LCOV - code coverage report
Current view: top level - mm - workingset.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 36 157 22.9 %
Date: 2021-04-22 12:43:58 Functions: 4 10 40.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Workingset detection
       4             :  *
       5             :  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
       6             :  */
       7             : 
       8             : #include <linux/memcontrol.h>
       9             : #include <linux/mm_inline.h>
      10             : #include <linux/writeback.h>
      11             : #include <linux/shmem_fs.h>
      12             : #include <linux/pagemap.h>
      13             : #include <linux/atomic.h>
      14             : #include <linux/module.h>
      15             : #include <linux/swap.h>
      16             : #include <linux/dax.h>
      17             : #include <linux/fs.h>
      18             : #include <linux/mm.h>
      19             : 
      20             : /*
      21             :  *              Double CLOCK lists
      22             :  *
      23             :  * Per node, two clock lists are maintained for file pages: the
      24             :  * inactive and the active list.  Freshly faulted pages start out at
      25             :  * the head of the inactive list and page reclaim scans pages from the
      26             :  * tail.  Pages that are accessed multiple times on the inactive list
      27             :  * are promoted to the active list, to protect them from reclaim,
      28             :  * whereas active pages are demoted to the inactive list when the
      29             :  * active list grows too big.
      30             :  *
      31             :  *   fault ------------------------+
      32             :  *                                 |
      33             :  *              +--------------+   |            +-------------+
      34             :  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
      35             :  *              +--------------+                +-------------+    |
      36             :  *                     |                                           |
      37             :  *                     +-------------- promotion ------------------+
      38             :  *
      39             :  *
      40             :  *              Access frequency and refault distance
      41             :  *
      42             :  * A workload is thrashing when its pages are frequently used but they
      43             :  * are evicted from the inactive list every time before another access
      44             :  * would have promoted them to the active list.
      45             :  *
      46             :  * In cases where the average access distance between thrashing pages
      47             :  * is bigger than the size of memory there is nothing that can be
      48             :  * done - the thrashing set could never fit into memory under any
      49             :  * circumstance.
      50             :  *
      51             :  * However, the average access distance could be bigger than the
      52             :  * inactive list, yet smaller than the size of memory.  In this case,
      53             :  * the set could fit into memory if it weren't for the currently
      54             :  * active pages - which may be used more, hopefully less frequently:
      55             :  *
      56             :  *      +-memory available to cache-+
      57             :  *      |                           |
      58             :  *      +-inactive------+-active----+
      59             :  *  a b | c d e f g h i | J K L M N |
      60             :  *      +---------------+-----------+
      61             :  *
      62             :  * It is prohibitively expensive to accurately track access frequency
      63             :  * of pages.  But a reasonable approximation can be made to measure
      64             :  * thrashing on the inactive list, after which refaulting pages can be
      65             :  * activated optimistically to compete with the existing active pages.
      66             :  *
      67             :  * Approximating inactive page access frequency - Observations:
      68             :  *
      69             :  * 1. When a page is accessed for the first time, it is added to the
      70             :  *    head of the inactive list, slides every existing inactive page
      71             :  *    towards the tail by one slot, and pushes the current tail page
      72             :  *    out of memory.
      73             :  *
      74             :  * 2. When a page is accessed for the second time, it is promoted to
      75             :  *    the active list, shrinking the inactive list by one slot.  This
      76             :  *    also slides all inactive pages that were faulted into the cache
      77             :  *    more recently than the activated page towards the tail of the
      78             :  *    inactive list.
      79             :  *
      80             :  * Thus:
      81             :  *
      82             :  * 1. The sum of evictions and activations between any two points in
      83             :  *    time indicate the minimum number of inactive pages accessed in
      84             :  *    between.
      85             :  *
      86             :  * 2. Moving one inactive page N page slots towards the tail of the
      87             :  *    list requires at least N inactive page accesses.
      88             :  *
      89             :  * Combining these:
      90             :  *
      91             :  * 1. When a page is finally evicted from memory, the number of
      92             :  *    inactive pages accessed while the page was in cache is at least
      93             :  *    the number of page slots on the inactive list.
      94             :  *
      95             :  * 2. In addition, measuring the sum of evictions and activations (E)
      96             :  *    at the time of a page's eviction, and comparing it to another
      97             :  *    reading (R) at the time the page faults back into memory tells
      98             :  *    the minimum number of accesses while the page was not cached.
      99             :  *    This is called the refault distance.
     100             :  *
     101             :  * Because the first access of the page was the fault and the second
     102             :  * access the refault, we combine the in-cache distance with the
     103             :  * out-of-cache distance to get the complete minimum access distance
     104             :  * of this page:
     105             :  *
     106             :  *      NR_inactive + (R - E)
     107             :  *
     108             :  * And knowing the minimum access distance of a page, we can easily
     109             :  * tell if the page would be able to stay in cache assuming all page
     110             :  * slots in the cache were available:
     111             :  *
     112             :  *   NR_inactive + (R - E) <= NR_inactive + NR_active
     113             :  *
     114             :  * which can be further simplified to
     115             :  *
     116             :  *   (R - E) <= NR_active
     117             :  *
     118             :  * Put into words, the refault distance (out-of-cache) can be seen as
     119             :  * a deficit in inactive list space (in-cache).  If the inactive list
     120             :  * had (R - E) more page slots, the page would not have been evicted
     121             :  * in between accesses, but activated instead.  And on a full system,
     122             :  * the only thing eating into inactive list space is active pages.
     123             :  *
     124             :  *
     125             :  *              Refaulting inactive pages
     126             :  *
     127             :  * All that is known about the active list is that the pages have been
     128             :  * accessed more than once in the past.  This means that at any given
     129             :  * time there is actually a good chance that pages on the active list
     130             :  * are no longer in active use.
     131             :  *
     132             :  * So when a refault distance of (R - E) is observed and there are at
     133             :  * least (R - E) active pages, the refaulting page is activated
     134             :  * optimistically in the hope that (R - E) active pages are actually
     135             :  * used less frequently than the refaulting page - or even not used at
     136             :  * all anymore.
     137             :  *
     138             :  * That means if inactive cache is refaulting with a suitable refault
     139             :  * distance, we assume the cache workingset is transitioning and put
     140             :  * pressure on the current active list.
     141             :  *
     142             :  * If this is wrong and demotion kicks in, the pages which are truly
     143             :  * used more frequently will be reactivated while the less frequently
     144             :  * used once will be evicted from memory.
     145             :  *
     146             :  * But if this is right, the stale pages will be pushed out of memory
     147             :  * and the used pages get to stay in cache.
     148             :  *
     149             :  *              Refaulting active pages
     150             :  *
     151             :  * If on the other hand the refaulting pages have recently been
     152             :  * deactivated, it means that the active list is no longer protecting
     153             :  * actively used cache from reclaim. The cache is NOT transitioning to
     154             :  * a different workingset; the existing workingset is thrashing in the
     155             :  * space allocated to the page cache.
     156             :  *
     157             :  *
     158             :  *              Implementation
     159             :  *
     160             :  * For each node's LRU lists, a counter for inactive evictions and
     161             :  * activations is maintained (node->nonresident_age).
     162             :  *
     163             :  * On eviction, a snapshot of this counter (along with some bits to
     164             :  * identify the node) is stored in the now empty page cache
     165             :  * slot of the evicted page.  This is called a shadow entry.
     166             :  *
     167             :  * On cache misses for which there are shadow entries, an eligible
     168             :  * refault distance will immediately activate the refaulting page.
     169             :  */
     170             : 
     171             : #define EVICTION_SHIFT  ((BITS_PER_LONG - BITS_PER_XA_VALUE) +  \
     172             :                          1 + NODES_SHIFT + MEM_CGROUP_ID_SHIFT)
     173             : #define EVICTION_MASK   (~0UL >> EVICTION_SHIFT)
     174             : 
     175             : /*
     176             :  * Eviction timestamps need to be able to cover the full range of
     177             :  * actionable refaults. However, bits are tight in the xarray
     178             :  * entry, and after storing the identifier for the lruvec there might
     179             :  * not be enough left to represent every single actionable refault. In
     180             :  * that case, we have to sacrifice granularity for distance, and group
     181             :  * evictions into coarser buckets by shaving off lower timestamp bits.
     182             :  */
     183             : static unsigned int bucket_order __read_mostly;
     184             : 
     185           0 : static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
     186             :                          bool workingset)
     187             : {
     188           0 :         eviction >>= bucket_order;
     189           0 :         eviction &= EVICTION_MASK;
     190           0 :         eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
     191           0 :         eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
     192           0 :         eviction = (eviction << 1) | workingset;
     193             : 
     194           0 :         return xa_mk_value(eviction);
     195             : }
     196             : 
     197           0 : static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
     198             :                           unsigned long *evictionp, bool *workingsetp)
     199             : {
     200           0 :         unsigned long entry = xa_to_value(shadow);
     201           0 :         int memcgid, nid;
     202           0 :         bool workingset;
     203             : 
     204           0 :         workingset = entry & 1;
     205           0 :         entry >>= 1;
     206           0 :         nid = entry & ((1UL << NODES_SHIFT) - 1);
     207           0 :         entry >>= NODES_SHIFT;
     208           0 :         memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
     209           0 :         entry >>= MEM_CGROUP_ID_SHIFT;
     210             : 
     211           0 :         *memcgidp = memcgid;
     212           0 :         *pgdat = NODE_DATA(nid);
     213           0 :         *evictionp = entry << bucket_order;
     214           0 :         *workingsetp = workingset;
     215             : }
     216             : 
     217             : /**
     218             :  * workingset_age_nonresident - age non-resident entries as LRU ages
     219             :  * @lruvec: the lruvec that was aged
     220             :  * @nr_pages: the number of pages to count
     221             :  *
     222             :  * As in-memory pages are aged, non-resident pages need to be aged as
     223             :  * well, in order for the refault distances later on to be comparable
     224             :  * to the in-memory dimensions. This function allows reclaim and LRU
     225             :  * operations to drive the non-resident aging along in parallel.
     226             :  */
     227       24149 : void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
     228             : {
     229             :         /*
     230             :          * Reclaiming a cgroup means reclaiming all its children in a
     231             :          * round-robin fashion. That means that each cgroup has an LRU
     232             :          * order that is composed of the LRU orders of its child
     233             :          * cgroups; and every page has an LRU position not just in the
     234             :          * cgroup that owns it, but in all of that group's ancestors.
     235             :          *
     236             :          * So when the physical inactive list of a leaf cgroup ages,
     237             :          * the virtual inactive lists of all its parents, including
     238             :          * the root cgroup's, age as well.
     239             :          */
     240       24149 :         do {
     241       24149 :                 atomic_long_add(nr_pages, &lruvec->nonresident_age);
     242       24160 :         } while ((lruvec = parent_lruvec(lruvec)));
     243       24160 : }
     244             : 
     245             : /**
     246             :  * workingset_eviction - note the eviction of a page from memory
     247             :  * @target_memcg: the cgroup that is causing the reclaim
     248             :  * @page: the page being evicted
     249             :  *
     250             :  * Returns a shadow entry to be stored in @page->mapping->i_pages in place
     251             :  * of the evicted @page so that a later refault can be detected.
     252             :  */
     253           0 : void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg)
     254             : {
     255           0 :         struct pglist_data *pgdat = page_pgdat(page);
     256           0 :         unsigned long eviction;
     257           0 :         struct lruvec *lruvec;
     258           0 :         int memcgid;
     259             : 
     260             :         /* Page is fully exclusive and pins page's memory cgroup pointer */
     261           0 :         VM_BUG_ON_PAGE(PageLRU(page), page);
     262           0 :         VM_BUG_ON_PAGE(page_count(page), page);
     263           0 :         VM_BUG_ON_PAGE(!PageLocked(page), page);
     264             : 
     265           0 :         lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
     266             :         /* XXX: target_memcg can be NULL, go through lruvec */
     267           0 :         memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
     268           0 :         eviction = atomic_long_read(&lruvec->nonresident_age);
     269           0 :         workingset_age_nonresident(lruvec, thp_nr_pages(page));
     270           0 :         return pack_shadow(memcgid, pgdat, eviction, PageWorkingset(page));
     271             : }
     272             : 
     273             : /**
     274             :  * workingset_refault - evaluate the refault of a previously evicted page
     275             :  * @page: the freshly allocated replacement page
     276             :  * @shadow: shadow entry of the evicted page
     277             :  *
     278             :  * Calculates and evaluates the refault distance of the previously
     279             :  * evicted page in the context of the node and the memcg whose memory
     280             :  * pressure caused the eviction.
     281             :  */
     282           0 : void workingset_refault(struct page *page, void *shadow)
     283             : {
     284           0 :         bool file = page_is_file_lru(page);
     285           0 :         struct mem_cgroup *eviction_memcg;
     286           0 :         struct lruvec *eviction_lruvec;
     287           0 :         unsigned long refault_distance;
     288           0 :         unsigned long workingset_size;
     289           0 :         struct pglist_data *pgdat;
     290           0 :         struct mem_cgroup *memcg;
     291           0 :         unsigned long eviction;
     292           0 :         struct lruvec *lruvec;
     293           0 :         unsigned long refault;
     294           0 :         bool workingset;
     295           0 :         int memcgid;
     296             : 
     297           0 :         unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
     298             : 
     299           0 :         rcu_read_lock();
     300             :         /*
     301             :          * Look up the memcg associated with the stored ID. It might
     302             :          * have been deleted since the page's eviction.
     303             :          *
     304             :          * Note that in rare events the ID could have been recycled
     305             :          * for a new cgroup that refaults a shared page. This is
     306             :          * impossible to tell from the available data. However, this
     307             :          * should be a rare and limited disturbance, and activations
     308             :          * are always speculative anyway. Ultimately, it's the aging
     309             :          * algorithm's job to shake out the minimum access frequency
     310             :          * for the active cache.
     311             :          *
     312             :          * XXX: On !CONFIG_MEMCG, this will always return NULL; it
     313             :          * would be better if the root_mem_cgroup existed in all
     314             :          * configurations instead.
     315             :          */
     316           0 :         eviction_memcg = mem_cgroup_from_id(memcgid);
     317           0 :         if (!mem_cgroup_disabled() && !eviction_memcg)
     318             :                 goto out;
     319           0 :         eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
     320           0 :         refault = atomic_long_read(&eviction_lruvec->nonresident_age);
     321             : 
     322             :         /*
     323             :          * Calculate the refault distance
     324             :          *
     325             :          * The unsigned subtraction here gives an accurate distance
     326             :          * across nonresident_age overflows in most cases. There is a
     327             :          * special case: usually, shadow entries have a short lifetime
     328             :          * and are either refaulted or reclaimed along with the inode
     329             :          * before they get too old.  But it is not impossible for the
     330             :          * nonresident_age to lap a shadow entry in the field, which
     331             :          * can then result in a false small refault distance, leading
     332             :          * to a false activation should this old entry actually
     333             :          * refault again.  However, earlier kernels used to deactivate
     334             :          * unconditionally with *every* reclaim invocation for the
     335             :          * longest time, so the occasional inappropriate activation
     336             :          * leading to pressure on the active list is not a problem.
     337             :          */
     338           0 :         refault_distance = (refault - eviction) & EVICTION_MASK;
     339             : 
     340             :         /*
     341             :          * The activation decision for this page is made at the level
     342             :          * where the eviction occurred, as that is where the LRU order
     343             :          * during page reclaim is being determined.
     344             :          *
     345             :          * However, the cgroup that will own the page is the one that
     346             :          * is actually experiencing the refault event.
     347             :          */
     348           0 :         memcg = page_memcg(page);
     349           0 :         lruvec = mem_cgroup_lruvec(memcg, pgdat);
     350             : 
     351           0 :         inc_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file);
     352             : 
     353             :         /*
     354             :          * Compare the distance to the existing workingset size. We
     355             :          * don't activate pages that couldn't stay resident even if
     356             :          * all the memory was available to the workingset. Whether
     357             :          * workingset competition needs to consider anon or not depends
     358             :          * on having swap.
     359             :          */
     360           0 :         workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
     361           0 :         if (!file) {
     362           0 :                 workingset_size += lruvec_page_state(eviction_lruvec,
     363             :                                                      NR_INACTIVE_FILE);
     364             :         }
     365           0 :         if (mem_cgroup_get_nr_swap_pages(memcg) > 0) {
     366             :                 workingset_size += lruvec_page_state(eviction_lruvec,
     367             :                                                      NR_ACTIVE_ANON);
     368             :                 if (file) {
     369             :                         workingset_size += lruvec_page_state(eviction_lruvec,
     370             :                                                      NR_INACTIVE_ANON);
     371             :                 }
     372             :         }
     373           0 :         if (refault_distance > workingset_size)
     374           0 :                 goto out;
     375             : 
     376           0 :         SetPageActive(page);
     377           0 :         workingset_age_nonresident(lruvec, thp_nr_pages(page));
     378           0 :         inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file);
     379             : 
     380             :         /* Page was active prior to eviction */
     381           0 :         if (workingset) {
     382           0 :                 SetPageWorkingset(page);
     383             :                 /* XXX: Move to lru_cache_add() when it supports new vs putback */
     384           0 :                 lru_note_cost_page(page);
     385           0 :                 inc_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file);
     386             :         }
     387           0 : out:
     388           0 :         rcu_read_unlock();
     389           0 : }
     390             : 
     391             : /**
     392             :  * workingset_activation - note a page activation
     393             :  * @page: page that is being activated
     394             :  */
     395       24157 : void workingset_activation(struct page *page)
     396             : {
     397       24157 :         struct mem_cgroup *memcg;
     398       24157 :         struct lruvec *lruvec;
     399             : 
     400       24157 :         rcu_read_lock();
     401             :         /*
     402             :          * Filter non-memcg pages here, e.g. unmap can call
     403             :          * mark_page_accessed() on VDSO pages.
     404             :          *
     405             :          * XXX: See workingset_refault() - this should return
     406             :          * root_mem_cgroup even for !CONFIG_MEMCG.
     407             :          */
     408       24152 :         memcg = page_memcg_rcu(page);
     409       24150 :         if (!mem_cgroup_disabled() && !memcg)
     410             :                 goto out;
     411       24150 :         lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
     412       48299 :         workingset_age_nonresident(lruvec, thp_nr_pages(page));
     413       24159 : out:
     414       24159 :         rcu_read_unlock();
     415       24149 : }
     416             : 
     417             : /*
     418             :  * Shadow entries reflect the share of the working set that does not
     419             :  * fit into memory, so their number depends on the access pattern of
     420             :  * the workload.  In most cases, they will refault or get reclaimed
     421             :  * along with the inode, but a (malicious) workload that streams
     422             :  * through files with a total size several times that of available
     423             :  * memory, while preventing the inodes from being reclaimed, can
     424             :  * create excessive amounts of shadow nodes.  To keep a lid on this,
     425             :  * track shadow nodes and reclaim them when they grow way past the
     426             :  * point where they would still be useful.
     427             :  */
     428             : 
     429             : static struct list_lru shadow_nodes;
     430             : 
     431       28709 : void workingset_update_node(struct xa_node *node)
     432             : {
     433             :         /*
     434             :          * Track non-empty nodes that contain only shadow entries;
     435             :          * unlink those that contain pages or are being freed.
     436             :          *
     437             :          * Avoid acquiring the list_lru lock when the nodes are
     438             :          * already where they should be. The list_empty() test is safe
     439             :          * as node->private_list is protected by the i_pages lock.
     440             :          */
     441       28709 :         VM_WARN_ON_ONCE(!irqs_disabled());  /* For __inc_lruvec_page_state */
     442             : 
     443       28709 :         if (node->count && node->count == node->nr_values) {
     444           0 :                 if (list_empty(&node->private_list)) {
     445           0 :                         list_lru_add(&shadow_nodes, &node->private_list);
     446           0 :                         __inc_lruvec_kmem_state(node, WORKINGSET_NODES);
     447             :                 }
     448             :         } else {
     449       28709 :                 if (!list_empty(&node->private_list)) {
     450           0 :                         list_lru_del(&shadow_nodes, &node->private_list);
     451           0 :                         __dec_lruvec_kmem_state(node, WORKINGSET_NODES);
     452             :                 }
     453             :         }
     454       28709 : }
     455             : 
     456           0 : static unsigned long count_shadow_nodes(struct shrinker *shrinker,
     457             :                                         struct shrink_control *sc)
     458             : {
     459           0 :         unsigned long max_nodes;
     460           0 :         unsigned long nodes;
     461           0 :         unsigned long pages;
     462             : 
     463           0 :         nodes = list_lru_shrink_count(&shadow_nodes, sc);
     464           0 :         if (!nodes)
     465             :                 return SHRINK_EMPTY;
     466             : 
     467             :         /*
     468             :          * Approximate a reasonable limit for the nodes
     469             :          * containing shadow entries. We don't need to keep more
     470             :          * shadow entries than possible pages on the active list,
     471             :          * since refault distances bigger than that are dismissed.
     472             :          *
     473             :          * The size of the active list converges toward 100% of
     474             :          * overall page cache as memory grows, with only a tiny
     475             :          * inactive list. Assume the total cache size for that.
     476             :          *
     477             :          * Nodes might be sparsely populated, with only one shadow
     478             :          * entry in the extreme case. Obviously, we cannot keep one
     479             :          * node for every eligible shadow entry, so compromise on a
     480             :          * worst-case density of 1/8th. Below that, not all eligible
     481             :          * refaults can be detected anymore.
     482             :          *
     483             :          * On 64-bit with 7 xa_nodes per page and 64 slots
     484             :          * each, this will reclaim shadow entries when they consume
     485             :          * ~1.8% of available memory:
     486             :          *
     487             :          * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
     488             :          */
     489             : #ifdef CONFIG_MEMCG
     490             :         if (sc->memcg) {
     491             :                 struct lruvec *lruvec;
     492             :                 int i;
     493             : 
     494             :                 lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
     495             :                 for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
     496             :                         pages += lruvec_page_state_local(lruvec,
     497             :                                                          NR_LRU_BASE + i);
     498             :                 pages += lruvec_page_state_local(
     499             :                         lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
     500             :                 pages += lruvec_page_state_local(
     501             :                         lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
     502             :         } else
     503             : #endif
     504           0 :                 pages = node_present_pages(sc->nid);
     505             : 
     506           0 :         max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
     507             : 
     508           0 :         if (nodes <= max_nodes)
     509             :                 return 0;
     510           0 :         return nodes - max_nodes;
     511             : }
     512             : 
     513           0 : static enum lru_status shadow_lru_isolate(struct list_head *item,
     514             :                                           struct list_lru_one *lru,
     515             :                                           spinlock_t *lru_lock,
     516             :                                           void *arg) __must_hold(lru_lock)
     517             : {
     518           0 :         struct xa_node *node = container_of(item, struct xa_node, private_list);
     519           0 :         struct address_space *mapping;
     520           0 :         int ret;
     521             : 
     522             :         /*
     523             :          * Page cache insertions and deletions synchronously maintain
     524             :          * the shadow node LRU under the i_pages lock and the
     525             :          * lru_lock.  Because the page cache tree is emptied before
     526             :          * the inode can be destroyed, holding the lru_lock pins any
     527             :          * address_space that has nodes on the LRU.
     528             :          *
     529             :          * We can then safely transition to the i_pages lock to
     530             :          * pin only the address_space of the particular node we want
     531             :          * to reclaim, take the node off-LRU, and drop the lru_lock.
     532             :          */
     533             : 
     534           0 :         mapping = container_of(node->array, struct address_space, i_pages);
     535             : 
     536             :         /* Coming from the list, invert the lock order */
     537           0 :         if (!xa_trylock(&mapping->i_pages)) {
     538           0 :                 spin_unlock_irq(lru_lock);
     539           0 :                 ret = LRU_RETRY;
     540           0 :                 goto out;
     541             :         }
     542             : 
     543           0 :         list_lru_isolate(lru, item);
     544           0 :         __dec_lruvec_kmem_state(node, WORKINGSET_NODES);
     545             : 
     546           0 :         spin_unlock(lru_lock);
     547             : 
     548             :         /*
     549             :          * The nodes should only contain one or more shadow entries,
     550             :          * no pages, so we expect to be able to remove them all and
     551             :          * delete and free the empty node afterwards.
     552             :          */
     553           0 :         if (WARN_ON_ONCE(!node->nr_values))
     554           0 :                 goto out_invalid;
     555           0 :         if (WARN_ON_ONCE(node->count != node->nr_values))
     556           0 :                 goto out_invalid;
     557           0 :         mapping->nrexceptional -= node->nr_values;
     558           0 :         xa_delete_node(node, workingset_update_node);
     559           0 :         __inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
     560             : 
     561           0 : out_invalid:
     562           0 :         xa_unlock_irq(&mapping->i_pages);
     563           0 :         ret = LRU_REMOVED_RETRY;
     564           0 : out:
     565           0 :         cond_resched();
     566           0 :         spin_lock_irq(lru_lock);
     567           0 :         return ret;
     568             : }
     569             : 
     570           0 : static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
     571             :                                        struct shrink_control *sc)
     572             : {
     573             :         /* list_lru lock nests inside the IRQ-safe i_pages lock */
     574           0 :         return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
     575             :                                         NULL);
     576             : }
     577             : 
     578             : static struct shrinker workingset_shadow_shrinker = {
     579             :         .count_objects = count_shadow_nodes,
     580             :         .scan_objects = scan_shadow_nodes,
     581             :         .seeks = 0, /* ->count reports only fully expendable nodes */
     582             :         .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
     583             : };
     584             : 
     585             : /*
     586             :  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
     587             :  * i_pages lock.
     588             :  */
     589             : static struct lock_class_key shadow_nodes_key;
     590             : 
     591           1 : static int __init workingset_init(void)
     592             : {
     593           1 :         unsigned int timestamp_bits;
     594           1 :         unsigned int max_order;
     595           1 :         int ret;
     596             : 
     597           1 :         BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
     598             :         /*
     599             :          * Calculate the eviction bucket size to cover the longest
     600             :          * actionable refault distance, which is currently half of
     601             :          * memory (totalram_pages/2). However, memory hotplug may add
     602             :          * some more pages at runtime, so keep working with up to
     603             :          * double the initial memory by using totalram_pages as-is.
     604             :          */
     605           1 :         timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
     606           1 :         max_order = fls_long(totalram_pages() - 1);
     607           1 :         if (max_order > timestamp_bits)
     608           0 :                 bucket_order = max_order - timestamp_bits;
     609           1 :         pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
     610             :                timestamp_bits, max_order, bucket_order);
     611             : 
     612           1 :         ret = prealloc_shrinker(&workingset_shadow_shrinker);
     613           1 :         if (ret)
     614           0 :                 goto err;
     615           1 :         ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
     616             :                               &workingset_shadow_shrinker);
     617           1 :         if (ret)
     618           0 :                 goto err_list_lru;
     619           1 :         register_shrinker_prepared(&workingset_shadow_shrinker);
     620           1 :         return 0;
     621           0 : err_list_lru:
     622           0 :         free_prealloced_shrinker(&workingset_shadow_shrinker);
     623             : err:
     624             :         return ret;
     625             : }
     626             : module_init(workingset_init);

Generated by: LCOV version 1.14