Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /* linux/net/ipv4/arp.c
3 : *
4 : * Copyright (C) 1994 by Florian La Roche
5 : *
6 : * This module implements the Address Resolution Protocol ARP (RFC 826),
7 : * which is used to convert IP addresses (or in the future maybe other
8 : * high-level addresses) into a low-level hardware address (like an Ethernet
9 : * address).
10 : *
11 : * Fixes:
12 : * Alan Cox : Removed the Ethernet assumptions in
13 : * Florian's code
14 : * Alan Cox : Fixed some small errors in the ARP
15 : * logic
16 : * Alan Cox : Allow >4K in /proc
17 : * Alan Cox : Make ARP add its own protocol entry
18 : * Ross Martin : Rewrote arp_rcv() and arp_get_info()
19 : * Stephen Henson : Add AX25 support to arp_get_info()
20 : * Alan Cox : Drop data when a device is downed.
21 : * Alan Cox : Use init_timer().
22 : * Alan Cox : Double lock fixes.
23 : * Martin Seine : Move the arphdr structure
24 : * to if_arp.h for compatibility.
25 : * with BSD based programs.
26 : * Andrew Tridgell : Added ARP netmask code and
27 : * re-arranged proxy handling.
28 : * Alan Cox : Changed to use notifiers.
29 : * Niibe Yutaka : Reply for this device or proxies only.
30 : * Alan Cox : Don't proxy across hardware types!
31 : * Jonathan Naylor : Added support for NET/ROM.
32 : * Mike Shaver : RFC1122 checks.
33 : * Jonathan Naylor : Only lookup the hardware address for
34 : * the correct hardware type.
35 : * Germano Caronni : Assorted subtle races.
36 : * Craig Schlenter : Don't modify permanent entry
37 : * during arp_rcv.
38 : * Russ Nelson : Tidied up a few bits.
39 : * Alexey Kuznetsov: Major changes to caching and behaviour,
40 : * eg intelligent arp probing and
41 : * generation
42 : * of host down events.
43 : * Alan Cox : Missing unlock in device events.
44 : * Eckes : ARP ioctl control errors.
45 : * Alexey Kuznetsov: Arp free fix.
46 : * Manuel Rodriguez: Gratuitous ARP.
47 : * Jonathan Layes : Added arpd support through kerneld
48 : * message queue (960314)
49 : * Mike Shaver : /proc/sys/net/ipv4/arp_* support
50 : * Mike McLagan : Routing by source
51 : * Stuart Cheshire : Metricom and grat arp fixes
52 : * *** FOR 2.1 clean this up ***
53 : * Lawrence V. Stefani: (08/12/96) Added FDDI support.
54 : * Alan Cox : Took the AP1000 nasty FDDI hack and
55 : * folded into the mainstream FDDI code.
56 : * Ack spit, Linus how did you allow that
57 : * one in...
58 : * Jes Sorensen : Make FDDI work again in 2.1.x and
59 : * clean up the APFDDI & gen. FDDI bits.
60 : * Alexey Kuznetsov: new arp state machine;
61 : * now it is in net/core/neighbour.c.
62 : * Krzysztof Halasa: Added Frame Relay ARP support.
63 : * Arnaldo C. Melo : convert /proc/net/arp to seq_file
64 : * Shmulik Hen: Split arp_send to arp_create and
65 : * arp_xmit so intermediate drivers like
66 : * bonding can change the skb before
67 : * sending (e.g. insert 8021q tag).
68 : * Harald Welte : convert to make use of jenkins hash
69 : * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
70 : */
71 :
72 : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 :
74 : #include <linux/module.h>
75 : #include <linux/types.h>
76 : #include <linux/string.h>
77 : #include <linux/kernel.h>
78 : #include <linux/capability.h>
79 : #include <linux/socket.h>
80 : #include <linux/sockios.h>
81 : #include <linux/errno.h>
82 : #include <linux/in.h>
83 : #include <linux/mm.h>
84 : #include <linux/inet.h>
85 : #include <linux/inetdevice.h>
86 : #include <linux/netdevice.h>
87 : #include <linux/etherdevice.h>
88 : #include <linux/fddidevice.h>
89 : #include <linux/if_arp.h>
90 : #include <linux/skbuff.h>
91 : #include <linux/proc_fs.h>
92 : #include <linux/seq_file.h>
93 : #include <linux/stat.h>
94 : #include <linux/init.h>
95 : #include <linux/net.h>
96 : #include <linux/rcupdate.h>
97 : #include <linux/slab.h>
98 : #ifdef CONFIG_SYSCTL
99 : #include <linux/sysctl.h>
100 : #endif
101 :
102 : #include <net/net_namespace.h>
103 : #include <net/ip.h>
104 : #include <net/icmp.h>
105 : #include <net/route.h>
106 : #include <net/protocol.h>
107 : #include <net/tcp.h>
108 : #include <net/sock.h>
109 : #include <net/arp.h>
110 : #include <net/ax25.h>
111 : #include <net/netrom.h>
112 : #include <net/dst_metadata.h>
113 : #include <net/ip_tunnels.h>
114 :
115 : #include <linux/uaccess.h>
116 :
117 : #include <linux/netfilter_arp.h>
118 :
119 : /*
120 : * Interface to generic neighbour cache.
121 : */
122 : static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123 : static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124 : static int arp_constructor(struct neighbour *neigh);
125 : static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126 : static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127 : static void parp_redo(struct sk_buff *skb);
128 : static int arp_is_multicast(const void *pkey);
129 :
130 : static const struct neigh_ops arp_generic_ops = {
131 : .family = AF_INET,
132 : .solicit = arp_solicit,
133 : .error_report = arp_error_report,
134 : .output = neigh_resolve_output,
135 : .connected_output = neigh_connected_output,
136 : };
137 :
138 : static const struct neigh_ops arp_hh_ops = {
139 : .family = AF_INET,
140 : .solicit = arp_solicit,
141 : .error_report = arp_error_report,
142 : .output = neigh_resolve_output,
143 : .connected_output = neigh_resolve_output,
144 : };
145 :
146 : static const struct neigh_ops arp_direct_ops = {
147 : .family = AF_INET,
148 : .output = neigh_direct_output,
149 : .connected_output = neigh_direct_output,
150 : };
151 :
152 : struct neigh_table arp_tbl = {
153 : .family = AF_INET,
154 : .key_len = 4,
155 : .protocol = cpu_to_be16(ETH_P_IP),
156 : .hash = arp_hash,
157 : .key_eq = arp_key_eq,
158 : .constructor = arp_constructor,
159 : .proxy_redo = parp_redo,
160 : .is_multicast = arp_is_multicast,
161 : .id = "arp_cache",
162 : .parms = {
163 : .tbl = &arp_tbl,
164 : .reachable_time = 30 * HZ,
165 : .data = {
166 : [NEIGH_VAR_MCAST_PROBES] = 3,
167 : [NEIGH_VAR_UCAST_PROBES] = 3,
168 : [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 : [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 : [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 : [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172 : [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
173 : [NEIGH_VAR_PROXY_QLEN] = 64,
174 : [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175 : [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
176 : [NEIGH_VAR_LOCKTIME] = 1 * HZ,
177 : },
178 : },
179 : .gc_interval = 30 * HZ,
180 : .gc_thresh1 = 128,
181 : .gc_thresh2 = 512,
182 : .gc_thresh3 = 1024,
183 : };
184 : EXPORT_SYMBOL(arp_tbl);
185 :
186 2 : int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187 : {
188 2 : switch (dev->type) {
189 : case ARPHRD_ETHER:
190 : case ARPHRD_FDDI:
191 : case ARPHRD_IEEE802:
192 1 : ip_eth_mc_map(addr, haddr);
193 1 : return 0;
194 0 : case ARPHRD_INFINIBAND:
195 0 : ip_ib_mc_map(addr, dev->broadcast, haddr);
196 0 : return 0;
197 0 : case ARPHRD_IPGRE:
198 0 : ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199 : return 0;
200 1 : default:
201 1 : if (dir) {
202 0 : memcpy(haddr, dev->broadcast, dev->addr_len);
203 0 : return 0;
204 : }
205 : }
206 : return -EINVAL;
207 : }
208 :
209 :
210 6 : static u32 arp_hash(const void *pkey,
211 : const struct net_device *dev,
212 : __u32 *hash_rnd)
213 : {
214 6 : return arp_hashfn(pkey, dev, hash_rnd);
215 : }
216 :
217 4 : static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218 : {
219 4 : return neigh_key_eq32(neigh, pkey);
220 : }
221 :
222 2 : static int arp_constructor(struct neighbour *neigh)
223 : {
224 2 : __be32 addr;
225 2 : struct net_device *dev = neigh->dev;
226 2 : struct in_device *in_dev;
227 2 : struct neigh_parms *parms;
228 2 : u32 inaddr_any = INADDR_ANY;
229 :
230 2 : if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
231 0 : memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
232 :
233 2 : addr = *(__be32 *)neigh->primary_key;
234 2 : rcu_read_lock();
235 2 : in_dev = __in_dev_get_rcu(dev);
236 2 : if (!in_dev) {
237 0 : rcu_read_unlock();
238 0 : return -EINVAL;
239 : }
240 :
241 2 : neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
242 :
243 2 : parms = in_dev->arp_parms;
244 2 : __neigh_parms_put(neigh->parms);
245 2 : neigh->parms = neigh_parms_clone(parms);
246 2 : rcu_read_unlock();
247 :
248 2 : if (!dev->header_ops) {
249 0 : neigh->nud_state = NUD_NOARP;
250 0 : neigh->ops = &arp_direct_ops;
251 0 : neigh->output = neigh_direct_output;
252 : } else {
253 : /* Good devices (checked by reading texts, but only Ethernet is
254 : tested)
255 :
256 : ARPHRD_ETHER: (ethernet, apfddi)
257 : ARPHRD_FDDI: (fddi)
258 : ARPHRD_IEEE802: (tr)
259 : ARPHRD_METRICOM: (strip)
260 : ARPHRD_ARCNET:
261 : etc. etc. etc.
262 :
263 : ARPHRD_IPDDP will also work, if author repairs it.
264 : I did not it, because this driver does not work even
265 : in old paradigm.
266 : */
267 :
268 2 : if (neigh->type == RTN_MULTICAST) {
269 0 : neigh->nud_state = NUD_NOARP;
270 0 : arp_mc_map(addr, neigh->ha, dev, 1);
271 2 : } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
272 0 : neigh->nud_state = NUD_NOARP;
273 0 : memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
274 2 : } else if (neigh->type == RTN_BROADCAST ||
275 2 : (dev->flags & IFF_POINTOPOINT)) {
276 0 : neigh->nud_state = NUD_NOARP;
277 0 : memcpy(neigh->ha, dev->broadcast, dev->addr_len);
278 : }
279 :
280 2 : if (dev->header_ops->cache)
281 2 : neigh->ops = &arp_hh_ops;
282 : else
283 0 : neigh->ops = &arp_generic_ops;
284 :
285 2 : if (neigh->nud_state & NUD_VALID)
286 0 : neigh->output = neigh->ops->connected_output;
287 : else
288 2 : neigh->output = neigh->ops->output;
289 : }
290 : return 0;
291 : }
292 :
293 0 : static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
294 : {
295 0 : dst_link_failure(skb);
296 0 : kfree_skb(skb);
297 0 : }
298 :
299 : /* Create and send an arp packet. */
300 4 : static void arp_send_dst(int type, int ptype, __be32 dest_ip,
301 : struct net_device *dev, __be32 src_ip,
302 : const unsigned char *dest_hw,
303 : const unsigned char *src_hw,
304 : const unsigned char *target_hw,
305 : struct dst_entry *dst)
306 : {
307 4 : struct sk_buff *skb;
308 :
309 : /* arp on this interface. */
310 4 : if (dev->flags & IFF_NOARP)
311 : return;
312 :
313 4 : skb = arp_create(type, ptype, dest_ip, dev, src_ip,
314 : dest_hw, src_hw, target_hw);
315 4 : if (!skb)
316 : return;
317 :
318 4 : skb_dst_set(skb, dst_clone(dst));
319 4 : arp_xmit(skb);
320 : }
321 :
322 0 : void arp_send(int type, int ptype, __be32 dest_ip,
323 : struct net_device *dev, __be32 src_ip,
324 : const unsigned char *dest_hw, const unsigned char *src_hw,
325 : const unsigned char *target_hw)
326 : {
327 0 : arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
328 : target_hw, NULL);
329 0 : }
330 : EXPORT_SYMBOL(arp_send);
331 :
332 4 : static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
333 : {
334 4 : __be32 saddr = 0;
335 4 : u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
336 4 : struct net_device *dev = neigh->dev;
337 4 : __be32 target = *(__be32 *)neigh->primary_key;
338 4 : int probes = atomic_read(&neigh->probes);
339 4 : struct in_device *in_dev;
340 4 : struct dst_entry *dst = NULL;
341 :
342 4 : rcu_read_lock();
343 4 : in_dev = __in_dev_get_rcu(dev);
344 4 : if (!in_dev) {
345 0 : rcu_read_unlock();
346 0 : return;
347 : }
348 4 : switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
349 4 : default:
350 : case 0: /* By default announce any local IP */
351 6 : if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
352 2 : ip_hdr(skb)->saddr) == RTN_LOCAL)
353 2 : saddr = ip_hdr(skb)->saddr;
354 : break;
355 0 : case 1: /* Restrict announcements of saddr in same subnet */
356 0 : if (!skb)
357 : break;
358 0 : saddr = ip_hdr(skb)->saddr;
359 0 : if (inet_addr_type_dev_table(dev_net(dev), dev,
360 : saddr) == RTN_LOCAL) {
361 : /* saddr should be known to target */
362 0 : if (inet_addr_onlink(in_dev, target, saddr))
363 : break;
364 : }
365 0 : saddr = 0;
366 0 : break;
367 : case 2: /* Avoid secondary IPs, get a primary/preferred one */
368 : break;
369 : }
370 2 : rcu_read_unlock();
371 :
372 4 : if (!saddr)
373 2 : saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
374 :
375 4 : probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
376 4 : if (probes < 0) {
377 2 : if (!(neigh->nud_state & NUD_VALID))
378 : pr_debug("trying to ucast probe in NUD_INVALID\n");
379 2 : neigh_ha_snapshot(dst_ha, neigh, dev);
380 2 : dst_hw = dst_ha;
381 : } else {
382 2 : probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
383 2 : if (probes < 0) {
384 0 : neigh_app_ns(neigh);
385 0 : return;
386 : }
387 : }
388 :
389 4 : if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
390 0 : dst = skb_dst(skb);
391 4 : arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
392 4 : dst_hw, dev->dev_addr, NULL, dst);
393 : }
394 :
395 0 : static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
396 : {
397 0 : struct net *net = dev_net(in_dev->dev);
398 0 : int scope;
399 :
400 0 : switch (IN_DEV_ARP_IGNORE(in_dev)) {
401 : case 0: /* Reply, the tip is already validated */
402 : return 0;
403 : case 1: /* Reply only if tip is configured on the incoming interface */
404 : sip = 0;
405 : scope = RT_SCOPE_HOST;
406 : break;
407 0 : case 2: /*
408 : * Reply only if tip is configured on the incoming interface
409 : * and is in same subnet as sip
410 : */
411 0 : scope = RT_SCOPE_HOST;
412 0 : break;
413 0 : case 3: /* Do not reply for scope host addresses */
414 0 : sip = 0;
415 0 : scope = RT_SCOPE_LINK;
416 0 : in_dev = NULL;
417 0 : break;
418 : case 4: /* Reserved */
419 : case 5:
420 : case 6:
421 : case 7:
422 : return 0;
423 0 : case 8: /* Do not reply */
424 0 : return 1;
425 : default:
426 : return 0;
427 : }
428 0 : return !inet_confirm_addr(net, in_dev, sip, tip, scope);
429 : }
430 :
431 0 : static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
432 : {
433 0 : struct rtable *rt;
434 0 : int flag = 0;
435 : /*unsigned long now; */
436 0 : struct net *net = dev_net(dev);
437 :
438 0 : rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
439 0 : if (IS_ERR(rt))
440 : return 1;
441 0 : if (rt->dst.dev != dev) {
442 0 : __NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
443 0 : flag = 1;
444 : }
445 0 : ip_rt_put(rt);
446 0 : return flag;
447 : }
448 :
449 : /*
450 : * Check if we can use proxy ARP for this path
451 : */
452 0 : static inline int arp_fwd_proxy(struct in_device *in_dev,
453 : struct net_device *dev, struct rtable *rt)
454 : {
455 0 : struct in_device *out_dev;
456 0 : int imi, omi = -1;
457 :
458 0 : if (rt->dst.dev == dev)
459 : return 0;
460 :
461 0 : if (!IN_DEV_PROXY_ARP(in_dev))
462 : return 0;
463 0 : imi = IN_DEV_MEDIUM_ID(in_dev);
464 0 : if (imi == 0)
465 : return 1;
466 0 : if (imi == -1)
467 : return 0;
468 :
469 : /* place to check for proxy_arp for routes */
470 :
471 0 : out_dev = __in_dev_get_rcu(rt->dst.dev);
472 0 : if (out_dev)
473 0 : omi = IN_DEV_MEDIUM_ID(out_dev);
474 :
475 0 : return omi != imi && omi != -1;
476 : }
477 :
478 : /*
479 : * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
480 : *
481 : * RFC3069 supports proxy arp replies back to the same interface. This
482 : * is done to support (ethernet) switch features, like RFC 3069, where
483 : * the individual ports are not allowed to communicate with each
484 : * other, BUT they are allowed to talk to the upstream router. As
485 : * described in RFC 3069, it is possible to allow these hosts to
486 : * communicate through the upstream router, by proxy_arp'ing.
487 : *
488 : * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
489 : *
490 : * This technology is known by different names:
491 : * In RFC 3069 it is called VLAN Aggregation.
492 : * Cisco and Allied Telesyn call it Private VLAN.
493 : * Hewlett-Packard call it Source-Port filtering or port-isolation.
494 : * Ericsson call it MAC-Forced Forwarding (RFC Draft).
495 : *
496 : */
497 0 : static inline int arp_fwd_pvlan(struct in_device *in_dev,
498 : struct net_device *dev, struct rtable *rt,
499 : __be32 sip, __be32 tip)
500 : {
501 : /* Private VLAN is only concerned about the same ethernet segment */
502 0 : if (rt->dst.dev != dev)
503 : return 0;
504 :
505 : /* Don't reply on self probes (often done by windowz boxes)*/
506 0 : if (sip == tip)
507 : return 0;
508 :
509 0 : if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
510 : return 1;
511 : else
512 : return 0;
513 : }
514 :
515 : /*
516 : * Interface to link layer: send routine and receive handler.
517 : */
518 :
519 : /*
520 : * Create an arp packet. If dest_hw is not set, we create a broadcast
521 : * message.
522 : */
523 4 : struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
524 : struct net_device *dev, __be32 src_ip,
525 : const unsigned char *dest_hw,
526 : const unsigned char *src_hw,
527 : const unsigned char *target_hw)
528 : {
529 4 : struct sk_buff *skb;
530 4 : struct arphdr *arp;
531 4 : unsigned char *arp_ptr;
532 4 : int hlen = LL_RESERVED_SPACE(dev);
533 4 : int tlen = dev->needed_tailroom;
534 :
535 : /*
536 : * Allocate a buffer
537 : */
538 :
539 4 : skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
540 4 : if (!skb)
541 : return NULL;
542 :
543 4 : skb_reserve(skb, hlen);
544 4 : skb_reset_network_header(skb);
545 4 : arp = skb_put(skb, arp_hdr_len(dev));
546 4 : skb->dev = dev;
547 4 : skb->protocol = htons(ETH_P_ARP);
548 4 : if (!src_hw)
549 0 : src_hw = dev->dev_addr;
550 4 : if (!dest_hw)
551 2 : dest_hw = dev->broadcast;
552 :
553 : /*
554 : * Fill the device header for the ARP frame
555 : */
556 4 : if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
557 0 : goto out;
558 :
559 : /*
560 : * Fill out the arp protocol part.
561 : *
562 : * The arp hardware type should match the device type, except for FDDI,
563 : * which (according to RFC 1390) should always equal 1 (Ethernet).
564 : */
565 : /*
566 : * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
567 : * DIX code for the protocol. Make these device structure fields.
568 : */
569 4 : switch (dev->type) {
570 : default:
571 4 : arp->ar_hrd = htons(dev->type);
572 4 : arp->ar_pro = htons(ETH_P_IP);
573 4 : break;
574 :
575 : #if IS_ENABLED(CONFIG_AX25)
576 : case ARPHRD_AX25:
577 : arp->ar_hrd = htons(ARPHRD_AX25);
578 : arp->ar_pro = htons(AX25_P_IP);
579 : break;
580 :
581 : #if IS_ENABLED(CONFIG_NETROM)
582 : case ARPHRD_NETROM:
583 : arp->ar_hrd = htons(ARPHRD_NETROM);
584 : arp->ar_pro = htons(AX25_P_IP);
585 : break;
586 : #endif
587 : #endif
588 :
589 : #if IS_ENABLED(CONFIG_FDDI)
590 : case ARPHRD_FDDI:
591 : arp->ar_hrd = htons(ARPHRD_ETHER);
592 : arp->ar_pro = htons(ETH_P_IP);
593 : break;
594 : #endif
595 : }
596 :
597 4 : arp->ar_hln = dev->addr_len;
598 4 : arp->ar_pln = 4;
599 4 : arp->ar_op = htons(type);
600 :
601 4 : arp_ptr = (unsigned char *)(arp + 1);
602 :
603 4 : memcpy(arp_ptr, src_hw, dev->addr_len);
604 4 : arp_ptr += dev->addr_len;
605 4 : memcpy(arp_ptr, &src_ip, 4);
606 4 : arp_ptr += 4;
607 :
608 4 : switch (dev->type) {
609 : #if IS_ENABLED(CONFIG_FIREWIRE_NET)
610 : case ARPHRD_IEEE1394:
611 : break;
612 : #endif
613 : default:
614 4 : if (target_hw)
615 0 : memcpy(arp_ptr, target_hw, dev->addr_len);
616 : else
617 4 : memset(arp_ptr, 0, dev->addr_len);
618 4 : arp_ptr += dev->addr_len;
619 : }
620 4 : memcpy(arp_ptr, &dest_ip, 4);
621 :
622 4 : return skb;
623 :
624 0 : out:
625 0 : kfree_skb(skb);
626 0 : return NULL;
627 : }
628 : EXPORT_SYMBOL(arp_create);
629 :
630 4 : static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
631 : {
632 4 : return dev_queue_xmit(skb);
633 : }
634 :
635 : /*
636 : * Send an arp packet.
637 : */
638 4 : void arp_xmit(struct sk_buff *skb)
639 : {
640 : /* Send it off, maybe filter it using firewalling first. */
641 4 : NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
642 4 : dev_net(skb->dev), NULL, skb, NULL, skb->dev,
643 : arp_xmit_finish);
644 4 : }
645 : EXPORT_SYMBOL(arp_xmit);
646 :
647 4 : static bool arp_is_garp(struct net *net, struct net_device *dev,
648 : int *addr_type, __be16 ar_op,
649 : __be32 sip, __be32 tip,
650 : unsigned char *sha, unsigned char *tha)
651 : {
652 4 : bool is_garp = tip == sip;
653 :
654 : /* Gratuitous ARP _replies_ also require target hwaddr to be
655 : * the same as source.
656 : */
657 4 : if (is_garp && ar_op == htons(ARPOP_REPLY))
658 0 : is_garp =
659 : /* IPv4 over IEEE 1394 doesn't provide target
660 : * hardware address field in its ARP payload.
661 : */
662 0 : tha &&
663 0 : !memcmp(tha, sha, dev->addr_len);
664 :
665 4 : if (is_garp) {
666 0 : *addr_type = inet_addr_type_dev_table(net, dev, sip);
667 0 : if (*addr_type != RTN_UNICAST)
668 0 : is_garp = false;
669 : }
670 4 : return is_garp;
671 : }
672 :
673 : /*
674 : * Process an arp request.
675 : */
676 :
677 4 : static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
678 : {
679 4 : struct net_device *dev = skb->dev;
680 4 : struct in_device *in_dev = __in_dev_get_rcu(dev);
681 4 : struct arphdr *arp;
682 4 : unsigned char *arp_ptr;
683 4 : struct rtable *rt;
684 4 : unsigned char *sha;
685 4 : unsigned char *tha = NULL;
686 4 : __be32 sip, tip;
687 4 : u16 dev_type = dev->type;
688 4 : int addr_type;
689 4 : struct neighbour *n;
690 4 : struct dst_entry *reply_dst = NULL;
691 4 : bool is_garp = false;
692 :
693 : /* arp_rcv below verifies the ARP header and verifies the device
694 : * is ARP'able.
695 : */
696 :
697 4 : if (!in_dev)
698 0 : goto out_free_skb;
699 :
700 4 : arp = arp_hdr(skb);
701 :
702 4 : switch (dev_type) {
703 0 : default:
704 0 : if (arp->ar_pro != htons(ETH_P_IP) ||
705 0 : htons(dev_type) != arp->ar_hrd)
706 0 : goto out_free_skb;
707 : break;
708 4 : case ARPHRD_ETHER:
709 : case ARPHRD_FDDI:
710 : case ARPHRD_IEEE802:
711 : /*
712 : * ETHERNET, and Fibre Channel (which are IEEE 802
713 : * devices, according to RFC 2625) devices will accept ARP
714 : * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
715 : * This is the case also of FDDI, where the RFC 1390 says that
716 : * FDDI devices should accept ARP hardware of (1) Ethernet,
717 : * however, to be more robust, we'll accept both 1 (Ethernet)
718 : * or 6 (IEEE 802.2)
719 : */
720 4 : if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
721 4 : arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
722 4 : arp->ar_pro != htons(ETH_P_IP))
723 0 : goto out_free_skb;
724 : break;
725 0 : case ARPHRD_AX25:
726 0 : if (arp->ar_pro != htons(AX25_P_IP) ||
727 0 : arp->ar_hrd != htons(ARPHRD_AX25))
728 0 : goto out_free_skb;
729 : break;
730 0 : case ARPHRD_NETROM:
731 0 : if (arp->ar_pro != htons(AX25_P_IP) ||
732 0 : arp->ar_hrd != htons(ARPHRD_NETROM))
733 0 : goto out_free_skb;
734 : break;
735 : }
736 :
737 : /* Understand only these message types */
738 :
739 4 : if (arp->ar_op != htons(ARPOP_REPLY) &&
740 : arp->ar_op != htons(ARPOP_REQUEST))
741 0 : goto out_free_skb;
742 :
743 : /*
744 : * Extract fields
745 : */
746 4 : arp_ptr = (unsigned char *)(arp + 1);
747 4 : sha = arp_ptr;
748 4 : arp_ptr += dev->addr_len;
749 4 : memcpy(&sip, arp_ptr, 4);
750 4 : arp_ptr += 4;
751 4 : switch (dev_type) {
752 : #if IS_ENABLED(CONFIG_FIREWIRE_NET)
753 : case ARPHRD_IEEE1394:
754 : break;
755 : #endif
756 : default:
757 4 : tha = arp_ptr;
758 4 : arp_ptr += dev->addr_len;
759 : }
760 4 : memcpy(&tip, arp_ptr, 4);
761 : /*
762 : * Check for bad requests for 127.x.x.x and requests for multicast
763 : * addresses. If this is one such, delete it.
764 : */
765 4 : if (ipv4_is_multicast(tip) ||
766 4 : (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
767 0 : goto out_free_skb;
768 :
769 : /*
770 : * For some 802.11 wireless deployments (and possibly other networks),
771 : * there will be an ARP proxy and gratuitous ARP frames are attacks
772 : * and thus should not be accepted.
773 : */
774 4 : if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
775 0 : goto out_free_skb;
776 :
777 : /*
778 : * Special case: We must set Frame Relay source Q.922 address
779 : */
780 4 : if (dev_type == ARPHRD_DLCI)
781 0 : sha = dev->broadcast;
782 :
783 : /*
784 : * Process entry. The idea here is we want to send a reply if it is a
785 : * request for us or if it is a request for someone else that we hold
786 : * a proxy for. We want to add an entry to our cache if it is a reply
787 : * to us or if it is a request for our address.
788 : * (The assumption for this last is that if someone is requesting our
789 : * address, they are probably intending to talk to us, so it saves time
790 : * if we cache their address. Their address is also probably not in
791 : * our cache, since ours is not in their cache.)
792 : *
793 : * Putting this another way, we only care about replies if they are to
794 : * us, in which case we add them to the cache. For requests, we care
795 : * about those for us and those for our proxies. We reply to both,
796 : * and in the case of requests for us we add the requester to the arp
797 : * cache.
798 : */
799 :
800 4 : if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
801 0 : reply_dst = (struct dst_entry *)
802 0 : iptunnel_metadata_reply(skb_metadata_dst(skb),
803 : GFP_ATOMIC);
804 :
805 : /* Special case: IPv4 duplicate address detection packet (RFC2131) */
806 4 : if (sip == 0) {
807 0 : if (arp->ar_op == htons(ARPOP_REQUEST) &&
808 0 : inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
809 0 : !arp_ignore(in_dev, sip, tip))
810 0 : arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
811 0 : sha, dev->dev_addr, sha, reply_dst);
812 0 : goto out_consume_skb;
813 : }
814 :
815 4 : if (arp->ar_op == htons(ARPOP_REQUEST) &&
816 0 : ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
817 :
818 0 : rt = skb_rtable(skb);
819 0 : addr_type = rt->rt_type;
820 :
821 0 : if (addr_type == RTN_LOCAL) {
822 0 : int dont_send;
823 :
824 0 : dont_send = arp_ignore(in_dev, sip, tip);
825 0 : if (!dont_send && IN_DEV_ARPFILTER(in_dev))
826 0 : dont_send = arp_filter(sip, tip, dev);
827 0 : if (!dont_send) {
828 0 : n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
829 0 : if (n) {
830 0 : arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
831 : sip, dev, tip, sha,
832 0 : dev->dev_addr, sha,
833 : reply_dst);
834 0 : neigh_release(n);
835 : }
836 : }
837 0 : goto out_consume_skb;
838 0 : } else if (IN_DEV_FORWARD(in_dev)) {
839 0 : if (addr_type == RTN_UNICAST &&
840 0 : (arp_fwd_proxy(in_dev, dev, rt) ||
841 0 : arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
842 0 : (rt->dst.dev != dev &&
843 0 : pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
844 0 : n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
845 0 : if (n)
846 0 : neigh_release(n);
847 :
848 0 : if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
849 0 : skb->pkt_type == PACKET_HOST ||
850 0 : NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
851 0 : arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
852 : sip, dev, tip, sha,
853 0 : dev->dev_addr, sha,
854 : reply_dst);
855 : } else {
856 0 : pneigh_enqueue(&arp_tbl,
857 : in_dev->arp_parms, skb);
858 0 : goto out_free_dst;
859 : }
860 0 : goto out_consume_skb;
861 : }
862 : }
863 : }
864 :
865 : /* Update our ARP tables */
866 :
867 4 : n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
868 :
869 4 : addr_type = -1;
870 4 : if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
871 4 : is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
872 : sip, tip, sha, tha);
873 : }
874 :
875 4 : if (IN_DEV_ARP_ACCEPT(in_dev)) {
876 : /* Unsolicited ARP is not accepted by default.
877 : It is possible, that this option should be enabled for some
878 : devices (strip is candidate)
879 : */
880 0 : if (!n &&
881 0 : (is_garp ||
882 0 : (arp->ar_op == htons(ARPOP_REPLY) &&
883 0 : (addr_type == RTN_UNICAST ||
884 0 : (addr_type < 0 &&
885 : /* postpone calculation to as late as possible */
886 0 : inet_addr_type_dev_table(net, dev, sip) ==
887 : RTN_UNICAST)))))
888 0 : n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
889 : }
890 :
891 4 : if (n) {
892 4 : int state = NUD_REACHABLE;
893 4 : int override;
894 :
895 : /* If several different ARP replies follows back-to-back,
896 : use the FIRST one. It is possible, if several proxy
897 : agents are active. Taking the first reply prevents
898 : arp trashing and chooses the fastest router.
899 : */
900 4 : override = time_after(jiffies,
901 : n->updated +
902 4 : NEIGH_VAR(n->parms, LOCKTIME)) ||
903 : is_garp;
904 :
905 : /* Broadcast replies and request packets
906 : do not assert neighbour reachability.
907 : */
908 4 : if (arp->ar_op != htons(ARPOP_REPLY) ||
909 4 : skb->pkt_type != PACKET_HOST)
910 0 : state = NUD_STALE;
911 4 : neigh_update(n, sha, state,
912 : override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
913 4 : neigh_release(n);
914 : }
915 :
916 0 : out_consume_skb:
917 4 : consume_skb(skb);
918 :
919 4 : out_free_dst:
920 4 : dst_release(reply_dst);
921 4 : return NET_RX_SUCCESS;
922 :
923 0 : out_free_skb:
924 0 : kfree_skb(skb);
925 0 : return NET_RX_DROP;
926 : }
927 :
928 0 : static void parp_redo(struct sk_buff *skb)
929 : {
930 0 : arp_process(dev_net(skb->dev), NULL, skb);
931 0 : }
932 :
933 0 : static int arp_is_multicast(const void *pkey)
934 : {
935 0 : return ipv4_is_multicast(*((__be32 *)pkey));
936 : }
937 :
938 : /*
939 : * Receive an arp request from the device layer.
940 : */
941 :
942 4 : static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
943 : struct packet_type *pt, struct net_device *orig_dev)
944 : {
945 4 : const struct arphdr *arp;
946 :
947 : /* do not tweak dropwatch on an ARP we will ignore */
948 4 : if (dev->flags & IFF_NOARP ||
949 4 : skb->pkt_type == PACKET_OTHERHOST ||
950 : skb->pkt_type == PACKET_LOOPBACK)
951 0 : goto consumeskb;
952 :
953 4 : skb = skb_share_check(skb, GFP_ATOMIC);
954 4 : if (!skb)
955 0 : goto out_of_mem;
956 :
957 : /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
958 4 : if (!pskb_may_pull(skb, arp_hdr_len(dev)))
959 0 : goto freeskb;
960 :
961 4 : arp = arp_hdr(skb);
962 4 : if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
963 0 : goto freeskb;
964 :
965 4 : memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
966 :
967 4 : return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
968 : dev_net(dev), NULL, skb, dev, NULL,
969 : arp_process);
970 :
971 0 : consumeskb:
972 0 : consume_skb(skb);
973 0 : return NET_RX_SUCCESS;
974 0 : freeskb:
975 0 : kfree_skb(skb);
976 : out_of_mem:
977 : return NET_RX_DROP;
978 : }
979 :
980 : /*
981 : * User level interface (ioctl)
982 : */
983 :
984 : /*
985 : * Set (create) an ARP cache entry.
986 : */
987 :
988 0 : static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
989 : {
990 0 : if (!dev) {
991 0 : IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
992 0 : return 0;
993 : }
994 0 : if (__in_dev_get_rtnl(dev)) {
995 0 : IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
996 0 : return 0;
997 : }
998 : return -ENXIO;
999 : }
1000 :
1001 0 : static int arp_req_set_public(struct net *net, struct arpreq *r,
1002 : struct net_device *dev)
1003 : {
1004 0 : __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1005 0 : __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1006 :
1007 0 : if (mask && mask != htonl(0xFFFFFFFF))
1008 : return -EINVAL;
1009 0 : if (!dev && (r->arp_flags & ATF_COM)) {
1010 0 : dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1011 0 : r->arp_ha.sa_data);
1012 0 : if (!dev)
1013 : return -ENODEV;
1014 : }
1015 0 : if (mask) {
1016 0 : if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1017 : return -ENOBUFS;
1018 0 : return 0;
1019 : }
1020 :
1021 0 : return arp_req_set_proxy(net, dev, 1);
1022 : }
1023 :
1024 0 : static int arp_req_set(struct net *net, struct arpreq *r,
1025 : struct net_device *dev)
1026 : {
1027 0 : __be32 ip;
1028 0 : struct neighbour *neigh;
1029 0 : int err;
1030 :
1031 0 : if (r->arp_flags & ATF_PUBL)
1032 0 : return arp_req_set_public(net, r, dev);
1033 :
1034 0 : ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1035 0 : if (r->arp_flags & ATF_PERM)
1036 0 : r->arp_flags |= ATF_COM;
1037 0 : if (!dev) {
1038 0 : struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1039 :
1040 0 : if (IS_ERR(rt))
1041 0 : return PTR_ERR(rt);
1042 0 : dev = rt->dst.dev;
1043 0 : ip_rt_put(rt);
1044 0 : if (!dev)
1045 : return -EINVAL;
1046 : }
1047 0 : switch (dev->type) {
1048 : #if IS_ENABLED(CONFIG_FDDI)
1049 : case ARPHRD_FDDI:
1050 : /*
1051 : * According to RFC 1390, FDDI devices should accept ARP
1052 : * hardware types of 1 (Ethernet). However, to be more
1053 : * robust, we'll accept hardware types of either 1 (Ethernet)
1054 : * or 6 (IEEE 802.2).
1055 : */
1056 : if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1057 : r->arp_ha.sa_family != ARPHRD_ETHER &&
1058 : r->arp_ha.sa_family != ARPHRD_IEEE802)
1059 : return -EINVAL;
1060 : break;
1061 : #endif
1062 : default:
1063 0 : if (r->arp_ha.sa_family != dev->type)
1064 : return -EINVAL;
1065 0 : break;
1066 : }
1067 :
1068 0 : neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1069 0 : err = PTR_ERR(neigh);
1070 0 : if (!IS_ERR(neigh)) {
1071 0 : unsigned int state = NUD_STALE;
1072 0 : if (r->arp_flags & ATF_PERM)
1073 0 : state = NUD_PERMANENT;
1074 0 : err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1075 : r->arp_ha.sa_data : NULL, state,
1076 : NEIGH_UPDATE_F_OVERRIDE |
1077 : NEIGH_UPDATE_F_ADMIN, 0);
1078 0 : neigh_release(neigh);
1079 : }
1080 : return err;
1081 : }
1082 :
1083 0 : static unsigned int arp_state_to_flags(struct neighbour *neigh)
1084 : {
1085 0 : if (neigh->nud_state&NUD_PERMANENT)
1086 : return ATF_PERM | ATF_COM;
1087 0 : else if (neigh->nud_state&NUD_VALID)
1088 : return ATF_COM;
1089 : else
1090 0 : return 0;
1091 : }
1092 :
1093 : /*
1094 : * Get an ARP cache entry.
1095 : */
1096 :
1097 0 : static int arp_req_get(struct arpreq *r, struct net_device *dev)
1098 : {
1099 0 : __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1100 0 : struct neighbour *neigh;
1101 0 : int err = -ENXIO;
1102 :
1103 0 : neigh = neigh_lookup(&arp_tbl, &ip, dev);
1104 0 : if (neigh) {
1105 0 : if (!(neigh->nud_state & NUD_NOARP)) {
1106 0 : read_lock_bh(&neigh->lock);
1107 0 : memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1108 0 : r->arp_flags = arp_state_to_flags(neigh);
1109 0 : read_unlock_bh(&neigh->lock);
1110 0 : r->arp_ha.sa_family = dev->type;
1111 0 : strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1112 0 : err = 0;
1113 : }
1114 0 : neigh_release(neigh);
1115 : }
1116 0 : return err;
1117 : }
1118 :
1119 0 : static int arp_invalidate(struct net_device *dev, __be32 ip)
1120 : {
1121 0 : struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1122 0 : int err = -ENXIO;
1123 0 : struct neigh_table *tbl = &arp_tbl;
1124 :
1125 0 : if (neigh) {
1126 0 : if (neigh->nud_state & ~NUD_NOARP)
1127 0 : err = neigh_update(neigh, NULL, NUD_FAILED,
1128 : NEIGH_UPDATE_F_OVERRIDE|
1129 : NEIGH_UPDATE_F_ADMIN, 0);
1130 0 : write_lock_bh(&tbl->lock);
1131 0 : neigh_release(neigh);
1132 0 : neigh_remove_one(neigh, tbl);
1133 0 : write_unlock_bh(&tbl->lock);
1134 : }
1135 :
1136 0 : return err;
1137 : }
1138 :
1139 0 : static int arp_req_delete_public(struct net *net, struct arpreq *r,
1140 : struct net_device *dev)
1141 : {
1142 0 : __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1143 0 : __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1144 :
1145 0 : if (mask == htonl(0xFFFFFFFF))
1146 0 : return pneigh_delete(&arp_tbl, net, &ip, dev);
1147 :
1148 0 : if (mask)
1149 : return -EINVAL;
1150 :
1151 0 : return arp_req_set_proxy(net, dev, 0);
1152 : }
1153 :
1154 0 : static int arp_req_delete(struct net *net, struct arpreq *r,
1155 : struct net_device *dev)
1156 : {
1157 0 : __be32 ip;
1158 :
1159 0 : if (r->arp_flags & ATF_PUBL)
1160 0 : return arp_req_delete_public(net, r, dev);
1161 :
1162 0 : ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1163 0 : if (!dev) {
1164 0 : struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1165 0 : if (IS_ERR(rt))
1166 0 : return PTR_ERR(rt);
1167 0 : dev = rt->dst.dev;
1168 0 : ip_rt_put(rt);
1169 0 : if (!dev)
1170 : return -EINVAL;
1171 : }
1172 0 : return arp_invalidate(dev, ip);
1173 : }
1174 :
1175 : /*
1176 : * Handle an ARP layer I/O control request.
1177 : */
1178 :
1179 0 : int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1180 : {
1181 0 : int err;
1182 0 : struct arpreq r;
1183 0 : struct net_device *dev = NULL;
1184 :
1185 0 : switch (cmd) {
1186 0 : case SIOCDARP:
1187 : case SIOCSARP:
1188 0 : if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1189 : return -EPERM;
1190 0 : fallthrough;
1191 : case SIOCGARP:
1192 0 : err = copy_from_user(&r, arg, sizeof(struct arpreq));
1193 0 : if (err)
1194 : return -EFAULT;
1195 0 : break;
1196 : default:
1197 : return -EINVAL;
1198 : }
1199 :
1200 0 : if (r.arp_pa.sa_family != AF_INET)
1201 : return -EPFNOSUPPORT;
1202 :
1203 0 : if (!(r.arp_flags & ATF_PUBL) &&
1204 0 : (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1205 : return -EINVAL;
1206 0 : if (!(r.arp_flags & ATF_NETMASK))
1207 0 : ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1208 : htonl(0xFFFFFFFFUL);
1209 0 : rtnl_lock();
1210 0 : if (r.arp_dev[0]) {
1211 0 : err = -ENODEV;
1212 0 : dev = __dev_get_by_name(net, r.arp_dev);
1213 0 : if (!dev)
1214 0 : goto out;
1215 :
1216 : /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1217 0 : if (!r.arp_ha.sa_family)
1218 0 : r.arp_ha.sa_family = dev->type;
1219 0 : err = -EINVAL;
1220 0 : if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1221 0 : goto out;
1222 0 : } else if (cmd == SIOCGARP) {
1223 0 : err = -ENODEV;
1224 0 : goto out;
1225 : }
1226 :
1227 0 : switch (cmd) {
1228 0 : case SIOCDARP:
1229 0 : err = arp_req_delete(net, &r, dev);
1230 0 : break;
1231 0 : case SIOCSARP:
1232 0 : err = arp_req_set(net, &r, dev);
1233 0 : break;
1234 0 : case SIOCGARP:
1235 0 : err = arp_req_get(&r, dev);
1236 0 : break;
1237 : }
1238 0 : out:
1239 0 : rtnl_unlock();
1240 0 : if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1241 0 : err = -EFAULT;
1242 : return err;
1243 : }
1244 :
1245 7 : static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1246 : void *ptr)
1247 : {
1248 7 : struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1249 7 : struct netdev_notifier_change_info *change_info;
1250 :
1251 7 : switch (event) {
1252 0 : case NETDEV_CHANGEADDR:
1253 0 : neigh_changeaddr(&arp_tbl, dev);
1254 0 : rt_cache_flush(dev_net(dev));
1255 0 : break;
1256 0 : case NETDEV_CHANGE:
1257 0 : change_info = ptr;
1258 0 : if (change_info->flags_changed & IFF_NOARP)
1259 0 : neigh_changeaddr(&arp_tbl, dev);
1260 0 : if (!netif_carrier_ok(dev))
1261 0 : neigh_carrier_down(&arp_tbl, dev);
1262 : break;
1263 : default:
1264 : break;
1265 : }
1266 :
1267 7 : return NOTIFY_DONE;
1268 : }
1269 :
1270 : static struct notifier_block arp_netdev_notifier = {
1271 : .notifier_call = arp_netdev_event,
1272 : };
1273 :
1274 : /* Note, that it is not on notifier chain.
1275 : It is necessary, that this routine was called after route cache will be
1276 : flushed.
1277 : */
1278 0 : void arp_ifdown(struct net_device *dev)
1279 : {
1280 0 : neigh_ifdown(&arp_tbl, dev);
1281 0 : }
1282 :
1283 :
1284 : /*
1285 : * Called once on startup.
1286 : */
1287 :
1288 : static struct packet_type arp_packet_type __read_mostly = {
1289 : .type = cpu_to_be16(ETH_P_ARP),
1290 : .func = arp_rcv,
1291 : };
1292 :
1293 : static int arp_proc_init(void);
1294 :
1295 1 : void __init arp_init(void)
1296 : {
1297 1 : neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1298 :
1299 1 : dev_add_pack(&arp_packet_type);
1300 1 : arp_proc_init();
1301 : #ifdef CONFIG_SYSCTL
1302 1 : neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1303 : #endif
1304 1 : register_netdevice_notifier(&arp_netdev_notifier);
1305 1 : }
1306 :
1307 : #ifdef CONFIG_PROC_FS
1308 : #if IS_ENABLED(CONFIG_AX25)
1309 :
1310 : /* ------------------------------------------------------------------------ */
1311 : /*
1312 : * ax25 -> ASCII conversion
1313 : */
1314 : static void ax2asc2(ax25_address *a, char *buf)
1315 : {
1316 : char c, *s;
1317 : int n;
1318 :
1319 : for (n = 0, s = buf; n < 6; n++) {
1320 : c = (a->ax25_call[n] >> 1) & 0x7F;
1321 :
1322 : if (c != ' ')
1323 : *s++ = c;
1324 : }
1325 :
1326 : *s++ = '-';
1327 : n = (a->ax25_call[6] >> 1) & 0x0F;
1328 : if (n > 9) {
1329 : *s++ = '1';
1330 : n -= 10;
1331 : }
1332 :
1333 : *s++ = n + '0';
1334 : *s++ = '\0';
1335 :
1336 : if (*buf == '\0' || *buf == '-') {
1337 : buf[0] = '*';
1338 : buf[1] = '\0';
1339 : }
1340 : }
1341 : #endif /* CONFIG_AX25 */
1342 :
1343 : #define HBUFFERLEN 30
1344 :
1345 0 : static void arp_format_neigh_entry(struct seq_file *seq,
1346 : struct neighbour *n)
1347 : {
1348 0 : char hbuffer[HBUFFERLEN];
1349 0 : int k, j;
1350 0 : char tbuf[16];
1351 0 : struct net_device *dev = n->dev;
1352 0 : int hatype = dev->type;
1353 :
1354 0 : read_lock(&n->lock);
1355 : /* Convert hardware address to XX:XX:XX:XX ... form. */
1356 : #if IS_ENABLED(CONFIG_AX25)
1357 : if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1358 : ax2asc2((ax25_address *)n->ha, hbuffer);
1359 : else {
1360 : #endif
1361 0 : for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1362 0 : hbuffer[k++] = hex_asc_hi(n->ha[j]);
1363 0 : hbuffer[k++] = hex_asc_lo(n->ha[j]);
1364 0 : hbuffer[k++] = ':';
1365 : }
1366 0 : if (k != 0)
1367 0 : --k;
1368 0 : hbuffer[k] = 0;
1369 : #if IS_ENABLED(CONFIG_AX25)
1370 : }
1371 : #endif
1372 0 : sprintf(tbuf, "%pI4", n->primary_key);
1373 0 : seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s * %s\n",
1374 0 : tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1375 0 : read_unlock(&n->lock);
1376 0 : }
1377 :
1378 0 : static void arp_format_pneigh_entry(struct seq_file *seq,
1379 : struct pneigh_entry *n)
1380 : {
1381 0 : struct net_device *dev = n->dev;
1382 0 : int hatype = dev ? dev->type : 0;
1383 0 : char tbuf[16];
1384 :
1385 0 : sprintf(tbuf, "%pI4", n->key);
1386 0 : seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1387 : tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1388 : dev ? dev->name : "*");
1389 0 : }
1390 :
1391 0 : static int arp_seq_show(struct seq_file *seq, void *v)
1392 : {
1393 0 : if (v == SEQ_START_TOKEN) {
1394 0 : seq_puts(seq, "IP address HW type Flags "
1395 : "HW address Mask Device\n");
1396 : } else {
1397 0 : struct neigh_seq_state *state = seq->private;
1398 :
1399 0 : if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1400 0 : arp_format_pneigh_entry(seq, v);
1401 : else
1402 0 : arp_format_neigh_entry(seq, v);
1403 : }
1404 :
1405 0 : return 0;
1406 : }
1407 :
1408 0 : static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1409 : {
1410 : /* Don't want to confuse "arp -a" w/ magic entries,
1411 : * so we tell the generic iterator to skip NUD_NOARP.
1412 : */
1413 0 : return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1414 : }
1415 :
1416 : /* ------------------------------------------------------------------------ */
1417 :
1418 : static const struct seq_operations arp_seq_ops = {
1419 : .start = arp_seq_start,
1420 : .next = neigh_seq_next,
1421 : .stop = neigh_seq_stop,
1422 : .show = arp_seq_show,
1423 : };
1424 :
1425 : /* ------------------------------------------------------------------------ */
1426 :
1427 1 : static int __net_init arp_net_init(struct net *net)
1428 : {
1429 1 : if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1430 : sizeof(struct neigh_seq_state)))
1431 0 : return -ENOMEM;
1432 : return 0;
1433 : }
1434 :
1435 0 : static void __net_exit arp_net_exit(struct net *net)
1436 : {
1437 0 : remove_proc_entry("arp", net->proc_net);
1438 0 : }
1439 :
1440 : static struct pernet_operations arp_net_ops = {
1441 : .init = arp_net_init,
1442 : .exit = arp_net_exit,
1443 : };
1444 :
1445 1 : static int __init arp_proc_init(void)
1446 : {
1447 1 : return register_pernet_subsys(&arp_net_ops);
1448 : }
1449 :
1450 : #else /* CONFIG_PROC_FS */
1451 :
1452 : static int __init arp_proc_init(void)
1453 : {
1454 : return 0;
1455 : }
1456 :
1457 : #endif /* CONFIG_PROC_FS */
|