Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * INET An implementation of the TCP/IP protocol suite for the LINUX
4 : * operating system. INET is implemented using the BSD Socket
5 : * interface as the means of communication with the user level.
6 : *
7 : * Implementation of the Transmission Control Protocol(TCP).
8 : *
9 : * Authors: Ross Biro
10 : * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 : * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 : * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 : * Florian La Roche, <flla@stud.uni-sb.de>
14 : * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 : * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 : * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 : * Matthew Dillon, <dillon@apollo.west.oic.com>
18 : * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 : * Jorge Cwik, <jorge@laser.satlink.net>
20 : */
21 :
22 : /*
23 : * Changes:
24 : * Pedro Roque : Fast Retransmit/Recovery.
25 : * Two receive queues.
26 : * Retransmit queue handled by TCP.
27 : * Better retransmit timer handling.
28 : * New congestion avoidance.
29 : * Header prediction.
30 : * Variable renaming.
31 : *
32 : * Eric : Fast Retransmit.
33 : * Randy Scott : MSS option defines.
34 : * Eric Schenk : Fixes to slow start algorithm.
35 : * Eric Schenk : Yet another double ACK bug.
36 : * Eric Schenk : Delayed ACK bug fixes.
37 : * Eric Schenk : Floyd style fast retrans war avoidance.
38 : * David S. Miller : Don't allow zero congestion window.
39 : * Eric Schenk : Fix retransmitter so that it sends
40 : * next packet on ack of previous packet.
41 : * Andi Kleen : Moved open_request checking here
42 : * and process RSTs for open_requests.
43 : * Andi Kleen : Better prune_queue, and other fixes.
44 : * Andrey Savochkin: Fix RTT measurements in the presence of
45 : * timestamps.
46 : * Andrey Savochkin: Check sequence numbers correctly when
47 : * removing SACKs due to in sequence incoming
48 : * data segments.
49 : * Andi Kleen: Make sure we never ack data there is not
50 : * enough room for. Also make this condition
51 : * a fatal error if it might still happen.
52 : * Andi Kleen: Add tcp_measure_rcv_mss to make
53 : * connections with MSS<min(MTU,ann. MSS)
54 : * work without delayed acks.
55 : * Andi Kleen: Process packets with PSH set in the
56 : * fast path.
57 : * J Hadi Salim: ECN support
58 : * Andrei Gurtov,
59 : * Pasi Sarolahti,
60 : * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 : * engine. Lots of bugs are found.
62 : * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 : */
64 :
65 : #define pr_fmt(fmt) "TCP: " fmt
66 :
67 : #include <linux/mm.h>
68 : #include <linux/slab.h>
69 : #include <linux/module.h>
70 : #include <linux/sysctl.h>
71 : #include <linux/kernel.h>
72 : #include <linux/prefetch.h>
73 : #include <net/dst.h>
74 : #include <net/tcp.h>
75 : #include <net/inet_common.h>
76 : #include <linux/ipsec.h>
77 : #include <asm/unaligned.h>
78 : #include <linux/errqueue.h>
79 : #include <trace/events/tcp.h>
80 : #include <linux/jump_label_ratelimit.h>
81 : #include <net/busy_poll.h>
82 : #include <net/mptcp.h>
83 :
84 : int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 :
86 : #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 : #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 : #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 : #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 : #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 : #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 : #define FLAG_ECE 0x40 /* ECE in this ACK */
93 : #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 : #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 : #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 : #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 : #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 : #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 : #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 : #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 : #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 : #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 :
104 : #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 : #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 : #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 : #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108 :
109 : #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 : #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 :
112 : #define REXMIT_NONE 0 /* no loss recovery to do */
113 : #define REXMIT_LOST 1 /* retransmit packets marked lost */
114 : #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
115 :
116 : #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 : static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 :
119 : void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 : void (*cad)(struct sock *sk, u32 ack_seq))
121 : {
122 : icsk->icsk_clean_acked = cad;
123 : static_branch_deferred_inc(&clean_acked_data_enabled);
124 : }
125 : EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 :
127 : void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 : {
129 : static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 : icsk->icsk_clean_acked = NULL;
131 : }
132 : EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 :
134 : void clean_acked_data_flush(void)
135 : {
136 : static_key_deferred_flush(&clean_acked_data_enabled);
137 : }
138 : EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 : #endif
140 :
141 : #ifdef CONFIG_CGROUP_BPF
142 : static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
143 : {
144 : bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
145 : BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
146 : BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
147 : bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 : BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
149 : struct bpf_sock_ops_kern sock_ops;
150 :
151 : if (likely(!unknown_opt && !parse_all_opt))
152 : return;
153 :
154 : /* The skb will be handled in the
155 : * bpf_skops_established() or
156 : * bpf_skops_write_hdr_opt().
157 : */
158 : switch (sk->sk_state) {
159 : case TCP_SYN_RECV:
160 : case TCP_SYN_SENT:
161 : case TCP_LISTEN:
162 : return;
163 : }
164 :
165 : sock_owned_by_me(sk);
166 :
167 : memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
168 : sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
169 : sock_ops.is_fullsock = 1;
170 : sock_ops.sk = sk;
171 : bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
172 :
173 : BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
174 : }
175 :
176 : static void bpf_skops_established(struct sock *sk, int bpf_op,
177 : struct sk_buff *skb)
178 : {
179 : struct bpf_sock_ops_kern sock_ops;
180 :
181 : sock_owned_by_me(sk);
182 :
183 : memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
184 : sock_ops.op = bpf_op;
185 : sock_ops.is_fullsock = 1;
186 : sock_ops.sk = sk;
187 : /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
188 : if (skb)
189 : bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
190 :
191 : BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
192 : }
193 : #else
194 : static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
195 : {
196 : }
197 :
198 4 : static void bpf_skops_established(struct sock *sk, int bpf_op,
199 : struct sk_buff *skb)
200 : {
201 4 : }
202 : #endif
203 :
204 0 : static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
205 : unsigned int len)
206 : {
207 0 : static bool __once __read_mostly;
208 :
209 0 : if (!__once) {
210 0 : struct net_device *dev;
211 :
212 0 : __once = true;
213 :
214 0 : rcu_read_lock();
215 0 : dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
216 0 : if (!dev || len >= dev->mtu)
217 0 : pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 : dev ? dev->name : "Unknown driver");
219 0 : rcu_read_unlock();
220 : }
221 0 : }
222 :
223 : /* Adapt the MSS value used to make delayed ack decision to the
224 : * real world.
225 : */
226 67 : static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
227 : {
228 67 : struct inet_connection_sock *icsk = inet_csk(sk);
229 67 : const unsigned int lss = icsk->icsk_ack.last_seg_size;
230 67 : unsigned int len;
231 :
232 67 : icsk->icsk_ack.last_seg_size = 0;
233 :
234 : /* skb->len may jitter because of SACKs, even if peer
235 : * sends good full-sized frames.
236 : */
237 67 : len = skb_shinfo(skb)->gso_size ? : skb->len;
238 67 : if (len >= icsk->icsk_ack.rcv_mss) {
239 20 : icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
240 : tcp_sk(sk)->advmss);
241 : /* Account for possibly-removed options */
242 20 : if (unlikely(len > icsk->icsk_ack.rcv_mss +
243 : MAX_TCP_OPTION_SPACE))
244 0 : tcp_gro_dev_warn(sk, skb, len);
245 : } else {
246 : /* Otherwise, we make more careful check taking into account,
247 : * that SACKs block is variable.
248 : *
249 : * "len" is invariant segment length, including TCP header.
250 : */
251 47 : len += skb->data - skb_transport_header(skb);
252 47 : if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
253 : /* If PSH is not set, packet should be
254 : * full sized, provided peer TCP is not badly broken.
255 : * This observation (if it is correct 8)) allows
256 : * to handle super-low mtu links fairly.
257 : */
258 30 : (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
259 30 : !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
260 : /* Subtract also invariant (if peer is RFC compliant),
261 : * tcp header plus fixed timestamp option length.
262 : * Resulting "len" is MSS free of SACK jitter.
263 : */
264 0 : len -= tcp_sk(sk)->tcp_header_len;
265 0 : icsk->icsk_ack.last_seg_size = len;
266 0 : if (len == lss) {
267 0 : icsk->icsk_ack.rcv_mss = len;
268 0 : return;
269 : }
270 : }
271 47 : if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
272 1 : icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
273 47 : icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
274 : }
275 : }
276 :
277 8 : static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
278 : {
279 8 : struct inet_connection_sock *icsk = inet_csk(sk);
280 8 : unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
281 :
282 8 : if (quickacks == 0)
283 0 : quickacks = 2;
284 8 : quickacks = min(quickacks, max_quickacks);
285 8 : if (quickacks > icsk->icsk_ack.quick)
286 8 : icsk->icsk_ack.quick = quickacks;
287 : }
288 :
289 0 : void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
290 : {
291 0 : struct inet_connection_sock *icsk = inet_csk(sk);
292 :
293 0 : tcp_incr_quickack(sk, max_quickacks);
294 0 : inet_csk_exit_pingpong_mode(sk);
295 0 : icsk->icsk_ack.ato = TCP_ATO_MIN;
296 0 : }
297 : EXPORT_SYMBOL(tcp_enter_quickack_mode);
298 :
299 : /* Send ACKs quickly, if "quick" count is not exhausted
300 : * and the session is not interactive.
301 : */
302 :
303 58 : static bool tcp_in_quickack_mode(struct sock *sk)
304 : {
305 58 : const struct inet_connection_sock *icsk = inet_csk(sk);
306 58 : const struct dst_entry *dst = __sk_dst_get(sk);
307 :
308 58 : return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
309 58 : (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
310 : }
311 :
312 0 : static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
313 : {
314 0 : if (tp->ecn_flags & TCP_ECN_OK)
315 0 : tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
316 : }
317 :
318 370 : static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
319 : {
320 370 : if (tcp_hdr(skb)->cwr) {
321 0 : tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
322 :
323 : /* If the sender is telling us it has entered CWR, then its
324 : * cwnd may be very low (even just 1 packet), so we should ACK
325 : * immediately.
326 : */
327 0 : if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
328 0 : inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
329 : }
330 370 : }
331 :
332 0 : static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
333 : {
334 0 : tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
335 0 : }
336 :
337 0 : static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
338 : {
339 0 : struct tcp_sock *tp = tcp_sk(sk);
340 :
341 0 : switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
342 0 : case INET_ECN_NOT_ECT:
343 : /* Funny extension: if ECT is not set on a segment,
344 : * and we already seen ECT on a previous segment,
345 : * it is probably a retransmit.
346 : */
347 0 : if (tp->ecn_flags & TCP_ECN_SEEN)
348 0 : tcp_enter_quickack_mode(sk, 2);
349 : break;
350 : case INET_ECN_CE:
351 0 : if (tcp_ca_needs_ecn(sk))
352 0 : tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
353 :
354 0 : if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
355 : /* Better not delay acks, sender can have a very low cwnd */
356 0 : tcp_enter_quickack_mode(sk, 2);
357 0 : tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
358 : }
359 0 : tp->ecn_flags |= TCP_ECN_SEEN;
360 0 : break;
361 : default:
362 0 : if (tcp_ca_needs_ecn(sk))
363 0 : tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
364 0 : tp->ecn_flags |= TCP_ECN_SEEN;
365 0 : break;
366 : }
367 0 : }
368 :
369 67 : static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
370 : {
371 67 : if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
372 0 : __tcp_ecn_check_ce(sk, skb);
373 67 : }
374 :
375 0 : static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
376 : {
377 0 : if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
378 0 : tp->ecn_flags &= ~TCP_ECN_OK;
379 : }
380 :
381 0 : static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
382 : {
383 0 : if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
384 0 : tp->ecn_flags &= ~TCP_ECN_OK;
385 : }
386 :
387 22 : static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
388 : {
389 22 : if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
390 : return true;
391 : return false;
392 : }
393 :
394 : /* Buffer size and advertised window tuning.
395 : *
396 : * 1. Tuning sk->sk_sndbuf, when connection enters established state.
397 : */
398 :
399 4 : static void tcp_sndbuf_expand(struct sock *sk)
400 : {
401 4 : const struct tcp_sock *tp = tcp_sk(sk);
402 4 : const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
403 4 : int sndmem, per_mss;
404 4 : u32 nr_segs;
405 :
406 : /* Worst case is non GSO/TSO : each frame consumes one skb
407 : * and skb->head is kmalloced using power of two area of memory
408 : */
409 4 : per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
410 4 : MAX_TCP_HEADER +
411 : SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
412 :
413 4 : per_mss = roundup_pow_of_two(per_mss) +
414 : SKB_DATA_ALIGN(sizeof(struct sk_buff));
415 :
416 4 : nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
417 4 : nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
418 :
419 : /* Fast Recovery (RFC 5681 3.2) :
420 : * Cubic needs 1.7 factor, rounded to 2 to include
421 : * extra cushion (application might react slowly to EPOLLOUT)
422 : */
423 4 : sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
424 4 : sndmem *= nr_segs * per_mss;
425 :
426 4 : if (sk->sk_sndbuf < sndmem)
427 4 : WRITE_ONCE(sk->sk_sndbuf,
428 : min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
429 4 : }
430 :
431 : /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
432 : *
433 : * All tcp_full_space() is split to two parts: "network" buffer, allocated
434 : * forward and advertised in receiver window (tp->rcv_wnd) and
435 : * "application buffer", required to isolate scheduling/application
436 : * latencies from network.
437 : * window_clamp is maximal advertised window. It can be less than
438 : * tcp_full_space(), in this case tcp_full_space() - window_clamp
439 : * is reserved for "application" buffer. The less window_clamp is
440 : * the smoother our behaviour from viewpoint of network, but the lower
441 : * throughput and the higher sensitivity of the connection to losses. 8)
442 : *
443 : * rcv_ssthresh is more strict window_clamp used at "slow start"
444 : * phase to predict further behaviour of this connection.
445 : * It is used for two goals:
446 : * - to enforce header prediction at sender, even when application
447 : * requires some significant "application buffer". It is check #1.
448 : * - to prevent pruning of receive queue because of misprediction
449 : * of receiver window. Check #2.
450 : *
451 : * The scheme does not work when sender sends good segments opening
452 : * window and then starts to feed us spaghetti. But it should work
453 : * in common situations. Otherwise, we have to rely on queue collapsing.
454 : */
455 :
456 : /* Slow part of check#2. */
457 0 : static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
458 : {
459 0 : struct tcp_sock *tp = tcp_sk(sk);
460 : /* Optimize this! */
461 0 : int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
462 0 : int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
463 :
464 0 : while (tp->rcv_ssthresh <= window) {
465 0 : if (truesize <= skb->len)
466 0 : return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
467 :
468 0 : truesize >>= 1;
469 0 : window >>= 1;
470 : }
471 : return 0;
472 : }
473 :
474 33 : static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
475 : {
476 33 : struct tcp_sock *tp = tcp_sk(sk);
477 33 : int room;
478 :
479 33 : room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
480 :
481 : /* Check #1 */
482 33 : if (room > 0 && !tcp_under_memory_pressure(sk)) {
483 11 : int incr;
484 :
485 : /* Check #2. Increase window, if skb with such overhead
486 : * will fit to rcvbuf in future.
487 : */
488 22 : if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
489 11 : incr = 2 * tp->advmss;
490 : else
491 0 : incr = __tcp_grow_window(sk, skb);
492 :
493 11 : if (incr) {
494 11 : incr = max_t(int, incr, 2 * skb->len);
495 11 : tp->rcv_ssthresh += min(room, incr);
496 11 : inet_csk(sk)->icsk_ack.quick |= 1;
497 : }
498 : }
499 33 : }
500 :
501 : /* 3. Try to fixup all. It is made immediately after connection enters
502 : * established state.
503 : */
504 4 : static void tcp_init_buffer_space(struct sock *sk)
505 : {
506 4 : int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
507 4 : struct tcp_sock *tp = tcp_sk(sk);
508 4 : int maxwin;
509 :
510 4 : if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
511 4 : tcp_sndbuf_expand(sk);
512 :
513 4 : tcp_mstamp_refresh(tp);
514 4 : tp->rcvq_space.time = tp->tcp_mstamp;
515 4 : tp->rcvq_space.seq = tp->copied_seq;
516 :
517 4 : maxwin = tcp_full_space(sk);
518 :
519 4 : if (tp->window_clamp >= maxwin) {
520 0 : tp->window_clamp = maxwin;
521 :
522 0 : if (tcp_app_win && maxwin > 4 * tp->advmss)
523 0 : tp->window_clamp = max(maxwin -
524 : (maxwin >> tcp_app_win),
525 : 4 * tp->advmss);
526 : }
527 :
528 : /* Force reservation of one segment. */
529 4 : if (tcp_app_win &&
530 4 : tp->window_clamp > 2 * tp->advmss &&
531 4 : tp->window_clamp + tp->advmss > maxwin)
532 4 : tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
533 :
534 4 : tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
535 4 : tp->snd_cwnd_stamp = tcp_jiffies32;
536 4 : tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
537 : (u32)TCP_INIT_CWND * tp->advmss);
538 4 : }
539 :
540 : /* 4. Recalculate window clamp after socket hit its memory bounds. */
541 0 : static void tcp_clamp_window(struct sock *sk)
542 : {
543 0 : struct tcp_sock *tp = tcp_sk(sk);
544 0 : struct inet_connection_sock *icsk = inet_csk(sk);
545 0 : struct net *net = sock_net(sk);
546 :
547 0 : icsk->icsk_ack.quick = 0;
548 :
549 0 : if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
550 0 : !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
551 0 : !tcp_under_memory_pressure(sk) &&
552 0 : sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
553 0 : WRITE_ONCE(sk->sk_rcvbuf,
554 : min(atomic_read(&sk->sk_rmem_alloc),
555 : net->ipv4.sysctl_tcp_rmem[2]));
556 : }
557 0 : if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
558 0 : tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
559 0 : }
560 :
561 : /* Initialize RCV_MSS value.
562 : * RCV_MSS is an our guess about MSS used by the peer.
563 : * We haven't any direct information about the MSS.
564 : * It's better to underestimate the RCV_MSS rather than overestimate.
565 : * Overestimations make us ACKing less frequently than needed.
566 : * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
567 : */
568 8 : void tcp_initialize_rcv_mss(struct sock *sk)
569 : {
570 8 : const struct tcp_sock *tp = tcp_sk(sk);
571 8 : unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
572 :
573 8 : hint = min(hint, tp->rcv_wnd / 2);
574 8 : hint = min(hint, TCP_MSS_DEFAULT);
575 8 : hint = max(hint, TCP_MIN_MSS);
576 :
577 4 : inet_csk(sk)->icsk_ack.rcv_mss = hint;
578 4 : }
579 : EXPORT_SYMBOL(tcp_initialize_rcv_mss);
580 :
581 : /* Receiver "autotuning" code.
582 : *
583 : * The algorithm for RTT estimation w/o timestamps is based on
584 : * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
585 : * <https://public.lanl.gov/radiant/pubs.html#DRS>
586 : *
587 : * More detail on this code can be found at
588 : * <http://staff.psc.edu/jheffner/>,
589 : * though this reference is out of date. A new paper
590 : * is pending.
591 : */
592 3 : static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
593 : {
594 3 : u32 new_sample = tp->rcv_rtt_est.rtt_us;
595 3 : long m = sample;
596 :
597 3 : if (new_sample != 0) {
598 : /* If we sample in larger samples in the non-timestamp
599 : * case, we could grossly overestimate the RTT especially
600 : * with chatty applications or bulk transfer apps which
601 : * are stalled on filesystem I/O.
602 : *
603 : * Also, since we are only going for a minimum in the
604 : * non-timestamp case, we do not smooth things out
605 : * else with timestamps disabled convergence takes too
606 : * long.
607 : */
608 2 : if (!win_dep) {
609 0 : m -= (new_sample >> 3);
610 0 : new_sample += m;
611 : } else {
612 2 : m <<= 3;
613 2 : if (m < new_sample)
614 1 : new_sample = m;
615 : }
616 : } else {
617 : /* No previous measure. */
618 1 : new_sample = m << 3;
619 : }
620 :
621 3 : tp->rcv_rtt_est.rtt_us = new_sample;
622 3 : }
623 :
624 67 : static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
625 : {
626 67 : u32 delta_us;
627 :
628 67 : if (tp->rcv_rtt_est.time == 0)
629 4 : goto new_measure;
630 63 : if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
631 : return;
632 3 : delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
633 3 : if (!delta_us)
634 : delta_us = 1;
635 3 : tcp_rcv_rtt_update(tp, delta_us, 1);
636 :
637 7 : new_measure:
638 7 : tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
639 7 : tp->rcv_rtt_est.time = tp->tcp_mstamp;
640 : }
641 :
642 70 : static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
643 : const struct sk_buff *skb)
644 : {
645 70 : struct tcp_sock *tp = tcp_sk(sk);
646 :
647 70 : if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
648 : return;
649 0 : tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
650 :
651 0 : if (TCP_SKB_CB(skb)->end_seq -
652 0 : TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
653 0 : u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
654 0 : u32 delta_us;
655 :
656 0 : if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
657 0 : if (!delta)
658 : delta = 1;
659 0 : delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
660 0 : tcp_rcv_rtt_update(tp, delta_us, 0);
661 : }
662 : }
663 : }
664 :
665 : /*
666 : * This function should be called every time data is copied to user space.
667 : * It calculates the appropriate TCP receive buffer space.
668 : */
669 215 : void tcp_rcv_space_adjust(struct sock *sk)
670 : {
671 215 : struct tcp_sock *tp = tcp_sk(sk);
672 215 : u32 copied;
673 215 : int time;
674 :
675 215 : trace_tcp_rcv_space_adjust(sk);
676 :
677 215 : tcp_mstamp_refresh(tp);
678 215 : time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
679 215 : if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
680 : return;
681 :
682 : /* Number of bytes copied to user in last RTT */
683 8 : copied = tp->copied_seq - tp->rcvq_space.seq;
684 8 : if (copied <= tp->rcvq_space.space)
685 7 : goto new_measure;
686 :
687 : /* A bit of theory :
688 : * copied = bytes received in previous RTT, our base window
689 : * To cope with packet losses, we need a 2x factor
690 : * To cope with slow start, and sender growing its cwin by 100 %
691 : * every RTT, we need a 4x factor, because the ACK we are sending
692 : * now is for the next RTT, not the current one :
693 : * <prev RTT . ><current RTT .. ><next RTT .... >
694 : */
695 :
696 1 : if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
697 1 : !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
698 1 : int rcvmem, rcvbuf;
699 1 : u64 rcvwin, grow;
700 :
701 : /* minimal window to cope with packet losses, assuming
702 : * steady state. Add some cushion because of small variations.
703 : */
704 1 : rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
705 :
706 : /* Accommodate for sender rate increase (eg. slow start) */
707 1 : grow = rcvwin * (copied - tp->rcvq_space.space);
708 1 : do_div(grow, tp->rcvq_space.space);
709 1 : rcvwin += (grow << 1);
710 :
711 1 : rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
712 14 : while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
713 6 : rcvmem += 128;
714 :
715 1 : do_div(rcvwin, tp->advmss);
716 1 : rcvbuf = min_t(u64, rcvwin * rcvmem,
717 : sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
718 1 : if (rcvbuf > sk->sk_rcvbuf) {
719 1 : WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
720 :
721 : /* Make the window clamp follow along. */
722 2 : tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
723 : }
724 : }
725 1 : tp->rcvq_space.space = copied;
726 :
727 8 : new_measure:
728 8 : tp->rcvq_space.seq = tp->copied_seq;
729 8 : tp->rcvq_space.time = tp->tcp_mstamp;
730 : }
731 :
732 : /* There is something which you must keep in mind when you analyze the
733 : * behavior of the tp->ato delayed ack timeout interval. When a
734 : * connection starts up, we want to ack as quickly as possible. The
735 : * problem is that "good" TCP's do slow start at the beginning of data
736 : * transmission. The means that until we send the first few ACK's the
737 : * sender will sit on his end and only queue most of his data, because
738 : * he can only send snd_cwnd unacked packets at any given time. For
739 : * each ACK we send, he increments snd_cwnd and transmits more of his
740 : * queue. -DaveM
741 : */
742 67 : static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
743 : {
744 67 : struct tcp_sock *tp = tcp_sk(sk);
745 67 : struct inet_connection_sock *icsk = inet_csk(sk);
746 67 : u32 now;
747 :
748 67 : inet_csk_schedule_ack(sk);
749 :
750 67 : tcp_measure_rcv_mss(sk, skb);
751 :
752 67 : tcp_rcv_rtt_measure(tp);
753 :
754 67 : now = tcp_jiffies32;
755 :
756 67 : if (!icsk->icsk_ack.ato) {
757 : /* The _first_ data packet received, initialize
758 : * delayed ACK engine.
759 : */
760 4 : tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
761 4 : icsk->icsk_ack.ato = TCP_ATO_MIN;
762 : } else {
763 63 : int m = now - icsk->icsk_ack.lrcvtime;
764 :
765 63 : if (m <= TCP_ATO_MIN / 2) {
766 : /* The fastest case is the first. */
767 50 : icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
768 13 : } else if (m < icsk->icsk_ack.ato) {
769 1 : icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
770 1 : if (icsk->icsk_ack.ato > icsk->icsk_rto)
771 0 : icsk->icsk_ack.ato = icsk->icsk_rto;
772 12 : } else if (m > icsk->icsk_rto) {
773 : /* Too long gap. Apparently sender failed to
774 : * restart window, so that we send ACKs quickly.
775 : */
776 4 : tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
777 4 : sk_mem_reclaim(sk);
778 : }
779 : }
780 67 : icsk->icsk_ack.lrcvtime = now;
781 :
782 67 : tcp_ecn_check_ce(sk, skb);
783 :
784 67 : if (skb->len >= 128)
785 33 : tcp_grow_window(sk, skb);
786 67 : }
787 :
788 : /* Called to compute a smoothed rtt estimate. The data fed to this
789 : * routine either comes from timestamps, or from segments that were
790 : * known _not_ to have been retransmitted [see Karn/Partridge
791 : * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
792 : * piece by Van Jacobson.
793 : * NOTE: the next three routines used to be one big routine.
794 : * To save cycles in the RFC 1323 implementation it was better to break
795 : * it up into three procedures. -- erics
796 : */
797 355 : static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
798 : {
799 355 : struct tcp_sock *tp = tcp_sk(sk);
800 355 : long m = mrtt_us; /* RTT */
801 355 : u32 srtt = tp->srtt_us;
802 :
803 : /* The following amusing code comes from Jacobson's
804 : * article in SIGCOMM '88. Note that rtt and mdev
805 : * are scaled versions of rtt and mean deviation.
806 : * This is designed to be as fast as possible
807 : * m stands for "measurement".
808 : *
809 : * On a 1990 paper the rto value is changed to:
810 : * RTO = rtt + 4 * mdev
811 : *
812 : * Funny. This algorithm seems to be very broken.
813 : * These formulae increase RTO, when it should be decreased, increase
814 : * too slowly, when it should be increased quickly, decrease too quickly
815 : * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
816 : * does not matter how to _calculate_ it. Seems, it was trap
817 : * that VJ failed to avoid. 8)
818 : */
819 355 : if (srtt != 0) {
820 351 : m -= (srtt >> 3); /* m is now error in rtt est */
821 351 : srtt += m; /* rtt = 7/8 rtt + 1/8 new */
822 351 : if (m < 0) {
823 237 : m = -m; /* m is now abs(error) */
824 237 : m -= (tp->mdev_us >> 2); /* similar update on mdev */
825 : /* This is similar to one of Eifel findings.
826 : * Eifel blocks mdev updates when rtt decreases.
827 : * This solution is a bit different: we use finer gain
828 : * for mdev in this case (alpha*beta).
829 : * Like Eifel it also prevents growth of rto,
830 : * but also it limits too fast rto decreases,
831 : * happening in pure Eifel.
832 : */
833 237 : if (m > 0)
834 70 : m >>= 3;
835 : } else {
836 114 : m -= (tp->mdev_us >> 2); /* similar update on mdev */
837 : }
838 351 : tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
839 351 : if (tp->mdev_us > tp->mdev_max_us) {
840 0 : tp->mdev_max_us = tp->mdev_us;
841 0 : if (tp->mdev_max_us > tp->rttvar_us)
842 0 : tp->rttvar_us = tp->mdev_max_us;
843 : }
844 351 : if (after(tp->snd_una, tp->rtt_seq)) {
845 254 : if (tp->mdev_max_us < tp->rttvar_us)
846 0 : tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
847 254 : tp->rtt_seq = tp->snd_nxt;
848 254 : tp->mdev_max_us = tcp_rto_min_us(sk);
849 :
850 254 : tcp_bpf_rtt(sk);
851 : }
852 : } else {
853 : /* no previous measure. */
854 4 : srtt = m << 3; /* take the measured time to be rtt */
855 4 : tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
856 4 : tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
857 4 : tp->mdev_max_us = tp->rttvar_us;
858 4 : tp->rtt_seq = tp->snd_nxt;
859 :
860 4 : tcp_bpf_rtt(sk);
861 : }
862 355 : tp->srtt_us = max(1U, srtt);
863 355 : }
864 :
865 355 : static void tcp_update_pacing_rate(struct sock *sk)
866 : {
867 355 : const struct tcp_sock *tp = tcp_sk(sk);
868 355 : u64 rate;
869 :
870 : /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
871 355 : rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
872 :
873 : /* current rate is (cwnd * mss) / srtt
874 : * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
875 : * In Congestion Avoidance phase, set it to 120 % the current rate.
876 : *
877 : * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
878 : * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
879 : * end of slow start and should slow down.
880 : */
881 355 : if (tp->snd_cwnd < tp->snd_ssthresh / 2)
882 355 : rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
883 : else
884 0 : rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
885 :
886 355 : rate *= max(tp->snd_cwnd, tp->packets_out);
887 :
888 355 : if (likely(tp->srtt_us))
889 355 : do_div(rate, tp->srtt_us);
890 :
891 : /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
892 : * without any lock. We want to make sure compiler wont store
893 : * intermediate values in this location.
894 : */
895 355 : WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
896 : sk->sk_max_pacing_rate));
897 355 : }
898 :
899 : /* Calculate rto without backoff. This is the second half of Van Jacobson's
900 : * routine referred to above.
901 : */
902 355 : static void tcp_set_rto(struct sock *sk)
903 : {
904 355 : const struct tcp_sock *tp = tcp_sk(sk);
905 : /* Old crap is replaced with new one. 8)
906 : *
907 : * More seriously:
908 : * 1. If rtt variance happened to be less 50msec, it is hallucination.
909 : * It cannot be less due to utterly erratic ACK generation made
910 : * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
911 : * to do with delayed acks, because at cwnd>2 true delack timeout
912 : * is invisible. Actually, Linux-2.4 also generates erratic
913 : * ACKs in some circumstances.
914 : */
915 355 : inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
916 :
917 : /* 2. Fixups made earlier cannot be right.
918 : * If we do not estimate RTO correctly without them,
919 : * all the algo is pure shit and should be replaced
920 : * with correct one. It is exactly, which we pretend to do.
921 : */
922 :
923 : /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
924 : * guarantees that rto is higher.
925 : */
926 355 : tcp_bound_rto(sk);
927 355 : }
928 :
929 8 : __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
930 : {
931 8 : __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
932 :
933 8 : if (!cwnd)
934 : cwnd = TCP_INIT_CWND;
935 8 : return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
936 : }
937 :
938 : struct tcp_sacktag_state {
939 : /* Timestamps for earliest and latest never-retransmitted segment
940 : * that was SACKed. RTO needs the earliest RTT to stay conservative,
941 : * but congestion control should still get an accurate delay signal.
942 : */
943 : u64 first_sackt;
944 : u64 last_sackt;
945 : u32 reord;
946 : u32 sack_delivered;
947 : int flag;
948 : unsigned int mss_now;
949 : struct rate_sample *rate;
950 : };
951 :
952 : /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
953 : * and spurious retransmission information if this DSACK is unlikely caused by
954 : * sender's action:
955 : * - DSACKed sequence range is larger than maximum receiver's window.
956 : * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
957 : */
958 0 : static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
959 : u32 end_seq, struct tcp_sacktag_state *state)
960 : {
961 0 : u32 seq_len, dup_segs = 1;
962 :
963 0 : if (!before(start_seq, end_seq))
964 : return 0;
965 :
966 0 : seq_len = end_seq - start_seq;
967 : /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
968 0 : if (seq_len > tp->max_window)
969 : return 0;
970 0 : if (seq_len > tp->mss_cache)
971 0 : dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
972 :
973 0 : tp->dsack_dups += dup_segs;
974 : /* Skip the DSACK if dup segs weren't retransmitted by sender */
975 0 : if (tp->dsack_dups > tp->total_retrans)
976 : return 0;
977 :
978 0 : tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
979 0 : tp->rack.dsack_seen = 1;
980 :
981 0 : state->flag |= FLAG_DSACKING_ACK;
982 : /* A spurious retransmission is delivered */
983 0 : state->sack_delivered += dup_segs;
984 :
985 0 : return dup_segs;
986 : }
987 :
988 : /* It's reordering when higher sequence was delivered (i.e. sacked) before
989 : * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
990 : * distance is approximated in full-mss packet distance ("reordering").
991 : */
992 0 : static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
993 : const int ts)
994 : {
995 0 : struct tcp_sock *tp = tcp_sk(sk);
996 0 : const u32 mss = tp->mss_cache;
997 0 : u32 fack, metric;
998 :
999 0 : fack = tcp_highest_sack_seq(tp);
1000 0 : if (!before(low_seq, fack))
1001 : return;
1002 :
1003 0 : metric = fack - low_seq;
1004 0 : if ((metric > tp->reordering * mss) && mss) {
1005 : #if FASTRETRANS_DEBUG > 1
1006 : pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1007 : tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1008 : tp->reordering,
1009 : 0,
1010 : tp->sacked_out,
1011 : tp->undo_marker ? tp->undo_retrans : 0);
1012 : #endif
1013 0 : tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1014 : sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1015 : }
1016 :
1017 : /* This exciting event is worth to be remembered. 8) */
1018 0 : tp->reord_seen++;
1019 0 : NET_INC_STATS(sock_net(sk),
1020 : ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1021 : }
1022 :
1023 : /* This must be called before lost_out or retrans_out are updated
1024 : * on a new loss, because we want to know if all skbs previously
1025 : * known to be lost have already been retransmitted, indicating
1026 : * that this newly lost skb is our next skb to retransmit.
1027 : */
1028 0 : static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1029 : {
1030 0 : if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1031 0 : (tp->retransmit_skb_hint &&
1032 0 : before(TCP_SKB_CB(skb)->seq,
1033 : TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1034 0 : tp->retransmit_skb_hint = skb;
1035 0 : }
1036 :
1037 : /* Sum the number of packets on the wire we have marked as lost, and
1038 : * notify the congestion control module that the given skb was marked lost.
1039 : */
1040 0 : static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1041 : {
1042 0 : tp->lost += tcp_skb_pcount(skb);
1043 0 : }
1044 :
1045 0 : void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1046 : {
1047 0 : __u8 sacked = TCP_SKB_CB(skb)->sacked;
1048 0 : struct tcp_sock *tp = tcp_sk(sk);
1049 :
1050 0 : if (sacked & TCPCB_SACKED_ACKED)
1051 : return;
1052 :
1053 0 : tcp_verify_retransmit_hint(tp, skb);
1054 0 : if (sacked & TCPCB_LOST) {
1055 0 : if (sacked & TCPCB_SACKED_RETRANS) {
1056 : /* Account for retransmits that are lost again */
1057 0 : TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1058 0 : tp->retrans_out -= tcp_skb_pcount(skb);
1059 0 : NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1060 : tcp_skb_pcount(skb));
1061 0 : tcp_notify_skb_loss_event(tp, skb);
1062 : }
1063 : } else {
1064 0 : tp->lost_out += tcp_skb_pcount(skb);
1065 0 : TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1066 0 : tcp_notify_skb_loss_event(tp, skb);
1067 : }
1068 : }
1069 :
1070 : /* Updates the delivered and delivered_ce counts */
1071 351 : static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1072 : bool ece_ack)
1073 : {
1074 351 : tp->delivered += delivered;
1075 351 : if (ece_ack)
1076 0 : tp->delivered_ce += delivered;
1077 : }
1078 :
1079 : /* This procedure tags the retransmission queue when SACKs arrive.
1080 : *
1081 : * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1082 : * Packets in queue with these bits set are counted in variables
1083 : * sacked_out, retrans_out and lost_out, correspondingly.
1084 : *
1085 : * Valid combinations are:
1086 : * Tag InFlight Description
1087 : * 0 1 - orig segment is in flight.
1088 : * S 0 - nothing flies, orig reached receiver.
1089 : * L 0 - nothing flies, orig lost by net.
1090 : * R 2 - both orig and retransmit are in flight.
1091 : * L|R 1 - orig is lost, retransmit is in flight.
1092 : * S|R 1 - orig reached receiver, retrans is still in flight.
1093 : * (L|S|R is logically valid, it could occur when L|R is sacked,
1094 : * but it is equivalent to plain S and code short-curcuits it to S.
1095 : * L|S is logically invalid, it would mean -1 packet in flight 8))
1096 : *
1097 : * These 6 states form finite state machine, controlled by the following events:
1098 : * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1099 : * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1100 : * 3. Loss detection event of two flavors:
1101 : * A. Scoreboard estimator decided the packet is lost.
1102 : * A'. Reno "three dupacks" marks head of queue lost.
1103 : * B. SACK arrives sacking SND.NXT at the moment, when the
1104 : * segment was retransmitted.
1105 : * 4. D-SACK added new rule: D-SACK changes any tag to S.
1106 : *
1107 : * It is pleasant to note, that state diagram turns out to be commutative,
1108 : * so that we are allowed not to be bothered by order of our actions,
1109 : * when multiple events arrive simultaneously. (see the function below).
1110 : *
1111 : * Reordering detection.
1112 : * --------------------
1113 : * Reordering metric is maximal distance, which a packet can be displaced
1114 : * in packet stream. With SACKs we can estimate it:
1115 : *
1116 : * 1. SACK fills old hole and the corresponding segment was not
1117 : * ever retransmitted -> reordering. Alas, we cannot use it
1118 : * when segment was retransmitted.
1119 : * 2. The last flaw is solved with D-SACK. D-SACK arrives
1120 : * for retransmitted and already SACKed segment -> reordering..
1121 : * Both of these heuristics are not used in Loss state, when we cannot
1122 : * account for retransmits accurately.
1123 : *
1124 : * SACK block validation.
1125 : * ----------------------
1126 : *
1127 : * SACK block range validation checks that the received SACK block fits to
1128 : * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1129 : * Note that SND.UNA is not included to the range though being valid because
1130 : * it means that the receiver is rather inconsistent with itself reporting
1131 : * SACK reneging when it should advance SND.UNA. Such SACK block this is
1132 : * perfectly valid, however, in light of RFC2018 which explicitly states
1133 : * that "SACK block MUST reflect the newest segment. Even if the newest
1134 : * segment is going to be discarded ...", not that it looks very clever
1135 : * in case of head skb. Due to potentional receiver driven attacks, we
1136 : * choose to avoid immediate execution of a walk in write queue due to
1137 : * reneging and defer head skb's loss recovery to standard loss recovery
1138 : * procedure that will eventually trigger (nothing forbids us doing this).
1139 : *
1140 : * Implements also blockage to start_seq wrap-around. Problem lies in the
1141 : * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1142 : * there's no guarantee that it will be before snd_nxt (n). The problem
1143 : * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1144 : * wrap (s_w):
1145 : *
1146 : * <- outs wnd -> <- wrapzone ->
1147 : * u e n u_w e_w s n_w
1148 : * | | | | | | |
1149 : * |<------------+------+----- TCP seqno space --------------+---------->|
1150 : * ...-- <2^31 ->| |<--------...
1151 : * ...---- >2^31 ------>| |<--------...
1152 : *
1153 : * Current code wouldn't be vulnerable but it's better still to discard such
1154 : * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1155 : * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1156 : * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1157 : * equal to the ideal case (infinite seqno space without wrap caused issues).
1158 : *
1159 : * With D-SACK the lower bound is extended to cover sequence space below
1160 : * SND.UNA down to undo_marker, which is the last point of interest. Yet
1161 : * again, D-SACK block must not to go across snd_una (for the same reason as
1162 : * for the normal SACK blocks, explained above). But there all simplicity
1163 : * ends, TCP might receive valid D-SACKs below that. As long as they reside
1164 : * fully below undo_marker they do not affect behavior in anyway and can
1165 : * therefore be safely ignored. In rare cases (which are more or less
1166 : * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1167 : * fragmentation and packet reordering past skb's retransmission. To consider
1168 : * them correctly, the acceptable range must be extended even more though
1169 : * the exact amount is rather hard to quantify. However, tp->max_window can
1170 : * be used as an exaggerated estimate.
1171 : */
1172 0 : static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1173 : u32 start_seq, u32 end_seq)
1174 : {
1175 : /* Too far in future, or reversed (interpretation is ambiguous) */
1176 0 : if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1177 : return false;
1178 :
1179 : /* Nasty start_seq wrap-around check (see comments above) */
1180 0 : if (!before(start_seq, tp->snd_nxt))
1181 : return false;
1182 :
1183 : /* In outstanding window? ...This is valid exit for D-SACKs too.
1184 : * start_seq == snd_una is non-sensical (see comments above)
1185 : */
1186 0 : if (after(start_seq, tp->snd_una))
1187 : return true;
1188 :
1189 0 : if (!is_dsack || !tp->undo_marker)
1190 : return false;
1191 :
1192 : /* ...Then it's D-SACK, and must reside below snd_una completely */
1193 0 : if (after(end_seq, tp->snd_una))
1194 : return false;
1195 :
1196 0 : if (!before(start_seq, tp->undo_marker))
1197 : return true;
1198 :
1199 : /* Too old */
1200 0 : if (!after(end_seq, tp->undo_marker))
1201 : return false;
1202 :
1203 : /* Undo_marker boundary crossing (overestimates a lot). Known already:
1204 : * start_seq < undo_marker and end_seq >= undo_marker.
1205 : */
1206 0 : return !before(start_seq, end_seq - tp->max_window);
1207 : }
1208 :
1209 0 : static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1210 : struct tcp_sack_block_wire *sp, int num_sacks,
1211 : u32 prior_snd_una, struct tcp_sacktag_state *state)
1212 : {
1213 0 : struct tcp_sock *tp = tcp_sk(sk);
1214 0 : u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1215 0 : u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1216 0 : u32 dup_segs;
1217 :
1218 0 : if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1219 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1220 0 : } else if (num_sacks > 1) {
1221 0 : u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1222 0 : u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1223 :
1224 0 : if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1225 : return false;
1226 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1227 : } else {
1228 : return false;
1229 : }
1230 :
1231 0 : dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1232 0 : if (!dup_segs) { /* Skip dubious DSACK */
1233 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1234 0 : return false;
1235 : }
1236 :
1237 0 : NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1238 :
1239 : /* D-SACK for already forgotten data... Do dumb counting. */
1240 0 : if (tp->undo_marker && tp->undo_retrans > 0 &&
1241 0 : !after(end_seq_0, prior_snd_una) &&
1242 0 : after(end_seq_0, tp->undo_marker))
1243 0 : tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1244 :
1245 : return true;
1246 : }
1247 :
1248 : /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249 : * the incoming SACK may not exactly match but we can find smaller MSS
1250 : * aligned portion of it that matches. Therefore we might need to fragment
1251 : * which may fail and creates some hassle (caller must handle error case
1252 : * returns).
1253 : *
1254 : * FIXME: this could be merged to shift decision code
1255 : */
1256 0 : static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1257 : u32 start_seq, u32 end_seq)
1258 : {
1259 0 : int err;
1260 0 : bool in_sack;
1261 0 : unsigned int pkt_len;
1262 0 : unsigned int mss;
1263 :
1264 0 : in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1265 0 : !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1266 :
1267 0 : if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1268 0 : after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1269 0 : mss = tcp_skb_mss(skb);
1270 0 : in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1271 :
1272 0 : if (!in_sack) {
1273 0 : pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1274 0 : if (pkt_len < mss)
1275 : pkt_len = mss;
1276 : } else {
1277 0 : pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1278 0 : if (pkt_len < mss)
1279 : return -EINVAL;
1280 : }
1281 :
1282 : /* Round if necessary so that SACKs cover only full MSSes
1283 : * and/or the remaining small portion (if present)
1284 : */
1285 0 : if (pkt_len > mss) {
1286 0 : unsigned int new_len = (pkt_len / mss) * mss;
1287 0 : if (!in_sack && new_len < pkt_len)
1288 0 : new_len += mss;
1289 : pkt_len = new_len;
1290 : }
1291 :
1292 0 : if (pkt_len >= skb->len && !in_sack)
1293 : return 0;
1294 :
1295 0 : err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1296 : pkt_len, mss, GFP_ATOMIC);
1297 0 : if (err < 0)
1298 : return err;
1299 : }
1300 :
1301 0 : return in_sack;
1302 : }
1303 :
1304 : /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1305 0 : static u8 tcp_sacktag_one(struct sock *sk,
1306 : struct tcp_sacktag_state *state, u8 sacked,
1307 : u32 start_seq, u32 end_seq,
1308 : int dup_sack, int pcount,
1309 : u64 xmit_time)
1310 : {
1311 0 : struct tcp_sock *tp = tcp_sk(sk);
1312 :
1313 : /* Account D-SACK for retransmitted packet. */
1314 0 : if (dup_sack && (sacked & TCPCB_RETRANS)) {
1315 0 : if (tp->undo_marker && tp->undo_retrans > 0 &&
1316 0 : after(end_seq, tp->undo_marker))
1317 0 : tp->undo_retrans--;
1318 0 : if ((sacked & TCPCB_SACKED_ACKED) &&
1319 0 : before(start_seq, state->reord))
1320 0 : state->reord = start_seq;
1321 : }
1322 :
1323 : /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1324 0 : if (!after(end_seq, tp->snd_una))
1325 : return sacked;
1326 :
1327 0 : if (!(sacked & TCPCB_SACKED_ACKED)) {
1328 0 : tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1329 :
1330 0 : if (sacked & TCPCB_SACKED_RETRANS) {
1331 : /* If the segment is not tagged as lost,
1332 : * we do not clear RETRANS, believing
1333 : * that retransmission is still in flight.
1334 : */
1335 0 : if (sacked & TCPCB_LOST) {
1336 0 : sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1337 0 : tp->lost_out -= pcount;
1338 0 : tp->retrans_out -= pcount;
1339 : }
1340 : } else {
1341 0 : if (!(sacked & TCPCB_RETRANS)) {
1342 : /* New sack for not retransmitted frame,
1343 : * which was in hole. It is reordering.
1344 : */
1345 0 : if (before(start_seq,
1346 0 : tcp_highest_sack_seq(tp)) &&
1347 0 : before(start_seq, state->reord))
1348 0 : state->reord = start_seq;
1349 :
1350 0 : if (!after(end_seq, tp->high_seq))
1351 0 : state->flag |= FLAG_ORIG_SACK_ACKED;
1352 0 : if (state->first_sackt == 0)
1353 0 : state->first_sackt = xmit_time;
1354 0 : state->last_sackt = xmit_time;
1355 : }
1356 :
1357 0 : if (sacked & TCPCB_LOST) {
1358 0 : sacked &= ~TCPCB_LOST;
1359 0 : tp->lost_out -= pcount;
1360 : }
1361 : }
1362 :
1363 0 : sacked |= TCPCB_SACKED_ACKED;
1364 0 : state->flag |= FLAG_DATA_SACKED;
1365 0 : tp->sacked_out += pcount;
1366 : /* Out-of-order packets delivered */
1367 0 : state->sack_delivered += pcount;
1368 :
1369 : /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1370 0 : if (tp->lost_skb_hint &&
1371 0 : before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1372 0 : tp->lost_cnt_hint += pcount;
1373 : }
1374 :
1375 : /* D-SACK. We can detect redundant retransmission in S|R and plain R
1376 : * frames and clear it. undo_retrans is decreased above, L|R frames
1377 : * are accounted above as well.
1378 : */
1379 0 : if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1380 0 : sacked &= ~TCPCB_SACKED_RETRANS;
1381 0 : tp->retrans_out -= pcount;
1382 : }
1383 :
1384 : return sacked;
1385 : }
1386 :
1387 : /* Shift newly-SACKed bytes from this skb to the immediately previous
1388 : * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1389 : */
1390 0 : static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1391 : struct sk_buff *skb,
1392 : struct tcp_sacktag_state *state,
1393 : unsigned int pcount, int shifted, int mss,
1394 : bool dup_sack)
1395 : {
1396 0 : struct tcp_sock *tp = tcp_sk(sk);
1397 0 : u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1398 0 : u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1399 :
1400 0 : BUG_ON(!pcount);
1401 :
1402 : /* Adjust counters and hints for the newly sacked sequence
1403 : * range but discard the return value since prev is already
1404 : * marked. We must tag the range first because the seq
1405 : * advancement below implicitly advances
1406 : * tcp_highest_sack_seq() when skb is highest_sack.
1407 : */
1408 0 : tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1409 : start_seq, end_seq, dup_sack, pcount,
1410 : tcp_skb_timestamp_us(skb));
1411 0 : tcp_rate_skb_delivered(sk, skb, state->rate);
1412 :
1413 0 : if (skb == tp->lost_skb_hint)
1414 0 : tp->lost_cnt_hint += pcount;
1415 :
1416 0 : TCP_SKB_CB(prev)->end_seq += shifted;
1417 0 : TCP_SKB_CB(skb)->seq += shifted;
1418 :
1419 0 : tcp_skb_pcount_add(prev, pcount);
1420 0 : WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1421 0 : tcp_skb_pcount_add(skb, -pcount);
1422 :
1423 : /* When we're adding to gso_segs == 1, gso_size will be zero,
1424 : * in theory this shouldn't be necessary but as long as DSACK
1425 : * code can come after this skb later on it's better to keep
1426 : * setting gso_size to something.
1427 : */
1428 0 : if (!TCP_SKB_CB(prev)->tcp_gso_size)
1429 0 : TCP_SKB_CB(prev)->tcp_gso_size = mss;
1430 :
1431 : /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1432 0 : if (tcp_skb_pcount(skb) <= 1)
1433 0 : TCP_SKB_CB(skb)->tcp_gso_size = 0;
1434 :
1435 : /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1436 0 : TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1437 :
1438 0 : if (skb->len > 0) {
1439 0 : BUG_ON(!tcp_skb_pcount(skb));
1440 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1441 0 : return false;
1442 : }
1443 :
1444 : /* Whole SKB was eaten :-) */
1445 :
1446 0 : if (skb == tp->retransmit_skb_hint)
1447 0 : tp->retransmit_skb_hint = prev;
1448 0 : if (skb == tp->lost_skb_hint) {
1449 0 : tp->lost_skb_hint = prev;
1450 0 : tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1451 : }
1452 :
1453 0 : TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1454 0 : TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1455 0 : if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1456 0 : TCP_SKB_CB(prev)->end_seq++;
1457 :
1458 0 : if (skb == tcp_highest_sack(sk))
1459 0 : tcp_advance_highest_sack(sk, skb);
1460 :
1461 0 : tcp_skb_collapse_tstamp(prev, skb);
1462 0 : if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1463 0 : TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1464 :
1465 0 : tcp_rtx_queue_unlink_and_free(skb, sk);
1466 :
1467 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1468 :
1469 0 : return true;
1470 : }
1471 :
1472 : /* I wish gso_size would have a bit more sane initialization than
1473 : * something-or-zero which complicates things
1474 : */
1475 0 : static int tcp_skb_seglen(const struct sk_buff *skb)
1476 : {
1477 0 : return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1478 : }
1479 :
1480 : /* Shifting pages past head area doesn't work */
1481 0 : static int skb_can_shift(const struct sk_buff *skb)
1482 : {
1483 0 : return !skb_headlen(skb) && skb_is_nonlinear(skb);
1484 : }
1485 :
1486 0 : int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1487 : int pcount, int shiftlen)
1488 : {
1489 : /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1490 : * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1491 : * to make sure not storing more than 65535 * 8 bytes per skb,
1492 : * even if current MSS is bigger.
1493 : */
1494 0 : if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1495 : return 0;
1496 0 : if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1497 : return 0;
1498 0 : return skb_shift(to, from, shiftlen);
1499 : }
1500 :
1501 : /* Try collapsing SACK blocks spanning across multiple skbs to a single
1502 : * skb.
1503 : */
1504 0 : static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1505 : struct tcp_sacktag_state *state,
1506 : u32 start_seq, u32 end_seq,
1507 : bool dup_sack)
1508 : {
1509 0 : struct tcp_sock *tp = tcp_sk(sk);
1510 0 : struct sk_buff *prev;
1511 0 : int mss;
1512 0 : int pcount = 0;
1513 0 : int len;
1514 0 : int in_sack;
1515 :
1516 : /* Normally R but no L won't result in plain S */
1517 0 : if (!dup_sack &&
1518 0 : (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1519 0 : goto fallback;
1520 0 : if (!skb_can_shift(skb))
1521 0 : goto fallback;
1522 : /* This frame is about to be dropped (was ACKed). */
1523 0 : if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1524 0 : goto fallback;
1525 :
1526 : /* Can only happen with delayed DSACK + discard craziness */
1527 0 : prev = skb_rb_prev(skb);
1528 0 : if (!prev)
1529 0 : goto fallback;
1530 :
1531 0 : if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1532 0 : goto fallback;
1533 :
1534 0 : if (!tcp_skb_can_collapse(prev, skb))
1535 0 : goto fallback;
1536 :
1537 0 : in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1538 0 : !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1539 :
1540 0 : if (in_sack) {
1541 0 : len = skb->len;
1542 0 : pcount = tcp_skb_pcount(skb);
1543 0 : mss = tcp_skb_seglen(skb);
1544 :
1545 : /* TODO: Fix DSACKs to not fragment already SACKed and we can
1546 : * drop this restriction as unnecessary
1547 : */
1548 0 : if (mss != tcp_skb_seglen(prev))
1549 0 : goto fallback;
1550 : } else {
1551 0 : if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1552 0 : goto noop;
1553 : /* CHECKME: This is non-MSS split case only?, this will
1554 : * cause skipped skbs due to advancing loop btw, original
1555 : * has that feature too
1556 : */
1557 0 : if (tcp_skb_pcount(skb) <= 1)
1558 0 : goto noop;
1559 :
1560 0 : in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1561 0 : if (!in_sack) {
1562 : /* TODO: head merge to next could be attempted here
1563 : * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1564 : * though it might not be worth of the additional hassle
1565 : *
1566 : * ...we can probably just fallback to what was done
1567 : * previously. We could try merging non-SACKed ones
1568 : * as well but it probably isn't going to buy off
1569 : * because later SACKs might again split them, and
1570 : * it would make skb timestamp tracking considerably
1571 : * harder problem.
1572 : */
1573 0 : goto fallback;
1574 : }
1575 :
1576 0 : len = end_seq - TCP_SKB_CB(skb)->seq;
1577 0 : BUG_ON(len < 0);
1578 0 : BUG_ON(len > skb->len);
1579 :
1580 : /* MSS boundaries should be honoured or else pcount will
1581 : * severely break even though it makes things bit trickier.
1582 : * Optimize common case to avoid most of the divides
1583 : */
1584 0 : mss = tcp_skb_mss(skb);
1585 :
1586 : /* TODO: Fix DSACKs to not fragment already SACKed and we can
1587 : * drop this restriction as unnecessary
1588 : */
1589 0 : if (mss != tcp_skb_seglen(prev))
1590 0 : goto fallback;
1591 :
1592 0 : if (len == mss) {
1593 : pcount = 1;
1594 0 : } else if (len < mss) {
1595 0 : goto noop;
1596 : } else {
1597 0 : pcount = len / mss;
1598 0 : len = pcount * mss;
1599 : }
1600 : }
1601 :
1602 : /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1603 0 : if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1604 0 : goto fallback;
1605 :
1606 0 : if (!tcp_skb_shift(prev, skb, pcount, len))
1607 0 : goto fallback;
1608 0 : if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1609 0 : goto out;
1610 :
1611 : /* Hole filled allows collapsing with the next as well, this is very
1612 : * useful when hole on every nth skb pattern happens
1613 : */
1614 0 : skb = skb_rb_next(prev);
1615 0 : if (!skb)
1616 0 : goto out;
1617 :
1618 0 : if (!skb_can_shift(skb) ||
1619 0 : ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620 0 : (mss != tcp_skb_seglen(skb)))
1621 0 : goto out;
1622 :
1623 0 : len = skb->len;
1624 0 : pcount = tcp_skb_pcount(skb);
1625 0 : if (tcp_skb_shift(prev, skb, pcount, len))
1626 0 : tcp_shifted_skb(sk, prev, skb, state, pcount,
1627 : len, mss, 0);
1628 :
1629 0 : out:
1630 : return prev;
1631 :
1632 : noop:
1633 : return skb;
1634 :
1635 0 : fallback:
1636 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1637 0 : return NULL;
1638 : }
1639 :
1640 0 : static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1641 : struct tcp_sack_block *next_dup,
1642 : struct tcp_sacktag_state *state,
1643 : u32 start_seq, u32 end_seq,
1644 : bool dup_sack_in)
1645 : {
1646 0 : struct tcp_sock *tp = tcp_sk(sk);
1647 0 : struct sk_buff *tmp;
1648 :
1649 0 : skb_rbtree_walk_from(skb) {
1650 0 : int in_sack = 0;
1651 0 : bool dup_sack = dup_sack_in;
1652 :
1653 : /* queue is in-order => we can short-circuit the walk early */
1654 0 : if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1655 : break;
1656 :
1657 0 : if (next_dup &&
1658 0 : before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1659 0 : in_sack = tcp_match_skb_to_sack(sk, skb,
1660 : next_dup->start_seq,
1661 : next_dup->end_seq);
1662 0 : if (in_sack > 0)
1663 0 : dup_sack = true;
1664 : }
1665 :
1666 : /* skb reference here is a bit tricky to get right, since
1667 : * shifting can eat and free both this skb and the next,
1668 : * so not even _safe variant of the loop is enough.
1669 : */
1670 0 : if (in_sack <= 0) {
1671 0 : tmp = tcp_shift_skb_data(sk, skb, state,
1672 : start_seq, end_seq, dup_sack);
1673 0 : if (tmp) {
1674 0 : if (tmp != skb) {
1675 0 : skb = tmp;
1676 0 : continue;
1677 : }
1678 :
1679 : in_sack = 0;
1680 : } else {
1681 0 : in_sack = tcp_match_skb_to_sack(sk, skb,
1682 : start_seq,
1683 : end_seq);
1684 : }
1685 : }
1686 :
1687 0 : if (unlikely(in_sack < 0))
1688 : break;
1689 :
1690 0 : if (in_sack) {
1691 0 : TCP_SKB_CB(skb)->sacked =
1692 0 : tcp_sacktag_one(sk,
1693 : state,
1694 0 : TCP_SKB_CB(skb)->sacked,
1695 : TCP_SKB_CB(skb)->seq,
1696 : TCP_SKB_CB(skb)->end_seq,
1697 : dup_sack,
1698 : tcp_skb_pcount(skb),
1699 : tcp_skb_timestamp_us(skb));
1700 0 : tcp_rate_skb_delivered(sk, skb, state->rate);
1701 0 : if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1702 0 : list_del_init(&skb->tcp_tsorted_anchor);
1703 :
1704 0 : if (!before(TCP_SKB_CB(skb)->seq,
1705 : tcp_highest_sack_seq(tp)))
1706 0 : tcp_advance_highest_sack(sk, skb);
1707 : }
1708 : }
1709 0 : return skb;
1710 : }
1711 :
1712 0 : static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1713 : {
1714 0 : struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1715 0 : struct sk_buff *skb;
1716 :
1717 0 : while (*p) {
1718 0 : parent = *p;
1719 0 : skb = rb_to_skb(parent);
1720 0 : if (before(seq, TCP_SKB_CB(skb)->seq)) {
1721 0 : p = &parent->rb_left;
1722 0 : continue;
1723 : }
1724 0 : if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1725 0 : p = &parent->rb_right;
1726 0 : continue;
1727 : }
1728 : return skb;
1729 : }
1730 : return NULL;
1731 : }
1732 :
1733 0 : static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1734 : u32 skip_to_seq)
1735 : {
1736 0 : if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1737 : return skb;
1738 :
1739 0 : return tcp_sacktag_bsearch(sk, skip_to_seq);
1740 : }
1741 :
1742 0 : static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1743 : struct sock *sk,
1744 : struct tcp_sack_block *next_dup,
1745 : struct tcp_sacktag_state *state,
1746 : u32 skip_to_seq)
1747 : {
1748 0 : if (!next_dup)
1749 : return skb;
1750 :
1751 0 : if (before(next_dup->start_seq, skip_to_seq)) {
1752 0 : skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1753 0 : skb = tcp_sacktag_walk(skb, sk, NULL, state,
1754 : next_dup->start_seq, next_dup->end_seq,
1755 : 1);
1756 : }
1757 :
1758 : return skb;
1759 : }
1760 :
1761 0 : static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1762 : {
1763 0 : return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1764 : }
1765 :
1766 : static int
1767 0 : tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1768 : u32 prior_snd_una, struct tcp_sacktag_state *state)
1769 : {
1770 0 : struct tcp_sock *tp = tcp_sk(sk);
1771 0 : const unsigned char *ptr = (skb_transport_header(ack_skb) +
1772 0 : TCP_SKB_CB(ack_skb)->sacked);
1773 0 : struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1774 0 : struct tcp_sack_block sp[TCP_NUM_SACKS];
1775 0 : struct tcp_sack_block *cache;
1776 0 : struct sk_buff *skb;
1777 0 : int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1778 0 : int used_sacks;
1779 0 : bool found_dup_sack = false;
1780 0 : int i, j;
1781 0 : int first_sack_index;
1782 :
1783 0 : state->flag = 0;
1784 0 : state->reord = tp->snd_nxt;
1785 :
1786 0 : if (!tp->sacked_out)
1787 0 : tcp_highest_sack_reset(sk);
1788 :
1789 0 : found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1790 : num_sacks, prior_snd_una, state);
1791 :
1792 : /* Eliminate too old ACKs, but take into
1793 : * account more or less fresh ones, they can
1794 : * contain valid SACK info.
1795 : */
1796 0 : if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1797 : return 0;
1798 :
1799 0 : if (!tp->packets_out)
1800 0 : goto out;
1801 :
1802 : used_sacks = 0;
1803 : first_sack_index = 0;
1804 0 : for (i = 0; i < num_sacks; i++) {
1805 0 : bool dup_sack = !i && found_dup_sack;
1806 :
1807 0 : sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1808 0 : sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1809 :
1810 0 : if (!tcp_is_sackblock_valid(tp, dup_sack,
1811 : sp[used_sacks].start_seq,
1812 : sp[used_sacks].end_seq)) {
1813 0 : int mib_idx;
1814 :
1815 0 : if (dup_sack) {
1816 0 : if (!tp->undo_marker)
1817 : mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1818 : else
1819 0 : mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1820 : } else {
1821 : /* Don't count olds caused by ACK reordering */
1822 0 : if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1823 0 : !after(sp[used_sacks].end_seq, tp->snd_una))
1824 0 : continue;
1825 : mib_idx = LINUX_MIB_TCPSACKDISCARD;
1826 : }
1827 :
1828 0 : NET_INC_STATS(sock_net(sk), mib_idx);
1829 0 : if (i == 0)
1830 0 : first_sack_index = -1;
1831 0 : continue;
1832 : }
1833 :
1834 : /* Ignore very old stuff early */
1835 0 : if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1836 0 : if (i == 0)
1837 0 : first_sack_index = -1;
1838 0 : continue;
1839 : }
1840 :
1841 0 : used_sacks++;
1842 : }
1843 :
1844 : /* order SACK blocks to allow in order walk of the retrans queue */
1845 0 : for (i = used_sacks - 1; i > 0; i--) {
1846 0 : for (j = 0; j < i; j++) {
1847 0 : if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1848 0 : swap(sp[j], sp[j + 1]);
1849 :
1850 : /* Track where the first SACK block goes to */
1851 0 : if (j == first_sack_index)
1852 0 : first_sack_index = j + 1;
1853 : }
1854 : }
1855 : }
1856 :
1857 0 : state->mss_now = tcp_current_mss(sk);
1858 0 : skb = NULL;
1859 0 : i = 0;
1860 :
1861 0 : if (!tp->sacked_out) {
1862 : /* It's already past, so skip checking against it */
1863 0 : cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1864 : } else {
1865 0 : cache = tp->recv_sack_cache;
1866 : /* Skip empty blocks in at head of the cache */
1867 0 : while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1868 0 : !cache->end_seq)
1869 0 : cache++;
1870 : }
1871 :
1872 0 : while (i < used_sacks) {
1873 0 : u32 start_seq = sp[i].start_seq;
1874 0 : u32 end_seq = sp[i].end_seq;
1875 0 : bool dup_sack = (found_dup_sack && (i == first_sack_index));
1876 0 : struct tcp_sack_block *next_dup = NULL;
1877 :
1878 0 : if (found_dup_sack && ((i + 1) == first_sack_index))
1879 0 : next_dup = &sp[i + 1];
1880 :
1881 : /* Skip too early cached blocks */
1882 0 : while (tcp_sack_cache_ok(tp, cache) &&
1883 0 : !before(start_seq, cache->end_seq))
1884 0 : cache++;
1885 :
1886 : /* Can skip some work by looking recv_sack_cache? */
1887 0 : if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1888 0 : after(end_seq, cache->start_seq)) {
1889 :
1890 : /* Head todo? */
1891 0 : if (before(start_seq, cache->start_seq)) {
1892 0 : skb = tcp_sacktag_skip(skb, sk, start_seq);
1893 0 : skb = tcp_sacktag_walk(skb, sk, next_dup,
1894 : state,
1895 : start_seq,
1896 : cache->start_seq,
1897 : dup_sack);
1898 : }
1899 :
1900 : /* Rest of the block already fully processed? */
1901 0 : if (!after(end_seq, cache->end_seq))
1902 0 : goto advance_sp;
1903 :
1904 0 : skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1905 : state,
1906 : cache->end_seq);
1907 :
1908 : /* ...tail remains todo... */
1909 0 : if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1910 : /* ...but better entrypoint exists! */
1911 0 : skb = tcp_highest_sack(sk);
1912 0 : if (!skb)
1913 : break;
1914 0 : cache++;
1915 0 : goto walk;
1916 : }
1917 :
1918 0 : skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1919 : /* Check overlap against next cached too (past this one already) */
1920 0 : cache++;
1921 0 : continue;
1922 : }
1923 :
1924 0 : if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1925 0 : skb = tcp_highest_sack(sk);
1926 0 : if (!skb)
1927 : break;
1928 : }
1929 0 : skb = tcp_sacktag_skip(skb, sk, start_seq);
1930 :
1931 0 : walk:
1932 0 : skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1933 : start_seq, end_seq, dup_sack);
1934 :
1935 0 : advance_sp:
1936 0 : i++;
1937 : }
1938 :
1939 : /* Clear the head of the cache sack blocks so we can skip it next time */
1940 0 : for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1941 0 : tp->recv_sack_cache[i].start_seq = 0;
1942 0 : tp->recv_sack_cache[i].end_seq = 0;
1943 : }
1944 0 : for (j = 0; j < used_sacks; j++)
1945 0 : tp->recv_sack_cache[i++] = sp[j];
1946 :
1947 0 : if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1948 0 : tcp_check_sack_reordering(sk, state->reord, 0);
1949 :
1950 0 : tcp_verify_left_out(tp);
1951 0 : out:
1952 :
1953 : #if FASTRETRANS_DEBUG > 0
1954 0 : WARN_ON((int)tp->sacked_out < 0);
1955 0 : WARN_ON((int)tp->lost_out < 0);
1956 0 : WARN_ON((int)tp->retrans_out < 0);
1957 0 : WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1958 : #endif
1959 0 : return state->flag;
1960 : }
1961 :
1962 : /* Limits sacked_out so that sum with lost_out isn't ever larger than
1963 : * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1964 : */
1965 351 : static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1966 : {
1967 351 : u32 holes;
1968 :
1969 351 : holes = max(tp->lost_out, 1U);
1970 351 : holes = min(holes, tp->packets_out);
1971 :
1972 351 : if ((tp->sacked_out + holes) > tp->packets_out) {
1973 0 : tp->sacked_out = tp->packets_out - holes;
1974 0 : return true;
1975 : }
1976 : return false;
1977 : }
1978 :
1979 : /* If we receive more dupacks than we expected counting segments
1980 : * in assumption of absent reordering, interpret this as reordering.
1981 : * The only another reason could be bug in receiver TCP.
1982 : */
1983 351 : static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1984 : {
1985 351 : struct tcp_sock *tp = tcp_sk(sk);
1986 :
1987 351 : if (!tcp_limit_reno_sacked(tp))
1988 : return;
1989 :
1990 0 : tp->reordering = min_t(u32, tp->packets_out + addend,
1991 : sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1992 0 : tp->reord_seen++;
1993 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1994 : }
1995 :
1996 : /* Emulate SACKs for SACKless connection: account for a new dupack. */
1997 :
1998 0 : static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1999 : {
2000 0 : if (num_dupack) {
2001 0 : struct tcp_sock *tp = tcp_sk(sk);
2002 0 : u32 prior_sacked = tp->sacked_out;
2003 0 : s32 delivered;
2004 :
2005 0 : tp->sacked_out += num_dupack;
2006 0 : tcp_check_reno_reordering(sk, 0);
2007 0 : delivered = tp->sacked_out - prior_sacked;
2008 0 : if (delivered > 0)
2009 0 : tcp_count_delivered(tp, delivered, ece_ack);
2010 0 : tcp_verify_left_out(tp);
2011 : }
2012 0 : }
2013 :
2014 : /* Account for ACK, ACKing some data in Reno Recovery phase. */
2015 :
2016 351 : static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2017 : {
2018 351 : struct tcp_sock *tp = tcp_sk(sk);
2019 :
2020 351 : if (acked > 0) {
2021 : /* One ACK acked hole. The rest eat duplicate ACKs. */
2022 351 : tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2023 : ece_ack);
2024 351 : if (acked - 1 >= tp->sacked_out)
2025 351 : tp->sacked_out = 0;
2026 : else
2027 0 : tp->sacked_out -= acked - 1;
2028 : }
2029 351 : tcp_check_reno_reordering(sk, acked);
2030 351 : tcp_verify_left_out(tp);
2031 351 : }
2032 :
2033 0 : static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2034 : {
2035 0 : tp->sacked_out = 0;
2036 0 : }
2037 :
2038 0 : void tcp_clear_retrans(struct tcp_sock *tp)
2039 : {
2040 0 : tp->retrans_out = 0;
2041 0 : tp->lost_out = 0;
2042 0 : tp->undo_marker = 0;
2043 0 : tp->undo_retrans = -1;
2044 0 : tp->sacked_out = 0;
2045 0 : }
2046 :
2047 0 : static inline void tcp_init_undo(struct tcp_sock *tp)
2048 : {
2049 0 : tp->undo_marker = tp->snd_una;
2050 : /* Retransmission still in flight may cause DSACKs later. */
2051 0 : tp->undo_retrans = tp->retrans_out ? : -1;
2052 0 : }
2053 :
2054 0 : static bool tcp_is_rack(const struct sock *sk)
2055 : {
2056 0 : return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2057 : }
2058 :
2059 : /* If we detect SACK reneging, forget all SACK information
2060 : * and reset tags completely, otherwise preserve SACKs. If receiver
2061 : * dropped its ofo queue, we will know this due to reneging detection.
2062 : */
2063 0 : static void tcp_timeout_mark_lost(struct sock *sk)
2064 : {
2065 0 : struct tcp_sock *tp = tcp_sk(sk);
2066 0 : struct sk_buff *skb, *head;
2067 0 : bool is_reneg; /* is receiver reneging on SACKs? */
2068 :
2069 0 : head = tcp_rtx_queue_head(sk);
2070 0 : is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2071 0 : if (is_reneg) {
2072 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2073 0 : tp->sacked_out = 0;
2074 : /* Mark SACK reneging until we recover from this loss event. */
2075 0 : tp->is_sack_reneg = 1;
2076 0 : } else if (tcp_is_reno(tp)) {
2077 0 : tcp_reset_reno_sack(tp);
2078 : }
2079 :
2080 : skb = head;
2081 0 : skb_rbtree_walk_from(skb) {
2082 0 : if (is_reneg)
2083 0 : TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2084 0 : else if (tcp_is_rack(sk) && skb != head &&
2085 0 : tcp_rack_skb_timeout(tp, skb, 0) > 0)
2086 0 : continue; /* Don't mark recently sent ones lost yet */
2087 0 : tcp_mark_skb_lost(sk, skb);
2088 : }
2089 0 : tcp_verify_left_out(tp);
2090 0 : tcp_clear_all_retrans_hints(tp);
2091 0 : }
2092 :
2093 : /* Enter Loss state. */
2094 0 : void tcp_enter_loss(struct sock *sk)
2095 : {
2096 0 : const struct inet_connection_sock *icsk = inet_csk(sk);
2097 0 : struct tcp_sock *tp = tcp_sk(sk);
2098 0 : struct net *net = sock_net(sk);
2099 0 : bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2100 :
2101 0 : tcp_timeout_mark_lost(sk);
2102 :
2103 : /* Reduce ssthresh if it has not yet been made inside this window. */
2104 0 : if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2105 0 : !after(tp->high_seq, tp->snd_una) ||
2106 0 : (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2107 0 : tp->prior_ssthresh = tcp_current_ssthresh(sk);
2108 0 : tp->prior_cwnd = tp->snd_cwnd;
2109 0 : tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2110 0 : tcp_ca_event(sk, CA_EVENT_LOSS);
2111 0 : tcp_init_undo(tp);
2112 : }
2113 0 : tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2114 0 : tp->snd_cwnd_cnt = 0;
2115 0 : tp->snd_cwnd_stamp = tcp_jiffies32;
2116 :
2117 : /* Timeout in disordered state after receiving substantial DUPACKs
2118 : * suggests that the degree of reordering is over-estimated.
2119 : */
2120 0 : if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2121 0 : tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2122 0 : tp->reordering = min_t(unsigned int, tp->reordering,
2123 : net->ipv4.sysctl_tcp_reordering);
2124 0 : tcp_set_ca_state(sk, TCP_CA_Loss);
2125 0 : tp->high_seq = tp->snd_nxt;
2126 0 : tcp_ecn_queue_cwr(tp);
2127 :
2128 : /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2129 : * loss recovery is underway except recurring timeout(s) on
2130 : * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2131 : */
2132 0 : tp->frto = net->ipv4.sysctl_tcp_frto &&
2133 0 : (new_recovery || icsk->icsk_retransmits) &&
2134 0 : !inet_csk(sk)->icsk_mtup.probe_size;
2135 0 : }
2136 :
2137 : /* If ACK arrived pointing to a remembered SACK, it means that our
2138 : * remembered SACKs do not reflect real state of receiver i.e.
2139 : * receiver _host_ is heavily congested (or buggy).
2140 : *
2141 : * To avoid big spurious retransmission bursts due to transient SACK
2142 : * scoreboard oddities that look like reneging, we give the receiver a
2143 : * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2144 : * restore sanity to the SACK scoreboard. If the apparent reneging
2145 : * persists until this RTO then we'll clear the SACK scoreboard.
2146 : */
2147 0 : static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2148 : {
2149 0 : if (flag & FLAG_SACK_RENEGING) {
2150 0 : struct tcp_sock *tp = tcp_sk(sk);
2151 0 : unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2152 : msecs_to_jiffies(10));
2153 :
2154 0 : inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2155 : delay, TCP_RTO_MAX);
2156 0 : return true;
2157 : }
2158 : return false;
2159 : }
2160 :
2161 : /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2162 : * counter when SACK is enabled (without SACK, sacked_out is used for
2163 : * that purpose).
2164 : *
2165 : * With reordering, holes may still be in flight, so RFC3517 recovery
2166 : * uses pure sacked_out (total number of SACKed segments) even though
2167 : * it violates the RFC that uses duplicate ACKs, often these are equal
2168 : * but when e.g. out-of-window ACKs or packet duplication occurs,
2169 : * they differ. Since neither occurs due to loss, TCP should really
2170 : * ignore them.
2171 : */
2172 0 : static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2173 : {
2174 0 : return tp->sacked_out + 1;
2175 : }
2176 :
2177 : /* Linux NewReno/SACK/ECN state machine.
2178 : * --------------------------------------
2179 : *
2180 : * "Open" Normal state, no dubious events, fast path.
2181 : * "Disorder" In all the respects it is "Open",
2182 : * but requires a bit more attention. It is entered when
2183 : * we see some SACKs or dupacks. It is split of "Open"
2184 : * mainly to move some processing from fast path to slow one.
2185 : * "CWR" CWND was reduced due to some Congestion Notification event.
2186 : * It can be ECN, ICMP source quench, local device congestion.
2187 : * "Recovery" CWND was reduced, we are fast-retransmitting.
2188 : * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2189 : *
2190 : * tcp_fastretrans_alert() is entered:
2191 : * - each incoming ACK, if state is not "Open"
2192 : * - when arrived ACK is unusual, namely:
2193 : * * SACK
2194 : * * Duplicate ACK.
2195 : * * ECN ECE.
2196 : *
2197 : * Counting packets in flight is pretty simple.
2198 : *
2199 : * in_flight = packets_out - left_out + retrans_out
2200 : *
2201 : * packets_out is SND.NXT-SND.UNA counted in packets.
2202 : *
2203 : * retrans_out is number of retransmitted segments.
2204 : *
2205 : * left_out is number of segments left network, but not ACKed yet.
2206 : *
2207 : * left_out = sacked_out + lost_out
2208 : *
2209 : * sacked_out: Packets, which arrived to receiver out of order
2210 : * and hence not ACKed. With SACKs this number is simply
2211 : * amount of SACKed data. Even without SACKs
2212 : * it is easy to give pretty reliable estimate of this number,
2213 : * counting duplicate ACKs.
2214 : *
2215 : * lost_out: Packets lost by network. TCP has no explicit
2216 : * "loss notification" feedback from network (for now).
2217 : * It means that this number can be only _guessed_.
2218 : * Actually, it is the heuristics to predict lossage that
2219 : * distinguishes different algorithms.
2220 : *
2221 : * F.e. after RTO, when all the queue is considered as lost,
2222 : * lost_out = packets_out and in_flight = retrans_out.
2223 : *
2224 : * Essentially, we have now a few algorithms detecting
2225 : * lost packets.
2226 : *
2227 : * If the receiver supports SACK:
2228 : *
2229 : * RFC6675/3517: It is the conventional algorithm. A packet is
2230 : * considered lost if the number of higher sequence packets
2231 : * SACKed is greater than or equal the DUPACK thoreshold
2232 : * (reordering). This is implemented in tcp_mark_head_lost and
2233 : * tcp_update_scoreboard.
2234 : *
2235 : * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2236 : * (2017-) that checks timing instead of counting DUPACKs.
2237 : * Essentially a packet is considered lost if it's not S/ACKed
2238 : * after RTT + reordering_window, where both metrics are
2239 : * dynamically measured and adjusted. This is implemented in
2240 : * tcp_rack_mark_lost.
2241 : *
2242 : * If the receiver does not support SACK:
2243 : *
2244 : * NewReno (RFC6582): in Recovery we assume that one segment
2245 : * is lost (classic Reno). While we are in Recovery and
2246 : * a partial ACK arrives, we assume that one more packet
2247 : * is lost (NewReno). This heuristics are the same in NewReno
2248 : * and SACK.
2249 : *
2250 : * Really tricky (and requiring careful tuning) part of algorithm
2251 : * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2252 : * The first determines the moment _when_ we should reduce CWND and,
2253 : * hence, slow down forward transmission. In fact, it determines the moment
2254 : * when we decide that hole is caused by loss, rather than by a reorder.
2255 : *
2256 : * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2257 : * holes, caused by lost packets.
2258 : *
2259 : * And the most logically complicated part of algorithm is undo
2260 : * heuristics. We detect false retransmits due to both too early
2261 : * fast retransmit (reordering) and underestimated RTO, analyzing
2262 : * timestamps and D-SACKs. When we detect that some segments were
2263 : * retransmitted by mistake and CWND reduction was wrong, we undo
2264 : * window reduction and abort recovery phase. This logic is hidden
2265 : * inside several functions named tcp_try_undo_<something>.
2266 : */
2267 :
2268 : /* This function decides, when we should leave Disordered state
2269 : * and enter Recovery phase, reducing congestion window.
2270 : *
2271 : * Main question: may we further continue forward transmission
2272 : * with the same cwnd?
2273 : */
2274 0 : static bool tcp_time_to_recover(struct sock *sk, int flag)
2275 : {
2276 0 : struct tcp_sock *tp = tcp_sk(sk);
2277 :
2278 : /* Trick#1: The loss is proven. */
2279 0 : if (tp->lost_out)
2280 : return true;
2281 :
2282 : /* Not-A-Trick#2 : Classic rule... */
2283 0 : if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2284 : return true;
2285 :
2286 : return false;
2287 : }
2288 :
2289 : /* Detect loss in event "A" above by marking head of queue up as lost.
2290 : * For RFC3517 SACK, a segment is considered lost if it
2291 : * has at least tp->reordering SACKed seqments above it; "packets" refers to
2292 : * the maximum SACKed segments to pass before reaching this limit.
2293 : */
2294 0 : static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2295 : {
2296 0 : struct tcp_sock *tp = tcp_sk(sk);
2297 0 : struct sk_buff *skb;
2298 0 : int cnt;
2299 : /* Use SACK to deduce losses of new sequences sent during recovery */
2300 0 : const u32 loss_high = tp->snd_nxt;
2301 :
2302 0 : WARN_ON(packets > tp->packets_out);
2303 0 : skb = tp->lost_skb_hint;
2304 0 : if (skb) {
2305 : /* Head already handled? */
2306 0 : if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2307 : return;
2308 0 : cnt = tp->lost_cnt_hint;
2309 : } else {
2310 0 : skb = tcp_rtx_queue_head(sk);
2311 : cnt = 0;
2312 : }
2313 :
2314 0 : skb_rbtree_walk_from(skb) {
2315 : /* TODO: do this better */
2316 : /* this is not the most efficient way to do this... */
2317 0 : tp->lost_skb_hint = skb;
2318 0 : tp->lost_cnt_hint = cnt;
2319 :
2320 0 : if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2321 : break;
2322 :
2323 0 : if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2324 0 : cnt += tcp_skb_pcount(skb);
2325 :
2326 0 : if (cnt > packets)
2327 : break;
2328 :
2329 0 : if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2330 0 : tcp_mark_skb_lost(sk, skb);
2331 :
2332 0 : if (mark_head)
2333 : break;
2334 : }
2335 0 : tcp_verify_left_out(tp);
2336 : }
2337 :
2338 : /* Account newly detected lost packet(s) */
2339 :
2340 0 : static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2341 : {
2342 0 : struct tcp_sock *tp = tcp_sk(sk);
2343 :
2344 0 : if (tcp_is_sack(tp)) {
2345 0 : int sacked_upto = tp->sacked_out - tp->reordering;
2346 0 : if (sacked_upto >= 0)
2347 0 : tcp_mark_head_lost(sk, sacked_upto, 0);
2348 0 : else if (fast_rexmit)
2349 0 : tcp_mark_head_lost(sk, 1, 1);
2350 : }
2351 0 : }
2352 :
2353 0 : static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2354 : {
2355 0 : return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2356 0 : before(tp->rx_opt.rcv_tsecr, when);
2357 : }
2358 :
2359 : /* skb is spurious retransmitted if the returned timestamp echo
2360 : * reply is prior to the skb transmission time
2361 : */
2362 0 : static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2363 : const struct sk_buff *skb)
2364 : {
2365 0 : return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2366 0 : tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2367 : }
2368 :
2369 : /* Nothing was retransmitted or returned timestamp is less
2370 : * than timestamp of the first retransmission.
2371 : */
2372 0 : static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2373 : {
2374 0 : return tp->retrans_stamp &&
2375 0 : tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2376 : }
2377 :
2378 : /* Undo procedures. */
2379 :
2380 : /* We can clear retrans_stamp when there are no retransmissions in the
2381 : * window. It would seem that it is trivially available for us in
2382 : * tp->retrans_out, however, that kind of assumptions doesn't consider
2383 : * what will happen if errors occur when sending retransmission for the
2384 : * second time. ...It could the that such segment has only
2385 : * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2386 : * the head skb is enough except for some reneging corner cases that
2387 : * are not worth the effort.
2388 : *
2389 : * Main reason for all this complexity is the fact that connection dying
2390 : * time now depends on the validity of the retrans_stamp, in particular,
2391 : * that successive retransmissions of a segment must not advance
2392 : * retrans_stamp under any conditions.
2393 : */
2394 0 : static bool tcp_any_retrans_done(const struct sock *sk)
2395 : {
2396 0 : const struct tcp_sock *tp = tcp_sk(sk);
2397 0 : struct sk_buff *skb;
2398 :
2399 0 : if (tp->retrans_out)
2400 : return true;
2401 :
2402 0 : skb = tcp_rtx_queue_head(sk);
2403 0 : if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2404 0 : return true;
2405 :
2406 : return false;
2407 : }
2408 :
2409 0 : static void DBGUNDO(struct sock *sk, const char *msg)
2410 : {
2411 : #if FASTRETRANS_DEBUG > 1
2412 : struct tcp_sock *tp = tcp_sk(sk);
2413 : struct inet_sock *inet = inet_sk(sk);
2414 :
2415 : if (sk->sk_family == AF_INET) {
2416 : pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2417 : msg,
2418 : &inet->inet_daddr, ntohs(inet->inet_dport),
2419 : tp->snd_cwnd, tcp_left_out(tp),
2420 : tp->snd_ssthresh, tp->prior_ssthresh,
2421 : tp->packets_out);
2422 : }
2423 : #if IS_ENABLED(CONFIG_IPV6)
2424 : else if (sk->sk_family == AF_INET6) {
2425 : pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2426 : msg,
2427 : &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2428 : tp->snd_cwnd, tcp_left_out(tp),
2429 : tp->snd_ssthresh, tp->prior_ssthresh,
2430 : tp->packets_out);
2431 : }
2432 : #endif
2433 : #endif
2434 0 : }
2435 :
2436 0 : static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2437 : {
2438 0 : struct tcp_sock *tp = tcp_sk(sk);
2439 :
2440 0 : if (unmark_loss) {
2441 0 : struct sk_buff *skb;
2442 :
2443 0 : skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2444 0 : TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2445 : }
2446 0 : tp->lost_out = 0;
2447 0 : tcp_clear_all_retrans_hints(tp);
2448 : }
2449 :
2450 0 : if (tp->prior_ssthresh) {
2451 0 : const struct inet_connection_sock *icsk = inet_csk(sk);
2452 :
2453 0 : tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2454 :
2455 0 : if (tp->prior_ssthresh > tp->snd_ssthresh) {
2456 0 : tp->snd_ssthresh = tp->prior_ssthresh;
2457 0 : tcp_ecn_withdraw_cwr(tp);
2458 : }
2459 : }
2460 0 : tp->snd_cwnd_stamp = tcp_jiffies32;
2461 0 : tp->undo_marker = 0;
2462 0 : tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2463 0 : }
2464 :
2465 0 : static inline bool tcp_may_undo(const struct tcp_sock *tp)
2466 : {
2467 0 : return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2468 : }
2469 :
2470 : /* People celebrate: "We love our President!" */
2471 0 : static bool tcp_try_undo_recovery(struct sock *sk)
2472 : {
2473 0 : struct tcp_sock *tp = tcp_sk(sk);
2474 :
2475 0 : if (tcp_may_undo(tp)) {
2476 0 : int mib_idx;
2477 :
2478 : /* Happy end! We did not retransmit anything
2479 : * or our original transmission succeeded.
2480 : */
2481 0 : DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2482 0 : tcp_undo_cwnd_reduction(sk, false);
2483 0 : if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2484 : mib_idx = LINUX_MIB_TCPLOSSUNDO;
2485 : else
2486 0 : mib_idx = LINUX_MIB_TCPFULLUNDO;
2487 :
2488 0 : NET_INC_STATS(sock_net(sk), mib_idx);
2489 0 : } else if (tp->rack.reo_wnd_persist) {
2490 0 : tp->rack.reo_wnd_persist--;
2491 : }
2492 0 : if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2493 : /* Hold old state until something *above* high_seq
2494 : * is ACKed. For Reno it is MUST to prevent false
2495 : * fast retransmits (RFC2582). SACK TCP is safe. */
2496 0 : if (!tcp_any_retrans_done(sk))
2497 0 : tp->retrans_stamp = 0;
2498 0 : return true;
2499 : }
2500 0 : tcp_set_ca_state(sk, TCP_CA_Open);
2501 0 : tp->is_sack_reneg = 0;
2502 0 : return false;
2503 : }
2504 :
2505 : /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2506 0 : static bool tcp_try_undo_dsack(struct sock *sk)
2507 : {
2508 0 : struct tcp_sock *tp = tcp_sk(sk);
2509 :
2510 0 : if (tp->undo_marker && !tp->undo_retrans) {
2511 0 : tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2512 : tp->rack.reo_wnd_persist + 1);
2513 0 : DBGUNDO(sk, "D-SACK");
2514 0 : tcp_undo_cwnd_reduction(sk, false);
2515 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2516 0 : return true;
2517 : }
2518 : return false;
2519 : }
2520 :
2521 : /* Undo during loss recovery after partial ACK or using F-RTO. */
2522 0 : static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2523 : {
2524 0 : struct tcp_sock *tp = tcp_sk(sk);
2525 :
2526 0 : if (frto_undo || tcp_may_undo(tp)) {
2527 0 : tcp_undo_cwnd_reduction(sk, true);
2528 :
2529 0 : DBGUNDO(sk, "partial loss");
2530 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2531 0 : if (frto_undo)
2532 0 : NET_INC_STATS(sock_net(sk),
2533 : LINUX_MIB_TCPSPURIOUSRTOS);
2534 0 : inet_csk(sk)->icsk_retransmits = 0;
2535 0 : if (frto_undo || tcp_is_sack(tp)) {
2536 0 : tcp_set_ca_state(sk, TCP_CA_Open);
2537 0 : tp->is_sack_reneg = 0;
2538 : }
2539 0 : return true;
2540 : }
2541 : return false;
2542 : }
2543 :
2544 : /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2545 : * It computes the number of packets to send (sndcnt) based on packets newly
2546 : * delivered:
2547 : * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2548 : * cwnd reductions across a full RTT.
2549 : * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2550 : * But when SND_UNA is acked without further losses,
2551 : * slow starts cwnd up to ssthresh to speed up the recovery.
2552 : */
2553 0 : static void tcp_init_cwnd_reduction(struct sock *sk)
2554 : {
2555 0 : struct tcp_sock *tp = tcp_sk(sk);
2556 :
2557 0 : tp->high_seq = tp->snd_nxt;
2558 0 : tp->tlp_high_seq = 0;
2559 0 : tp->snd_cwnd_cnt = 0;
2560 0 : tp->prior_cwnd = tp->snd_cwnd;
2561 0 : tp->prr_delivered = 0;
2562 0 : tp->prr_out = 0;
2563 0 : tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2564 0 : tcp_ecn_queue_cwr(tp);
2565 0 : }
2566 :
2567 0 : void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2568 : {
2569 0 : struct tcp_sock *tp = tcp_sk(sk);
2570 0 : int sndcnt = 0;
2571 0 : int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2572 :
2573 0 : if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2574 : return;
2575 :
2576 0 : tp->prr_delivered += newly_acked_sacked;
2577 0 : if (delta < 0) {
2578 0 : u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2579 0 : tp->prior_cwnd - 1;
2580 0 : sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2581 0 : } else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
2582 0 : sndcnt = min_t(int, delta,
2583 : max_t(int, tp->prr_delivered - tp->prr_out,
2584 : newly_acked_sacked) + 1);
2585 : } else {
2586 0 : sndcnt = min(delta, newly_acked_sacked);
2587 : }
2588 : /* Force a fast retransmit upon entering fast recovery */
2589 0 : sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2590 0 : tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2591 : }
2592 :
2593 0 : static inline void tcp_end_cwnd_reduction(struct sock *sk)
2594 : {
2595 0 : struct tcp_sock *tp = tcp_sk(sk);
2596 :
2597 0 : if (inet_csk(sk)->icsk_ca_ops->cong_control)
2598 : return;
2599 :
2600 : /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2601 0 : if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2602 0 : (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2603 0 : tp->snd_cwnd = tp->snd_ssthresh;
2604 0 : tp->snd_cwnd_stamp = tcp_jiffies32;
2605 : }
2606 0 : tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2607 : }
2608 :
2609 : /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2610 0 : void tcp_enter_cwr(struct sock *sk)
2611 : {
2612 0 : struct tcp_sock *tp = tcp_sk(sk);
2613 :
2614 0 : tp->prior_ssthresh = 0;
2615 0 : if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2616 0 : tp->undo_marker = 0;
2617 0 : tcp_init_cwnd_reduction(sk);
2618 0 : tcp_set_ca_state(sk, TCP_CA_CWR);
2619 : }
2620 0 : }
2621 : EXPORT_SYMBOL(tcp_enter_cwr);
2622 :
2623 0 : static void tcp_try_keep_open(struct sock *sk)
2624 : {
2625 0 : struct tcp_sock *tp = tcp_sk(sk);
2626 0 : int state = TCP_CA_Open;
2627 :
2628 0 : if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2629 : state = TCP_CA_Disorder;
2630 :
2631 0 : if (inet_csk(sk)->icsk_ca_state != state) {
2632 0 : tcp_set_ca_state(sk, state);
2633 0 : tp->high_seq = tp->snd_nxt;
2634 : }
2635 0 : }
2636 :
2637 0 : static void tcp_try_to_open(struct sock *sk, int flag)
2638 : {
2639 0 : struct tcp_sock *tp = tcp_sk(sk);
2640 :
2641 0 : tcp_verify_left_out(tp);
2642 :
2643 0 : if (!tcp_any_retrans_done(sk))
2644 0 : tp->retrans_stamp = 0;
2645 :
2646 0 : if (flag & FLAG_ECE)
2647 0 : tcp_enter_cwr(sk);
2648 :
2649 0 : if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2650 0 : tcp_try_keep_open(sk);
2651 : }
2652 0 : }
2653 :
2654 0 : static void tcp_mtup_probe_failed(struct sock *sk)
2655 : {
2656 0 : struct inet_connection_sock *icsk = inet_csk(sk);
2657 :
2658 0 : icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2659 0 : icsk->icsk_mtup.probe_size = 0;
2660 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2661 : }
2662 :
2663 0 : static void tcp_mtup_probe_success(struct sock *sk)
2664 : {
2665 0 : struct tcp_sock *tp = tcp_sk(sk);
2666 0 : struct inet_connection_sock *icsk = inet_csk(sk);
2667 :
2668 : /* FIXME: breaks with very large cwnd */
2669 0 : tp->prior_ssthresh = tcp_current_ssthresh(sk);
2670 0 : tp->snd_cwnd = tp->snd_cwnd *
2671 0 : tcp_mss_to_mtu(sk, tp->mss_cache) /
2672 0 : icsk->icsk_mtup.probe_size;
2673 0 : tp->snd_cwnd_cnt = 0;
2674 0 : tp->snd_cwnd_stamp = tcp_jiffies32;
2675 0 : tp->snd_ssthresh = tcp_current_ssthresh(sk);
2676 :
2677 0 : icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2678 0 : icsk->icsk_mtup.probe_size = 0;
2679 0 : tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2680 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2681 0 : }
2682 :
2683 : /* Do a simple retransmit without using the backoff mechanisms in
2684 : * tcp_timer. This is used for path mtu discovery.
2685 : * The socket is already locked here.
2686 : */
2687 0 : void tcp_simple_retransmit(struct sock *sk)
2688 : {
2689 0 : const struct inet_connection_sock *icsk = inet_csk(sk);
2690 0 : struct tcp_sock *tp = tcp_sk(sk);
2691 0 : struct sk_buff *skb;
2692 0 : int mss;
2693 :
2694 : /* A fastopen SYN request is stored as two separate packets within
2695 : * the retransmit queue, this is done by tcp_send_syn_data().
2696 : * As a result simply checking the MSS of the frames in the queue
2697 : * will not work for the SYN packet.
2698 : *
2699 : * Us being here is an indication of a path MTU issue so we can
2700 : * assume that the fastopen SYN was lost and just mark all the
2701 : * frames in the retransmit queue as lost. We will use an MSS of
2702 : * -1 to mark all frames as lost, otherwise compute the current MSS.
2703 : */
2704 0 : if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2705 : mss = -1;
2706 : else
2707 0 : mss = tcp_current_mss(sk);
2708 :
2709 0 : skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2710 0 : if (tcp_skb_seglen(skb) > mss)
2711 0 : tcp_mark_skb_lost(sk, skb);
2712 : }
2713 :
2714 0 : tcp_clear_retrans_hints_partial(tp);
2715 :
2716 0 : if (!tp->lost_out)
2717 : return;
2718 :
2719 0 : if (tcp_is_reno(tp))
2720 0 : tcp_limit_reno_sacked(tp);
2721 :
2722 0 : tcp_verify_left_out(tp);
2723 :
2724 : /* Don't muck with the congestion window here.
2725 : * Reason is that we do not increase amount of _data_
2726 : * in network, but units changed and effective
2727 : * cwnd/ssthresh really reduced now.
2728 : */
2729 0 : if (icsk->icsk_ca_state != TCP_CA_Loss) {
2730 0 : tp->high_seq = tp->snd_nxt;
2731 0 : tp->snd_ssthresh = tcp_current_ssthresh(sk);
2732 0 : tp->prior_ssthresh = 0;
2733 0 : tp->undo_marker = 0;
2734 0 : tcp_set_ca_state(sk, TCP_CA_Loss);
2735 : }
2736 0 : tcp_xmit_retransmit_queue(sk);
2737 : }
2738 : EXPORT_SYMBOL(tcp_simple_retransmit);
2739 :
2740 0 : void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2741 : {
2742 0 : struct tcp_sock *tp = tcp_sk(sk);
2743 0 : int mib_idx;
2744 :
2745 0 : if (tcp_is_reno(tp))
2746 : mib_idx = LINUX_MIB_TCPRENORECOVERY;
2747 : else
2748 0 : mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2749 :
2750 0 : NET_INC_STATS(sock_net(sk), mib_idx);
2751 :
2752 0 : tp->prior_ssthresh = 0;
2753 0 : tcp_init_undo(tp);
2754 :
2755 0 : if (!tcp_in_cwnd_reduction(sk)) {
2756 0 : if (!ece_ack)
2757 0 : tp->prior_ssthresh = tcp_current_ssthresh(sk);
2758 0 : tcp_init_cwnd_reduction(sk);
2759 : }
2760 0 : tcp_set_ca_state(sk, TCP_CA_Recovery);
2761 0 : }
2762 :
2763 : /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2764 : * recovered or spurious. Otherwise retransmits more on partial ACKs.
2765 : */
2766 0 : static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2767 : int *rexmit)
2768 : {
2769 0 : struct tcp_sock *tp = tcp_sk(sk);
2770 0 : bool recovered = !before(tp->snd_una, tp->high_seq);
2771 :
2772 0 : if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2773 0 : tcp_try_undo_loss(sk, false))
2774 : return;
2775 :
2776 0 : if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2777 : /* Step 3.b. A timeout is spurious if not all data are
2778 : * lost, i.e., never-retransmitted data are (s)acked.
2779 : */
2780 0 : if ((flag & FLAG_ORIG_SACK_ACKED) &&
2781 0 : tcp_try_undo_loss(sk, true))
2782 : return;
2783 :
2784 0 : if (after(tp->snd_nxt, tp->high_seq)) {
2785 0 : if (flag & FLAG_DATA_SACKED || num_dupack)
2786 0 : tp->frto = 0; /* Step 3.a. loss was real */
2787 0 : } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2788 0 : tp->high_seq = tp->snd_nxt;
2789 : /* Step 2.b. Try send new data (but deferred until cwnd
2790 : * is updated in tcp_ack()). Otherwise fall back to
2791 : * the conventional recovery.
2792 : */
2793 0 : if (!tcp_write_queue_empty(sk) &&
2794 0 : after(tcp_wnd_end(tp), tp->snd_nxt)) {
2795 0 : *rexmit = REXMIT_NEW;
2796 0 : return;
2797 : }
2798 0 : tp->frto = 0;
2799 : }
2800 : }
2801 :
2802 0 : if (recovered) {
2803 : /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2804 0 : tcp_try_undo_recovery(sk);
2805 0 : return;
2806 : }
2807 0 : if (tcp_is_reno(tp)) {
2808 : /* A Reno DUPACK means new data in F-RTO step 2.b above are
2809 : * delivered. Lower inflight to clock out (re)tranmissions.
2810 : */
2811 0 : if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2812 0 : tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2813 0 : else if (flag & FLAG_SND_UNA_ADVANCED)
2814 0 : tcp_reset_reno_sack(tp);
2815 : }
2816 0 : *rexmit = REXMIT_LOST;
2817 : }
2818 :
2819 : /* Undo during fast recovery after partial ACK. */
2820 0 : static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2821 : {
2822 0 : struct tcp_sock *tp = tcp_sk(sk);
2823 :
2824 0 : if (tp->undo_marker && tcp_packet_delayed(tp)) {
2825 : /* Plain luck! Hole if filled with delayed
2826 : * packet, rather than with a retransmit. Check reordering.
2827 : */
2828 0 : tcp_check_sack_reordering(sk, prior_snd_una, 1);
2829 :
2830 : /* We are getting evidence that the reordering degree is higher
2831 : * than we realized. If there are no retransmits out then we
2832 : * can undo. Otherwise we clock out new packets but do not
2833 : * mark more packets lost or retransmit more.
2834 : */
2835 0 : if (tp->retrans_out)
2836 : return true;
2837 :
2838 0 : if (!tcp_any_retrans_done(sk))
2839 0 : tp->retrans_stamp = 0;
2840 :
2841 0 : DBGUNDO(sk, "partial recovery");
2842 0 : tcp_undo_cwnd_reduction(sk, true);
2843 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2844 0 : tcp_try_keep_open(sk);
2845 0 : return true;
2846 : }
2847 : return false;
2848 : }
2849 :
2850 0 : static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2851 : {
2852 0 : struct tcp_sock *tp = tcp_sk(sk);
2853 :
2854 0 : if (tcp_rtx_queue_empty(sk))
2855 : return;
2856 :
2857 0 : if (unlikely(tcp_is_reno(tp))) {
2858 0 : tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2859 0 : } else if (tcp_is_rack(sk)) {
2860 0 : u32 prior_retrans = tp->retrans_out;
2861 :
2862 0 : if (tcp_rack_mark_lost(sk))
2863 0 : *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2864 0 : if (prior_retrans > tp->retrans_out)
2865 0 : *ack_flag |= FLAG_LOST_RETRANS;
2866 : }
2867 : }
2868 :
2869 0 : static bool tcp_force_fast_retransmit(struct sock *sk)
2870 : {
2871 0 : struct tcp_sock *tp = tcp_sk(sk);
2872 :
2873 0 : return after(tcp_highest_sack_seq(tp),
2874 : tp->snd_una + tp->reordering * tp->mss_cache);
2875 : }
2876 :
2877 : /* Process an event, which can update packets-in-flight not trivially.
2878 : * Main goal of this function is to calculate new estimate for left_out,
2879 : * taking into account both packets sitting in receiver's buffer and
2880 : * packets lost by network.
2881 : *
2882 : * Besides that it updates the congestion state when packet loss or ECN
2883 : * is detected. But it does not reduce the cwnd, it is done by the
2884 : * congestion control later.
2885 : *
2886 : * It does _not_ decide what to send, it is made in function
2887 : * tcp_xmit_retransmit_queue().
2888 : */
2889 0 : static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2890 : int num_dupack, int *ack_flag, int *rexmit)
2891 : {
2892 0 : struct inet_connection_sock *icsk = inet_csk(sk);
2893 0 : struct tcp_sock *tp = tcp_sk(sk);
2894 0 : int fast_rexmit = 0, flag = *ack_flag;
2895 0 : bool ece_ack = flag & FLAG_ECE;
2896 0 : bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2897 0 : tcp_force_fast_retransmit(sk));
2898 :
2899 0 : if (!tp->packets_out && tp->sacked_out)
2900 0 : tp->sacked_out = 0;
2901 :
2902 : /* Now state machine starts.
2903 : * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2904 0 : if (ece_ack)
2905 0 : tp->prior_ssthresh = 0;
2906 :
2907 : /* B. In all the states check for reneging SACKs. */
2908 0 : if (tcp_check_sack_reneging(sk, flag))
2909 : return;
2910 :
2911 : /* C. Check consistency of the current state. */
2912 0 : tcp_verify_left_out(tp);
2913 :
2914 : /* D. Check state exit conditions. State can be terminated
2915 : * when high_seq is ACKed. */
2916 0 : if (icsk->icsk_ca_state == TCP_CA_Open) {
2917 0 : WARN_ON(tp->retrans_out != 0);
2918 0 : tp->retrans_stamp = 0;
2919 0 : } else if (!before(tp->snd_una, tp->high_seq)) {
2920 0 : switch (icsk->icsk_ca_state) {
2921 0 : case TCP_CA_CWR:
2922 : /* CWR is to be held something *above* high_seq
2923 : * is ACKed for CWR bit to reach receiver. */
2924 0 : if (tp->snd_una != tp->high_seq) {
2925 0 : tcp_end_cwnd_reduction(sk);
2926 0 : tcp_set_ca_state(sk, TCP_CA_Open);
2927 : }
2928 : break;
2929 :
2930 : case TCP_CA_Recovery:
2931 0 : if (tcp_is_reno(tp))
2932 0 : tcp_reset_reno_sack(tp);
2933 0 : if (tcp_try_undo_recovery(sk))
2934 : return;
2935 0 : tcp_end_cwnd_reduction(sk);
2936 0 : break;
2937 : }
2938 0 : }
2939 :
2940 : /* E. Process state. */
2941 0 : switch (icsk->icsk_ca_state) {
2942 0 : case TCP_CA_Recovery:
2943 0 : if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2944 0 : if (tcp_is_reno(tp))
2945 0 : tcp_add_reno_sack(sk, num_dupack, ece_ack);
2946 : } else {
2947 0 : if (tcp_try_undo_partial(sk, prior_snd_una))
2948 : return;
2949 : /* Partial ACK arrived. Force fast retransmit. */
2950 0 : do_lost = tcp_force_fast_retransmit(sk);
2951 : }
2952 0 : if (tcp_try_undo_dsack(sk)) {
2953 0 : tcp_try_keep_open(sk);
2954 0 : return;
2955 : }
2956 0 : tcp_identify_packet_loss(sk, ack_flag);
2957 0 : break;
2958 0 : case TCP_CA_Loss:
2959 0 : tcp_process_loss(sk, flag, num_dupack, rexmit);
2960 0 : tcp_identify_packet_loss(sk, ack_flag);
2961 0 : if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2962 0 : (*ack_flag & FLAG_LOST_RETRANS)))
2963 : return;
2964 : /* Change state if cwnd is undone or retransmits are lost */
2965 0 : fallthrough;
2966 : default:
2967 0 : if (tcp_is_reno(tp)) {
2968 0 : if (flag & FLAG_SND_UNA_ADVANCED)
2969 0 : tcp_reset_reno_sack(tp);
2970 0 : tcp_add_reno_sack(sk, num_dupack, ece_ack);
2971 : }
2972 :
2973 0 : if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2974 0 : tcp_try_undo_dsack(sk);
2975 :
2976 0 : tcp_identify_packet_loss(sk, ack_flag);
2977 0 : if (!tcp_time_to_recover(sk, flag)) {
2978 0 : tcp_try_to_open(sk, flag);
2979 0 : return;
2980 : }
2981 :
2982 : /* MTU probe failure: don't reduce cwnd */
2983 0 : if (icsk->icsk_ca_state < TCP_CA_CWR &&
2984 0 : icsk->icsk_mtup.probe_size &&
2985 0 : tp->snd_una == tp->mtu_probe.probe_seq_start) {
2986 0 : tcp_mtup_probe_failed(sk);
2987 : /* Restores the reduction we did in tcp_mtup_probe() */
2988 0 : tp->snd_cwnd++;
2989 0 : tcp_simple_retransmit(sk);
2990 0 : return;
2991 : }
2992 :
2993 : /* Otherwise enter Recovery state */
2994 0 : tcp_enter_recovery(sk, ece_ack);
2995 0 : fast_rexmit = 1;
2996 : }
2997 :
2998 0 : if (!tcp_is_rack(sk) && do_lost)
2999 0 : tcp_update_scoreboard(sk, fast_rexmit);
3000 0 : *rexmit = REXMIT_LOST;
3001 : }
3002 :
3003 355 : static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3004 : {
3005 355 : u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3006 355 : struct tcp_sock *tp = tcp_sk(sk);
3007 :
3008 355 : if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3009 : /* If the remote keeps returning delayed ACKs, eventually
3010 : * the min filter would pick it up and overestimate the
3011 : * prop. delay when it expires. Skip suspected delayed ACKs.
3012 : */
3013 : return;
3014 : }
3015 257 : minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3016 0 : rtt_us ? : jiffies_to_usecs(1));
3017 : }
3018 :
3019 355 : static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3020 : long seq_rtt_us, long sack_rtt_us,
3021 : long ca_rtt_us, struct rate_sample *rs)
3022 : {
3023 355 : const struct tcp_sock *tp = tcp_sk(sk);
3024 :
3025 : /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3026 : * broken middle-boxes or peers may corrupt TS-ECR fields. But
3027 : * Karn's algorithm forbids taking RTT if some retransmitted data
3028 : * is acked (RFC6298).
3029 : */
3030 355 : if (seq_rtt_us < 0)
3031 0 : seq_rtt_us = sack_rtt_us;
3032 :
3033 : /* RTTM Rule: A TSecr value received in a segment is used to
3034 : * update the averaged RTT measurement only if the segment
3035 : * acknowledges some new data, i.e., only if it advances the
3036 : * left edge of the send window.
3037 : * See draft-ietf-tcplw-high-performance-00, section 3.3.
3038 : */
3039 355 : if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3040 0 : flag & FLAG_ACKED) {
3041 0 : u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3042 :
3043 0 : if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3044 0 : if (!delta)
3045 : delta = 1;
3046 0 : seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3047 0 : ca_rtt_us = seq_rtt_us;
3048 : }
3049 : }
3050 355 : rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3051 355 : if (seq_rtt_us < 0)
3052 : return false;
3053 :
3054 : /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3055 : * always taken together with ACK, SACK, or TS-opts. Any negative
3056 : * values will be skipped with the seq_rtt_us < 0 check above.
3057 : */
3058 355 : tcp_update_rtt_min(sk, ca_rtt_us, flag);
3059 355 : tcp_rtt_estimator(sk, seq_rtt_us);
3060 355 : tcp_set_rto(sk);
3061 :
3062 : /* RFC6298: only reset backoff on valid RTT measurement. */
3063 355 : inet_csk(sk)->icsk_backoff = 0;
3064 355 : return true;
3065 : }
3066 :
3067 : /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3068 4 : void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3069 : {
3070 4 : struct rate_sample rs;
3071 4 : long rtt_us = -1L;
3072 :
3073 4 : if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3074 4 : rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3075 :
3076 4 : tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3077 4 : }
3078 :
3079 :
3080 351 : static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3081 : {
3082 351 : const struct inet_connection_sock *icsk = inet_csk(sk);
3083 :
3084 351 : icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3085 351 : tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3086 351 : }
3087 :
3088 : /* Restart timer after forward progress on connection.
3089 : * RFC2988 recommends to restart timer to now+rto.
3090 : */
3091 585 : void tcp_rearm_rto(struct sock *sk)
3092 : {
3093 585 : const struct inet_connection_sock *icsk = inet_csk(sk);
3094 585 : struct tcp_sock *tp = tcp_sk(sk);
3095 :
3096 : /* If the retrans timer is currently being used by Fast Open
3097 : * for SYN-ACK retrans purpose, stay put.
3098 : */
3099 585 : if (rcu_access_pointer(tp->fastopen_rsk))
3100 : return;
3101 :
3102 585 : if (!tp->packets_out) {
3103 234 : inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3104 : } else {
3105 351 : u32 rto = inet_csk(sk)->icsk_rto;
3106 : /* Offset the time elapsed after installing regular RTO */
3107 351 : if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3108 : icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3109 0 : s64 delta_us = tcp_rto_delta_us(sk);
3110 : /* delta_us may not be positive if the socket is locked
3111 : * when the retrans timer fires and is rescheduled.
3112 : */
3113 0 : rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3114 : }
3115 351 : tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3116 : TCP_RTO_MAX);
3117 : }
3118 : }
3119 :
3120 : /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3121 351 : static void tcp_set_xmit_timer(struct sock *sk)
3122 : {
3123 351 : if (!tcp_schedule_loss_probe(sk, true))
3124 351 : tcp_rearm_rto(sk);
3125 351 : }
3126 :
3127 : /* If we get here, the whole TSO packet has not been acked. */
3128 0 : static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3129 : {
3130 0 : struct tcp_sock *tp = tcp_sk(sk);
3131 0 : u32 packets_acked;
3132 :
3133 0 : BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3134 :
3135 0 : packets_acked = tcp_skb_pcount(skb);
3136 0 : if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3137 : return 0;
3138 0 : packets_acked -= tcp_skb_pcount(skb);
3139 :
3140 0 : if (packets_acked) {
3141 0 : BUG_ON(tcp_skb_pcount(skb) == 0);
3142 0 : BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3143 : }
3144 :
3145 : return packets_acked;
3146 : }
3147 :
3148 481 : static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3149 : const struct sk_buff *ack_skb, u32 prior_snd_una)
3150 : {
3151 481 : const struct skb_shared_info *shinfo;
3152 :
3153 : /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3154 481 : if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3155 : return;
3156 :
3157 0 : shinfo = skb_shinfo(skb);
3158 0 : if (!before(shinfo->tskey, prior_snd_una) &&
3159 0 : before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3160 0 : tcp_skb_tsorted_save(skb) {
3161 0 : __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3162 0 : } tcp_skb_tsorted_restore(skb);
3163 : }
3164 : }
3165 :
3166 : /* Remove acknowledged frames from the retransmission queue. If our packet
3167 : * is before the ack sequence we can discard it as it's confirmed to have
3168 : * arrived at the other end.
3169 : */
3170 351 : static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3171 : u32 prior_fack, u32 prior_snd_una,
3172 : struct tcp_sacktag_state *sack, bool ece_ack)
3173 : {
3174 351 : const struct inet_connection_sock *icsk = inet_csk(sk);
3175 351 : u64 first_ackt, last_ackt;
3176 351 : struct tcp_sock *tp = tcp_sk(sk);
3177 351 : u32 prior_sacked = tp->sacked_out;
3178 351 : u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3179 351 : struct sk_buff *skb, *next;
3180 351 : bool fully_acked = true;
3181 351 : long sack_rtt_us = -1L;
3182 351 : long seq_rtt_us = -1L;
3183 351 : long ca_rtt_us = -1L;
3184 351 : u32 pkts_acked = 0;
3185 351 : u32 last_in_flight = 0;
3186 351 : bool rtt_update;
3187 351 : int flag = 0;
3188 :
3189 351 : first_ackt = 0;
3190 :
3191 1066 : for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3192 481 : struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3193 481 : const u32 start_seq = scb->seq;
3194 481 : u8 sacked = scb->sacked;
3195 481 : u32 acked_pcount;
3196 :
3197 : /* Determine how many packets and what bytes were acked, tso and else */
3198 481 : if (after(scb->end_seq, tp->snd_una)) {
3199 117 : if (tcp_skb_pcount(skb) == 1 ||
3200 0 : !after(tp->snd_una, scb->seq))
3201 : break;
3202 :
3203 0 : acked_pcount = tcp_tso_acked(sk, skb);
3204 0 : if (!acked_pcount)
3205 : break;
3206 : fully_acked = false;
3207 : } else {
3208 364 : acked_pcount = tcp_skb_pcount(skb);
3209 : }
3210 :
3211 364 : if (unlikely(sacked & TCPCB_RETRANS)) {
3212 0 : if (sacked & TCPCB_SACKED_RETRANS)
3213 0 : tp->retrans_out -= acked_pcount;
3214 0 : flag |= FLAG_RETRANS_DATA_ACKED;
3215 364 : } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3216 364 : last_ackt = tcp_skb_timestamp_us(skb);
3217 364 : WARN_ON_ONCE(last_ackt == 0);
3218 364 : if (!first_ackt)
3219 351 : first_ackt = last_ackt;
3220 :
3221 364 : last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3222 364 : if (before(start_seq, reord))
3223 351 : reord = start_seq;
3224 364 : if (!after(scb->end_seq, tp->high_seq))
3225 12 : flag |= FLAG_ORIG_SACK_ACKED;
3226 : }
3227 :
3228 364 : if (sacked & TCPCB_SACKED_ACKED) {
3229 0 : tp->sacked_out -= acked_pcount;
3230 364 : } else if (tcp_is_sack(tp)) {
3231 0 : tcp_count_delivered(tp, acked_pcount, ece_ack);
3232 0 : if (!tcp_skb_spurious_retrans(tp, skb))
3233 0 : tcp_rack_advance(tp, sacked, scb->end_seq,
3234 : tcp_skb_timestamp_us(skb));
3235 : }
3236 364 : if (sacked & TCPCB_LOST)
3237 0 : tp->lost_out -= acked_pcount;
3238 :
3239 364 : tp->packets_out -= acked_pcount;
3240 364 : pkts_acked += acked_pcount;
3241 364 : tcp_rate_skb_delivered(sk, skb, sack->rate);
3242 :
3243 : /* Initial outgoing SYN's get put onto the write_queue
3244 : * just like anything else we transmit. It is not
3245 : * true data, and if we misinform our callers that
3246 : * this ACK acks real data, we will erroneously exit
3247 : * connection startup slow start one packet too
3248 : * quickly. This is severely frowned upon behavior.
3249 : */
3250 364 : if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3251 364 : flag |= FLAG_DATA_ACKED;
3252 : } else {
3253 0 : flag |= FLAG_SYN_ACKED;
3254 0 : tp->retrans_stamp = 0;
3255 : }
3256 :
3257 364 : if (!fully_acked)
3258 : break;
3259 :
3260 364 : tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3261 :
3262 364 : next = skb_rb_next(skb);
3263 364 : if (unlikely(skb == tp->retransmit_skb_hint))
3264 0 : tp->retransmit_skb_hint = NULL;
3265 364 : if (unlikely(skb == tp->lost_skb_hint))
3266 0 : tp->lost_skb_hint = NULL;
3267 364 : tcp_highest_sack_replace(sk, skb, next);
3268 364 : tcp_rtx_queue_unlink_and_free(skb, sk);
3269 : }
3270 :
3271 351 : if (!skb)
3272 234 : tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3273 :
3274 351 : if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3275 351 : tp->snd_up = tp->snd_una;
3276 :
3277 351 : if (skb) {
3278 117 : tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3279 117 : if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3280 0 : flag |= FLAG_SACK_RENEGING;
3281 : }
3282 :
3283 351 : if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3284 351 : seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3285 351 : ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3286 :
3287 351 : if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3288 340 : last_in_flight && !prior_sacked && fully_acked &&
3289 340 : sack->rate->prior_delivered + 1 == tp->delivered &&
3290 99 : !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3291 : /* Conservatively mark a delayed ACK. It's typically
3292 : * from a lone runt packet over the round trip to
3293 : * a receiver w/o out-of-order or CE events.
3294 : */
3295 99 : flag |= FLAG_ACK_MAYBE_DELAYED;
3296 : }
3297 : }
3298 351 : if (sack->first_sackt) {
3299 0 : sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3300 0 : ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3301 : }
3302 351 : rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3303 : ca_rtt_us, sack->rate);
3304 :
3305 351 : if (flag & FLAG_ACKED) {
3306 351 : flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3307 351 : if (unlikely(icsk->icsk_mtup.probe_size &&
3308 : !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3309 0 : tcp_mtup_probe_success(sk);
3310 : }
3311 :
3312 351 : if (tcp_is_reno(tp)) {
3313 351 : tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3314 :
3315 : /* If any of the cumulatively ACKed segments was
3316 : * retransmitted, non-SACK case cannot confirm that
3317 : * progress was due to original transmission due to
3318 : * lack of TCPCB_SACKED_ACKED bits even if some of
3319 : * the packets may have been never retransmitted.
3320 : */
3321 351 : if (flag & FLAG_RETRANS_DATA_ACKED)
3322 0 : flag &= ~FLAG_ORIG_SACK_ACKED;
3323 : } else {
3324 0 : int delta;
3325 :
3326 : /* Non-retransmitted hole got filled? That's reordering */
3327 0 : if (before(reord, prior_fack))
3328 0 : tcp_check_sack_reordering(sk, reord, 0);
3329 :
3330 0 : delta = prior_sacked - tp->sacked_out;
3331 0 : tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3332 : }
3333 0 : } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3334 0 : sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3335 : tcp_skb_timestamp_us(skb))) {
3336 : /* Do not re-arm RTO if the sack RTT is measured from data sent
3337 : * after when the head was last (re)transmitted. Otherwise the
3338 : * timeout may continue to extend in loss recovery.
3339 : */
3340 0 : flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3341 : }
3342 :
3343 351 : if (icsk->icsk_ca_ops->pkts_acked) {
3344 351 : struct ack_sample sample = { .pkts_acked = pkts_acked,
3345 351 : .rtt_us = sack->rate->rtt_us,
3346 : .in_flight = last_in_flight };
3347 :
3348 351 : icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3349 : }
3350 :
3351 : #if FASTRETRANS_DEBUG > 0
3352 351 : WARN_ON((int)tp->sacked_out < 0);
3353 351 : WARN_ON((int)tp->lost_out < 0);
3354 351 : WARN_ON((int)tp->retrans_out < 0);
3355 351 : if (!tp->packets_out && tcp_is_sack(tp)) {
3356 0 : icsk = inet_csk(sk);
3357 0 : if (tp->lost_out) {
3358 0 : pr_debug("Leak l=%u %d\n",
3359 : tp->lost_out, icsk->icsk_ca_state);
3360 0 : tp->lost_out = 0;
3361 : }
3362 0 : if (tp->sacked_out) {
3363 0 : pr_debug("Leak s=%u %d\n",
3364 : tp->sacked_out, icsk->icsk_ca_state);
3365 0 : tp->sacked_out = 0;
3366 : }
3367 0 : if (tp->retrans_out) {
3368 0 : pr_debug("Leak r=%u %d\n",
3369 : tp->retrans_out, icsk->icsk_ca_state);
3370 0 : tp->retrans_out = 0;
3371 : }
3372 : }
3373 : #endif
3374 351 : return flag;
3375 : }
3376 :
3377 19 : static void tcp_ack_probe(struct sock *sk)
3378 : {
3379 19 : struct inet_connection_sock *icsk = inet_csk(sk);
3380 19 : struct sk_buff *head = tcp_send_head(sk);
3381 0 : const struct tcp_sock *tp = tcp_sk(sk);
3382 :
3383 : /* Was it a usable window open? */
3384 0 : if (!head)
3385 : return;
3386 0 : if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3387 0 : icsk->icsk_backoff = 0;
3388 0 : icsk->icsk_probes_tstamp = 0;
3389 0 : inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3390 : /* Socket must be waked up by subsequent tcp_data_snd_check().
3391 : * This function is not for random using!
3392 : */
3393 : } else {
3394 0 : unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3395 :
3396 0 : when = tcp_clamp_probe0_to_user_timeout(sk, when);
3397 0 : tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3398 : }
3399 : }
3400 :
3401 351 : static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3402 : {
3403 351 : return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3404 351 : inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3405 : }
3406 :
3407 : /* Decide wheather to run the increase function of congestion control. */
3408 351 : static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3409 : {
3410 : /* If reordering is high then always grow cwnd whenever data is
3411 : * delivered regardless of its ordering. Otherwise stay conservative
3412 : * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3413 : * new SACK or ECE mark may first advance cwnd here and later reduce
3414 : * cwnd in tcp_fastretrans_alert() based on more states.
3415 : */
3416 351 : if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3417 0 : return flag & FLAG_FORWARD_PROGRESS;
3418 :
3419 351 : return flag & FLAG_DATA_ACKED;
3420 : }
3421 :
3422 : /* The "ultimate" congestion control function that aims to replace the rigid
3423 : * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3424 : * It's called toward the end of processing an ACK with precise rate
3425 : * information. All transmission or retransmission are delayed afterwards.
3426 : */
3427 351 : static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3428 : int flag, const struct rate_sample *rs)
3429 : {
3430 351 : const struct inet_connection_sock *icsk = inet_csk(sk);
3431 :
3432 351 : if (icsk->icsk_ca_ops->cong_control) {
3433 0 : icsk->icsk_ca_ops->cong_control(sk, rs);
3434 0 : return;
3435 : }
3436 :
3437 351 : if (tcp_in_cwnd_reduction(sk)) {
3438 : /* Reduce cwnd if state mandates */
3439 0 : tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3440 702 : } else if (tcp_may_raise_cwnd(sk, flag)) {
3441 : /* Advance cwnd if state allows */
3442 351 : tcp_cong_avoid(sk, ack, acked_sacked);
3443 : }
3444 351 : tcp_update_pacing_rate(sk);
3445 : }
3446 :
3447 : /* Check that window update is acceptable.
3448 : * The function assumes that snd_una<=ack<=snd_next.
3449 : */
3450 22 : static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3451 : const u32 ack, const u32 ack_seq,
3452 : const u32 nwin)
3453 : {
3454 19 : return after(ack, tp->snd_una) ||
3455 22 : after(ack_seq, tp->snd_wl1) ||
3456 5 : (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3457 : }
3458 :
3459 : /* If we update tp->snd_una, also update tp->bytes_acked */
3460 370 : static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3461 : {
3462 370 : u32 delta = ack - tp->snd_una;
3463 :
3464 370 : sock_owned_by_me((struct sock *)tp);
3465 370 : tp->bytes_acked += delta;
3466 370 : tp->snd_una = ack;
3467 : }
3468 :
3469 : /* If we update tp->rcv_nxt, also update tp->bytes_received */
3470 70 : static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3471 : {
3472 70 : u32 delta = seq - tp->rcv_nxt;
3473 :
3474 70 : sock_owned_by_me((struct sock *)tp);
3475 70 : tp->bytes_received += delta;
3476 70 : WRITE_ONCE(tp->rcv_nxt, seq);
3477 : }
3478 :
3479 : /* Update our send window.
3480 : *
3481 : * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3482 : * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3483 : */
3484 22 : static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3485 : u32 ack_seq)
3486 : {
3487 22 : struct tcp_sock *tp = tcp_sk(sk);
3488 22 : int flag = 0;
3489 22 : u32 nwin = ntohs(tcp_hdr(skb)->window);
3490 :
3491 22 : if (likely(!tcp_hdr(skb)->syn))
3492 22 : nwin <<= tp->rx_opt.snd_wscale;
3493 :
3494 41 : if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3495 17 : flag |= FLAG_WIN_UPDATE;
3496 17 : tcp_update_wl(tp, ack_seq);
3497 :
3498 17 : if (tp->snd_wnd != nwin) {
3499 0 : tp->snd_wnd = nwin;
3500 :
3501 : /* Note, it is the only place, where
3502 : * fast path is recovered for sending TCP.
3503 : */
3504 0 : tp->pred_flags = 0;
3505 0 : tcp_fast_path_check(sk);
3506 :
3507 0 : if (!tcp_write_queue_empty(sk))
3508 0 : tcp_slow_start_after_idle_check(sk);
3509 :
3510 0 : if (nwin > tp->max_window) {
3511 0 : tp->max_window = nwin;
3512 0 : tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3513 : }
3514 : }
3515 : }
3516 :
3517 22 : tcp_snd_una_update(tp, ack);
3518 :
3519 22 : return flag;
3520 : }
3521 :
3522 0 : static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3523 : u32 *last_oow_ack_time)
3524 : {
3525 0 : if (*last_oow_ack_time) {
3526 0 : s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3527 :
3528 0 : if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3529 0 : NET_INC_STATS(net, mib_idx);
3530 0 : return true; /* rate-limited: don't send yet! */
3531 : }
3532 : }
3533 :
3534 0 : *last_oow_ack_time = tcp_jiffies32;
3535 :
3536 0 : return false; /* not rate-limited: go ahead, send dupack now! */
3537 : }
3538 :
3539 : /* Return true if we're currently rate-limiting out-of-window ACKs and
3540 : * thus shouldn't send a dupack right now. We rate-limit dupacks in
3541 : * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3542 : * attacks that send repeated SYNs or ACKs for the same connection. To
3543 : * do this, we do not send a duplicate SYNACK or ACK if the remote
3544 : * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3545 : */
3546 0 : bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3547 : int mib_idx, u32 *last_oow_ack_time)
3548 : {
3549 : /* Data packets without SYNs are not likely part of an ACK loop. */
3550 0 : if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3551 0 : !tcp_hdr(skb)->syn)
3552 : return false;
3553 :
3554 0 : return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3555 : }
3556 :
3557 : /* RFC 5961 7 [ACK Throttling] */
3558 0 : static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3559 : {
3560 : /* unprotected vars, we dont care of overwrites */
3561 0 : static u32 challenge_timestamp;
3562 0 : static unsigned int challenge_count;
3563 0 : struct tcp_sock *tp = tcp_sk(sk);
3564 0 : struct net *net = sock_net(sk);
3565 0 : u32 count, now;
3566 :
3567 : /* First check our per-socket dupack rate limit. */
3568 0 : if (__tcp_oow_rate_limited(net,
3569 : LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3570 : &tp->last_oow_ack_time))
3571 : return;
3572 :
3573 : /* Then check host-wide RFC 5961 rate limit. */
3574 0 : now = jiffies / HZ;
3575 0 : if (now != challenge_timestamp) {
3576 0 : u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3577 0 : u32 half = (ack_limit + 1) >> 1;
3578 :
3579 0 : challenge_timestamp = now;
3580 0 : WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3581 : }
3582 0 : count = READ_ONCE(challenge_count);
3583 0 : if (count > 0) {
3584 0 : WRITE_ONCE(challenge_count, count - 1);
3585 0 : NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3586 0 : tcp_send_ack(sk);
3587 : }
3588 : }
3589 :
3590 0 : static void tcp_store_ts_recent(struct tcp_sock *tp)
3591 : {
3592 0 : tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3593 0 : tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3594 0 : }
3595 :
3596 22 : static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3597 : {
3598 22 : if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3599 : /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3600 : * extra check below makes sure this can only happen
3601 : * for pure ACK frames. -DaveM
3602 : *
3603 : * Not only, also it occurs for expired timestamps.
3604 : */
3605 :
3606 0 : if (tcp_paws_check(&tp->rx_opt, 0))
3607 0 : tcp_store_ts_recent(tp);
3608 : }
3609 22 : }
3610 :
3611 : /* This routine deals with acks during a TLP episode and ends an episode by
3612 : * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3613 : */
3614 0 : static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3615 : {
3616 0 : struct tcp_sock *tp = tcp_sk(sk);
3617 :
3618 0 : if (before(ack, tp->tlp_high_seq))
3619 : return;
3620 :
3621 0 : if (!tp->tlp_retrans) {
3622 : /* TLP of new data has been acknowledged */
3623 0 : tp->tlp_high_seq = 0;
3624 0 : } else if (flag & FLAG_DSACKING_ACK) {
3625 : /* This DSACK means original and TLP probe arrived; no loss */
3626 0 : tp->tlp_high_seq = 0;
3627 0 : } else if (after(ack, tp->tlp_high_seq)) {
3628 : /* ACK advances: there was a loss, so reduce cwnd. Reset
3629 : * tlp_high_seq in tcp_init_cwnd_reduction()
3630 : */
3631 0 : tcp_init_cwnd_reduction(sk);
3632 0 : tcp_set_ca_state(sk, TCP_CA_CWR);
3633 0 : tcp_end_cwnd_reduction(sk);
3634 0 : tcp_try_keep_open(sk);
3635 0 : NET_INC_STATS(sock_net(sk),
3636 : LINUX_MIB_TCPLOSSPROBERECOVERY);
3637 0 : } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3638 : FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3639 : /* Pure dupack: original and TLP probe arrived; no loss */
3640 0 : tp->tlp_high_seq = 0;
3641 : }
3642 : }
3643 :
3644 370 : static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3645 : {
3646 370 : const struct inet_connection_sock *icsk = inet_csk(sk);
3647 :
3648 370 : if (icsk->icsk_ca_ops->in_ack_event)
3649 0 : icsk->icsk_ca_ops->in_ack_event(sk, flags);
3650 : }
3651 :
3652 : /* Congestion control has updated the cwnd already. So if we're in
3653 : * loss recovery then now we do any new sends (for FRTO) or
3654 : * retransmits (for CA_Loss or CA_recovery) that make sense.
3655 : */
3656 351 : static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3657 : {
3658 351 : struct tcp_sock *tp = tcp_sk(sk);
3659 :
3660 351 : if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3661 : return;
3662 :
3663 0 : if (unlikely(rexmit == REXMIT_NEW)) {
3664 0 : __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3665 : TCP_NAGLE_OFF);
3666 0 : if (after(tp->snd_nxt, tp->high_seq))
3667 : return;
3668 0 : tp->frto = 0;
3669 : }
3670 0 : tcp_xmit_retransmit_queue(sk);
3671 : }
3672 :
3673 : /* Returns the number of packets newly acked or sacked by the current ACK */
3674 351 : static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3675 : {
3676 351 : const struct net *net = sock_net(sk);
3677 351 : struct tcp_sock *tp = tcp_sk(sk);
3678 351 : u32 delivered;
3679 :
3680 351 : delivered = tp->delivered - prior_delivered;
3681 351 : NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3682 351 : if (flag & FLAG_ECE)
3683 351 : NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3684 :
3685 351 : return delivered;
3686 : }
3687 :
3688 : /* This routine deals with incoming acks, but not outgoing ones. */
3689 370 : static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3690 : {
3691 370 : struct inet_connection_sock *icsk = inet_csk(sk);
3692 370 : struct tcp_sock *tp = tcp_sk(sk);
3693 370 : struct tcp_sacktag_state sack_state;
3694 370 : struct rate_sample rs = { .prior_delivered = 0 };
3695 370 : u32 prior_snd_una = tp->snd_una;
3696 370 : bool is_sack_reneg = tp->is_sack_reneg;
3697 370 : u32 ack_seq = TCP_SKB_CB(skb)->seq;
3698 370 : u32 ack = TCP_SKB_CB(skb)->ack_seq;
3699 370 : int num_dupack = 0;
3700 370 : int prior_packets = tp->packets_out;
3701 370 : u32 delivered = tp->delivered;
3702 370 : u32 lost = tp->lost;
3703 370 : int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3704 370 : u32 prior_fack;
3705 :
3706 370 : sack_state.first_sackt = 0;
3707 370 : sack_state.rate = &rs;
3708 370 : sack_state.sack_delivered = 0;
3709 :
3710 : /* We very likely will need to access rtx queue. */
3711 370 : prefetch(sk->tcp_rtx_queue.rb_node);
3712 :
3713 : /* If the ack is older than previous acks
3714 : * then we can probably ignore it.
3715 : */
3716 370 : if (before(ack, prior_snd_una)) {
3717 : /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3718 0 : if (before(ack, prior_snd_una - tp->max_window)) {
3719 0 : if (!(flag & FLAG_NO_CHALLENGE_ACK))
3720 0 : tcp_send_challenge_ack(sk, skb);
3721 0 : return -1;
3722 : }
3723 0 : goto old_ack;
3724 : }
3725 :
3726 : /* If the ack includes data we haven't sent yet, discard
3727 : * this segment (RFC793 Section 3.9).
3728 : */
3729 370 : if (after(ack, tp->snd_nxt))
3730 : return -1;
3731 :
3732 370 : if (after(ack, prior_snd_una)) {
3733 351 : flag |= FLAG_SND_UNA_ADVANCED;
3734 351 : icsk->icsk_retransmits = 0;
3735 :
3736 : #if IS_ENABLED(CONFIG_TLS_DEVICE)
3737 : if (static_branch_unlikely(&clean_acked_data_enabled.key))
3738 : if (icsk->icsk_clean_acked)
3739 : icsk->icsk_clean_acked(sk, ack);
3740 : #endif
3741 : }
3742 :
3743 370 : prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3744 370 : rs.prior_in_flight = tcp_packets_in_flight(tp);
3745 :
3746 : /* ts_recent update must be made after we are sure that the packet
3747 : * is in window.
3748 : */
3749 370 : if (flag & FLAG_UPDATE_TS_RECENT)
3750 22 : tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3751 :
3752 370 : if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3753 : FLAG_SND_UNA_ADVANCED) {
3754 : /* Window is constant, pure forward advance.
3755 : * No more checks are required.
3756 : * Note, we use the fact that SND.UNA>=SND.WL2.
3757 : */
3758 348 : tcp_update_wl(tp, ack_seq);
3759 348 : tcp_snd_una_update(tp, ack);
3760 348 : flag |= FLAG_WIN_UPDATE;
3761 :
3762 348 : tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3763 :
3764 348 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3765 : } else {
3766 22 : u32 ack_ev_flags = CA_ACK_SLOWPATH;
3767 :
3768 22 : if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3769 15 : flag |= FLAG_DATA;
3770 : else
3771 7 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3772 :
3773 22 : flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3774 :
3775 22 : if (TCP_SKB_CB(skb)->sacked)
3776 0 : flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3777 : &sack_state);
3778 :
3779 22 : if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3780 0 : flag |= FLAG_ECE;
3781 0 : ack_ev_flags |= CA_ACK_ECE;
3782 : }
3783 :
3784 22 : if (sack_state.sack_delivered)
3785 22 : tcp_count_delivered(tp, sack_state.sack_delivered,
3786 0 : flag & FLAG_ECE);
3787 :
3788 22 : if (flag & FLAG_WIN_UPDATE)
3789 17 : ack_ev_flags |= CA_ACK_WIN_UPDATE;
3790 :
3791 22 : tcp_in_ack_event(sk, ack_ev_flags);
3792 : }
3793 :
3794 : /* This is a deviation from RFC3168 since it states that:
3795 : * "When the TCP data sender is ready to set the CWR bit after reducing
3796 : * the congestion window, it SHOULD set the CWR bit only on the first
3797 : * new data packet that it transmits."
3798 : * We accept CWR on pure ACKs to be more robust
3799 : * with widely-deployed TCP implementations that do this.
3800 : */
3801 370 : tcp_ecn_accept_cwr(sk, skb);
3802 :
3803 : /* We passed data and got it acked, remove any soft error
3804 : * log. Something worked...
3805 : */
3806 370 : sk->sk_err_soft = 0;
3807 370 : icsk->icsk_probes_out = 0;
3808 370 : tp->rcv_tstamp = tcp_jiffies32;
3809 370 : if (!prior_packets)
3810 19 : goto no_queue;
3811 :
3812 : /* See if we can take anything off of the retransmit queue. */
3813 702 : flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3814 351 : &sack_state, flag & FLAG_ECE);
3815 :
3816 351 : tcp_rack_update_reo_wnd(sk, &rs);
3817 :
3818 351 : if (tp->tlp_high_seq)
3819 0 : tcp_process_tlp_ack(sk, ack, flag);
3820 :
3821 702 : if (tcp_ack_is_dubious(sk, flag)) {
3822 0 : if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3823 0 : num_dupack = 1;
3824 : /* Consider if pure acks were aggregated in tcp_add_backlog() */
3825 0 : if (!(flag & FLAG_DATA))
3826 0 : num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3827 : }
3828 0 : tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3829 : &rexmit);
3830 : }
3831 :
3832 : /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3833 351 : if (flag & FLAG_SET_XMIT_TIMER)
3834 351 : tcp_set_xmit_timer(sk);
3835 :
3836 351 : if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3837 351 : sk_dst_confirm(sk);
3838 :
3839 351 : delivered = tcp_newly_delivered(sk, delivered, flag);
3840 351 : lost = tp->lost - lost; /* freshly marked lost */
3841 351 : rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3842 351 : tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3843 351 : tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3844 351 : tcp_xmit_recovery(sk, rexmit);
3845 351 : return 1;
3846 :
3847 19 : no_queue:
3848 : /* If data was DSACKed, see if we can undo a cwnd reduction. */
3849 19 : if (flag & FLAG_DSACKING_ACK) {
3850 0 : tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3851 : &rexmit);
3852 0 : tcp_newly_delivered(sk, delivered, flag);
3853 : }
3854 : /* If this ack opens up a zero window, clear backoff. It was
3855 : * being used to time the probes, and is probably far higher than
3856 : * it needs to be for normal retransmission.
3857 : */
3858 19 : tcp_ack_probe(sk);
3859 :
3860 19 : if (tp->tlp_high_seq)
3861 0 : tcp_process_tlp_ack(sk, ack, flag);
3862 : return 1;
3863 :
3864 0 : old_ack:
3865 : /* If data was SACKed, tag it and see if we should send more data.
3866 : * If data was DSACKed, see if we can undo a cwnd reduction.
3867 : */
3868 0 : if (TCP_SKB_CB(skb)->sacked) {
3869 0 : flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3870 : &sack_state);
3871 0 : tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3872 : &rexmit);
3873 0 : tcp_newly_delivered(sk, delivered, flag);
3874 0 : tcp_xmit_recovery(sk, rexmit);
3875 : }
3876 :
3877 : return 0;
3878 : }
3879 :
3880 0 : static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3881 : bool syn, struct tcp_fastopen_cookie *foc,
3882 : bool exp_opt)
3883 : {
3884 : /* Valid only in SYN or SYN-ACK with an even length. */
3885 0 : if (!foc || !syn || len < 0 || (len & 1))
3886 : return;
3887 :
3888 0 : if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3889 : len <= TCP_FASTOPEN_COOKIE_MAX)
3890 0 : memcpy(foc->val, cookie, len);
3891 0 : else if (len != 0)
3892 0 : len = -1;
3893 0 : foc->len = len;
3894 0 : foc->exp = exp_opt;
3895 : }
3896 :
3897 0 : static bool smc_parse_options(const struct tcphdr *th,
3898 : struct tcp_options_received *opt_rx,
3899 : const unsigned char *ptr,
3900 : int opsize)
3901 : {
3902 : #if IS_ENABLED(CONFIG_SMC)
3903 : if (static_branch_unlikely(&tcp_have_smc)) {
3904 : if (th->syn && !(opsize & 1) &&
3905 : opsize >= TCPOLEN_EXP_SMC_BASE &&
3906 : get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3907 : opt_rx->smc_ok = 1;
3908 : return true;
3909 : }
3910 : }
3911 : #endif
3912 0 : return false;
3913 : }
3914 :
3915 : /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3916 : * value on success.
3917 : */
3918 0 : static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3919 : {
3920 0 : const unsigned char *ptr = (const unsigned char *)(th + 1);
3921 0 : int length = (th->doff * 4) - sizeof(struct tcphdr);
3922 0 : u16 mss = 0;
3923 :
3924 0 : while (length > 0) {
3925 0 : int opcode = *ptr++;
3926 0 : int opsize;
3927 :
3928 0 : switch (opcode) {
3929 : case TCPOPT_EOL:
3930 : return mss;
3931 0 : case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3932 0 : length--;
3933 0 : continue;
3934 0 : default:
3935 0 : if (length < 2)
3936 0 : return mss;
3937 0 : opsize = *ptr++;
3938 0 : if (opsize < 2) /* "silly options" */
3939 0 : return mss;
3940 0 : if (opsize > length)
3941 0 : return mss; /* fail on partial options */
3942 0 : if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3943 0 : u16 in_mss = get_unaligned_be16(ptr);
3944 :
3945 0 : if (in_mss) {
3946 0 : if (user_mss && user_mss < in_mss)
3947 0 : in_mss = user_mss;
3948 : mss = in_mss;
3949 : }
3950 : }
3951 0 : ptr += opsize - 2;
3952 0 : length -= opsize;
3953 : }
3954 : }
3955 : return mss;
3956 : }
3957 :
3958 : /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3959 : * But, this can also be called on packets in the established flow when
3960 : * the fast version below fails.
3961 : */
3962 4 : void tcp_parse_options(const struct net *net,
3963 : const struct sk_buff *skb,
3964 : struct tcp_options_received *opt_rx, int estab,
3965 : struct tcp_fastopen_cookie *foc)
3966 : {
3967 4 : const unsigned char *ptr;
3968 4 : const struct tcphdr *th = tcp_hdr(skb);
3969 4 : int length = (th->doff * 4) - sizeof(struct tcphdr);
3970 :
3971 4 : ptr = (const unsigned char *)(th + 1);
3972 4 : opt_rx->saw_tstamp = 0;
3973 4 : opt_rx->saw_unknown = 0;
3974 :
3975 8 : while (length > 0) {
3976 4 : int opcode = *ptr++;
3977 4 : int opsize;
3978 :
3979 4 : switch (opcode) {
3980 : case TCPOPT_EOL:
3981 : return;
3982 0 : case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3983 0 : length--;
3984 0 : continue;
3985 4 : default:
3986 4 : if (length < 2)
3987 : return;
3988 4 : opsize = *ptr++;
3989 4 : if (opsize < 2) /* "silly options" */
3990 : return;
3991 4 : if (opsize > length)
3992 : return; /* don't parse partial options */
3993 4 : switch (opcode) {
3994 4 : case TCPOPT_MSS:
3995 4 : if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3996 4 : u16 in_mss = get_unaligned_be16(ptr);
3997 4 : if (in_mss) {
3998 4 : if (opt_rx->user_mss &&
3999 : opt_rx->user_mss < in_mss)
4000 : in_mss = opt_rx->user_mss;
4001 4 : opt_rx->mss_clamp = in_mss;
4002 : }
4003 : }
4004 : break;
4005 0 : case TCPOPT_WINDOW:
4006 0 : if (opsize == TCPOLEN_WINDOW && th->syn &&
4007 0 : !estab && net->ipv4.sysctl_tcp_window_scaling) {
4008 0 : __u8 snd_wscale = *(__u8 *)ptr;
4009 0 : opt_rx->wscale_ok = 1;
4010 0 : if (snd_wscale > TCP_MAX_WSCALE) {
4011 0 : net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4012 : __func__,
4013 : snd_wscale,
4014 : TCP_MAX_WSCALE);
4015 : snd_wscale = TCP_MAX_WSCALE;
4016 : }
4017 0 : opt_rx->snd_wscale = snd_wscale;
4018 : }
4019 : break;
4020 0 : case TCPOPT_TIMESTAMP:
4021 0 : if ((opsize == TCPOLEN_TIMESTAMP) &&
4022 0 : ((estab && opt_rx->tstamp_ok) ||
4023 0 : (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4024 0 : opt_rx->saw_tstamp = 1;
4025 0 : opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4026 0 : opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4027 : }
4028 : break;
4029 0 : case TCPOPT_SACK_PERM:
4030 0 : if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4031 0 : !estab && net->ipv4.sysctl_tcp_sack) {
4032 0 : opt_rx->sack_ok = TCP_SACK_SEEN;
4033 0 : tcp_sack_reset(opt_rx);
4034 : }
4035 : break;
4036 :
4037 0 : case TCPOPT_SACK:
4038 0 : if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4039 0 : !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4040 : opt_rx->sack_ok) {
4041 0 : TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4042 : }
4043 : break;
4044 : #ifdef CONFIG_TCP_MD5SIG
4045 : case TCPOPT_MD5SIG:
4046 : /*
4047 : * The MD5 Hash has already been
4048 : * checked (see tcp_v{4,6}_do_rcv()).
4049 : */
4050 : break;
4051 : #endif
4052 0 : case TCPOPT_FASTOPEN:
4053 0 : tcp_parse_fastopen_option(
4054 : opsize - TCPOLEN_FASTOPEN_BASE,
4055 0 : ptr, th->syn, foc, false);
4056 0 : break;
4057 :
4058 0 : case TCPOPT_EXP:
4059 : /* Fast Open option shares code 254 using a
4060 : * 16 bits magic number.
4061 : */
4062 0 : if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4063 0 : get_unaligned_be16(ptr) ==
4064 : TCPOPT_FASTOPEN_MAGIC) {
4065 0 : tcp_parse_fastopen_option(opsize -
4066 : TCPOLEN_EXP_FASTOPEN_BASE,
4067 0 : ptr + 2, th->syn, foc, true);
4068 0 : break;
4069 : }
4070 :
4071 0 : if (smc_parse_options(th, opt_rx, ptr, opsize))
4072 : break;
4073 :
4074 0 : opt_rx->saw_unknown = 1;
4075 0 : break;
4076 :
4077 0 : default:
4078 0 : opt_rx->saw_unknown = 1;
4079 : }
4080 4 : ptr += opsize-2;
4081 4 : length -= opsize;
4082 : }
4083 : }
4084 : }
4085 : EXPORT_SYMBOL(tcp_parse_options);
4086 :
4087 0 : static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4088 : {
4089 0 : const __be32 *ptr = (const __be32 *)(th + 1);
4090 :
4091 0 : if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4092 : | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4093 0 : tp->rx_opt.saw_tstamp = 1;
4094 0 : ++ptr;
4095 0 : tp->rx_opt.rcv_tsval = ntohl(*ptr);
4096 0 : ++ptr;
4097 0 : if (*ptr)
4098 0 : tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4099 : else
4100 0 : tp->rx_opt.rcv_tsecr = 0;
4101 0 : return true;
4102 : }
4103 : return false;
4104 : }
4105 :
4106 : /* Fast parse options. This hopes to only see timestamps.
4107 : * If it is wrong it falls back on tcp_parse_options().
4108 : */
4109 10 : static bool tcp_fast_parse_options(const struct net *net,
4110 : const struct sk_buff *skb,
4111 : const struct tcphdr *th, struct tcp_sock *tp)
4112 : {
4113 : /* In the spirit of fast parsing, compare doff directly to constant
4114 : * values. Because equality is used, short doff can be ignored here.
4115 : */
4116 10 : if (th->doff == (sizeof(*th) / 4)) {
4117 10 : tp->rx_opt.saw_tstamp = 0;
4118 10 : return false;
4119 0 : } else if (tp->rx_opt.tstamp_ok &&
4120 : th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4121 0 : if (tcp_parse_aligned_timestamp(tp, th))
4122 : return true;
4123 : }
4124 :
4125 0 : tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4126 0 : if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4127 0 : tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4128 :
4129 : return true;
4130 : }
4131 :
4132 : #ifdef CONFIG_TCP_MD5SIG
4133 : /*
4134 : * Parse MD5 Signature option
4135 : */
4136 : const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4137 : {
4138 : int length = (th->doff << 2) - sizeof(*th);
4139 : const u8 *ptr = (const u8 *)(th + 1);
4140 :
4141 : /* If not enough data remaining, we can short cut */
4142 : while (length >= TCPOLEN_MD5SIG) {
4143 : int opcode = *ptr++;
4144 : int opsize;
4145 :
4146 : switch (opcode) {
4147 : case TCPOPT_EOL:
4148 : return NULL;
4149 : case TCPOPT_NOP:
4150 : length--;
4151 : continue;
4152 : default:
4153 : opsize = *ptr++;
4154 : if (opsize < 2 || opsize > length)
4155 : return NULL;
4156 : if (opcode == TCPOPT_MD5SIG)
4157 : return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4158 : }
4159 : ptr += opsize - 2;
4160 : length -= opsize;
4161 : }
4162 : return NULL;
4163 : }
4164 : EXPORT_SYMBOL(tcp_parse_md5sig_option);
4165 : #endif
4166 :
4167 : /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4168 : *
4169 : * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4170 : * it can pass through stack. So, the following predicate verifies that
4171 : * this segment is not used for anything but congestion avoidance or
4172 : * fast retransmit. Moreover, we even are able to eliminate most of such
4173 : * second order effects, if we apply some small "replay" window (~RTO)
4174 : * to timestamp space.
4175 : *
4176 : * All these measures still do not guarantee that we reject wrapped ACKs
4177 : * on networks with high bandwidth, when sequence space is recycled fastly,
4178 : * but it guarantees that such events will be very rare and do not affect
4179 : * connection seriously. This doesn't look nice, but alas, PAWS is really
4180 : * buggy extension.
4181 : *
4182 : * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4183 : * states that events when retransmit arrives after original data are rare.
4184 : * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4185 : * the biggest problem on large power networks even with minor reordering.
4186 : * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4187 : * up to bandwidth of 18Gigabit/sec. 8) ]
4188 : */
4189 :
4190 0 : static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4191 : {
4192 0 : const struct tcp_sock *tp = tcp_sk(sk);
4193 0 : const struct tcphdr *th = tcp_hdr(skb);
4194 0 : u32 seq = TCP_SKB_CB(skb)->seq;
4195 0 : u32 ack = TCP_SKB_CB(skb)->ack_seq;
4196 :
4197 0 : return (/* 1. Pure ACK with correct sequence number. */
4198 0 : (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4199 :
4200 : /* 2. ... and duplicate ACK. */
4201 0 : ack == tp->snd_una &&
4202 :
4203 : /* 3. ... and does not update window. */
4204 0 : !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4205 :
4206 : /* 4. ... and sits in replay window. */
4207 0 : (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4208 : }
4209 :
4210 0 : static inline bool tcp_paws_discard(const struct sock *sk,
4211 : const struct sk_buff *skb)
4212 : {
4213 0 : const struct tcp_sock *tp = tcp_sk(sk);
4214 :
4215 0 : return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4216 0 : !tcp_disordered_ack(sk, skb);
4217 : }
4218 :
4219 : /* Check segment sequence number for validity.
4220 : *
4221 : * Segment controls are considered valid, if the segment
4222 : * fits to the window after truncation to the window. Acceptability
4223 : * of data (and SYN, FIN, of course) is checked separately.
4224 : * See tcp_data_queue(), for example.
4225 : *
4226 : * Also, controls (RST is main one) are accepted using RCV.WUP instead
4227 : * of RCV.NXT. Peer still did not advance his SND.UNA when we
4228 : * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4229 : * (borrowed from freebsd)
4230 : */
4231 :
4232 10 : static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4233 : {
4234 10 : return !before(end_seq, tp->rcv_wup) &&
4235 10 : !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4236 : }
4237 :
4238 : /* When we get a reset we do this. */
4239 0 : void tcp_reset(struct sock *sk, struct sk_buff *skb)
4240 : {
4241 0 : trace_tcp_receive_reset(sk);
4242 :
4243 0 : if (sk_is_mptcp(sk))
4244 0 : mptcp_incoming_options(sk, skb);
4245 :
4246 : /* We want the right error as BSD sees it (and indeed as we do). */
4247 0 : switch (sk->sk_state) {
4248 0 : case TCP_SYN_SENT:
4249 0 : sk->sk_err = ECONNREFUSED;
4250 0 : break;
4251 0 : case TCP_CLOSE_WAIT:
4252 0 : sk->sk_err = EPIPE;
4253 0 : break;
4254 : case TCP_CLOSE:
4255 : return;
4256 0 : default:
4257 0 : sk->sk_err = ECONNRESET;
4258 : }
4259 : /* This barrier is coupled with smp_rmb() in tcp_poll() */
4260 0 : smp_wmb();
4261 :
4262 0 : tcp_write_queue_purge(sk);
4263 0 : tcp_done(sk);
4264 :
4265 0 : if (!sock_flag(sk, SOCK_DEAD))
4266 0 : sk->sk_error_report(sk);
4267 : }
4268 :
4269 : /*
4270 : * Process the FIN bit. This now behaves as it is supposed to work
4271 : * and the FIN takes effect when it is validly part of sequence
4272 : * space. Not before when we get holes.
4273 : *
4274 : * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4275 : * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4276 : * TIME-WAIT)
4277 : *
4278 : * If we are in FINWAIT-1, a received FIN indicates simultaneous
4279 : * close and we go into CLOSING (and later onto TIME-WAIT)
4280 : *
4281 : * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4282 : */
4283 3 : void tcp_fin(struct sock *sk)
4284 : {
4285 3 : struct tcp_sock *tp = tcp_sk(sk);
4286 :
4287 3 : inet_csk_schedule_ack(sk);
4288 :
4289 3 : sk->sk_shutdown |= RCV_SHUTDOWN;
4290 3 : sock_set_flag(sk, SOCK_DONE);
4291 :
4292 3 : switch (sk->sk_state) {
4293 3 : case TCP_SYN_RECV:
4294 : case TCP_ESTABLISHED:
4295 : /* Move to CLOSE_WAIT */
4296 3 : tcp_set_state(sk, TCP_CLOSE_WAIT);
4297 3 : inet_csk_enter_pingpong_mode(sk);
4298 : break;
4299 :
4300 : case TCP_CLOSE_WAIT:
4301 : case TCP_CLOSING:
4302 : /* Received a retransmission of the FIN, do
4303 : * nothing.
4304 : */
4305 : break;
4306 : case TCP_LAST_ACK:
4307 : /* RFC793: Remain in the LAST-ACK state. */
4308 : break;
4309 :
4310 0 : case TCP_FIN_WAIT1:
4311 : /* This case occurs when a simultaneous close
4312 : * happens, we must ack the received FIN and
4313 : * enter the CLOSING state.
4314 : */
4315 0 : tcp_send_ack(sk);
4316 0 : tcp_set_state(sk, TCP_CLOSING);
4317 0 : break;
4318 0 : case TCP_FIN_WAIT2:
4319 : /* Received a FIN -- send ACK and enter TIME_WAIT. */
4320 0 : tcp_send_ack(sk);
4321 0 : tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4322 0 : break;
4323 0 : default:
4324 : /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4325 : * cases we should never reach this piece of code.
4326 : */
4327 0 : pr_err("%s: Impossible, sk->sk_state=%d\n",
4328 : __func__, sk->sk_state);
4329 0 : break;
4330 : }
4331 :
4332 : /* It _is_ possible, that we have something out-of-order _after_ FIN.
4333 : * Probably, we should reset in this case. For now drop them.
4334 : */
4335 3 : skb_rbtree_purge(&tp->out_of_order_queue);
4336 3 : if (tcp_is_sack(tp))
4337 0 : tcp_sack_reset(&tp->rx_opt);
4338 3 : sk_mem_reclaim(sk);
4339 :
4340 3 : if (!sock_flag(sk, SOCK_DEAD)) {
4341 3 : sk->sk_state_change(sk);
4342 :
4343 : /* Do not send POLL_HUP for half duplex close. */
4344 3 : if (sk->sk_shutdown == SHUTDOWN_MASK ||
4345 3 : sk->sk_state == TCP_CLOSE)
4346 0 : sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4347 : else
4348 3 : sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4349 : }
4350 3 : }
4351 :
4352 0 : static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4353 : u32 end_seq)
4354 : {
4355 0 : if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4356 0 : if (before(seq, sp->start_seq))
4357 0 : sp->start_seq = seq;
4358 0 : if (after(end_seq, sp->end_seq))
4359 0 : sp->end_seq = end_seq;
4360 0 : return true;
4361 : }
4362 : return false;
4363 : }
4364 :
4365 0 : static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4366 : {
4367 0 : struct tcp_sock *tp = tcp_sk(sk);
4368 :
4369 0 : if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4370 0 : int mib_idx;
4371 :
4372 0 : if (before(seq, tp->rcv_nxt))
4373 : mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4374 : else
4375 0 : mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4376 :
4377 0 : NET_INC_STATS(sock_net(sk), mib_idx);
4378 :
4379 0 : tp->rx_opt.dsack = 1;
4380 0 : tp->duplicate_sack[0].start_seq = seq;
4381 0 : tp->duplicate_sack[0].end_seq = end_seq;
4382 : }
4383 0 : }
4384 :
4385 0 : static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4386 : {
4387 0 : struct tcp_sock *tp = tcp_sk(sk);
4388 :
4389 0 : if (!tp->rx_opt.dsack)
4390 0 : tcp_dsack_set(sk, seq, end_seq);
4391 : else
4392 0 : tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4393 0 : }
4394 :
4395 0 : static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4396 : {
4397 : /* When the ACK path fails or drops most ACKs, the sender would
4398 : * timeout and spuriously retransmit the same segment repeatedly.
4399 : * The receiver remembers and reflects via DSACKs. Leverage the
4400 : * DSACK state and change the txhash to re-route speculatively.
4401 : */
4402 0 : if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4403 0 : sk_rethink_txhash(sk))
4404 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4405 0 : }
4406 :
4407 0 : static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4408 : {
4409 0 : struct tcp_sock *tp = tcp_sk(sk);
4410 :
4411 0 : if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4412 0 : before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4413 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4414 0 : tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4415 :
4416 0 : if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4417 0 : u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4418 :
4419 0 : tcp_rcv_spurious_retrans(sk, skb);
4420 0 : if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4421 0 : end_seq = tp->rcv_nxt;
4422 0 : tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4423 : }
4424 : }
4425 :
4426 0 : tcp_send_ack(sk);
4427 0 : }
4428 :
4429 : /* These routines update the SACK block as out-of-order packets arrive or
4430 : * in-order packets close up the sequence space.
4431 : */
4432 0 : static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4433 : {
4434 0 : int this_sack;
4435 0 : struct tcp_sack_block *sp = &tp->selective_acks[0];
4436 0 : struct tcp_sack_block *swalk = sp + 1;
4437 :
4438 : /* See if the recent change to the first SACK eats into
4439 : * or hits the sequence space of other SACK blocks, if so coalesce.
4440 : */
4441 0 : for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4442 0 : if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4443 0 : int i;
4444 :
4445 : /* Zap SWALK, by moving every further SACK up by one slot.
4446 : * Decrease num_sacks.
4447 : */
4448 0 : tp->rx_opt.num_sacks--;
4449 0 : for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4450 0 : sp[i] = sp[i + 1];
4451 0 : continue;
4452 : }
4453 0 : this_sack++;
4454 0 : swalk++;
4455 : }
4456 0 : }
4457 :
4458 0 : static void tcp_sack_compress_send_ack(struct sock *sk)
4459 : {
4460 0 : struct tcp_sock *tp = tcp_sk(sk);
4461 :
4462 0 : if (!tp->compressed_ack)
4463 : return;
4464 :
4465 0 : if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4466 0 : __sock_put(sk);
4467 :
4468 : /* Since we have to send one ack finally,
4469 : * substract one from tp->compressed_ack to keep
4470 : * LINUX_MIB_TCPACKCOMPRESSED accurate.
4471 : */
4472 0 : NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4473 : tp->compressed_ack - 1);
4474 :
4475 0 : tp->compressed_ack = 0;
4476 0 : tcp_send_ack(sk);
4477 : }
4478 :
4479 : /* Reasonable amount of sack blocks included in TCP SACK option
4480 : * The max is 4, but this becomes 3 if TCP timestamps are there.
4481 : * Given that SACK packets might be lost, be conservative and use 2.
4482 : */
4483 : #define TCP_SACK_BLOCKS_EXPECTED 2
4484 :
4485 0 : static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4486 : {
4487 0 : struct tcp_sock *tp = tcp_sk(sk);
4488 0 : struct tcp_sack_block *sp = &tp->selective_acks[0];
4489 0 : int cur_sacks = tp->rx_opt.num_sacks;
4490 0 : int this_sack;
4491 :
4492 0 : if (!cur_sacks)
4493 0 : goto new_sack;
4494 :
4495 0 : for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4496 0 : if (tcp_sack_extend(sp, seq, end_seq)) {
4497 0 : if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4498 0 : tcp_sack_compress_send_ack(sk);
4499 : /* Rotate this_sack to the first one. */
4500 0 : for (; this_sack > 0; this_sack--, sp--)
4501 0 : swap(*sp, *(sp - 1));
4502 0 : if (cur_sacks > 1)
4503 0 : tcp_sack_maybe_coalesce(tp);
4504 0 : return;
4505 : }
4506 : }
4507 :
4508 0 : if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4509 0 : tcp_sack_compress_send_ack(sk);
4510 :
4511 : /* Could not find an adjacent existing SACK, build a new one,
4512 : * put it at the front, and shift everyone else down. We
4513 : * always know there is at least one SACK present already here.
4514 : *
4515 : * If the sack array is full, forget about the last one.
4516 : */
4517 0 : if (this_sack >= TCP_NUM_SACKS) {
4518 0 : this_sack--;
4519 0 : tp->rx_opt.num_sacks--;
4520 0 : sp--;
4521 : }
4522 0 : for (; this_sack > 0; this_sack--, sp--)
4523 0 : *sp = *(sp - 1);
4524 :
4525 0 : new_sack:
4526 : /* Build the new head SACK, and we're done. */
4527 0 : sp->start_seq = seq;
4528 0 : sp->end_seq = end_seq;
4529 0 : tp->rx_opt.num_sacks++;
4530 : }
4531 :
4532 : /* RCV.NXT advances, some SACKs should be eaten. */
4533 :
4534 0 : static void tcp_sack_remove(struct tcp_sock *tp)
4535 : {
4536 0 : struct tcp_sack_block *sp = &tp->selective_acks[0];
4537 0 : int num_sacks = tp->rx_opt.num_sacks;
4538 0 : int this_sack;
4539 :
4540 : /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4541 0 : if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4542 0 : tp->rx_opt.num_sacks = 0;
4543 0 : return;
4544 : }
4545 :
4546 0 : for (this_sack = 0; this_sack < num_sacks;) {
4547 : /* Check if the start of the sack is covered by RCV.NXT. */
4548 0 : if (!before(tp->rcv_nxt, sp->start_seq)) {
4549 0 : int i;
4550 :
4551 : /* RCV.NXT must cover all the block! */
4552 0 : WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4553 :
4554 : /* Zap this SACK, by moving forward any other SACKS. */
4555 0 : for (i = this_sack+1; i < num_sacks; i++)
4556 0 : tp->selective_acks[i-1] = tp->selective_acks[i];
4557 0 : num_sacks--;
4558 0 : continue;
4559 : }
4560 0 : this_sack++;
4561 0 : sp++;
4562 : }
4563 0 : tp->rx_opt.num_sacks = num_sacks;
4564 : }
4565 :
4566 : /**
4567 : * tcp_try_coalesce - try to merge skb to prior one
4568 : * @sk: socket
4569 : * @to: prior buffer
4570 : * @from: buffer to add in queue
4571 : * @fragstolen: pointer to boolean
4572 : *
4573 : * Before queueing skb @from after @to, try to merge them
4574 : * to reduce overall memory use and queue lengths, if cost is small.
4575 : * Packets in ofo or receive queues can stay a long time.
4576 : * Better try to coalesce them right now to avoid future collapses.
4577 : * Returns true if caller should free @from instead of queueing it
4578 : */
4579 16 : static bool tcp_try_coalesce(struct sock *sk,
4580 : struct sk_buff *to,
4581 : struct sk_buff *from,
4582 : bool *fragstolen)
4583 : {
4584 16 : int delta;
4585 :
4586 16 : *fragstolen = false;
4587 :
4588 : /* Its possible this segment overlaps with prior segment in queue */
4589 16 : if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4590 : return false;
4591 :
4592 16 : if (!mptcp_skb_can_collapse(to, from))
4593 : return false;
4594 :
4595 : #ifdef CONFIG_TLS_DEVICE
4596 : if (from->decrypted != to->decrypted)
4597 : return false;
4598 : #endif
4599 :
4600 16 : if (!skb_try_coalesce(to, from, fragstolen, &delta))
4601 : return false;
4602 :
4603 2 : atomic_add(delta, &sk->sk_rmem_alloc);
4604 2 : sk_mem_charge(sk, delta);
4605 2 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4606 2 : TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4607 2 : TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4608 2 : TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4609 :
4610 2 : if (TCP_SKB_CB(from)->has_rxtstamp) {
4611 0 : TCP_SKB_CB(to)->has_rxtstamp = true;
4612 0 : to->tstamp = from->tstamp;
4613 0 : skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4614 : }
4615 :
4616 : return true;
4617 : }
4618 :
4619 0 : static bool tcp_ooo_try_coalesce(struct sock *sk,
4620 : struct sk_buff *to,
4621 : struct sk_buff *from,
4622 : bool *fragstolen)
4623 : {
4624 0 : bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4625 :
4626 : /* In case tcp_drop() is called later, update to->gso_segs */
4627 0 : if (res) {
4628 0 : u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4629 0 : max_t(u16, 1, skb_shinfo(from)->gso_segs);
4630 :
4631 0 : skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4632 : }
4633 0 : return res;
4634 : }
4635 :
4636 3 : static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4637 : {
4638 3 : sk_drops_add(sk, skb);
4639 3 : __kfree_skb(skb);
4640 3 : }
4641 :
4642 : /* This one checks to see if we can put data from the
4643 : * out_of_order queue into the receive_queue.
4644 : */
4645 0 : static void tcp_ofo_queue(struct sock *sk)
4646 : {
4647 0 : struct tcp_sock *tp = tcp_sk(sk);
4648 0 : __u32 dsack_high = tp->rcv_nxt;
4649 0 : bool fin, fragstolen, eaten;
4650 0 : struct sk_buff *skb, *tail;
4651 0 : struct rb_node *p;
4652 :
4653 0 : p = rb_first(&tp->out_of_order_queue);
4654 0 : while (p) {
4655 0 : skb = rb_to_skb(p);
4656 0 : if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4657 : break;
4658 :
4659 0 : if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4660 0 : __u32 dsack = dsack_high;
4661 0 : if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4662 0 : dsack_high = TCP_SKB_CB(skb)->end_seq;
4663 0 : tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4664 : }
4665 0 : p = rb_next(p);
4666 0 : rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4667 :
4668 0 : if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4669 0 : tcp_drop(sk, skb);
4670 0 : continue;
4671 : }
4672 :
4673 0 : tail = skb_peek_tail(&sk->sk_receive_queue);
4674 0 : eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4675 0 : tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4676 0 : fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4677 0 : if (!eaten)
4678 0 : __skb_queue_tail(&sk->sk_receive_queue, skb);
4679 : else
4680 0 : kfree_skb_partial(skb, fragstolen);
4681 :
4682 0 : if (unlikely(fin)) {
4683 0 : tcp_fin(sk);
4684 : /* tcp_fin() purges tp->out_of_order_queue,
4685 : * so we must end this loop right now.
4686 : */
4687 0 : break;
4688 : }
4689 : }
4690 0 : }
4691 :
4692 : static bool tcp_prune_ofo_queue(struct sock *sk);
4693 : static int tcp_prune_queue(struct sock *sk);
4694 :
4695 7 : static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4696 : unsigned int size)
4697 : {
4698 14 : if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4699 7 : !sk_rmem_schedule(sk, skb, size)) {
4700 :
4701 0 : if (tcp_prune_queue(sk) < 0)
4702 : return -1;
4703 :
4704 0 : while (!sk_rmem_schedule(sk, skb, size)) {
4705 0 : if (!tcp_prune_ofo_queue(sk))
4706 : return -1;
4707 : }
4708 : }
4709 : return 0;
4710 : }
4711 :
4712 0 : static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4713 : {
4714 0 : struct tcp_sock *tp = tcp_sk(sk);
4715 0 : struct rb_node **p, *parent;
4716 0 : struct sk_buff *skb1;
4717 0 : u32 seq, end_seq;
4718 0 : bool fragstolen;
4719 :
4720 0 : tcp_ecn_check_ce(sk, skb);
4721 :
4722 0 : if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4723 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4724 0 : sk->sk_data_ready(sk);
4725 0 : tcp_drop(sk, skb);
4726 0 : return;
4727 : }
4728 :
4729 : /* Disable header prediction. */
4730 0 : tp->pred_flags = 0;
4731 0 : inet_csk_schedule_ack(sk);
4732 :
4733 0 : tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4734 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4735 0 : seq = TCP_SKB_CB(skb)->seq;
4736 0 : end_seq = TCP_SKB_CB(skb)->end_seq;
4737 :
4738 0 : p = &tp->out_of_order_queue.rb_node;
4739 0 : if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4740 : /* Initial out of order segment, build 1 SACK. */
4741 0 : if (tcp_is_sack(tp)) {
4742 0 : tp->rx_opt.num_sacks = 1;
4743 0 : tp->selective_acks[0].start_seq = seq;
4744 0 : tp->selective_acks[0].end_seq = end_seq;
4745 : }
4746 0 : rb_link_node(&skb->rbnode, NULL, p);
4747 0 : rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4748 0 : tp->ooo_last_skb = skb;
4749 0 : goto end;
4750 : }
4751 :
4752 : /* In the typical case, we are adding an skb to the end of the list.
4753 : * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4754 : */
4755 0 : if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4756 : skb, &fragstolen)) {
4757 0 : coalesce_done:
4758 : /* For non sack flows, do not grow window to force DUPACK
4759 : * and trigger fast retransmit.
4760 : */
4761 0 : if (tcp_is_sack(tp))
4762 0 : tcp_grow_window(sk, skb);
4763 0 : kfree_skb_partial(skb, fragstolen);
4764 0 : skb = NULL;
4765 0 : goto add_sack;
4766 : }
4767 : /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4768 0 : if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4769 0 : parent = &tp->ooo_last_skb->rbnode;
4770 0 : p = &parent->rb_right;
4771 0 : goto insert;
4772 : }
4773 :
4774 : /* Find place to insert this segment. Handle overlaps on the way. */
4775 : parent = NULL;
4776 0 : while (*p) {
4777 0 : parent = *p;
4778 0 : skb1 = rb_to_skb(parent);
4779 0 : if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4780 0 : p = &parent->rb_left;
4781 0 : continue;
4782 : }
4783 0 : if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4784 0 : if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4785 : /* All the bits are present. Drop. */
4786 0 : NET_INC_STATS(sock_net(sk),
4787 : LINUX_MIB_TCPOFOMERGE);
4788 0 : tcp_drop(sk, skb);
4789 0 : skb = NULL;
4790 0 : tcp_dsack_set(sk, seq, end_seq);
4791 0 : goto add_sack;
4792 : }
4793 0 : if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4794 : /* Partial overlap. */
4795 0 : tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4796 : } else {
4797 : /* skb's seq == skb1's seq and skb covers skb1.
4798 : * Replace skb1 with skb.
4799 : */
4800 0 : rb_replace_node(&skb1->rbnode, &skb->rbnode,
4801 : &tp->out_of_order_queue);
4802 0 : tcp_dsack_extend(sk,
4803 : TCP_SKB_CB(skb1)->seq,
4804 : TCP_SKB_CB(skb1)->end_seq);
4805 0 : NET_INC_STATS(sock_net(sk),
4806 : LINUX_MIB_TCPOFOMERGE);
4807 0 : tcp_drop(sk, skb1);
4808 0 : goto merge_right;
4809 : }
4810 0 : } else if (tcp_ooo_try_coalesce(sk, skb1,
4811 : skb, &fragstolen)) {
4812 0 : goto coalesce_done;
4813 : }
4814 0 : p = &parent->rb_right;
4815 : }
4816 0 : insert:
4817 : /* Insert segment into RB tree. */
4818 0 : rb_link_node(&skb->rbnode, parent, p);
4819 0 : rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4820 :
4821 : merge_right:
4822 : /* Remove other segments covered by skb. */
4823 0 : while ((skb1 = skb_rb_next(skb)) != NULL) {
4824 0 : if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4825 : break;
4826 0 : if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4827 0 : tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4828 : end_seq);
4829 0 : break;
4830 : }
4831 0 : rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4832 0 : tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4833 : TCP_SKB_CB(skb1)->end_seq);
4834 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4835 0 : tcp_drop(sk, skb1);
4836 : }
4837 : /* If there is no skb after us, we are the last_skb ! */
4838 0 : if (!skb1)
4839 0 : tp->ooo_last_skb = skb;
4840 :
4841 0 : add_sack:
4842 0 : if (tcp_is_sack(tp))
4843 0 : tcp_sack_new_ofo_skb(sk, seq, end_seq);
4844 0 : end:
4845 0 : if (skb) {
4846 : /* For non sack flows, do not grow window to force DUPACK
4847 : * and trigger fast retransmit.
4848 : */
4849 0 : if (tcp_is_sack(tp))
4850 0 : tcp_grow_window(sk, skb);
4851 0 : skb_condense(skb);
4852 0 : skb_set_owner_r(skb, sk);
4853 : }
4854 : }
4855 :
4856 70 : static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4857 : bool *fragstolen)
4858 : {
4859 70 : int eaten;
4860 70 : struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4861 :
4862 86 : eaten = (tail &&
4863 16 : tcp_try_coalesce(sk, tail,
4864 32 : skb, fragstolen)) ? 1 : 0;
4865 70 : tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4866 70 : if (!eaten) {
4867 68 : __skb_queue_tail(&sk->sk_receive_queue, skb);
4868 68 : skb_set_owner_r(skb, sk);
4869 : }
4870 70 : return eaten;
4871 : }
4872 :
4873 0 : int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4874 : {
4875 0 : struct sk_buff *skb;
4876 0 : int err = -ENOMEM;
4877 0 : int data_len = 0;
4878 0 : bool fragstolen;
4879 :
4880 0 : if (size == 0)
4881 : return 0;
4882 :
4883 0 : if (size > PAGE_SIZE) {
4884 0 : int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4885 :
4886 0 : data_len = npages << PAGE_SHIFT;
4887 0 : size = data_len + (size & ~PAGE_MASK);
4888 : }
4889 0 : skb = alloc_skb_with_frags(size - data_len, data_len,
4890 : PAGE_ALLOC_COSTLY_ORDER,
4891 : &err, sk->sk_allocation);
4892 0 : if (!skb)
4893 0 : goto err;
4894 :
4895 0 : skb_put(skb, size - data_len);
4896 0 : skb->data_len = data_len;
4897 0 : skb->len = size;
4898 :
4899 0 : if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4900 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4901 0 : goto err_free;
4902 : }
4903 :
4904 0 : err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4905 0 : if (err)
4906 0 : goto err_free;
4907 :
4908 0 : TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4909 0 : TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4910 0 : TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4911 :
4912 0 : if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4913 0 : WARN_ON_ONCE(fragstolen); /* should not happen */
4914 0 : __kfree_skb(skb);
4915 : }
4916 : return size;
4917 :
4918 0 : err_free:
4919 0 : kfree_skb(skb);
4920 0 : err:
4921 0 : return err;
4922 :
4923 : }
4924 :
4925 70 : void tcp_data_ready(struct sock *sk)
4926 : {
4927 70 : if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4928 70 : sk->sk_data_ready(sk);
4929 70 : }
4930 :
4931 19 : static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4932 : {
4933 19 : struct tcp_sock *tp = tcp_sk(sk);
4934 19 : bool fragstolen;
4935 19 : int eaten;
4936 :
4937 19 : if (sk_is_mptcp(sk))
4938 19 : mptcp_incoming_options(sk, skb);
4939 :
4940 19 : if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4941 4 : __kfree_skb(skb);
4942 23 : return;
4943 : }
4944 15 : skb_dst_drop(skb);
4945 15 : __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4946 :
4947 15 : tp->rx_opt.dsack = 0;
4948 :
4949 : /* Queue data for delivery to the user.
4950 : * Packets in sequence go to the receive queue.
4951 : * Out of sequence packets to the out_of_order_queue.
4952 : */
4953 15 : if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4954 15 : if (tcp_receive_window(tp) == 0) {
4955 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4956 0 : goto out_of_window;
4957 : }
4958 :
4959 : /* Ok. In sequence. In window. */
4960 15 : queue_and_out:
4961 15 : if (skb_queue_len(&sk->sk_receive_queue) == 0)
4962 8 : sk_forced_mem_schedule(sk, skb->truesize);
4963 7 : else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4964 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4965 0 : sk->sk_data_ready(sk);
4966 0 : goto drop;
4967 : }
4968 :
4969 15 : eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4970 15 : if (skb->len)
4971 12 : tcp_event_data_recv(sk, skb);
4972 15 : if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4973 3 : tcp_fin(sk);
4974 :
4975 15 : if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4976 0 : tcp_ofo_queue(sk);
4977 :
4978 : /* RFC5681. 4.2. SHOULD send immediate ACK, when
4979 : * gap in queue is filled.
4980 : */
4981 0 : if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4982 0 : inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4983 : }
4984 :
4985 15 : if (tp->rx_opt.num_sacks)
4986 0 : tcp_sack_remove(tp);
4987 :
4988 15 : tcp_fast_path_check(sk);
4989 :
4990 15 : if (eaten > 0)
4991 2 : kfree_skb_partial(skb, fragstolen);
4992 15 : if (!sock_flag(sk, SOCK_DEAD))
4993 15 : tcp_data_ready(sk);
4994 15 : return;
4995 : }
4996 :
4997 0 : if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4998 0 : tcp_rcv_spurious_retrans(sk, skb);
4999 : /* A retransmit, 2nd most common case. Force an immediate ack. */
5000 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5001 0 : tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5002 :
5003 0 : out_of_window:
5004 0 : tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5005 0 : inet_csk_schedule_ack(sk);
5006 0 : drop:
5007 0 : tcp_drop(sk, skb);
5008 0 : return;
5009 : }
5010 :
5011 : /* Out of window. F.e. zero window probe. */
5012 0 : if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5013 0 : goto out_of_window;
5014 :
5015 0 : if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5016 : /* Partial packet, seq < rcv_next < end_seq */
5017 0 : tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5018 :
5019 : /* If window is closed, drop tail of packet. But after
5020 : * remembering D-SACK for its head made in previous line.
5021 : */
5022 0 : if (!tcp_receive_window(tp)) {
5023 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5024 0 : goto out_of_window;
5025 : }
5026 0 : goto queue_and_out;
5027 : }
5028 :
5029 0 : tcp_data_queue_ofo(sk, skb);
5030 : }
5031 :
5032 0 : static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5033 : {
5034 0 : if (list)
5035 0 : return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5036 :
5037 0 : return skb_rb_next(skb);
5038 : }
5039 :
5040 0 : static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5041 : struct sk_buff_head *list,
5042 : struct rb_root *root)
5043 : {
5044 0 : struct sk_buff *next = tcp_skb_next(skb, list);
5045 :
5046 0 : if (list)
5047 0 : __skb_unlink(skb, list);
5048 : else
5049 0 : rb_erase(&skb->rbnode, root);
5050 :
5051 0 : __kfree_skb(skb);
5052 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5053 :
5054 0 : return next;
5055 : }
5056 :
5057 : /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5058 364 : void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5059 : {
5060 364 : struct rb_node **p = &root->rb_node;
5061 364 : struct rb_node *parent = NULL;
5062 364 : struct sk_buff *skb1;
5063 :
5064 514 : while (*p) {
5065 150 : parent = *p;
5066 150 : skb1 = rb_to_skb(parent);
5067 150 : if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5068 0 : p = &parent->rb_left;
5069 : else
5070 150 : p = &parent->rb_right;
5071 : }
5072 364 : rb_link_node(&skb->rbnode, parent, p);
5073 364 : rb_insert_color(&skb->rbnode, root);
5074 364 : }
5075 :
5076 : /* Collapse contiguous sequence of skbs head..tail with
5077 : * sequence numbers start..end.
5078 : *
5079 : * If tail is NULL, this means until the end of the queue.
5080 : *
5081 : * Segments with FIN/SYN are not collapsed (only because this
5082 : * simplifies code)
5083 : */
5084 : static void
5085 0 : tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5086 : struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5087 : {
5088 0 : struct sk_buff *skb = head, *n;
5089 0 : struct sk_buff_head tmp;
5090 0 : bool end_of_skbs;
5091 :
5092 : /* First, check that queue is collapsible and find
5093 : * the point where collapsing can be useful.
5094 : */
5095 0 : restart:
5096 0 : for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5097 0 : n = tcp_skb_next(skb, list);
5098 :
5099 : /* No new bits? It is possible on ofo queue. */
5100 0 : if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5101 0 : skb = tcp_collapse_one(sk, skb, list, root);
5102 0 : if (!skb)
5103 : break;
5104 0 : goto restart;
5105 : }
5106 :
5107 : /* The first skb to collapse is:
5108 : * - not SYN/FIN and
5109 : * - bloated or contains data before "start" or
5110 : * overlaps to the next one and mptcp allow collapsing.
5111 : */
5112 0 : if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5113 0 : (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5114 0 : before(TCP_SKB_CB(skb)->seq, start))) {
5115 : end_of_skbs = false;
5116 : break;
5117 : }
5118 :
5119 0 : if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5120 0 : TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5121 : end_of_skbs = false;
5122 : break;
5123 : }
5124 :
5125 : /* Decided to skip this, advance start seq. */
5126 : start = TCP_SKB_CB(skb)->end_seq;
5127 : }
5128 0 : if (end_of_skbs ||
5129 0 : (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5130 0 : return;
5131 :
5132 0 : __skb_queue_head_init(&tmp);
5133 :
5134 0 : while (before(start, end)) {
5135 0 : int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5136 0 : struct sk_buff *nskb;
5137 :
5138 0 : nskb = alloc_skb(copy, GFP_ATOMIC);
5139 0 : if (!nskb)
5140 : break;
5141 :
5142 0 : memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5143 : #ifdef CONFIG_TLS_DEVICE
5144 : nskb->decrypted = skb->decrypted;
5145 : #endif
5146 0 : TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5147 0 : if (list)
5148 0 : __skb_queue_before(list, skb, nskb);
5149 : else
5150 0 : __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5151 0 : skb_set_owner_r(nskb, sk);
5152 0 : mptcp_skb_ext_move(nskb, skb);
5153 :
5154 : /* Copy data, releasing collapsed skbs. */
5155 0 : while (copy > 0) {
5156 0 : int offset = start - TCP_SKB_CB(skb)->seq;
5157 0 : int size = TCP_SKB_CB(skb)->end_seq - start;
5158 :
5159 0 : BUG_ON(offset < 0);
5160 0 : if (size > 0) {
5161 0 : size = min(copy, size);
5162 0 : if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5163 0 : BUG();
5164 0 : TCP_SKB_CB(nskb)->end_seq += size;
5165 0 : copy -= size;
5166 0 : start += size;
5167 : }
5168 0 : if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5169 0 : skb = tcp_collapse_one(sk, skb, list, root);
5170 0 : if (!skb ||
5171 0 : skb == tail ||
5172 0 : !mptcp_skb_can_collapse(nskb, skb) ||
5173 0 : (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5174 0 : goto end;
5175 : #ifdef CONFIG_TLS_DEVICE
5176 : if (skb->decrypted != nskb->decrypted)
5177 : goto end;
5178 : #endif
5179 : }
5180 : }
5181 : }
5182 0 : end:
5183 0 : skb_queue_walk_safe(&tmp, skb, n)
5184 0 : tcp_rbtree_insert(root, skb);
5185 : }
5186 :
5187 : /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5188 : * and tcp_collapse() them until all the queue is collapsed.
5189 : */
5190 0 : static void tcp_collapse_ofo_queue(struct sock *sk)
5191 : {
5192 0 : struct tcp_sock *tp = tcp_sk(sk);
5193 0 : u32 range_truesize, sum_tiny = 0;
5194 0 : struct sk_buff *skb, *head;
5195 0 : u32 start, end;
5196 :
5197 0 : skb = skb_rb_first(&tp->out_of_order_queue);
5198 0 : new_range:
5199 0 : if (!skb) {
5200 0 : tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5201 0 : return;
5202 : }
5203 0 : start = TCP_SKB_CB(skb)->seq;
5204 0 : end = TCP_SKB_CB(skb)->end_seq;
5205 0 : range_truesize = skb->truesize;
5206 :
5207 0 : for (head = skb;;) {
5208 0 : skb = skb_rb_next(skb);
5209 :
5210 : /* Range is terminated when we see a gap or when
5211 : * we are at the queue end.
5212 : */
5213 0 : if (!skb ||
5214 0 : after(TCP_SKB_CB(skb)->seq, end) ||
5215 0 : before(TCP_SKB_CB(skb)->end_seq, start)) {
5216 : /* Do not attempt collapsing tiny skbs */
5217 0 : if (range_truesize != head->truesize ||
5218 0 : end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5219 0 : tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5220 : head, skb, start, end);
5221 : } else {
5222 0 : sum_tiny += range_truesize;
5223 0 : if (sum_tiny > sk->sk_rcvbuf >> 3)
5224 : return;
5225 : }
5226 0 : goto new_range;
5227 : }
5228 :
5229 0 : range_truesize += skb->truesize;
5230 0 : if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5231 0 : start = TCP_SKB_CB(skb)->seq;
5232 0 : if (after(TCP_SKB_CB(skb)->end_seq, end))
5233 0 : end = TCP_SKB_CB(skb)->end_seq;
5234 : }
5235 : }
5236 :
5237 : /*
5238 : * Clean the out-of-order queue to make room.
5239 : * We drop high sequences packets to :
5240 : * 1) Let a chance for holes to be filled.
5241 : * 2) not add too big latencies if thousands of packets sit there.
5242 : * (But if application shrinks SO_RCVBUF, we could still end up
5243 : * freeing whole queue here)
5244 : * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5245 : *
5246 : * Return true if queue has shrunk.
5247 : */
5248 0 : static bool tcp_prune_ofo_queue(struct sock *sk)
5249 : {
5250 0 : struct tcp_sock *tp = tcp_sk(sk);
5251 0 : struct rb_node *node, *prev;
5252 0 : int goal;
5253 :
5254 0 : if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5255 : return false;
5256 :
5257 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5258 0 : goal = sk->sk_rcvbuf >> 3;
5259 0 : node = &tp->ooo_last_skb->rbnode;
5260 0 : do {
5261 0 : prev = rb_prev(node);
5262 0 : rb_erase(node, &tp->out_of_order_queue);
5263 0 : goal -= rb_to_skb(node)->truesize;
5264 0 : tcp_drop(sk, rb_to_skb(node));
5265 0 : if (!prev || goal <= 0) {
5266 0 : sk_mem_reclaim(sk);
5267 0 : if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5268 0 : !tcp_under_memory_pressure(sk))
5269 : break;
5270 0 : goal = sk->sk_rcvbuf >> 3;
5271 : }
5272 0 : node = prev;
5273 0 : } while (node);
5274 0 : tp->ooo_last_skb = rb_to_skb(prev);
5275 :
5276 : /* Reset SACK state. A conforming SACK implementation will
5277 : * do the same at a timeout based retransmit. When a connection
5278 : * is in a sad state like this, we care only about integrity
5279 : * of the connection not performance.
5280 : */
5281 0 : if (tp->rx_opt.sack_ok)
5282 0 : tcp_sack_reset(&tp->rx_opt);
5283 : return true;
5284 : }
5285 :
5286 : /* Reduce allocated memory if we can, trying to get
5287 : * the socket within its memory limits again.
5288 : *
5289 : * Return less than zero if we should start dropping frames
5290 : * until the socket owning process reads some of the data
5291 : * to stabilize the situation.
5292 : */
5293 0 : static int tcp_prune_queue(struct sock *sk)
5294 : {
5295 0 : struct tcp_sock *tp = tcp_sk(sk);
5296 :
5297 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5298 :
5299 0 : if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5300 0 : tcp_clamp_window(sk);
5301 0 : else if (tcp_under_memory_pressure(sk))
5302 0 : tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5303 :
5304 0 : if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5305 : return 0;
5306 :
5307 0 : tcp_collapse_ofo_queue(sk);
5308 0 : if (!skb_queue_empty(&sk->sk_receive_queue))
5309 0 : tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5310 0 : skb_peek(&sk->sk_receive_queue),
5311 : NULL,
5312 : tp->copied_seq, tp->rcv_nxt);
5313 0 : sk_mem_reclaim(sk);
5314 :
5315 0 : if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5316 : return 0;
5317 :
5318 : /* Collapsing did not help, destructive actions follow.
5319 : * This must not ever occur. */
5320 :
5321 0 : tcp_prune_ofo_queue(sk);
5322 :
5323 0 : if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5324 : return 0;
5325 :
5326 : /* If we are really being abused, tell the caller to silently
5327 : * drop receive data on the floor. It will get retransmitted
5328 : * and hopefully then we'll have sufficient space.
5329 : */
5330 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5331 :
5332 : /* Massive buffer overcommit. */
5333 0 : tp->pred_flags = 0;
5334 0 : return -1;
5335 : }
5336 :
5337 0 : static bool tcp_should_expand_sndbuf(const struct sock *sk)
5338 : {
5339 0 : const struct tcp_sock *tp = tcp_sk(sk);
5340 :
5341 : /* If the user specified a specific send buffer setting, do
5342 : * not modify it.
5343 : */
5344 0 : if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5345 : return false;
5346 :
5347 : /* If we are under global TCP memory pressure, do not expand. */
5348 0 : if (tcp_under_memory_pressure(sk))
5349 : return false;
5350 :
5351 : /* If we are under soft global TCP memory pressure, do not expand. */
5352 0 : if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5353 : return false;
5354 :
5355 : /* If we filled the congestion window, do not expand. */
5356 0 : if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5357 0 : return false;
5358 :
5359 : return true;
5360 : }
5361 :
5362 0 : static void tcp_new_space(struct sock *sk)
5363 : {
5364 0 : struct tcp_sock *tp = tcp_sk(sk);
5365 :
5366 0 : if (tcp_should_expand_sndbuf(sk)) {
5367 0 : tcp_sndbuf_expand(sk);
5368 0 : tp->snd_cwnd_stamp = tcp_jiffies32;
5369 : }
5370 :
5371 0 : sk->sk_write_space(sk);
5372 0 : }
5373 :
5374 367 : static void tcp_check_space(struct sock *sk)
5375 : {
5376 : /* pairs with tcp_poll() */
5377 367 : smp_mb();
5378 367 : if (sk->sk_socket &&
5379 359 : test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5380 0 : tcp_new_space(sk);
5381 0 : if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5382 0 : tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5383 : }
5384 367 : }
5385 :
5386 367 : static inline void tcp_data_snd_check(struct sock *sk)
5387 : {
5388 367 : tcp_push_pending_frames(sk);
5389 367 : tcp_check_space(sk);
5390 : }
5391 :
5392 : /*
5393 : * Check if sending an ack is needed.
5394 : */
5395 70 : static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5396 : {
5397 70 : struct tcp_sock *tp = tcp_sk(sk);
5398 70 : unsigned long rtt, delay;
5399 :
5400 : /* More than one full frame received... */
5401 70 : if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5402 : /* ... and right edge of window advances far enough.
5403 : * (tcp_recvmsg() will send ACK otherwise).
5404 : * If application uses SO_RCVLOWAT, we want send ack now if
5405 : * we have not received enough bytes to satisfy the condition.
5406 : */
5407 15 : (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5408 73 : __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5409 : /* We ACK each frame or... */
5410 58 : tcp_in_quickack_mode(sk) ||
5411 : /* Protocol state mandates a one-time immediate ACK */
5412 14 : inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5413 56 : send_now:
5414 56 : tcp_send_ack(sk);
5415 56 : return;
5416 : }
5417 :
5418 14 : if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5419 14 : tcp_send_delayed_ack(sk);
5420 14 : return;
5421 : }
5422 :
5423 0 : if (!tcp_is_sack(tp) ||
5424 0 : tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5425 0 : goto send_now;
5426 :
5427 0 : if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5428 0 : tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5429 0 : tp->dup_ack_counter = 0;
5430 : }
5431 0 : if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5432 0 : tp->dup_ack_counter++;
5433 0 : goto send_now;
5434 : }
5435 0 : tp->compressed_ack++;
5436 0 : if (hrtimer_is_queued(&tp->compressed_ack_timer))
5437 : return;
5438 :
5439 : /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5440 :
5441 0 : rtt = tp->rcv_rtt_est.rtt_us;
5442 0 : if (tp->srtt_us && tp->srtt_us < rtt)
5443 0 : rtt = tp->srtt_us;
5444 :
5445 0 : delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5446 : rtt * (NSEC_PER_USEC >> 3)/20);
5447 0 : sock_hold(sk);
5448 0 : hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5449 0 : sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5450 : HRTIMER_MODE_REL_PINNED_SOFT);
5451 : }
5452 :
5453 19 : static inline void tcp_ack_snd_check(struct sock *sk)
5454 : {
5455 19 : if (!inet_csk_ack_scheduled(sk)) {
5456 : /* We sent a data segment already. */
5457 : return;
5458 : }
5459 15 : __tcp_ack_snd_check(sk, 1);
5460 : }
5461 :
5462 : /*
5463 : * This routine is only called when we have urgent data
5464 : * signaled. Its the 'slow' part of tcp_urg. It could be
5465 : * moved inline now as tcp_urg is only called from one
5466 : * place. We handle URGent data wrong. We have to - as
5467 : * BSD still doesn't use the correction from RFC961.
5468 : * For 1003.1g we should support a new option TCP_STDURG to permit
5469 : * either form (or just set the sysctl tcp_stdurg).
5470 : */
5471 :
5472 0 : static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5473 : {
5474 0 : struct tcp_sock *tp = tcp_sk(sk);
5475 0 : u32 ptr = ntohs(th->urg_ptr);
5476 :
5477 0 : if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5478 0 : ptr--;
5479 0 : ptr += ntohl(th->seq);
5480 :
5481 : /* Ignore urgent data that we've already seen and read. */
5482 0 : if (after(tp->copied_seq, ptr))
5483 : return;
5484 :
5485 : /* Do not replay urg ptr.
5486 : *
5487 : * NOTE: interesting situation not covered by specs.
5488 : * Misbehaving sender may send urg ptr, pointing to segment,
5489 : * which we already have in ofo queue. We are not able to fetch
5490 : * such data and will stay in TCP_URG_NOTYET until will be eaten
5491 : * by recvmsg(). Seems, we are not obliged to handle such wicked
5492 : * situations. But it is worth to think about possibility of some
5493 : * DoSes using some hypothetical application level deadlock.
5494 : */
5495 0 : if (before(ptr, tp->rcv_nxt))
5496 : return;
5497 :
5498 : /* Do we already have a newer (or duplicate) urgent pointer? */
5499 0 : if (tp->urg_data && !after(ptr, tp->urg_seq))
5500 : return;
5501 :
5502 : /* Tell the world about our new urgent pointer. */
5503 0 : sk_send_sigurg(sk);
5504 :
5505 : /* We may be adding urgent data when the last byte read was
5506 : * urgent. To do this requires some care. We cannot just ignore
5507 : * tp->copied_seq since we would read the last urgent byte again
5508 : * as data, nor can we alter copied_seq until this data arrives
5509 : * or we break the semantics of SIOCATMARK (and thus sockatmark())
5510 : *
5511 : * NOTE. Double Dutch. Rendering to plain English: author of comment
5512 : * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5513 : * and expect that both A and B disappear from stream. This is _wrong_.
5514 : * Though this happens in BSD with high probability, this is occasional.
5515 : * Any application relying on this is buggy. Note also, that fix "works"
5516 : * only in this artificial test. Insert some normal data between A and B and we will
5517 : * decline of BSD again. Verdict: it is better to remove to trap
5518 : * buggy users.
5519 : */
5520 0 : if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5521 0 : !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5522 0 : struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5523 0 : tp->copied_seq++;
5524 0 : if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5525 0 : __skb_unlink(skb, &sk->sk_receive_queue);
5526 0 : __kfree_skb(skb);
5527 : }
5528 : }
5529 :
5530 0 : tp->urg_data = TCP_URG_NOTYET;
5531 0 : WRITE_ONCE(tp->urg_seq, ptr);
5532 :
5533 : /* Disable header prediction. */
5534 0 : tp->pred_flags = 0;
5535 : }
5536 :
5537 : /* This is the 'fast' part of urgent handling. */
5538 19 : static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5539 : {
5540 19 : struct tcp_sock *tp = tcp_sk(sk);
5541 :
5542 : /* Check if we get a new urgent pointer - normally not. */
5543 19 : if (th->urg)
5544 0 : tcp_check_urg(sk, th);
5545 :
5546 : /* Do we wait for any urgent data? - normally not... */
5547 19 : if (tp->urg_data == TCP_URG_NOTYET) {
5548 0 : u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5549 0 : th->syn;
5550 :
5551 : /* Is the urgent pointer pointing into this packet? */
5552 0 : if (ptr < skb->len) {
5553 0 : u8 tmp;
5554 0 : if (skb_copy_bits(skb, ptr, &tmp, 1))
5555 0 : BUG();
5556 0 : tp->urg_data = TCP_URG_VALID | tmp;
5557 0 : if (!sock_flag(sk, SOCK_DEAD))
5558 0 : sk->sk_data_ready(sk);
5559 : }
5560 : }
5561 19 : }
5562 :
5563 : /* Accept RST for rcv_nxt - 1 after a FIN.
5564 : * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5565 : * FIN is sent followed by a RST packet. The RST is sent with the same
5566 : * sequence number as the FIN, and thus according to RFC 5961 a challenge
5567 : * ACK should be sent. However, Mac OSX rate limits replies to challenge
5568 : * ACKs on the closed socket. In addition middleboxes can drop either the
5569 : * challenge ACK or a subsequent RST.
5570 : */
5571 0 : static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5572 : {
5573 0 : struct tcp_sock *tp = tcp_sk(sk);
5574 :
5575 0 : return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5576 : (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5577 : TCPF_CLOSING));
5578 : }
5579 :
5580 : /* Does PAWS and seqno based validation of an incoming segment, flags will
5581 : * play significant role here.
5582 : */
5583 10 : static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5584 : const struct tcphdr *th, int syn_inerr)
5585 : {
5586 10 : struct tcp_sock *tp = tcp_sk(sk);
5587 10 : bool rst_seq_match = false;
5588 :
5589 : /* RFC1323: H1. Apply PAWS check first. */
5590 10 : if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5591 0 : tp->rx_opt.saw_tstamp &&
5592 0 : tcp_paws_discard(sk, skb)) {
5593 0 : if (!th->rst) {
5594 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5595 0 : if (!tcp_oow_rate_limited(sock_net(sk), skb,
5596 : LINUX_MIB_TCPACKSKIPPEDPAWS,
5597 : &tp->last_oow_ack_time))
5598 0 : tcp_send_dupack(sk, skb);
5599 0 : goto discard;
5600 : }
5601 : /* Reset is accepted even if it did not pass PAWS. */
5602 : }
5603 :
5604 : /* Step 1: check sequence number */
5605 10 : if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5606 : /* RFC793, page 37: "In all states except SYN-SENT, all reset
5607 : * (RST) segments are validated by checking their SEQ-fields."
5608 : * And page 69: "If an incoming segment is not acceptable,
5609 : * an acknowledgment should be sent in reply (unless the RST
5610 : * bit is set, if so drop the segment and return)".
5611 : */
5612 0 : if (!th->rst) {
5613 0 : if (th->syn)
5614 0 : goto syn_challenge;
5615 0 : if (!tcp_oow_rate_limited(sock_net(sk), skb,
5616 : LINUX_MIB_TCPACKSKIPPEDSEQ,
5617 : &tp->last_oow_ack_time))
5618 0 : tcp_send_dupack(sk, skb);
5619 0 : } else if (tcp_reset_check(sk, skb)) {
5620 0 : tcp_reset(sk, skb);
5621 : }
5622 0 : goto discard;
5623 : }
5624 :
5625 : /* Step 2: check RST bit */
5626 10 : if (th->rst) {
5627 : /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5628 : * FIN and SACK too if available):
5629 : * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5630 : * the right-most SACK block,
5631 : * then
5632 : * RESET the connection
5633 : * else
5634 : * Send a challenge ACK
5635 : */
5636 0 : if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5637 0 : tcp_reset_check(sk, skb)) {
5638 : rst_seq_match = true;
5639 0 : } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5640 0 : struct tcp_sack_block *sp = &tp->selective_acks[0];
5641 0 : int max_sack = sp[0].end_seq;
5642 0 : int this_sack;
5643 :
5644 0 : for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5645 0 : ++this_sack) {
5646 0 : max_sack = after(sp[this_sack].end_seq,
5647 : max_sack) ?
5648 0 : sp[this_sack].end_seq : max_sack;
5649 : }
5650 :
5651 0 : if (TCP_SKB_CB(skb)->seq == max_sack)
5652 : rst_seq_match = true;
5653 : }
5654 :
5655 : if (rst_seq_match)
5656 0 : tcp_reset(sk, skb);
5657 : else {
5658 : /* Disable TFO if RST is out-of-order
5659 : * and no data has been received
5660 : * for current active TFO socket
5661 : */
5662 0 : if (tp->syn_fastopen && !tp->data_segs_in &&
5663 0 : sk->sk_state == TCP_ESTABLISHED)
5664 0 : tcp_fastopen_active_disable(sk);
5665 0 : tcp_send_challenge_ack(sk, skb);
5666 : }
5667 0 : goto discard;
5668 : }
5669 :
5670 : /* step 3: check security and precedence [ignored] */
5671 :
5672 : /* step 4: Check for a SYN
5673 : * RFC 5961 4.2 : Send a challenge ack
5674 : */
5675 10 : if (th->syn) {
5676 0 : syn_challenge:
5677 0 : if (syn_inerr)
5678 0 : TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5679 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5680 0 : tcp_send_challenge_ack(sk, skb);
5681 0 : goto discard;
5682 : }
5683 :
5684 10 : bpf_skops_parse_hdr(sk, skb);
5685 :
5686 : return true;
5687 :
5688 0 : discard:
5689 0 : tcp_drop(sk, skb);
5690 0 : return false;
5691 : }
5692 :
5693 : /*
5694 : * TCP receive function for the ESTABLISHED state.
5695 : *
5696 : * It is split into a fast path and a slow path. The fast path is
5697 : * disabled when:
5698 : * - A zero window was announced from us - zero window probing
5699 : * is only handled properly in the slow path.
5700 : * - Out of order segments arrived.
5701 : * - Urgent data is expected.
5702 : * - There is no buffer space left
5703 : * - Unexpected TCP flags/window values/header lengths are received
5704 : * (detected by checking the TCP header against pred_flags)
5705 : * - Data is sent in both directions. Fast path only supports pure senders
5706 : * or pure receivers (this means either the sequence number or the ack
5707 : * value must stay constant)
5708 : * - Unexpected TCP option.
5709 : *
5710 : * When these conditions are not satisfied it drops into a standard
5711 : * receive procedure patterned after RFC793 to handle all cases.
5712 : * The first three cases are guaranteed by proper pred_flags setting,
5713 : * the rest is checked inline. Fast processing is turned on in
5714 : * tcp_data_queue when everything is OK.
5715 : */
5716 412 : void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5717 : {
5718 412 : const struct tcphdr *th = (const struct tcphdr *)skb->data;
5719 412 : struct tcp_sock *tp = tcp_sk(sk);
5720 412 : unsigned int len = skb->len;
5721 :
5722 : /* TCP congestion window tracking */
5723 412 : trace_tcp_probe(sk, skb);
5724 :
5725 412 : tcp_mstamp_refresh(tp);
5726 412 : if (unlikely(!sk->sk_rx_dst))
5727 0 : inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5728 : /*
5729 : * Header prediction.
5730 : * The code loosely follows the one in the famous
5731 : * "30 instruction TCP receive" Van Jacobson mail.
5732 : *
5733 : * Van's trick is to deposit buffers into socket queue
5734 : * on a device interrupt, to call tcp_recv function
5735 : * on the receive process context and checksum and copy
5736 : * the buffer to user space. smart...
5737 : *
5738 : * Our current scheme is not silly either but we take the
5739 : * extra cost of the net_bh soft interrupt processing...
5740 : * We do checksum and copy also but from device to kernel.
5741 : */
5742 :
5743 412 : tp->rx_opt.saw_tstamp = 0;
5744 :
5745 : /* pred_flags is 0xS?10 << 16 + snd_wnd
5746 : * if header_prediction is to be made
5747 : * 'S' will always be tp->tcp_header_len >> 2
5748 : * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5749 : * turn it off (when there are holes in the receive
5750 : * space for instance)
5751 : * PSH flag is ignored.
5752 : */
5753 :
5754 412 : if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5755 409 : TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5756 409 : !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5757 409 : int tcp_header_len = tp->tcp_header_len;
5758 :
5759 : /* Timestamp header prediction: tcp_header_len
5760 : * is automatically equal to th->doff*4 due to pred_flags
5761 : * match.
5762 : */
5763 :
5764 : /* Check timestamp */
5765 409 : if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5766 : /* No? Slow path! */
5767 0 : if (!tcp_parse_aligned_timestamp(tp, th))
5768 0 : goto slow_path;
5769 :
5770 : /* If PAWS failed, check it more carefully in slow path */
5771 0 : if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5772 0 : goto slow_path;
5773 :
5774 : /* DO NOT update ts_recent here, if checksum fails
5775 : * and timestamp was corrupted part, it will result
5776 : * in a hung connection since we will drop all
5777 : * future packets due to the PAWS test.
5778 : */
5779 : }
5780 :
5781 409 : if (len <= tcp_header_len) {
5782 : /* Bulk data transfer: sender */
5783 342 : if (len == tcp_header_len) {
5784 : /* Predicted packet is in window by definition.
5785 : * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5786 : * Hence, check seq<=rcv_wup reduces to:
5787 : */
5788 342 : if (tcp_header_len ==
5789 0 : (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5790 0 : tp->rcv_nxt == tp->rcv_wup)
5791 0 : tcp_store_ts_recent(tp);
5792 :
5793 : /* We know that such packets are checksummed
5794 : * on entry.
5795 : */
5796 342 : tcp_ack(sk, skb, 0);
5797 342 : __kfree_skb(skb);
5798 342 : tcp_data_snd_check(sk);
5799 : /* When receiving pure ack in fast path, update
5800 : * last ts ecr directly instead of calling
5801 : * tcp_rcv_rtt_measure_ts()
5802 : */
5803 342 : tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5804 342 : return;
5805 : } else { /* Header too small */
5806 0 : TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5807 0 : goto discard;
5808 : }
5809 : } else {
5810 67 : int eaten = 0;
5811 67 : bool fragstolen = false;
5812 :
5813 67 : if (tcp_checksum_complete(skb))
5814 0 : goto csum_error;
5815 :
5816 67 : if ((int)skb->truesize > sk->sk_forward_alloc)
5817 12 : goto step5;
5818 :
5819 : /* Predicted packet is in window by definition.
5820 : * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5821 : * Hence, check seq<=rcv_wup reduces to:
5822 : */
5823 55 : if (tcp_header_len ==
5824 0 : (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5825 0 : tp->rcv_nxt == tp->rcv_wup)
5826 0 : tcp_store_ts_recent(tp);
5827 :
5828 55 : tcp_rcv_rtt_measure_ts(sk, skb);
5829 :
5830 55 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5831 :
5832 : /* Bulk data transfer: receiver */
5833 55 : __skb_pull(skb, tcp_header_len);
5834 55 : eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5835 :
5836 55 : tcp_event_data_recv(sk, skb);
5837 :
5838 55 : if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5839 : /* Well, only one small jumplet in fast path... */
5840 6 : tcp_ack(sk, skb, FLAG_DATA);
5841 6 : tcp_data_snd_check(sk);
5842 6 : if (!inet_csk_ack_scheduled(sk))
5843 0 : goto no_ack;
5844 : } else {
5845 49 : tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5846 : }
5847 :
5848 55 : __tcp_ack_snd_check(sk, 0);
5849 55 : no_ack:
5850 55 : if (eaten)
5851 0 : kfree_skb_partial(skb, fragstolen);
5852 55 : tcp_data_ready(sk);
5853 55 : return;
5854 : }
5855 : }
5856 :
5857 3 : slow_path:
5858 3 : if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5859 0 : goto csum_error;
5860 :
5861 3 : if (!th->ack && !th->rst && !th->syn)
5862 0 : goto discard;
5863 :
5864 : /*
5865 : * Standard slow path.
5866 : */
5867 :
5868 3 : if (!tcp_validate_incoming(sk, skb, th, 1))
5869 : return;
5870 :
5871 3 : step5:
5872 15 : if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5873 0 : goto discard;
5874 :
5875 15 : tcp_rcv_rtt_measure_ts(sk, skb);
5876 :
5877 : /* Process urgent data. */
5878 15 : tcp_urg(sk, skb, th);
5879 :
5880 : /* step 7: process the segment text */
5881 15 : tcp_data_queue(sk, skb);
5882 :
5883 15 : tcp_data_snd_check(sk);
5884 15 : tcp_ack_snd_check(sk);
5885 15 : return;
5886 :
5887 0 : csum_error:
5888 0 : TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5889 0 : TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5890 :
5891 0 : discard:
5892 0 : tcp_drop(sk, skb);
5893 : }
5894 : EXPORT_SYMBOL(tcp_rcv_established);
5895 :
5896 4 : void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5897 : {
5898 4 : struct inet_connection_sock *icsk = inet_csk(sk);
5899 4 : struct tcp_sock *tp = tcp_sk(sk);
5900 :
5901 4 : tcp_mtup_init(sk);
5902 4 : icsk->icsk_af_ops->rebuild_header(sk);
5903 4 : tcp_init_metrics(sk);
5904 :
5905 : /* Initialize the congestion window to start the transfer.
5906 : * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5907 : * retransmitted. In light of RFC6298 more aggressive 1sec
5908 : * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5909 : * retransmission has occurred.
5910 : */
5911 4 : if (tp->total_retrans > 1 && tp->undo_marker)
5912 0 : tp->snd_cwnd = 1;
5913 : else
5914 4 : tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5915 4 : tp->snd_cwnd_stamp = tcp_jiffies32;
5916 :
5917 4 : icsk->icsk_ca_initialized = 0;
5918 4 : bpf_skops_established(sk, bpf_op, skb);
5919 4 : if (!icsk->icsk_ca_initialized)
5920 4 : tcp_init_congestion_control(sk);
5921 4 : tcp_init_buffer_space(sk);
5922 4 : }
5923 :
5924 0 : void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5925 : {
5926 0 : struct tcp_sock *tp = tcp_sk(sk);
5927 0 : struct inet_connection_sock *icsk = inet_csk(sk);
5928 :
5929 0 : tcp_set_state(sk, TCP_ESTABLISHED);
5930 0 : icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5931 :
5932 0 : if (skb) {
5933 0 : icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5934 0 : security_inet_conn_established(sk, skb);
5935 0 : sk_mark_napi_id(sk, skb);
5936 : }
5937 :
5938 0 : tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5939 :
5940 : /* Prevent spurious tcp_cwnd_restart() on first data
5941 : * packet.
5942 : */
5943 0 : tp->lsndtime = tcp_jiffies32;
5944 :
5945 0 : if (sock_flag(sk, SOCK_KEEPOPEN))
5946 0 : inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5947 :
5948 0 : if (!tp->rx_opt.snd_wscale)
5949 0 : __tcp_fast_path_on(tp, tp->snd_wnd);
5950 : else
5951 0 : tp->pred_flags = 0;
5952 0 : }
5953 :
5954 0 : static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5955 : struct tcp_fastopen_cookie *cookie)
5956 : {
5957 0 : struct tcp_sock *tp = tcp_sk(sk);
5958 0 : struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5959 0 : u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5960 0 : bool syn_drop = false;
5961 :
5962 0 : if (mss == tp->rx_opt.user_mss) {
5963 0 : struct tcp_options_received opt;
5964 :
5965 : /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5966 0 : tcp_clear_options(&opt);
5967 0 : opt.user_mss = opt.mss_clamp = 0;
5968 0 : tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5969 0 : mss = opt.mss_clamp;
5970 : }
5971 :
5972 0 : if (!tp->syn_fastopen) {
5973 : /* Ignore an unsolicited cookie */
5974 0 : cookie->len = -1;
5975 0 : } else if (tp->total_retrans) {
5976 : /* SYN timed out and the SYN-ACK neither has a cookie nor
5977 : * acknowledges data. Presumably the remote received only
5978 : * the retransmitted (regular) SYNs: either the original
5979 : * SYN-data or the corresponding SYN-ACK was dropped.
5980 : */
5981 0 : syn_drop = (cookie->len < 0 && data);
5982 0 : } else if (cookie->len < 0 && !tp->syn_data) {
5983 : /* We requested a cookie but didn't get it. If we did not use
5984 : * the (old) exp opt format then try so next time (try_exp=1).
5985 : * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5986 : */
5987 0 : try_exp = tp->syn_fastopen_exp ? 2 : 1;
5988 : }
5989 :
5990 0 : tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5991 :
5992 0 : if (data) { /* Retransmit unacked data in SYN */
5993 0 : if (tp->total_retrans)
5994 0 : tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5995 : else
5996 0 : tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5997 0 : skb_rbtree_walk_from(data) {
5998 0 : if (__tcp_retransmit_skb(sk, data, 1))
5999 : break;
6000 : }
6001 0 : tcp_rearm_rto(sk);
6002 0 : NET_INC_STATS(sock_net(sk),
6003 : LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6004 0 : return true;
6005 : }
6006 0 : tp->syn_data_acked = tp->syn_data;
6007 0 : if (tp->syn_data_acked) {
6008 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6009 : /* SYN-data is counted as two separate packets in tcp_ack() */
6010 0 : if (tp->delivered > 1)
6011 0 : --tp->delivered;
6012 : }
6013 :
6014 0 : tcp_fastopen_add_skb(sk, synack);
6015 :
6016 0 : return false;
6017 : }
6018 :
6019 0 : static void smc_check_reset_syn(struct tcp_sock *tp)
6020 : {
6021 : #if IS_ENABLED(CONFIG_SMC)
6022 : if (static_branch_unlikely(&tcp_have_smc)) {
6023 : if (tp->syn_smc && !tp->rx_opt.smc_ok)
6024 : tp->syn_smc = 0;
6025 : }
6026 : #endif
6027 0 : }
6028 :
6029 4 : static void tcp_try_undo_spurious_syn(struct sock *sk)
6030 : {
6031 4 : struct tcp_sock *tp = tcp_sk(sk);
6032 4 : u32 syn_stamp;
6033 :
6034 : /* undo_marker is set when SYN or SYNACK times out. The timeout is
6035 : * spurious if the ACK's timestamp option echo value matches the
6036 : * original SYN timestamp.
6037 : */
6038 4 : syn_stamp = tp->retrans_stamp;
6039 4 : if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6040 0 : syn_stamp == tp->rx_opt.rcv_tsecr)
6041 0 : tp->undo_marker = 0;
6042 4 : }
6043 :
6044 0 : static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6045 : const struct tcphdr *th)
6046 : {
6047 0 : struct inet_connection_sock *icsk = inet_csk(sk);
6048 0 : struct tcp_sock *tp = tcp_sk(sk);
6049 0 : struct tcp_fastopen_cookie foc = { .len = -1 };
6050 0 : int saved_clamp = tp->rx_opt.mss_clamp;
6051 0 : bool fastopen_fail;
6052 :
6053 0 : tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6054 0 : if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6055 0 : tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6056 :
6057 0 : if (th->ack) {
6058 : /* rfc793:
6059 : * "If the state is SYN-SENT then
6060 : * first check the ACK bit
6061 : * If the ACK bit is set
6062 : * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6063 : * a reset (unless the RST bit is set, if so drop
6064 : * the segment and return)"
6065 : */
6066 0 : if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6067 0 : after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6068 : /* Previous FIN/ACK or RST/ACK might be ignored. */
6069 0 : if (icsk->icsk_retransmits == 0)
6070 0 : inet_csk_reset_xmit_timer(sk,
6071 : ICSK_TIME_RETRANS,
6072 : TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6073 0 : goto reset_and_undo;
6074 : }
6075 :
6076 0 : if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6077 0 : !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6078 : tcp_time_stamp(tp))) {
6079 0 : NET_INC_STATS(sock_net(sk),
6080 : LINUX_MIB_PAWSACTIVEREJECTED);
6081 0 : goto reset_and_undo;
6082 : }
6083 :
6084 : /* Now ACK is acceptable.
6085 : *
6086 : * "If the RST bit is set
6087 : * If the ACK was acceptable then signal the user "error:
6088 : * connection reset", drop the segment, enter CLOSED state,
6089 : * delete TCB, and return."
6090 : */
6091 :
6092 0 : if (th->rst) {
6093 0 : tcp_reset(sk, skb);
6094 0 : goto discard;
6095 : }
6096 :
6097 : /* rfc793:
6098 : * "fifth, if neither of the SYN or RST bits is set then
6099 : * drop the segment and return."
6100 : *
6101 : * See note below!
6102 : * --ANK(990513)
6103 : */
6104 0 : if (!th->syn)
6105 0 : goto discard_and_undo;
6106 :
6107 : /* rfc793:
6108 : * "If the SYN bit is on ...
6109 : * are acceptable then ...
6110 : * (our SYN has been ACKed), change the connection
6111 : * state to ESTABLISHED..."
6112 : */
6113 :
6114 0 : tcp_ecn_rcv_synack(tp, th);
6115 :
6116 0 : tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6117 0 : tcp_try_undo_spurious_syn(sk);
6118 0 : tcp_ack(sk, skb, FLAG_SLOWPATH);
6119 :
6120 : /* Ok.. it's good. Set up sequence numbers and
6121 : * move to established.
6122 : */
6123 0 : WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6124 0 : tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6125 :
6126 : /* RFC1323: The window in SYN & SYN/ACK segments is
6127 : * never scaled.
6128 : */
6129 0 : tp->snd_wnd = ntohs(th->window);
6130 :
6131 0 : if (!tp->rx_opt.wscale_ok) {
6132 0 : tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6133 0 : tp->window_clamp = min(tp->window_clamp, 65535U);
6134 : }
6135 :
6136 0 : if (tp->rx_opt.saw_tstamp) {
6137 0 : tp->rx_opt.tstamp_ok = 1;
6138 0 : tp->tcp_header_len =
6139 : sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6140 0 : tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6141 0 : tcp_store_ts_recent(tp);
6142 : } else {
6143 0 : tp->tcp_header_len = sizeof(struct tcphdr);
6144 : }
6145 :
6146 0 : tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6147 0 : tcp_initialize_rcv_mss(sk);
6148 :
6149 : /* Remember, tcp_poll() does not lock socket!
6150 : * Change state from SYN-SENT only after copied_seq
6151 : * is initialized. */
6152 0 : WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6153 :
6154 0 : smc_check_reset_syn(tp);
6155 :
6156 0 : smp_mb();
6157 :
6158 0 : tcp_finish_connect(sk, skb);
6159 :
6160 0 : fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6161 0 : tcp_rcv_fastopen_synack(sk, skb, &foc);
6162 :
6163 0 : if (!sock_flag(sk, SOCK_DEAD)) {
6164 0 : sk->sk_state_change(sk);
6165 0 : sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6166 : }
6167 0 : if (fastopen_fail)
6168 : return -1;
6169 0 : if (sk->sk_write_pending ||
6170 0 : icsk->icsk_accept_queue.rskq_defer_accept ||
6171 0 : inet_csk_in_pingpong_mode(sk)) {
6172 : /* Save one ACK. Data will be ready after
6173 : * several ticks, if write_pending is set.
6174 : *
6175 : * It may be deleted, but with this feature tcpdumps
6176 : * look so _wonderfully_ clever, that I was not able
6177 : * to stand against the temptation 8) --ANK
6178 : */
6179 0 : inet_csk_schedule_ack(sk);
6180 0 : tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6181 0 : inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6182 : TCP_DELACK_MAX, TCP_RTO_MAX);
6183 :
6184 0 : discard:
6185 0 : tcp_drop(sk, skb);
6186 0 : return 0;
6187 : } else {
6188 0 : tcp_send_ack(sk);
6189 : }
6190 0 : return -1;
6191 : }
6192 :
6193 : /* No ACK in the segment */
6194 :
6195 0 : if (th->rst) {
6196 : /* rfc793:
6197 : * "If the RST bit is set
6198 : *
6199 : * Otherwise (no ACK) drop the segment and return."
6200 : */
6201 :
6202 0 : goto discard_and_undo;
6203 : }
6204 :
6205 : /* PAWS check. */
6206 0 : if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6207 0 : tcp_paws_reject(&tp->rx_opt, 0))
6208 0 : goto discard_and_undo;
6209 :
6210 0 : if (th->syn) {
6211 : /* We see SYN without ACK. It is attempt of
6212 : * simultaneous connect with crossed SYNs.
6213 : * Particularly, it can be connect to self.
6214 : */
6215 0 : tcp_set_state(sk, TCP_SYN_RECV);
6216 :
6217 0 : if (tp->rx_opt.saw_tstamp) {
6218 0 : tp->rx_opt.tstamp_ok = 1;
6219 0 : tcp_store_ts_recent(tp);
6220 0 : tp->tcp_header_len =
6221 : sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6222 : } else {
6223 0 : tp->tcp_header_len = sizeof(struct tcphdr);
6224 : }
6225 :
6226 0 : WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6227 0 : WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6228 0 : tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6229 :
6230 : /* RFC1323: The window in SYN & SYN/ACK segments is
6231 : * never scaled.
6232 : */
6233 0 : tp->snd_wnd = ntohs(th->window);
6234 0 : tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6235 0 : tp->max_window = tp->snd_wnd;
6236 :
6237 0 : tcp_ecn_rcv_syn(tp, th);
6238 :
6239 0 : tcp_mtup_init(sk);
6240 0 : tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6241 0 : tcp_initialize_rcv_mss(sk);
6242 :
6243 0 : tcp_send_synack(sk);
6244 : #if 0
6245 : /* Note, we could accept data and URG from this segment.
6246 : * There are no obstacles to make this (except that we must
6247 : * either change tcp_recvmsg() to prevent it from returning data
6248 : * before 3WHS completes per RFC793, or employ TCP Fast Open).
6249 : *
6250 : * However, if we ignore data in ACKless segments sometimes,
6251 : * we have no reasons to accept it sometimes.
6252 : * Also, seems the code doing it in step6 of tcp_rcv_state_process
6253 : * is not flawless. So, discard packet for sanity.
6254 : * Uncomment this return to process the data.
6255 : */
6256 : return -1;
6257 : #else
6258 0 : goto discard;
6259 : #endif
6260 : }
6261 : /* "fifth, if neither of the SYN or RST bits is set then
6262 : * drop the segment and return."
6263 : */
6264 :
6265 0 : discard_and_undo:
6266 0 : tcp_clear_options(&tp->rx_opt);
6267 0 : tp->rx_opt.mss_clamp = saved_clamp;
6268 0 : goto discard;
6269 :
6270 0 : reset_and_undo:
6271 0 : tcp_clear_options(&tp->rx_opt);
6272 0 : tp->rx_opt.mss_clamp = saved_clamp;
6273 0 : return 1;
6274 : }
6275 :
6276 0 : static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6277 : {
6278 0 : struct request_sock *req;
6279 :
6280 : /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6281 : * undo. If peer SACKs triggered fast recovery, we can't undo here.
6282 : */
6283 0 : if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6284 0 : tcp_try_undo_loss(sk, false);
6285 :
6286 : /* Reset rtx states to prevent spurious retransmits_timed_out() */
6287 0 : tcp_sk(sk)->retrans_stamp = 0;
6288 0 : inet_csk(sk)->icsk_retransmits = 0;
6289 :
6290 : /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6291 : * we no longer need req so release it.
6292 : */
6293 0 : req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6294 : lockdep_sock_is_held(sk));
6295 0 : reqsk_fastopen_remove(sk, req, false);
6296 :
6297 : /* Re-arm the timer because data may have been sent out.
6298 : * This is similar to the regular data transmission case
6299 : * when new data has just been ack'ed.
6300 : *
6301 : * (TFO) - we could try to be more aggressive and
6302 : * retransmitting any data sooner based on when they
6303 : * are sent out.
6304 : */
6305 0 : tcp_rearm_rto(sk);
6306 0 : }
6307 :
6308 : /*
6309 : * This function implements the receiving procedure of RFC 793 for
6310 : * all states except ESTABLISHED and TIME_WAIT.
6311 : * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6312 : * address independent.
6313 : */
6314 :
6315 11 : int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6316 : {
6317 11 : struct tcp_sock *tp = tcp_sk(sk);
6318 11 : struct inet_connection_sock *icsk = inet_csk(sk);
6319 11 : const struct tcphdr *th = tcp_hdr(skb);
6320 11 : struct request_sock *req;
6321 11 : int queued = 0;
6322 11 : bool acceptable;
6323 :
6324 11 : switch (sk->sk_state) {
6325 0 : case TCP_CLOSE:
6326 0 : goto discard;
6327 :
6328 4 : case TCP_LISTEN:
6329 4 : if (th->ack)
6330 : return 1;
6331 :
6332 4 : if (th->rst)
6333 0 : goto discard;
6334 :
6335 4 : if (th->syn) {
6336 4 : if (th->fin)
6337 0 : goto discard;
6338 : /* It is possible that we process SYN packets from backlog,
6339 : * so we need to make sure to disable BH and RCU right there.
6340 : */
6341 4 : rcu_read_lock();
6342 4 : local_bh_disable();
6343 4 : acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6344 4 : local_bh_enable();
6345 4 : rcu_read_unlock();
6346 :
6347 4 : if (!acceptable)
6348 : return 1;
6349 4 : consume_skb(skb);
6350 4 : return 0;
6351 : }
6352 0 : goto discard;
6353 :
6354 0 : case TCP_SYN_SENT:
6355 0 : tp->rx_opt.saw_tstamp = 0;
6356 0 : tcp_mstamp_refresh(tp);
6357 0 : queued = tcp_rcv_synsent_state_process(sk, skb, th);
6358 0 : if (queued >= 0)
6359 : return queued;
6360 :
6361 : /* Do step6 onward by hand. */
6362 0 : tcp_urg(sk, skb, th);
6363 0 : __kfree_skb(skb);
6364 0 : tcp_data_snd_check(sk);
6365 0 : return 0;
6366 : }
6367 :
6368 7 : tcp_mstamp_refresh(tp);
6369 7 : tp->rx_opt.saw_tstamp = 0;
6370 7 : req = rcu_dereference_protected(tp->fastopen_rsk,
6371 : lockdep_sock_is_held(sk));
6372 7 : if (req) {
6373 0 : bool req_stolen;
6374 :
6375 0 : WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6376 : sk->sk_state != TCP_FIN_WAIT1);
6377 :
6378 0 : if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6379 0 : goto discard;
6380 : }
6381 :
6382 7 : if (!th->ack && !th->rst && !th->syn)
6383 0 : goto discard;
6384 :
6385 7 : if (!tcp_validate_incoming(sk, skb, th, 0))
6386 : return 0;
6387 :
6388 : /* step 5: check the ACK field */
6389 7 : acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6390 : FLAG_UPDATE_TS_RECENT |
6391 : FLAG_NO_CHALLENGE_ACK) > 0;
6392 :
6393 7 : if (!acceptable) {
6394 0 : if (sk->sk_state == TCP_SYN_RECV)
6395 : return 1; /* send one RST */
6396 0 : tcp_send_challenge_ack(sk, skb);
6397 0 : goto discard;
6398 : }
6399 7 : switch (sk->sk_state) {
6400 4 : case TCP_SYN_RECV:
6401 4 : tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6402 4 : if (!tp->srtt_us)
6403 0 : tcp_synack_rtt_meas(sk, req);
6404 :
6405 4 : if (req) {
6406 0 : tcp_rcv_synrecv_state_fastopen(sk);
6407 : } else {
6408 4 : tcp_try_undo_spurious_syn(sk);
6409 4 : tp->retrans_stamp = 0;
6410 4 : tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6411 : skb);
6412 4 : WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6413 : }
6414 4 : smp_mb();
6415 4 : tcp_set_state(sk, TCP_ESTABLISHED);
6416 4 : sk->sk_state_change(sk);
6417 :
6418 : /* Note, that this wakeup is only for marginal crossed SYN case.
6419 : * Passively open sockets are not waked up, because
6420 : * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6421 : */
6422 4 : if (sk->sk_socket)
6423 0 : sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6424 :
6425 4 : tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6426 4 : tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6427 4 : tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6428 :
6429 4 : if (tp->rx_opt.tstamp_ok)
6430 0 : tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6431 :
6432 4 : if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6433 4 : tcp_update_pacing_rate(sk);
6434 :
6435 : /* Prevent spurious tcp_cwnd_restart() on first data packet */
6436 4 : tp->lsndtime = tcp_jiffies32;
6437 :
6438 4 : tcp_initialize_rcv_mss(sk);
6439 4 : tcp_fast_path_on(tp);
6440 : break;
6441 :
6442 0 : case TCP_FIN_WAIT1: {
6443 0 : int tmo;
6444 :
6445 0 : if (req)
6446 0 : tcp_rcv_synrecv_state_fastopen(sk);
6447 :
6448 0 : if (tp->snd_una != tp->write_seq)
6449 : break;
6450 :
6451 0 : tcp_set_state(sk, TCP_FIN_WAIT2);
6452 0 : sk->sk_shutdown |= SEND_SHUTDOWN;
6453 :
6454 0 : sk_dst_confirm(sk);
6455 :
6456 0 : if (!sock_flag(sk, SOCK_DEAD)) {
6457 : /* Wake up lingering close() */
6458 0 : sk->sk_state_change(sk);
6459 0 : break;
6460 : }
6461 :
6462 0 : if (tp->linger2 < 0) {
6463 0 : tcp_done(sk);
6464 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6465 0 : return 1;
6466 : }
6467 0 : if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6468 0 : after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6469 : /* Receive out of order FIN after close() */
6470 0 : if (tp->syn_fastopen && th->fin)
6471 0 : tcp_fastopen_active_disable(sk);
6472 0 : tcp_done(sk);
6473 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6474 0 : return 1;
6475 : }
6476 :
6477 0 : tmo = tcp_fin_time(sk);
6478 0 : if (tmo > TCP_TIMEWAIT_LEN) {
6479 0 : inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6480 0 : } else if (th->fin || sock_owned_by_user(sk)) {
6481 : /* Bad case. We could lose such FIN otherwise.
6482 : * It is not a big problem, but it looks confusing
6483 : * and not so rare event. We still can lose it now,
6484 : * if it spins in bh_lock_sock(), but it is really
6485 : * marginal case.
6486 : */
6487 0 : inet_csk_reset_keepalive_timer(sk, tmo);
6488 : } else {
6489 0 : tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6490 0 : goto discard;
6491 : }
6492 : break;
6493 : }
6494 :
6495 0 : case TCP_CLOSING:
6496 0 : if (tp->snd_una == tp->write_seq) {
6497 0 : tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6498 0 : goto discard;
6499 : }
6500 : break;
6501 :
6502 3 : case TCP_LAST_ACK:
6503 3 : if (tp->snd_una == tp->write_seq) {
6504 3 : tcp_update_metrics(sk);
6505 3 : tcp_done(sk);
6506 3 : goto discard;
6507 : }
6508 : break;
6509 : }
6510 :
6511 : /* step 6: check the URG bit */
6512 4 : tcp_urg(sk, skb, th);
6513 :
6514 : /* step 7: process the segment text */
6515 4 : switch (sk->sk_state) {
6516 0 : case TCP_CLOSE_WAIT:
6517 : case TCP_CLOSING:
6518 : case TCP_LAST_ACK:
6519 0 : if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6520 4 : if (sk_is_mptcp(sk))
6521 4 : mptcp_incoming_options(sk, skb);
6522 : break;
6523 : }
6524 0 : fallthrough;
6525 : case TCP_FIN_WAIT1:
6526 : case TCP_FIN_WAIT2:
6527 : /* RFC 793 says to queue data in these states,
6528 : * RFC 1122 says we MUST send a reset.
6529 : * BSD 4.4 also does reset.
6530 : */
6531 0 : if (sk->sk_shutdown & RCV_SHUTDOWN) {
6532 0 : if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6533 0 : after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6534 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6535 0 : tcp_reset(sk, skb);
6536 0 : return 1;
6537 : }
6538 : }
6539 4 : fallthrough;
6540 : case TCP_ESTABLISHED:
6541 4 : tcp_data_queue(sk, skb);
6542 4 : queued = 1;
6543 4 : break;
6544 : }
6545 :
6546 : /* tcp_data could move socket to TIME-WAIT */
6547 4 : if (sk->sk_state != TCP_CLOSE) {
6548 4 : tcp_data_snd_check(sk);
6549 4 : tcp_ack_snd_check(sk);
6550 : }
6551 :
6552 4 : if (!queued) {
6553 0 : discard:
6554 3 : tcp_drop(sk, skb);
6555 : }
6556 : return 0;
6557 : }
6558 : EXPORT_SYMBOL(tcp_rcv_state_process);
6559 :
6560 0 : static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6561 : {
6562 0 : struct inet_request_sock *ireq = inet_rsk(req);
6563 :
6564 0 : if (family == AF_INET)
6565 0 : net_dbg_ratelimited("drop open request from %pI4/%u\n",
6566 : &ireq->ir_rmt_addr, port);
6567 : #if IS_ENABLED(CONFIG_IPV6)
6568 : else if (family == AF_INET6)
6569 : net_dbg_ratelimited("drop open request from %pI6/%u\n",
6570 : &ireq->ir_v6_rmt_addr, port);
6571 : #endif
6572 : }
6573 :
6574 : /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6575 : *
6576 : * If we receive a SYN packet with these bits set, it means a
6577 : * network is playing bad games with TOS bits. In order to
6578 : * avoid possible false congestion notifications, we disable
6579 : * TCP ECN negotiation.
6580 : *
6581 : * Exception: tcp_ca wants ECN. This is required for DCTCP
6582 : * congestion control: Linux DCTCP asserts ECT on all packets,
6583 : * including SYN, which is most optimal solution; however,
6584 : * others, such as FreeBSD do not.
6585 : *
6586 : * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6587 : * set, indicating the use of a future TCP extension (such as AccECN). See
6588 : * RFC8311 ยง4.3 which updates RFC3168 to allow the development of such
6589 : * extensions.
6590 : */
6591 4 : static void tcp_ecn_create_request(struct request_sock *req,
6592 : const struct sk_buff *skb,
6593 : const struct sock *listen_sk,
6594 : const struct dst_entry *dst)
6595 : {
6596 4 : const struct tcphdr *th = tcp_hdr(skb);
6597 4 : const struct net *net = sock_net(listen_sk);
6598 4 : bool th_ecn = th->ece && th->cwr;
6599 4 : bool ect, ecn_ok;
6600 4 : u32 ecn_ok_dst;
6601 :
6602 4 : if (!th_ecn)
6603 : return;
6604 :
6605 0 : ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6606 0 : ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6607 0 : ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6608 :
6609 0 : if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6610 0 : (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6611 0 : tcp_bpf_ca_needs_ecn((struct sock *)req))
6612 0 : inet_rsk(req)->ecn_ok = 1;
6613 : }
6614 :
6615 4 : static void tcp_openreq_init(struct request_sock *req,
6616 : const struct tcp_options_received *rx_opt,
6617 : struct sk_buff *skb, const struct sock *sk)
6618 : {
6619 4 : struct inet_request_sock *ireq = inet_rsk(req);
6620 :
6621 4 : req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6622 4 : tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6623 4 : tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6624 4 : tcp_rsk(req)->snt_synack = 0;
6625 4 : tcp_rsk(req)->last_oow_ack_time = 0;
6626 4 : req->mss = rx_opt->mss_clamp;
6627 4 : req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6628 4 : ireq->tstamp_ok = rx_opt->tstamp_ok;
6629 4 : ireq->sack_ok = rx_opt->sack_ok;
6630 4 : ireq->snd_wscale = rx_opt->snd_wscale;
6631 4 : ireq->wscale_ok = rx_opt->wscale_ok;
6632 4 : ireq->acked = 0;
6633 4 : ireq->ecn_ok = 0;
6634 4 : ireq->ir_rmt_port = tcp_hdr(skb)->source;
6635 4 : ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6636 4 : ireq->ir_mark = inet_request_mark(sk, skb);
6637 : #if IS_ENABLED(CONFIG_SMC)
6638 : ireq->smc_ok = rx_opt->smc_ok;
6639 : #endif
6640 4 : }
6641 :
6642 4 : struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6643 : struct sock *sk_listener,
6644 : bool attach_listener)
6645 : {
6646 4 : struct request_sock *req = reqsk_alloc(ops, sk_listener,
6647 : attach_listener);
6648 :
6649 4 : if (req) {
6650 4 : struct inet_request_sock *ireq = inet_rsk(req);
6651 :
6652 4 : ireq->ireq_opt = NULL;
6653 : #if IS_ENABLED(CONFIG_IPV6)
6654 : ireq->pktopts = NULL;
6655 : #endif
6656 4 : atomic64_set(&ireq->ir_cookie, 0);
6657 4 : ireq->ireq_state = TCP_NEW_SYN_RECV;
6658 4 : write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6659 4 : ireq->ireq_family = sk_listener->sk_family;
6660 : }
6661 :
6662 4 : return req;
6663 : }
6664 : EXPORT_SYMBOL(inet_reqsk_alloc);
6665 :
6666 : /*
6667 : * Return true if a syncookie should be sent
6668 : */
6669 0 : static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6670 : {
6671 0 : struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6672 0 : const char *msg = "Dropping request";
6673 0 : bool want_cookie = false;
6674 0 : struct net *net = sock_net(sk);
6675 :
6676 : #ifdef CONFIG_SYN_COOKIES
6677 : if (net->ipv4.sysctl_tcp_syncookies) {
6678 : msg = "Sending cookies";
6679 : want_cookie = true;
6680 : __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6681 : } else
6682 : #endif
6683 0 : __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6684 :
6685 0 : if (!queue->synflood_warned &&
6686 0 : net->ipv4.sysctl_tcp_syncookies != 2 &&
6687 0 : xchg(&queue->synflood_warned, 1) == 0)
6688 0 : net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6689 : proto, sk->sk_num, msg);
6690 :
6691 0 : return want_cookie;
6692 : }
6693 :
6694 4 : static void tcp_reqsk_record_syn(const struct sock *sk,
6695 : struct request_sock *req,
6696 : const struct sk_buff *skb)
6697 : {
6698 4 : if (tcp_sk(sk)->save_syn) {
6699 0 : u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6700 0 : struct saved_syn *saved_syn;
6701 0 : u32 mac_hdrlen;
6702 0 : void *base;
6703 :
6704 0 : if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6705 0 : base = skb_mac_header(skb);
6706 0 : mac_hdrlen = skb_mac_header_len(skb);
6707 0 : len += mac_hdrlen;
6708 : } else {
6709 0 : base = skb_network_header(skb);
6710 0 : mac_hdrlen = 0;
6711 : }
6712 :
6713 0 : saved_syn = kmalloc(struct_size(saved_syn, data, len),
6714 : GFP_ATOMIC);
6715 0 : if (saved_syn) {
6716 0 : saved_syn->mac_hdrlen = mac_hdrlen;
6717 0 : saved_syn->network_hdrlen = skb_network_header_len(skb);
6718 0 : saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6719 0 : memcpy(saved_syn->data, base, len);
6720 0 : req->saved_syn = saved_syn;
6721 : }
6722 : }
6723 4 : }
6724 :
6725 : /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6726 : * used for SYN cookie generation.
6727 : */
6728 0 : u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6729 : const struct tcp_request_sock_ops *af_ops,
6730 : struct sock *sk, struct tcphdr *th)
6731 : {
6732 0 : struct tcp_sock *tp = tcp_sk(sk);
6733 0 : u16 mss;
6734 :
6735 0 : if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6736 0 : !inet_csk_reqsk_queue_is_full(sk))
6737 : return 0;
6738 :
6739 0 : if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6740 : return 0;
6741 :
6742 0 : if (sk_acceptq_is_full(sk)) {
6743 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6744 0 : return 0;
6745 : }
6746 :
6747 0 : mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6748 0 : if (!mss)
6749 0 : mss = af_ops->mss_clamp;
6750 :
6751 : return mss;
6752 : }
6753 : EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6754 :
6755 4 : int tcp_conn_request(struct request_sock_ops *rsk_ops,
6756 : const struct tcp_request_sock_ops *af_ops,
6757 : struct sock *sk, struct sk_buff *skb)
6758 : {
6759 4 : struct tcp_fastopen_cookie foc = { .len = -1 };
6760 4 : __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6761 4 : struct tcp_options_received tmp_opt;
6762 4 : struct tcp_sock *tp = tcp_sk(sk);
6763 4 : struct net *net = sock_net(sk);
6764 4 : struct sock *fastopen_sk = NULL;
6765 4 : struct request_sock *req;
6766 4 : bool want_cookie = false;
6767 4 : struct dst_entry *dst;
6768 4 : struct flowi fl;
6769 :
6770 : /* TW buckets are converted to open requests without
6771 : * limitations, they conserve resources and peer is
6772 : * evidently real one.
6773 : */
6774 4 : if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6775 4 : inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6776 0 : want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6777 0 : if (!want_cookie)
6778 0 : goto drop;
6779 : }
6780 :
6781 4 : if (sk_acceptq_is_full(sk)) {
6782 0 : NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6783 0 : goto drop;
6784 : }
6785 :
6786 4 : req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6787 4 : if (!req)
6788 0 : goto drop;
6789 :
6790 4 : req->syncookie = want_cookie;
6791 4 : tcp_rsk(req)->af_specific = af_ops;
6792 4 : tcp_rsk(req)->ts_off = 0;
6793 : #if IS_ENABLED(CONFIG_MPTCP)
6794 : tcp_rsk(req)->is_mptcp = 0;
6795 : #endif
6796 :
6797 4 : tcp_clear_options(&tmp_opt);
6798 4 : tmp_opt.mss_clamp = af_ops->mss_clamp;
6799 4 : tmp_opt.user_mss = tp->rx_opt.user_mss;
6800 8 : tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6801 : want_cookie ? NULL : &foc);
6802 :
6803 4 : if (want_cookie && !tmp_opt.saw_tstamp)
6804 0 : tcp_clear_options(&tmp_opt);
6805 :
6806 4 : if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6807 : tmp_opt.smc_ok = 0;
6808 :
6809 4 : tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6810 4 : tcp_openreq_init(req, &tmp_opt, skb, sk);
6811 4 : inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6812 :
6813 : /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6814 4 : inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6815 :
6816 4 : dst = af_ops->route_req(sk, skb, &fl, req);
6817 4 : if (!dst)
6818 0 : goto drop_and_free;
6819 :
6820 4 : if (tmp_opt.tstamp_ok)
6821 0 : tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6822 :
6823 4 : if (!want_cookie && !isn) {
6824 : /* Kill the following clause, if you dislike this way. */
6825 4 : if (!net->ipv4.sysctl_tcp_syncookies &&
6826 0 : (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6827 0 : (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6828 0 : !tcp_peer_is_proven(req, dst)) {
6829 : /* Without syncookies last quarter of
6830 : * backlog is filled with destinations,
6831 : * proven to be alive.
6832 : * It means that we continue to communicate
6833 : * to destinations, already remembered
6834 : * to the moment of synflood.
6835 : */
6836 0 : pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6837 : rsk_ops->family);
6838 0 : goto drop_and_release;
6839 : }
6840 :
6841 4 : isn = af_ops->init_seq(skb);
6842 : }
6843 :
6844 4 : tcp_ecn_create_request(req, skb, sk, dst);
6845 :
6846 4 : if (want_cookie) {
6847 0 : isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6848 0 : if (!tmp_opt.tstamp_ok)
6849 0 : inet_rsk(req)->ecn_ok = 0;
6850 : }
6851 :
6852 4 : tcp_rsk(req)->snt_isn = isn;
6853 4 : tcp_rsk(req)->txhash = net_tx_rndhash();
6854 4 : tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6855 4 : tcp_openreq_init_rwin(req, sk, dst);
6856 4 : sk_rx_queue_set(req_to_sk(req), skb);
6857 4 : if (!want_cookie) {
6858 4 : tcp_reqsk_record_syn(sk, req, skb);
6859 4 : fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6860 : }
6861 4 : if (fastopen_sk) {
6862 0 : af_ops->send_synack(fastopen_sk, dst, &fl, req,
6863 : &foc, TCP_SYNACK_FASTOPEN, skb);
6864 : /* Add the child socket directly into the accept queue */
6865 0 : if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6866 0 : reqsk_fastopen_remove(fastopen_sk, req, false);
6867 0 : bh_unlock_sock(fastopen_sk);
6868 0 : sock_put(fastopen_sk);
6869 0 : goto drop_and_free;
6870 : }
6871 0 : sk->sk_data_ready(sk);
6872 0 : bh_unlock_sock(fastopen_sk);
6873 0 : sock_put(fastopen_sk);
6874 : } else {
6875 4 : tcp_rsk(req)->tfo_listener = false;
6876 4 : if (!want_cookie)
6877 4 : inet_csk_reqsk_queue_hash_add(sk, req,
6878 4 : tcp_timeout_init((struct sock *)req));
6879 4 : af_ops->send_synack(sk, dst, &fl, req, &foc,
6880 : !want_cookie ? TCP_SYNACK_NORMAL :
6881 : TCP_SYNACK_COOKIE,
6882 : skb);
6883 4 : if (want_cookie) {
6884 0 : reqsk_free(req);
6885 0 : return 0;
6886 : }
6887 : }
6888 4 : reqsk_put(req);
6889 4 : return 0;
6890 :
6891 0 : drop_and_release:
6892 0 : dst_release(dst);
6893 0 : drop_and_free:
6894 0 : __reqsk_free(req);
6895 0 : drop:
6896 0 : tcp_listendrop(sk);
6897 0 : return 0;
6898 : }
6899 : EXPORT_SYMBOL(tcp_conn_request);
|