclaim_idx is not used as
    3626             :                  * buffer_heads_over_limit may have adjusted it.
    3627             :                  */
    3628           0 :                 if (!nr_boost_reclaim && balanced)
    3629           0 :                         goto out;
    3630             : 
    3631             :                 /* Limit the priority of boosting to avoid reclaim writeback */
    3632           0 :                 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
    3633           0 :                         raise_priority = false;
    3634             : 
    3635             :                 /*
    3636             :                  * Do not writeback or swap pages for boosted reclaim. The
    3637             :                  * intent is to relieve pressure not issue sub-optimal IO
    3638             :                  * from reclaim context. If no pages are reclaimed, the
    3639             :                  * reclaim will be aborted.
    3640             :                  */
    3641           0 :                 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
    3642           0 :                 sc.may_swap = !nr_boost_reclaim;
    3643             : 
    3644             :                 /*
    3645             :                  * Do some background aging of the anon list, to give
    3646             :                  * pages a chance to be referenced before reclaiming. All
    3647             :                  * pages are rotated regardless of classzone as this is
    3648             :                  * about consistent aging.
    3649             :                  */
    3650           0 :                 age_active_anon(pgdat, &sc);
    3651             : 
    3652             :                 /*
    3653             :                  * If we're getting trouble reclaiming, start doing writepage
    3654             :                  * even in laptop mode.
    3655             :                  */
    3656           0 :                 if (sc.priority < DEF_PRIORITY - 2)
    3657           0 :                         sc.may_writepage = 1;
    3658             : 
    3659             :                 /* Call soft limit reclaim before calling shrink_node. */
    3660           0 :                 sc.nr_scanned = 0;
    3661           0 :                 nr_soft_scanned = 0;
    3662           0 :                 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
    3663             :                                                 sc.gfp_mask, &nr_soft_scanned);
    3664           0 :                 sc.nr_reclaimed += nr_soft_reclaimed;
    3665             : 
    3666             :                 /*
    3667             :                  * There should be no need to raise the scanning priority if
    3668             :                  * enough pages are already being scanned that that high
    3669             :                  * watermark would be met at 100% efficiency.
    3670             :                  */
    3671           0 :                 if (kswapd_shrink_node(pgdat, &sc))
    3672           0 :                         raise_priority = false;
    3673             : 
    3674             :                 /*
    3675             :                  * If the low watermark is met there is no need for processes
    3676             :                  * to be throttled on pfmemalloc_wait as they should not be
    3677             :                  * able to safely make forward progress. Wake them
    3678             :                  */
    3679           0 :                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
    3680           0 :                                 allow_direct_reclaim(pgdat))
    3681           0 :                         wake_up_all(&pgdat->pfmemalloc_wait);
    3682             : 
    3683             :                 /* Check if kswapd should be suspending */
    3684           0 :                 __fs_reclaim_release();
    3685           0 :                 ret = try_to_freeze();
    3686           0 :                 __fs_reclaim_acquire();
    3687           0 :                 if (ret || kthread_should_stop())
    3688             :                         break;
    3689             : 
    3690             :                 /*
    3691             :                  * Raise priority if scanning rate is too low or there was no
    3692             :                  * progress in reclaiming pages
    3693             :                  */
    3694           0 :                 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
    3695           0 :                 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
    3696             : 
    3697             :                 /*
    3698             :                  * If reclaim made no progress for a boost, stop reclaim as
    3699             :                  * IO cannot be queued and it could be an infinite loop in
    3700             :                  * extreme circumstances.
    3701             :                  */
    3702           0 :                 if (nr_boost_reclaim && !nr_reclaimed)
    3703             :                         break;
    3704             : 
    3705           0 :                 if (raise_priority || !nr_reclaimed)
    3706           0 :                         sc.priority--;
    3707           0 :         } while (sc.priority >= 1);
    3708             : 
    3709           0 :         if (!sc.nr_reclaimed)
    3710           0 :                 pgdat->kswapd_failures++;
    3711             : 
    3712           0 : out:
    3713             :         /* If reclaim was boosted, account for the reclaim done in this pass */
    3714           0 :         if (boosted) {
    3715             :                 unsigned long flags;
    3716             : 
    3717           0 :                 for (i = 0; i <= highest_zoneidx; i++) {
    3718           0 :                         if (!zone_boosts[i])
    3719           0 :                                 continue;
    3720             : 
    3721             :                         /* Increments are under the zone lock */
    3722           0 :                         zone = pgdat->node_zones + i;
    3723           0 :                         spin_lock_irqsave(&zone->lock, flags);
    3724           0 :                         zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
    3725           0 :                         spin_unlock_irqrestore(&zone->lock, flags);
    3726             :                 }
    3727             : 
    3728             :                 /*
    3729             :                  * As there is now likely space, wakeup kcompact to defragment
    3730             :                  * pageblocks.
    3731             :                  */
    3732           0 :                 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
    3733             :         }
    3734             : 
    3735           0 :         snapshot_refaults(NULL, pgdat);
    3736           0 :         __fs_reclaim_release();
    3737           0 :         psi_memstall_leave(&pflags);
    3738           0 :         set_task_reclaim_state(current, NULL);
    3739             : 
    3740             :         /*
    3741             :          * Return the order kswapd stopped reclaiming at as
    3742             :          * prepare_kswapd_sleep() takes it into account. If another caller
    3743             :          * entered the allocator slow path while kswapd was awake, order will
    3744             :          * remain at the higher level.
    3745             :          */
    3746           0 :         return sc.order;
    3747             : }
    3748             : 
    3749             : /*
    3750             :  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
    3751             :  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
    3752             :  * not a valid index then either kswapd runs for first time or kswapd couldn't
    3753             :  * sleep after previous reclaim attempt (node is still unbalanced). In that
    3754             :  * case return the zone index of the previous kswapd reclaim cycle.
    3755             :  */
    3756           1 : static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
    3757             :                                            enum zone_type prev_highest_zoneidx)
    3758             : {
    3759           1 :         enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
    3760             : 
    3761           1 :         return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
    3762             : }
    3763             : 
    3764           1 : static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
    3765             :                                 unsigned int highest_zoneidx)
    3766             : {
    3767           1 :         long remaining = 0;
    3768           1 :         DEFINE_WAIT(wait);
    3769             : 
    3770           1 :         if (freezing(current) || kthread_should_stop())
    3771           0 :                 return;
    3772             : 
    3773           1 :         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
    3774             : 
    3775             :         /*
    3776             :          * Try to sleep for a short interval. Note that kcompactd will only be
    3777             :          * woken if it is possible to sleep for a short interval. This is
    3778             :          * deliberate on the assumption that if reclaim cannot keep an
    3779             :          * eligible zone balanced that it's also unlikely that compaction will
    3780             :          * succeed.
    3781             :          */
    3782           1 :         if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
    3783             :                 /*
    3784             :                  * Compaction records what page blocks it recently failed to
    3785             :                  * isolate pages from and skips them in the future scanning.
    3786             :                  * When kswapd is going to sleep, it is reasonable to assume
    3787             :                  * that pages and compaction may succeed so reset the cache.
    3788             :                  */
    3789           1 :                 reset_isolation_suitable(pgdat);
    3790             : 
    3791             :                 /*
    3792             :                  * We have freed the memory, now we should compact it to make
    3793             :                  * allocation of the requested order possible.
    3794             :                  */
    3795           1 :                 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
    3796             : 
    3797           1 :                 remaining = schedule_timeout(HZ/10);
    3798             : 
    3799             :                 /*
    3800             :                  * If woken prematurely then reset kswapd_highest_zoneidx and
    3801             :                  * order. The values will either be from a wakeup request or
    3802             :                  * the previous request that slept prematurely.
    3803             :                  */
    3804           1 :                 if (remaining) {
    3805           0 :                         WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
    3806             :                                         kswapd_highest_zoneidx(pgdat,
    3807             :                                                         highest_zoneidx));
    3808             : 
    3809           0 :                         if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
    3810           0 :                                 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
    3811             :                 }
    3812             : 
    3813           1 :                 finish_wait(&pgdat->kswapd_wait, &wait);
    3814           1 :                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
    3815             :         }
    3816             : 
    3817             :         /*
    3818             :          * After a short sleep, check if it was a premature sleep. If not, then
    3819             :          * go fully to sleep until explicitly woken up.
    3820             :          */
    3821           2 :         if (!remaining &&
    3822           1 :             prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
    3823           1 :                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
    3824             : 
    3825             :                 /*
    3826             :                  * vmstat counters are not perfectly accurate and the estimated
    3827             :                  * value for counters such as NR_FREE_PAGES can deviate from the
    3828             :                  * true value by nr_online_cpus * threshold. To avoid the zone
    3829             :                  * watermarks being breached while under pressure, we reduce the
    3830             :                  * per-cpu vmstat threshold while kswapd is awake and restore
    3831             :                  * them before going back to sleep.
    3832             :                  */
    3833           1 :                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
    3834             : 
    3835           1 :                 if (!kthread_should_stop())
    3836           1 :                         schedule();
    3837             : 
    3838           0 :                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
    3839             :         } else {
    3840           0 :                 if (remaining)
    3841           0 :                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
    3842             :                 else
    3843           0 :                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
    3844             :         }
    3845           0 :         finish_wait(&pgdat->kswapd_wait, &wait);
    3846             : }
    3847             : 
    3848             : /*
    3849             :  * The background pageout daemon, started as a kernel thread
    3850             :  * from the init process.
    3851             :  *
    3852             :  * This basically trickles out pages so that we have _some_
    3853             :  * free memory available even if there is no other activity
    3854             :  * that frees anything up. This is needed for things like routing
    3855             :  * etc, where we otherwise might have all activity going on in
    3856             :  * asynchronous contexts that cannot page things out.
    3857             :  *
    3858             :  * If there are applications that are active memory-allocators
    3859             :  * (most normal use), this basically shouldn't matter.
    3860             :  */
    3861           1 : static int kswapd(void *p)
    3862             : {
    3863           1 :         unsigned int alloc_order, reclaim_order;
    3864           1 :         unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
    3865           1 :         pg_data_t *pgdat = (pg_data_t*)p;
    3866           1 :         struct task_struct *tsk = current;
    3867           1 :         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
    3868             : 
    3869           1 :         if (!cpumask_empty(cpumask))
    3870           1 :                 set_cpus_allowed_ptr(tsk, cpumask);
    3871             : 
    3872             :         /*
    3873             :          * Tell the memory management that we're a "memory allocator",
    3874             :          * and that if we need more memory we should get access to it
    3875             :          * regardless (see "__alloc_pages()"). "kswapd" should
    3876             :          * never get caught in the normal page freeing logic.
    3877             :          *
    3878             :          * (Kswapd normally doesn't need memory anyway, but sometimes
    3879             :          * you need a small amount of memory in order to be able to
    3880             :          * page out something else, and this flag essentially protects
    3881             :          * us from recursively trying to free more memory as we're
    3882             :          * trying to free the first piece of memory in the first place).
    3883             :          */
    3884           1 :         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
    3885           1 :         set_freezable();
    3886             : 
    3887           1 :         WRITE_ONCE(pgdat->kswapd_order, 0);
    3888           1 :         WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
    3889           1 :         for ( ; ; ) {
    3890           1 :                 bool ret;
    3891             : 
    3892           1 :                 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
    3893           1 :                 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
    3894             :                                                         highest_zoneidx);
    3895             : 
    3896           1 : kswapd_try_sleep:
    3897           1 :                 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
    3898             :                                         highest_zoneidx);
    3899             : 
    3900             :                 /* Read the new order and highest_zoneidx */
    3901           0 :                 alloc_order = READ_ONCE(pgdat->kswapd_order);
    3902           0 :                 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
    3903             :                                                         highest_zoneidx);
    3904           0 :                 WRITE_ONCE(pgdat->kswapd_order, 0);
    3905           0 :                 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
    3906             : 
    3907           0 :                 ret = try_to_freeze();
    3908           0 :                 if (kthread_should_stop())
    3909             :                         break;
    3910             : 
    3911             :                 /*
    3912             :                  * We can speed up thawing tasks if we don't call balance_pgdat
    3913             :                  * after returning from the refrigerator
    3914             :                  */
    3915           0 :                 if (ret)
    3916             :                         continue;
    3917             : 
    3918             :                 /*
    3919             :                  * Reclaim begins at the requested order but if a high-order
    3920             :                  * reclaim fails then kswapd falls back to reclaiming for
    3921             :                  * order-0. If that happens, kswapd will consider sleeping
    3922             :                  * for the order it finished reclaiming at (reclaim_order)
    3923             :                  * but kcompactd is woken to compact for the original
    3924             :                  * request (alloc_order).
    3925             :                  */
    3926           0 :                 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
    3927             :                                                 alloc_order);
    3928           0 :                 reclaim_order = balance_pgdat(pgdat, alloc_order,
    3929             :                                                 highest_zoneidx);
    3930           0 :                 if (reclaim_order < alloc_order)
    3931           0 :                         goto kswapd_try_sleep;
    3932             :         }
    3933             : 
    3934           0 :         tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
    3935             : 
    3936           0 :         return 0;
    3937             : }
    3938             : 
    3939             : /*
    3940             :  * A zone is low on free memory or too fragmented for high-order memory.  If
    3941             :  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
    3942             :  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
    3943             :  * has failed or is not needed, still wake up kcompactd if only compaction is
    3944             :  * needed.
    3945             :  */
    3946           0 : void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
    3947             :                    enum zone_type highest_zoneidx)
    3948             : {
    3949           0 :         pg_data_t *pgdat;
    3950           0 :         enum zone_type curr_idx;
    3951             : 
    3952           0 :         if (!managed_zone(zone))
    3953             :                 return;
    3954             : 
    3955           0 :         if (!cpuset_zone_allowed(zone, gfp_flags))
    3956             :                 return;
    3957             : 
    3958           0 :         pgdat = zone->zone_pgdat;
    3959           0 :         curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
    3960             : 
    3961           0 :         if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
    3962           0 :                 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
    3963             : 
    3964           0 :         if (READ_ONCE(pgdat->kswapd_order) < order)
    3965           0 :                 WRITE_ONCE(pgdat->kswapd_order, order);
    3966             : 
    3967           0 :         if (!waitqueue_active(&pgdat->kswapd_wait))
    3968             :                 return;
    3969             : 
    3970             :         /* Hopeless node, leave it to direct reclaim if possible */
    3971           0 :         if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
    3972           0 :             (pgdat_balanced(pgdat, order, highest_zoneidx) &&
    3973           0 :              !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
    3974             :                 /*
    3975             :                  * There may be plenty of free memory available, but it's too
    3976             :                  * fragmented for high-order allocations.  Wake up kcompactd
    3977             :                  * and rely on compaction_suitable() to determine if it's
    3978             :                  * needed.  If it fails, it will defer subsequent attempts to
    3979             :                  * ratelimit its work.
    3980             :                  */
    3981           0 :                 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
    3982           0 :                         wakeup_kcompactd(pgdat, order, highest_zoneidx);
    3983           0 :                 return;
    3984             :         }
    3985             : 
    3986           0 :         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
    3987             :                                       gfp_flags);
    3988           0 :         wake_up_interruptible(&pgdat->kswapd_wait);
    3989             : }
    3990             : 
    3991             : #ifdef CONFIG_HIBERNATION
    3992             : /*
    3993             :  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
    3994             :  * freed pages.
    3995             :  *
    3996             :  * Rather than trying to age LRUs the aim is to preserve the overall
    3997             :  * LRU order by reclaiming preferentially
    3998             :  * inactive > active > active referenced > active mapped
    3999             :  */
    4000             : unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
    4001             : {
    4002             :         struct scan_control sc = {
    4003             :                 .nr_to_reclaim = nr_to_reclaim,
    4004             :                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
    4005             :                 .reclaim_idx = MAX_NR_ZONES - 1,
    4006             :                 .priority = DEF_PRIORITY,
    4007             :                 .may_writepage = 1,
    4008             :                 .may_unmap = 1,
    4009             :                 .may_swap = 1,
    4010             :                 .hibernation_mode = 1,
    4011             :         };
    4012             :         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
    4013             :         unsigned long nr_reclaimed;
    4014             :         unsigned int noreclaim_flag;
    4015             : 
    4016             :         fs_reclaim_acquire(sc.gfp_mask);
    4017             :         noreclaim_flag = memalloc_noreclaim_save();
    4018             :         set_task_reclaim_state(current, &sc.reclaim_state);
    4019             : 
    4020             :         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
    4021             : 
    4022             :         set_task_reclaim_state(current, NULL);
    4023             :         memalloc_noreclaim_restore(noreclaim_flag);
    4024             :         fs_reclaim_release(sc.gfp_mask);
    4025             : 
    4026             :         return nr_reclaimed;
    4027             : }
    4028             : #endif /* CONFIG_HIBERNATION */
    4029             : 
    4030             : /*
    4031             :  * This kswapd start function will be called by init and node-hot-add.
    4032             :  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
    4033             :  */
    4034           1 : int kswapd_run(int nid)
    4035             : {
    4036           1 :         pg_data_t *pgdat = NODE_DATA(nid);
    4037           1 :         int ret = 0;
    4038             : 
    4039           1 :         if (pgdat->kswapd)
    4040             :                 return 0;
    4041             : 
    4042           1 :         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
    4043           1 :         if (IS_ERR(pgdat->kswapd)) {
    4044             :                 /* failure at boot is fatal */
    4045           0 :                 BUG_ON(system_state < SYSTEM_RUNNING);
    4046           0 :                 pr_err("Failed to start kswapd on node %d\n", nid);
    4047           0 :                 ret = PTR_ERR(pgdat->kswapd);
    4048           0 :                 pgdat->kswapd = NULL;
    4049             :         }
    4050             :         return ret;
    4051             : }
    4052             : 
    4053             : /*
    4054             :  * Called by memory hotplug when all memory in a node is offlined.  Caller must
    4055             :  * hold mem_hotplug_begin/end().
    4056             :  */
    4057           0 : void kswapd_stop(int nid)
    4058             : {
    4059           0 :         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
    4060             : 
    4061           0 :         if (kswapd) {
    4062           0 :                 kthread_stop(kswapd);
    4063           0 :                 NODE_DATA(nid)->kswapd = NULL;
    4064             :         }
    4065           0 : }
    4066             : 
    4067           1 : static int __init kswapd_init(void)
    4068             : {
    4069           1 :         int nid;
    4070             : 
    4071           1 :         swap_setup();
    4072           2 :         for_each_node_state(nid, N_MEMORY)
    4073           1 :                 kswapd_run(nid);
    4074           1 :         return 0;
    4075             : }
    4076             : 
    4077             : module_init(kswapd_init)
    4078             : 
    4079             : #ifdef CONFIG_NUMA
    4080             : /*
    4081             :  * Node reclaim mode
    4082             :  *
    4083             :  * If non-zero call node_reclaim when the number of free pages falls below
    4084             :  * the watermarks.
    4085             :  */
    4086             : int node_reclaim_mode __read_mostly;
    4087             : 
    4088             : /*
    4089             :  * These bit locations are exposed in the vm.zone_reclaim_mode sysctl
    4090             :  * ABI.  New bits are OK, but existing bits can never change.
    4091             :  */
    4092             : #define RECLAIM_ZONE  (1<<0)   /* Run shrink_inactive_list on the zone */
    4093             : #define RECLAIM_WRITE (1<<1)   /* Writeout pages during reclaim */
    4094             : #define RECLAIM_UNMAP (1<<2)   /* Unmap pages during reclaim */
    4095             : 
    4096             : /*
    4097             :  * Priority for NODE_RECLAIM. This determines the fraction of pages
    4098             :  * of a node considered for each zone_reclaim. 4 scans 1/16th of
    4099             :  * a zone.
    4100             :  */
    4101             : #define NODE_RECLAIM_PRIORITY 4
    4102             : 
    4103             : /*
    4104             :  * Percentage of pages in a zone that must be unmapped for node_reclaim to
    4105             :  * occur.
    4106             :  */
    4107             : int sysctl_min_unmapped_ratio = 1;
    4108             : 
    4109             : /*
    4110             :  * If the number of slab pages in a zone grows beyond this percentage then
    4111             :  * slab reclaim needs to occur.
    4112             :  */
    4113             : int sysctl_min_slab_ratio = 5;
    4114             : 
    4115           0 : static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
    4116             : {
    4117           0 :         unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
    4118           0 :         unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
    4119           0 :                 node_page_state(pgdat, NR_ACTIVE_FILE);
    4120             : 
    4121             :         /*
    4122             :          * It's possible for there to be more file mapped pages than
    4123             :          * accounted for by the pages on the file LRU lists because
    4124             :          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
    4125             :          */
    4126           0 :         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
    4127             : }
    4128             : 
    4129             : /* Work out how many page cache pages we can reclaim in this reclaim_mode */
    4130           0 : static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
    4131             : {
    4132           0 :         unsigned long nr_pagecache_reclaimable;
    4133           0 :         unsigned long delta = 0;
    4134             : 
    4135             :         /*
    4136             :          * If RECLAIM_UNMAP is set, then all file pages are considered
    4137             :          * potentially reclaimable. Otherwise, we have to worry about
    4138             :          * pages like swapcache and node_unmapped_file_pages() provides
    4139             :          * a better estimate
    4140             :          */
    4141           0 :         if (node_reclaim_mode & RECLAIM_UNMAP)
    4142           0 :                 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
    4143             :         else
    4144           0 :                 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
    4145             : 
    4146             :         /* If we can't clean pages, remove dirty pages from consideration */
    4147           0 :         if (!(node_reclaim_mode & RECLAIM_WRITE))
    4148           0 :                 delta += node_page_state(pgdat, NR_FILE_DIRTY);
    4149             : 
    4150             :         /* Watch for any possible underflows due to delta */
    4151           0 :         if (unlikely(delta > nr_pagecache_reclaimable))
    4152           0 :                 delta = nr_pagecache_reclaimable;
    4153             : 
    4154           0 :         return nr_pagecache_reclaimable - delta;
    4155             : }
    4156             : 
    4157             : /*
    4158             :  * Try to free up some pages from this node through reclaim.
    4159             :  */
    4160           0 : static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
    4161             : {
    4162             :         /* Minimum pages needed in order to stay on node */
    4163           0 :         const unsigned long nr_pages = 1 << order;
    4164           0 :         struct task_struct *p = current;
    4165           0 :         unsigned int noreclaim_flag;
    4166           0 :         struct scan_control sc = {
    4167           0 :                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
    4168           0 :                 .gfp_mask = current_gfp_context(gfp_mask),
    4169             :                 .order = order,
    4170             :                 .priority = NODE_RECLAIM_PRIORITY,
    4171           0 :                 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
    4172           0 :                 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
    4173             :                 .may_swap = 1,
    4174           0 :                 .reclaim_idx = gfp_zone(gfp_mask),
    4175             :         };
    4176             : 
    4177           0 :         trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
    4178             :                                            sc.gfp_mask);
    4179             : 
    4180           0 :         cond_resched();
    4181           0 :         fs_reclaim_acquire(sc.gfp_mask);
    4182             :         /*
    4183             :          * We need to be able to allocate from the reserves for RECLAIM_UNMAP
    4184             :          * and we also need to be able to write out pages for RECLAIM_WRITE
    4185             :          * and RECLAIM_UNMAP.
    4186             :          */
    4187           0 :         noreclaim_flag = memalloc_noreclaim_save();
    4188           0 :         p->flags |= PF_SWAPWRITE;
    4189           0 :         set_task_reclaim_state(p, &sc.reclaim_state);
    4190             : 
    4191           0 :         if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
    4192             :                 /*
    4193             :                  * Free memory by calling shrink node with increasing
    4194             :                  * priorities until we have enough memory freed.
    4195             :                  */
    4196           0 :                 do {
    4197           0 :                         shrink_node(pgdat, &sc);
    4198           0 :                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
    4199             :         }
    4200             : 
    4201           0 :         set_task_reclaim_state(p, NULL);
    4202           0 :         current->flags &= ~PF_SWAPWRITE;
    4203           0 :         memalloc_noreclaim_restore(noreclaim_flag);
    4204           0 :         fs_reclaim_release(sc.gfp_mask);
    4205             : 
    4206           0 :         trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
    4207             : 
    4208           0 :         return sc.nr_reclaimed >= nr_pages;
    4209             : }
    4210             : 
    4211           0 : int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
    4212             : {
    4213           0 :         int ret;
    4214             : 
    4215             :         /*
    4216             :          * Node reclaim reclaims unmapped file backed pages and
    4217             :          * slab pages if we are over the defined limits.
    4218             :          *
    4219             :          * A small portion of unmapped file backed pages is needed for
    4220             :          * file I/O otherwise pages read by file I/O will be immediately
    4221             :          * thrown out if the node is overallocated. So we do not reclaim
    4222             :          * if less than a specified percentage of the node is used by
    4223             :          * unmapped file backed pages.
    4224             :          */
    4225           0 :         if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
    4226           0 :             node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
    4227           0 :             pgdat->min_slab_pages)
    4228             :                 return NODE_RECLAIM_FULL;
    4229             : 
    4230             :         /*
    4231             :          * Do not scan if the allocation should not be delayed.
    4232             :          */
    4233           0 :         if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
    4234             :                 return NODE_RECLAIM_NOSCAN;
    4235             : 
    4236             :         /*
    4237             :          * Only run node reclaim on the local node or on nodes that do not
    4238             :          * have associated processors. This will favor the local processor
    4239             :          * over remote processors and spread off node memory allocations
    4240             :          * as wide as possible.
    4241             :          */
    4242           0 :         if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
    4243             :                 return NODE_RECLAIM_NOSCAN;
    4244             : 
    4245           0 :         if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
    4246             :                 return NODE_RECLAIM_NOSCAN;
    4247             : 
    4248           0 :         ret = __node_reclaim(pgdat, gfp_mask, order);
    4249           0 :         clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
    4250             : 
    4251           0 :         if (!ret)
    4252           0 :                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
    4253             : 
    4254             :         return ret;
    4255             : }
    4256             : #endif
    4257             : 
    4258             : /**
    4259             :  * check_move_unevictable_pages - check pages for evictability and move to
    4260             :  * appropriate zone lru list
    4261             :  * @pvec: pagevec with lru pages to check
    4262             :  *
    4263             :  * Checks pages for evictability, if an evictable page is in the unevictable
    4264             :  * lru list, moves it to the appropriate evictable lru list. This function
    4265             :  * should be only used for lru pages.
    4266             :  */
    4267           0 : void check_move_unevictable_pages(struct pagevec *pvec)
    4268             : {
    4269           0 :         struct lruvec *lruvec = NULL;
    4270           0 :         int pgscanned = 0;
    4271           0 :         int pgrescued = 0;
    4272           0 :         int i;
    4273             : 
    4274           0 :         for (i = 0; i < pvec->nr; i++) {
    4275           0 :                 struct page *page = pvec->pages[i];
    4276           0 :                 int nr_pages;
    4277             : 
    4278           0 :                 if (PageTransTail(page))
    4279           0 :                         continue;
    4280             : 
    4281           0 :                 nr_pages = thp_nr_pages(page);
    4282           0 :                 pgscanned += nr_pages;
    4283             : 
    4284             :                 /* block memcg migration during page moving between lru */
    4285           0 :                 if (!TestClearPageLRU(page))
    4286           0 :                         continue;
    4287             : 
    4288           0 :                 lruvec = relock_page_lruvec_irq(page, lruvec);
    4289           0 :                 if (page_evictable(page) && PageUnevictable(page)) {
    4290           0 :                         del_page_from_lru_list(page, lruvec);
    4291           0 :                         ClearPageUnevictable(page);
    4292           0 :                         add_page_to_lru_list(page, lruvec);
    4293           0 :                         pgrescued += nr_pages;
    4294             :                 }
    4295           0 :                 SetPageLRU(page);
    4296             :         }
    4297             : 
    4298           0 :         if (lruvec) {
    4299           0 :                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
    4300           0 :                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
    4301           0 :                 unlock_page_lruvec_irq(lruvec);
    4302           0 :         } else if (pgscanned) {
    4303           0 :                 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
    4304             :         }
    4305           0 : }
    4306             : EXPORT_SYMBOL_GPL(check_move_unevictable_pages);

Generated by: LCOV version 1.14