Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * Security plug functions
4 : *
5 : * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 : * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 : * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 : * Copyright (C) 2016 Mellanox Technologies
9 : */
10 :
11 : #define pr_fmt(fmt) "LSM: " fmt
12 :
13 : #include <linux/bpf.h>
14 : #include <linux/capability.h>
15 : #include <linux/dcache.h>
16 : #include <linux/export.h>
17 : #include <linux/init.h>
18 : #include <linux/kernel.h>
19 : #include <linux/kernel_read_file.h>
20 : #include <linux/lsm_hooks.h>
21 : #include <linux/integrity.h>
22 : #include <linux/ima.h>
23 : #include <linux/evm.h>
24 : #include <linux/fsnotify.h>
25 : #include <linux/mman.h>
26 : #include <linux/mount.h>
27 : #include <linux/personality.h>
28 : #include <linux/backing-dev.h>
29 : #include <linux/string.h>
30 : #include <linux/msg.h>
31 : #include <net/flow.h>
32 :
33 : #define MAX_LSM_EVM_XATTR 2
34 :
35 : /* How many LSMs were built into the kernel? */
36 : #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 :
38 : /*
39 : * These are descriptions of the reasons that can be passed to the
40 : * security_locked_down() LSM hook. Placing this array here allows
41 : * all security modules to use the same descriptions for auditing
42 : * purposes.
43 : */
44 : const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 : [LOCKDOWN_NONE] = "none",
46 : [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 : [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 : [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 : [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 : [LOCKDOWN_HIBERNATION] = "hibernation",
51 : [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 : [LOCKDOWN_IOPORT] = "raw io port access",
53 : [LOCKDOWN_MSR] = "raw MSR access",
54 : [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 : [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 : [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 : [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 : [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 : [LOCKDOWN_DEBUGFS] = "debugfs access",
60 : [LOCKDOWN_XMON_WR] = "xmon write access",
61 : [LOCKDOWN_INTEGRITY_MAX] = "integrity",
62 : [LOCKDOWN_KCORE] = "/proc/kcore access",
63 : [LOCKDOWN_KPROBES] = "use of kprobes",
64 : [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
65 : [LOCKDOWN_PERF] = "unsafe use of perf",
66 : [LOCKDOWN_TRACEFS] = "use of tracefs",
67 : [LOCKDOWN_XMON_RW] = "xmon read and write access",
68 : [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
69 : [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
70 : };
71 :
72 : struct security_hook_heads security_hook_heads __lsm_ro_after_init;
73 : static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
74 :
75 : static struct kmem_cache *lsm_file_cache;
76 : static struct kmem_cache *lsm_inode_cache;
77 :
78 : char *lsm_names;
79 : static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
80 :
81 : /* Boot-time LSM user choice */
82 : static __initdata const char *chosen_lsm_order;
83 : static __initdata const char *chosen_major_lsm;
84 :
85 : static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
86 :
87 : /* Ordered list of LSMs to initialize. */
88 : static __initdata struct lsm_info **ordered_lsms;
89 : static __initdata struct lsm_info *exclusive;
90 :
91 : static __initdata bool debug;
92 : #define init_debug(...) \
93 : do { \
94 : if (debug) \
95 : pr_info(__VA_ARGS__); \
96 : } while (0)
97 :
98 4 : static bool __init is_enabled(struct lsm_info *lsm)
99 : {
100 4 : if (!lsm->enabled)
101 : return false;
102 :
103 4 : return *lsm->enabled;
104 : }
105 :
106 : /* Mark an LSM's enabled flag. */
107 : static int lsm_enabled_true __initdata = 1;
108 : static int lsm_enabled_false __initdata = 0;
109 2 : static void __init set_enabled(struct lsm_info *lsm, bool enabled)
110 : {
111 : /*
112 : * When an LSM hasn't configured an enable variable, we can use
113 : * a hard-coded location for storing the default enabled state.
114 : */
115 2 : if (!lsm->enabled) {
116 0 : if (enabled)
117 0 : lsm->enabled = &lsm_enabled_true;
118 : else
119 0 : lsm->enabled = &lsm_enabled_false;
120 2 : } else if (lsm->enabled == &lsm_enabled_true) {
121 2 : if (!enabled)
122 0 : lsm->enabled = &lsm_enabled_false;
123 0 : } else if (lsm->enabled == &lsm_enabled_false) {
124 0 : if (enabled)
125 0 : lsm->enabled = &lsm_enabled_true;
126 : } else {
127 0 : *lsm->enabled = enabled;
128 : }
129 2 : }
130 :
131 : /* Is an LSM already listed in the ordered LSMs list? */
132 4 : static bool __init exists_ordered_lsm(struct lsm_info *lsm)
133 : {
134 4 : struct lsm_info **check;
135 :
136 6 : for (check = ordered_lsms; *check; check++)
137 4 : if (*check == lsm)
138 : return true;
139 :
140 : return false;
141 : }
142 :
143 : /* Append an LSM to the list of ordered LSMs to initialize. */
144 : static int last_lsm __initdata;
145 2 : static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
146 : {
147 : /* Ignore duplicate selections. */
148 2 : if (exists_ordered_lsm(lsm))
149 : return;
150 :
151 2 : if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
152 : return;
153 :
154 : /* Enable this LSM, if it is not already set. */
155 2 : if (!lsm->enabled)
156 2 : lsm->enabled = &lsm_enabled_true;
157 2 : ordered_lsms[last_lsm++] = lsm;
158 :
159 2 : init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
160 : is_enabled(lsm) ? "en" : "dis");
161 : }
162 :
163 : /* Is an LSM allowed to be initialized? */
164 2 : static bool __init lsm_allowed(struct lsm_info *lsm)
165 : {
166 : /* Skip if the LSM is disabled. */
167 2 : if (!is_enabled(lsm))
168 : return false;
169 :
170 : /* Not allowed if another exclusive LSM already initialized. */
171 2 : if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
172 0 : init_debug("exclusive disabled: %s\n", lsm->name);
173 0 : return false;
174 : }
175 :
176 : return true;
177 : }
178 :
179 7 : static void __init lsm_set_blob_size(int *need, int *lbs)
180 : {
181 7 : int offset;
182 :
183 7 : if (*need > 0) {
184 3 : offset = *lbs;
185 3 : *lbs += *need;
186 3 : *need = offset;
187 : }
188 7 : }
189 :
190 2 : static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
191 : {
192 2 : if (!needed)
193 : return;
194 :
195 1 : lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
196 1 : lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
197 : /*
198 : * The inode blob gets an rcu_head in addition to
199 : * what the modules might need.
200 : */
201 1 : if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
202 1 : blob_sizes.lbs_inode = sizeof(struct rcu_head);
203 1 : lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
204 1 : lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
205 1 : lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
206 1 : lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
207 1 : lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
208 : }
209 :
210 : /* Prepare LSM for initialization. */
211 2 : static void __init prepare_lsm(struct lsm_info *lsm)
212 : {
213 2 : int enabled = lsm_allowed(lsm);
214 :
215 : /* Record enablement (to handle any following exclusive LSMs). */
216 2 : set_enabled(lsm, enabled);
217 :
218 : /* If enabled, do pre-initialization work. */
219 2 : if (enabled) {
220 2 : if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
221 0 : exclusive = lsm;
222 0 : init_debug("exclusive chosen: %s\n", lsm->name);
223 : }
224 :
225 2 : lsm_set_blob_sizes(lsm->blobs);
226 : }
227 2 : }
228 :
229 : /* Initialize a given LSM, if it is enabled. */
230 2 : static void __init initialize_lsm(struct lsm_info *lsm)
231 : {
232 2 : if (is_enabled(lsm)) {
233 2 : int ret;
234 :
235 2 : init_debug("initializing %s\n", lsm->name);
236 2 : ret = lsm->init();
237 2 : WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
238 : }
239 2 : }
240 :
241 : /* Populate ordered LSMs list from comma-separated LSM name list. */
242 1 : static void __init ordered_lsm_parse(const char *order, const char *origin)
243 : {
244 1 : struct lsm_info *lsm;
245 1 : char *sep, *name, *next;
246 :
247 : /* LSM_ORDER_FIRST is always first. */
248 3 : for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
249 2 : if (lsm->order == LSM_ORDER_FIRST)
250 1 : append_ordered_lsm(lsm, "first");
251 : }
252 :
253 : /* Process "security=", if given. */
254 1 : if (chosen_major_lsm) {
255 : struct lsm_info *major;
256 :
257 : /*
258 : * To match the original "security=" behavior, this
259 : * explicitly does NOT fallback to another Legacy Major
260 : * if the selected one was separately disabled: disable
261 : * all non-matching Legacy Major LSMs.
262 : */
263 0 : for (major = __start_lsm_info; major < __end_lsm_info;
264 0 : major++) {
265 0 : if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
266 0 : strcmp(major->name, chosen_major_lsm) != 0) {
267 0 : set_enabled(major, false);
268 0 : init_debug("security=%s disabled: %s\n",
269 : chosen_major_lsm, major->name);
270 : }
271 : }
272 : }
273 :
274 1 : sep = kstrdup(order, GFP_KERNEL);
275 1 : next = sep;
276 : /* Walk the list, looking for matching LSMs. */
277 9 : while ((name = strsep(&next, ",")) != NULL) {
278 : bool found = false;
279 :
280 21 : for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
281 14 : if (lsm->order == LSM_ORDER_MUTABLE &&
282 7 : strcmp(lsm->name, name) == 0) {
283 1 : append_ordered_lsm(lsm, origin);
284 1 : found = true;
285 : }
286 : }
287 :
288 7 : if (!found)
289 14 : init_debug("%s ignored: %s\n", origin, name);
290 : }
291 :
292 : /* Process "security=", if given. */
293 1 : if (chosen_major_lsm) {
294 0 : for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
295 0 : if (exists_ordered_lsm(lsm))
296 0 : continue;
297 0 : if (strcmp(lsm->name, chosen_major_lsm) == 0)
298 0 : append_ordered_lsm(lsm, "security=");
299 : }
300 : }
301 :
302 : /* Disable all LSMs not in the ordered list. */
303 3 : for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
304 2 : if (exists_ordered_lsm(lsm))
305 2 : continue;
306 0 : set_enabled(lsm, false);
307 2 : init_debug("%s disabled: %s\n", origin, lsm->name);
308 : }
309 :
310 1 : kfree(sep);
311 1 : }
312 :
313 : static void __init lsm_early_cred(struct cred *cred);
314 : static void __init lsm_early_task(struct task_struct *task);
315 :
316 : static int lsm_append(const char *new, char **result);
317 :
318 1 : static void __init ordered_lsm_init(void)
319 : {
320 1 : struct lsm_info **lsm;
321 :
322 1 : ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
323 : GFP_KERNEL);
324 :
325 1 : if (chosen_lsm_order) {
326 0 : if (chosen_major_lsm) {
327 0 : pr_info("security= is ignored because it is superseded by lsm=\n");
328 0 : chosen_major_lsm = NULL;
329 : }
330 0 : ordered_lsm_parse(chosen_lsm_order, "cmdline");
331 : } else
332 1 : ordered_lsm_parse(builtin_lsm_order, "builtin");
333 :
334 3 : for (lsm = ordered_lsms; *lsm; lsm++)
335 2 : prepare_lsm(*lsm);
336 :
337 1 : init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
338 1 : init_debug("file blob size = %d\n", blob_sizes.lbs_file);
339 1 : init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
340 1 : init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
341 1 : init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
342 1 : init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
343 1 : init_debug("task blob size = %d\n", blob_sizes.lbs_task);
344 :
345 : /*
346 : * Create any kmem_caches needed for blobs
347 : */
348 1 : if (blob_sizes.lbs_file)
349 0 : lsm_file_cache = kmem_cache_create("lsm_file_cache",
350 : blob_sizes.lbs_file, 0,
351 : SLAB_PANIC, NULL);
352 1 : if (blob_sizes.lbs_inode)
353 1 : lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
354 : blob_sizes.lbs_inode, 0,
355 : SLAB_PANIC, NULL);
356 :
357 1 : lsm_early_cred((struct cred *) current->cred);
358 1 : lsm_early_task(current);
359 3 : for (lsm = ordered_lsms; *lsm; lsm++)
360 2 : initialize_lsm(*lsm);
361 :
362 1 : kfree(ordered_lsms);
363 1 : }
364 :
365 1 : int __init early_security_init(void)
366 : {
367 1 : int i;
368 1 : struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
369 1 : struct lsm_info *lsm;
370 :
371 165 : for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
372 164 : i++)
373 164 : INIT_HLIST_HEAD(&list[i]);
374 :
375 1 : for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
376 0 : if (!lsm->enabled)
377 0 : lsm->enabled = &lsm_enabled_true;
378 0 : prepare_lsm(lsm);
379 0 : initialize_lsm(lsm);
380 : }
381 :
382 1 : return 0;
383 : }
384 :
385 : /**
386 : * security_init - initializes the security framework
387 : *
388 : * This should be called early in the kernel initialization sequence.
389 : */
390 1 : int __init security_init(void)
391 : {
392 1 : struct lsm_info *lsm;
393 :
394 1 : pr_info("Security Framework initializing\n");
395 :
396 : /*
397 : * Append the names of the early LSM modules now that kmalloc() is
398 : * available
399 : */
400 2 : for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
401 0 : if (lsm->enabled)
402 0 : lsm_append(lsm->name, &lsm_names);
403 : }
404 :
405 : /* Load LSMs in specified order. */
406 1 : ordered_lsm_init();
407 :
408 1 : return 0;
409 : }
410 :
411 : /* Save user chosen LSM */
412 0 : static int __init choose_major_lsm(char *str)
413 : {
414 0 : chosen_major_lsm = str;
415 0 : return 1;
416 : }
417 : __setup("security=", choose_major_lsm);
418 :
419 : /* Explicitly choose LSM initialization order. */
420 0 : static int __init choose_lsm_order(char *str)
421 : {
422 0 : chosen_lsm_order = str;
423 0 : return 1;
424 : }
425 : __setup("lsm=", choose_lsm_order);
426 :
427 : /* Enable LSM order debugging. */
428 0 : static int __init enable_debug(char *str)
429 : {
430 0 : debug = true;
431 0 : return 1;
432 : }
433 : __setup("lsm.debug", enable_debug);
434 :
435 3 : static bool match_last_lsm(const char *list, const char *lsm)
436 : {
437 3 : const char *last;
438 :
439 3 : if (WARN_ON(!list || !lsm))
440 : return false;
441 3 : last = strrchr(list, ',');
442 3 : if (last)
443 : /* Pass the comma, strcmp() will check for '\0' */
444 2 : last++;
445 : else
446 : last = list;
447 3 : return !strcmp(last, lsm);
448 : }
449 :
450 4 : static int lsm_append(const char *new, char **result)
451 : {
452 4 : char *cp;
453 :
454 4 : if (*result == NULL) {
455 1 : *result = kstrdup(new, GFP_KERNEL);
456 1 : if (*result == NULL)
457 0 : return -ENOMEM;
458 : } else {
459 : /* Check if it is the last registered name */
460 3 : if (match_last_lsm(*result, new))
461 : return 0;
462 1 : cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
463 1 : if (cp == NULL)
464 : return -ENOMEM;
465 1 : kfree(*result);
466 1 : *result = cp;
467 : }
468 : return 0;
469 : }
470 :
471 : /**
472 : * security_add_hooks - Add a modules hooks to the hook lists.
473 : * @hooks: the hooks to add
474 : * @count: the number of hooks to add
475 : * @lsm: the name of the security module
476 : *
477 : * Each LSM has to register its hooks with the infrastructure.
478 : */
479 4 : void __init security_add_hooks(struct security_hook_list *hooks, int count,
480 : char *lsm)
481 : {
482 4 : int i;
483 :
484 41 : for (i = 0; i < count; i++) {
485 37 : hooks[i].lsm = lsm;
486 37 : hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
487 : }
488 :
489 : /*
490 : * Don't try to append during early_security_init(), we'll come back
491 : * and fix this up afterwards.
492 : */
493 4 : if (slab_is_available()) {
494 4 : if (lsm_append(lsm, &lsm_names) < 0)
495 0 : panic("%s - Cannot get early memory.\n", __func__);
496 : }
497 4 : }
498 :
499 0 : int call_blocking_lsm_notifier(enum lsm_event event, void *data)
500 : {
501 0 : return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
502 : event, data);
503 : }
504 : EXPORT_SYMBOL(call_blocking_lsm_notifier);
505 :
506 0 : int register_blocking_lsm_notifier(struct notifier_block *nb)
507 : {
508 0 : return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
509 : nb);
510 : }
511 : EXPORT_SYMBOL(register_blocking_lsm_notifier);
512 :
513 0 : int unregister_blocking_lsm_notifier(struct notifier_block *nb)
514 : {
515 0 : return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
516 : nb);
517 : }
518 : EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
519 :
520 : /**
521 : * lsm_cred_alloc - allocate a composite cred blob
522 : * @cred: the cred that needs a blob
523 : * @gfp: allocation type
524 : *
525 : * Allocate the cred blob for all the modules
526 : *
527 : * Returns 0, or -ENOMEM if memory can't be allocated.
528 : */
529 10459 : static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
530 : {
531 10459 : if (blob_sizes.lbs_cred == 0) {
532 0 : cred->security = NULL;
533 0 : return 0;
534 : }
535 :
536 10459 : cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
537 10459 : if (cred->security == NULL)
538 0 : return -ENOMEM;
539 : return 0;
540 : }
541 :
542 : /**
543 : * lsm_early_cred - during initialization allocate a composite cred blob
544 : * @cred: the cred that needs a blob
545 : *
546 : * Allocate the cred blob for all the modules
547 : */
548 1 : static void __init lsm_early_cred(struct cred *cred)
549 : {
550 1 : int rc = lsm_cred_alloc(cred, GFP_KERNEL);
551 :
552 1 : if (rc)
553 0 : panic("%s: Early cred alloc failed.\n", __func__);
554 1 : }
555 :
556 : /**
557 : * lsm_file_alloc - allocate a composite file blob
558 : * @file: the file that needs a blob
559 : *
560 : * Allocate the file blob for all the modules
561 : *
562 : * Returns 0, or -ENOMEM if memory can't be allocated.
563 : */
564 65851 : static int lsm_file_alloc(struct file *file)
565 : {
566 65851 : if (!lsm_file_cache) {
567 65851 : file->f_security = NULL;
568 65851 : return 0;
569 : }
570 :
571 0 : file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
572 0 : if (file->f_security == NULL)
573 0 : return -ENOMEM;
574 : return 0;
575 : }
576 :
577 : /**
578 : * lsm_inode_alloc - allocate a composite inode blob
579 : * @inode: the inode that needs a blob
580 : *
581 : * Allocate the inode blob for all the modules
582 : *
583 : * Returns 0, or -ENOMEM if memory can't be allocated.
584 : */
585 18805 : int lsm_inode_alloc(struct inode *inode)
586 : {
587 18805 : if (!lsm_inode_cache) {
588 0 : inode->i_security = NULL;
589 0 : return 0;
590 : }
591 :
592 18805 : inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
593 18805 : if (inode->i_security == NULL)
594 0 : return -ENOMEM;
595 : return 0;
596 : }
597 :
598 : /**
599 : * lsm_task_alloc - allocate a composite task blob
600 : * @task: the task that needs a blob
601 : *
602 : * Allocate the task blob for all the modules
603 : *
604 : * Returns 0, or -ENOMEM if memory can't be allocated.
605 : */
606 1737 : static int lsm_task_alloc(struct task_struct *task)
607 : {
608 1737 : if (blob_sizes.lbs_task == 0) {
609 1737 : task->security = NULL;
610 1737 : return 0;
611 : }
612 :
613 0 : task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
614 0 : if (task->security == NULL)
615 0 : return -ENOMEM;
616 : return 0;
617 : }
618 :
619 : /**
620 : * lsm_ipc_alloc - allocate a composite ipc blob
621 : * @kip: the ipc that needs a blob
622 : *
623 : * Allocate the ipc blob for all the modules
624 : *
625 : * Returns 0, or -ENOMEM if memory can't be allocated.
626 : */
627 0 : static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
628 : {
629 0 : if (blob_sizes.lbs_ipc == 0) {
630 0 : kip->security = NULL;
631 0 : return 0;
632 : }
633 :
634 0 : kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
635 0 : if (kip->security == NULL)
636 0 : return -ENOMEM;
637 : return 0;
638 : }
639 :
640 : /**
641 : * lsm_msg_msg_alloc - allocate a composite msg_msg blob
642 : * @mp: the msg_msg that needs a blob
643 : *
644 : * Allocate the ipc blob for all the modules
645 : *
646 : * Returns 0, or -ENOMEM if memory can't be allocated.
647 : */
648 0 : static int lsm_msg_msg_alloc(struct msg_msg *mp)
649 : {
650 0 : if (blob_sizes.lbs_msg_msg == 0) {
651 0 : mp->security = NULL;
652 0 : return 0;
653 : }
654 :
655 0 : mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
656 0 : if (mp->security == NULL)
657 0 : return -ENOMEM;
658 : return 0;
659 : }
660 :
661 : /**
662 : * lsm_early_task - during initialization allocate a composite task blob
663 : * @task: the task that needs a blob
664 : *
665 : * Allocate the task blob for all the modules
666 : */
667 1 : static void __init lsm_early_task(struct task_struct *task)
668 : {
669 1 : int rc = lsm_task_alloc(task);
670 :
671 1 : if (rc)
672 0 : panic("%s: Early task alloc failed.\n", __func__);
673 1 : }
674 :
675 : /**
676 : * lsm_superblock_alloc - allocate a composite superblock blob
677 : * @sb: the superblock that needs a blob
678 : *
679 : * Allocate the superblock blob for all the modules
680 : *
681 : * Returns 0, or -ENOMEM if memory can't be allocated.
682 : */
683 123 : static int lsm_superblock_alloc(struct super_block *sb)
684 : {
685 123 : if (blob_sizes.lbs_superblock == 0) {
686 0 : sb->s_security = NULL;
687 0 : return 0;
688 : }
689 :
690 123 : sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
691 123 : if (sb->s_security == NULL)
692 0 : return -ENOMEM;
693 : return 0;
694 : }
695 :
696 : /*
697 : * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
698 : * can be accessed with:
699 : *
700 : * LSM_RET_DEFAULT(<hook_name>)
701 : *
702 : * The macros below define static constants for the default value of each
703 : * LSM hook.
704 : */
705 : #define LSM_RET_DEFAULT(NAME) (NAME##_default)
706 : #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
707 : #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
708 : static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
709 : #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
710 : DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
711 :
712 : #include <linux/lsm_hook_defs.h>
713 : #undef LSM_HOOK
714 :
715 : /*
716 : * Hook list operation macros.
717 : *
718 : * call_void_hook:
719 : * This is a hook that does not return a value.
720 : *
721 : * call_int_hook:
722 : * This is a hook that returns a value.
723 : */
724 :
725 : #define call_void_hook(FUNC, ...) \
726 : do { \
727 : struct security_hook_list *P; \
728 : \
729 : hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
730 : P->hook.FUNC(__VA_ARGS__); \
731 : } while (0)
732 :
733 : #define call_int_hook(FUNC, IRC, ...) ({ \
734 : int RC = IRC; \
735 : do { \
736 : struct security_hook_list *P; \
737 : \
738 : hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
739 : RC = P->hook.FUNC(__VA_ARGS__); \
740 : if (RC != 0) \
741 : break; \
742 : } \
743 : } while (0); \
744 : RC; \
745 : })
746 :
747 : /* Security operations */
748 :
749 0 : int security_binder_set_context_mgr(struct task_struct *mgr)
750 : {
751 0 : return call_int_hook(binder_set_context_mgr, 0, mgr);
752 : }
753 :
754 0 : int security_binder_transaction(struct task_struct *from,
755 : struct task_struct *to)
756 : {
757 0 : return call_int_hook(binder_transaction, 0, from, to);
758 : }
759 :
760 0 : int security_binder_transfer_binder(struct task_struct *from,
761 : struct task_struct *to)
762 : {
763 0 : return call_int_hook(binder_transfer_binder, 0, from, to);
764 : }
765 :
766 0 : int security_binder_transfer_file(struct task_struct *from,
767 : struct task_struct *to, struct file *file)
768 : {
769 0 : return call_int_hook(binder_transfer_file, 0, from, to, file);
770 : }
771 :
772 229 : int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
773 : {
774 898 : return call_int_hook(ptrace_access_check, 0, child, mode);
775 : }
776 :
777 8 : int security_ptrace_traceme(struct task_struct *parent)
778 : {
779 28 : return call_int_hook(ptrace_traceme, 0, parent);
780 : }
781 :
782 522 : int security_capget(struct task_struct *target,
783 : kernel_cap_t *effective,
784 : kernel_cap_t *inheritable,
785 : kernel_cap_t *permitted)
786 : {
787 1566 : return call_int_hook(capget, 0, target,
788 : effective, inheritable, permitted);
789 : }
790 :
791 477 : int security_capset(struct cred *new, const struct cred *old,
792 : const kernel_cap_t *effective,
793 : const kernel_cap_t *inheritable,
794 : const kernel_cap_t *permitted)
795 : {
796 1431 : return call_int_hook(capset, 0, new, old,
797 : effective, inheritable, permitted);
798 : }
799 :
800 30446 : int security_capable(const struct cred *cred,
801 : struct user_namespace *ns,
802 : int cap,
803 : unsigned int opts)
804 : {
805 91282 : return call_int_hook(capable, 0, cred, ns, cap, opts);
806 : }
807 :
808 0 : int security_quotactl(int cmds, int type, int id, struct super_block *sb)
809 : {
810 0 : return call_int_hook(quotactl, 0, cmds, type, id, sb);
811 : }
812 :
813 0 : int security_quota_on(struct dentry *dentry)
814 : {
815 0 : return call_int_hook(quota_on, 0, dentry);
816 : }
817 :
818 7 : int security_syslog(int type)
819 : {
820 14 : return call_int_hook(syslog, 0, type);
821 : }
822 :
823 1 : int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
824 : {
825 3 : return call_int_hook(settime, 0, ts, tz);
826 : }
827 :
828 58544 : int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
829 : {
830 58544 : struct security_hook_list *hp;
831 58544 : int cap_sys_admin = 1;
832 58544 : int rc;
833 :
834 : /*
835 : * The module will respond with a positive value if
836 : * it thinks the __vm_enough_memory() call should be
837 : * made with the cap_sys_admin set. If all of the modules
838 : * agree that it should be set it will. If any module
839 : * thinks it should not be set it won't.
840 : */
841 174064 : hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
842 58544 : rc = hp->hook.vm_enough_memory(mm, pages);
843 58544 : if (rc <= 0) {
844 : cap_sys_admin = 0;
845 : break;
846 : }
847 : }
848 58544 : return __vm_enough_memory(mm, pages, cap_sys_admin);
849 : }
850 :
851 1371 : int security_bprm_creds_for_exec(struct linux_binprm *bprm)
852 : {
853 2742 : return call_int_hook(bprm_creds_for_exec, 0, bprm);
854 : }
855 :
856 1371 : int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
857 : {
858 4113 : return call_int_hook(bprm_creds_from_file, 0, bprm, file);
859 : }
860 :
861 1413 : int security_bprm_check(struct linux_binprm *bprm)
862 : {
863 1413 : int ret;
864 :
865 2826 : ret = call_int_hook(bprm_check_security, 0, bprm);
866 1413 : if (ret)
867 0 : return ret;
868 1413 : return ima_bprm_check(bprm);
869 : }
870 :
871 1371 : void security_bprm_committing_creds(struct linux_binprm *bprm)
872 : {
873 2742 : call_void_hook(bprm_committing_creds, bprm);
874 1371 : }
875 :
876 1371 : void security_bprm_committed_creds(struct linux_binprm *bprm)
877 : {
878 2742 : call_void_hook(bprm_committed_creds, bprm);
879 1371 : }
880 :
881 0 : int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
882 : {
883 0 : return call_int_hook(fs_context_dup, 0, fc, src_fc);
884 : }
885 :
886 332 : int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
887 : {
888 664 : return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
889 : }
890 :
891 123 : int security_sb_alloc(struct super_block *sb)
892 : {
893 123 : int rc = lsm_superblock_alloc(sb);
894 :
895 123 : if (unlikely(rc))
896 : return rc;
897 246 : rc = call_int_hook(sb_alloc_security, 0, sb);
898 123 : if (unlikely(rc))
899 0 : security_sb_free(sb);
900 : return rc;
901 : }
902 :
903 98 : void security_sb_delete(struct super_block *sb)
904 : {
905 196 : call_void_hook(sb_delete, sb);
906 98 : }
907 :
908 99 : void security_sb_free(struct super_block *sb)
909 : {
910 198 : call_void_hook(sb_free_security, sb);
911 99 : kfree(sb->s_security);
912 99 : sb->s_security = NULL;
913 99 : }
914 :
915 131 : void security_free_mnt_opts(void **mnt_opts)
916 : {
917 131 : if (!*mnt_opts)
918 : return;
919 0 : call_void_hook(sb_free_mnt_opts, *mnt_opts);
920 0 : *mnt_opts = NULL;
921 : }
922 : EXPORT_SYMBOL(security_free_mnt_opts);
923 :
924 109 : int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
925 : {
926 218 : return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
927 : }
928 : EXPORT_SYMBOL(security_sb_eat_lsm_opts);
929 :
930 3 : int security_sb_remount(struct super_block *sb,
931 : void *mnt_opts)
932 : {
933 9 : return call_int_hook(sb_remount, 0, sb, mnt_opts);
934 : }
935 : EXPORT_SYMBOL(security_sb_remount);
936 :
937 115 : int security_sb_kern_mount(struct super_block *sb)
938 : {
939 230 : return call_int_hook(sb_kern_mount, 0, sb);
940 : }
941 :
942 4840 : int security_sb_show_options(struct seq_file *m, struct super_block *sb)
943 : {
944 9680 : return call_int_hook(sb_show_options, 0, m, sb);
945 : }
946 :
947 397 : int security_sb_statfs(struct dentry *dentry)
948 : {
949 794 : return call_int_hook(sb_statfs, 0, dentry);
950 : }
951 :
952 250 : int security_sb_mount(const char *dev_name, const struct path *path,
953 : const char *type, unsigned long flags, void *data)
954 : {
955 749 : return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
956 : }
957 :
958 112 : int security_sb_umount(struct vfsmount *mnt, int flags)
959 : {
960 336 : return call_int_hook(sb_umount, 0, mnt, flags);
961 : }
962 :
963 2 : int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
964 : {
965 5 : return call_int_hook(sb_pivotroot, 0, old_path, new_path);
966 : }
967 :
968 127 : int security_sb_set_mnt_opts(struct super_block *sb,
969 : void *mnt_opts,
970 : unsigned long kern_flags,
971 : unsigned long *set_kern_flags)
972 : {
973 381 : return call_int_hook(sb_set_mnt_opts,
974 : mnt_opts ? -EOPNOTSUPP : 0, sb,
975 : mnt_opts, kern_flags, set_kern_flags);
976 : }
977 : EXPORT_SYMBOL(security_sb_set_mnt_opts);
978 :
979 0 : int security_sb_clone_mnt_opts(const struct super_block *oldsb,
980 : struct super_block *newsb,
981 : unsigned long kern_flags,
982 : unsigned long *set_kern_flags)
983 : {
984 0 : return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
985 : kern_flags, set_kern_flags);
986 : }
987 : EXPORT_SYMBOL(security_sb_clone_mnt_opts);
988 :
989 0 : int security_add_mnt_opt(const char *option, const char *val, int len,
990 : void **mnt_opts)
991 : {
992 0 : return call_int_hook(sb_add_mnt_opt, -EINVAL,
993 : option, val, len, mnt_opts);
994 : }
995 : EXPORT_SYMBOL(security_add_mnt_opt);
996 :
997 3 : int security_move_mount(const struct path *from_path, const struct path *to_path)
998 : {
999 8 : return call_int_hook(move_mount, 0, from_path, to_path);
1000 : }
1001 :
1002 100 : int security_path_notify(const struct path *path, u64 mask,
1003 : unsigned int obj_type)
1004 : {
1005 200 : return call_int_hook(path_notify, 0, path, mask, obj_type);
1006 : }
1007 :
1008 18805 : int security_inode_alloc(struct inode *inode)
1009 : {
1010 18805 : int rc = lsm_inode_alloc(inode);
1011 :
1012 18805 : if (unlikely(rc))
1013 : return rc;
1014 37610 : rc = call_int_hook(inode_alloc_security, 0, inode);
1015 18805 : if (unlikely(rc))
1016 0 : security_inode_free(inode);
1017 : return rc;
1018 : }
1019 :
1020 5296 : static void inode_free_by_rcu(struct rcu_head *head)
1021 : {
1022 : /*
1023 : * The rcu head is at the start of the inode blob
1024 : */
1025 5296 : kmem_cache_free(lsm_inode_cache, head);
1026 5297 : }
1027 :
1028 5296 : void security_inode_free(struct inode *inode)
1029 : {
1030 5296 : integrity_inode_free(inode);
1031 10592 : call_void_hook(inode_free_security, inode);
1032 : /*
1033 : * The inode may still be referenced in a path walk and
1034 : * a call to security_inode_permission() can be made
1035 : * after inode_free_security() is called. Ideally, the VFS
1036 : * wouldn't do this, but fixing that is a much harder
1037 : * job. For now, simply free the i_security via RCU, and
1038 : * leave the current inode->i_security pointer intact.
1039 : * The inode will be freed after the RCU grace period too.
1040 : */
1041 5297 : if (inode->i_security)
1042 5297 : call_rcu((struct rcu_head *)inode->i_security,
1043 : inode_free_by_rcu);
1044 5297 : }
1045 :
1046 0 : int security_dentry_init_security(struct dentry *dentry, int mode,
1047 : const struct qstr *name, void **ctx,
1048 : u32 *ctxlen)
1049 : {
1050 0 : return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1051 : name, ctx, ctxlen);
1052 : }
1053 : EXPORT_SYMBOL(security_dentry_init_security);
1054 :
1055 0 : int security_dentry_create_files_as(struct dentry *dentry, int mode,
1056 : struct qstr *name,
1057 : const struct cred *old, struct cred *new)
1058 : {
1059 0 : return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1060 : name, old, new);
1061 : }
1062 : EXPORT_SYMBOL(security_dentry_create_files_as);
1063 :
1064 1637 : int security_inode_init_security(struct inode *inode, struct inode *dir,
1065 : const struct qstr *qstr,
1066 : const initxattrs initxattrs, void *fs_data)
1067 : {
1068 1637 : struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1069 1637 : struct xattr *lsm_xattr, *evm_xattr, *xattr;
1070 1637 : int ret;
1071 :
1072 1637 : if (unlikely(IS_PRIVATE(inode)))
1073 : return 0;
1074 :
1075 1637 : if (!initxattrs)
1076 0 : return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1077 : dir, qstr, NULL, NULL, NULL);
1078 1637 : memset(new_xattrs, 0, sizeof(new_xattrs));
1079 1637 : lsm_xattr = new_xattrs;
1080 3274 : ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1081 : &lsm_xattr->name,
1082 : &lsm_xattr->value,
1083 : &lsm_xattr->value_len);
1084 1637 : if (ret)
1085 1637 : goto out;
1086 :
1087 0 : evm_xattr = lsm_xattr + 1;
1088 0 : ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1089 0 : if (ret)
1090 : goto out;
1091 0 : ret = initxattrs(inode, new_xattrs, fs_data);
1092 1637 : out:
1093 1637 : for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1094 0 : kfree(xattr->value);
1095 1637 : return (ret == -EOPNOTSUPP) ? 0 : ret;
1096 : }
1097 : EXPORT_SYMBOL(security_inode_init_security);
1098 :
1099 0 : int security_inode_init_security_anon(struct inode *inode,
1100 : const struct qstr *name,
1101 : const struct inode *context_inode)
1102 : {
1103 0 : return call_int_hook(inode_init_security_anon, 0, inode, name,
1104 : context_inode);
1105 : }
1106 :
1107 0 : int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1108 : const struct qstr *qstr, const char **name,
1109 : void **value, size_t *len)
1110 : {
1111 0 : if (unlikely(IS_PRIVATE(inode)))
1112 : return -EOPNOTSUPP;
1113 0 : return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1114 : qstr, name, value, len);
1115 : }
1116 : EXPORT_SYMBOL(security_old_inode_init_security);
1117 :
1118 : #ifdef CONFIG_SECURITY_PATH
1119 1341 : int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1120 : unsigned int dev)
1121 : {
1122 1341 : if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1123 : return 0;
1124 4015 : return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1125 : }
1126 : EXPORT_SYMBOL(security_path_mknod);
1127 :
1128 786 : int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1129 : {
1130 786 : if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1131 : return 0;
1132 2357 : return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1133 : }
1134 : EXPORT_SYMBOL(security_path_mkdir);
1135 :
1136 1070 : int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1137 : {
1138 1070 : if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1139 : return 0;
1140 3206 : return call_int_hook(path_rmdir, 0, dir, dentry);
1141 : }
1142 :
1143 795 : int security_path_unlink(const struct path *dir, struct dentry *dentry)
1144 : {
1145 795 : if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1146 : return 0;
1147 2382 : return call_int_hook(path_unlink, 0, dir, dentry);
1148 : }
1149 : EXPORT_SYMBOL(security_path_unlink);
1150 :
1151 210 : int security_path_symlink(const struct path *dir, struct dentry *dentry,
1152 : const char *old_name)
1153 : {
1154 210 : if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1155 : return 0;
1156 629 : return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1157 : }
1158 :
1159 26 : int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1160 : struct dentry *new_dentry)
1161 : {
1162 26 : if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1163 : return 0;
1164 68 : return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1165 : }
1166 :
1167 411 : int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1168 : const struct path *new_dir, struct dentry *new_dentry,
1169 : unsigned int flags)
1170 : {
1171 411 : if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1172 : (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1173 : return 0;
1174 :
1175 411 : if (flags & RENAME_EXCHANGE) {
1176 32 : int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1177 : old_dir, old_dentry);
1178 14 : if (err)
1179 : return err;
1180 : }
1181 :
1182 1191 : return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1183 : new_dentry);
1184 : }
1185 : EXPORT_SYMBOL(security_path_rename);
1186 :
1187 61 : int security_path_truncate(const struct path *path)
1188 : {
1189 61 : if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1190 : return 0;
1191 122 : return call_int_hook(path_truncate, 0, path);
1192 : }
1193 :
1194 447 : int security_path_chmod(const struct path *path, umode_t mode)
1195 : {
1196 447 : if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1197 : return 0;
1198 894 : return call_int_hook(path_chmod, 0, path, mode);
1199 : }
1200 :
1201 194 : int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1202 : {
1203 194 : if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1204 : return 0;
1205 388 : return call_int_hook(path_chown, 0, path, uid, gid);
1206 : }
1207 :
1208 11 : int security_path_chroot(const struct path *path)
1209 : {
1210 22 : return call_int_hook(path_chroot, 0, path);
1211 : }
1212 : #endif
1213 :
1214 1275 : int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1215 : {
1216 1275 : if (unlikely(IS_PRIVATE(dir)))
1217 : return 0;
1218 2550 : return call_int_hook(inode_create, 0, dir, dentry, mode);
1219 : }
1220 : EXPORT_SYMBOL_GPL(security_inode_create);
1221 :
1222 19 : int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1223 : struct dentry *new_dentry)
1224 : {
1225 19 : if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1226 : return 0;
1227 38 : return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1228 : }
1229 :
1230 654 : int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1231 : {
1232 654 : if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1233 : return 0;
1234 1308 : return call_int_hook(inode_unlink, 0, dir, dentry);
1235 : }
1236 :
1237 209 : int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1238 : const char *old_name)
1239 : {
1240 209 : if (unlikely(IS_PRIVATE(dir)))
1241 : return 0;
1242 418 : return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1243 : }
1244 :
1245 789 : int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1246 : {
1247 789 : if (unlikely(IS_PRIVATE(dir)))
1248 : return 0;
1249 1578 : return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1250 : }
1251 : EXPORT_SYMBOL_GPL(security_inode_mkdir);
1252 :
1253 881 : int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1254 : {
1255 881 : if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1256 : return 0;
1257 1762 : return call_int_hook(inode_rmdir, 0, dir, dentry);
1258 : }
1259 :
1260 167 : int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1261 : {
1262 167 : if (unlikely(IS_PRIVATE(dir)))
1263 : return 0;
1264 334 : return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1265 : }
1266 :
1267 392 : int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1268 : struct inode *new_dir, struct dentry *new_dentry,
1269 : unsigned int flags)
1270 : {
1271 392 : if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1272 : (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1273 : return 0;
1274 :
1275 392 : if (flags & RENAME_EXCHANGE) {
1276 8 : int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1277 : old_dir, old_dentry);
1278 4 : if (err)
1279 : return err;
1280 : }
1281 :
1282 784 : return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1283 : new_dir, new_dentry);
1284 : }
1285 :
1286 1156 : int security_inode_readlink(struct dentry *dentry)
1287 : {
1288 1156 : if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1289 : return 0;
1290 2312 : return call_int_hook(inode_readlink, 0, dentry);
1291 : }
1292 :
1293 9196 : int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1294 : bool rcu)
1295 : {
1296 9196 : if (unlikely(IS_PRIVATE(inode)))
1297 : return 0;
1298 18392 : return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1299 : }
1300 :
1301 283410 : int security_inode_permission(struct inode *inode, int mask)
1302 : {
1303 283410 : if (unlikely(IS_PRIVATE(inode)))
1304 : return 0;
1305 566820 : return call_int_hook(inode_permission, 0, inode, mask);
1306 : }
1307 :
1308 1100 : int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1309 : {
1310 1100 : int ret;
1311 :
1312 1100 : if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1313 : return 0;
1314 2200 : ret = call_int_hook(inode_setattr, 0, dentry, attr);
1315 1100 : if (ret)
1316 0 : return ret;
1317 1100 : return evm_inode_setattr(dentry, attr);
1318 : }
1319 : EXPORT_SYMBOL_GPL(security_inode_setattr);
1320 :
1321 48484 : int security_inode_getattr(const struct path *path)
1322 : {
1323 48484 : if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1324 : return 0;
1325 96968 : return call_int_hook(inode_getattr, 0, path);
1326 : }
1327 :
1328 61 : int security_inode_setxattr(struct user_namespace *mnt_userns,
1329 : struct dentry *dentry, const char *name,
1330 : const void *value, size_t size, int flags)
1331 : {
1332 61 : int ret;
1333 :
1334 61 : if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1335 : return 0;
1336 : /*
1337 : * SELinux and Smack integrate the cap call,
1338 : * so assume that all LSMs supplying this call do so.
1339 : */
1340 122 : ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1341 : size, flags);
1342 :
1343 61 : if (ret == 1)
1344 61 : ret = cap_inode_setxattr(dentry, name, value, size, flags);
1345 61 : if (ret)
1346 0 : return ret;
1347 61 : ret = ima_inode_setxattr(dentry, name, value, size);
1348 : if (ret)
1349 : return ret;
1350 61 : return evm_inode_setxattr(dentry, name, value, size);
1351 : }
1352 :
1353 59 : void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1354 : const void *value, size_t size, int flags)
1355 : {
1356 59 : if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1357 : return;
1358 118 : call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1359 59 : evm_inode_post_setxattr(dentry, name, value, size);
1360 : }
1361 :
1362 73 : int security_inode_getxattr(struct dentry *dentry, const char *name)
1363 : {
1364 73 : if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1365 : return 0;
1366 146 : return call_int_hook(inode_getxattr, 0, dentry, name);
1367 : }
1368 :
1369 4 : int security_inode_listxattr(struct dentry *dentry)
1370 : {
1371 4 : if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1372 : return 0;
1373 8 : return call_int_hook(inode_listxattr, 0, dentry);
1374 : }
1375 :
1376 8 : int security_inode_removexattr(struct user_namespace *mnt_userns,
1377 : struct dentry *dentry, const char *name)
1378 : {
1379 8 : int ret;
1380 :
1381 8 : if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1382 : return 0;
1383 : /*
1384 : * SELinux and Smack integrate the cap call,
1385 : * so assume that all LSMs supplying this call do so.
1386 : */
1387 16 : ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1388 8 : if (ret == 1)
1389 8 : ret = cap_inode_removexattr(mnt_userns, dentry, name);
1390 8 : if (ret)
1391 0 : return ret;
1392 8 : ret = ima_inode_removexattr(dentry, name);
1393 : if (ret)
1394 : return ret;
1395 8 : return evm_inode_removexattr(dentry, name);
1396 : }
1397 :
1398 847 : int security_inode_need_killpriv(struct dentry *dentry)
1399 : {
1400 2541 : return call_int_hook(inode_need_killpriv, 0, dentry);
1401 : }
1402 :
1403 0 : int security_inode_killpriv(struct user_namespace *mnt_userns,
1404 : struct dentry *dentry)
1405 : {
1406 0 : return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1407 : }
1408 :
1409 0 : int security_inode_getsecurity(struct user_namespace *mnt_userns,
1410 : struct inode *inode, const char *name,
1411 : void **buffer, bool alloc)
1412 : {
1413 0 : struct security_hook_list *hp;
1414 0 : int rc;
1415 :
1416 0 : if (unlikely(IS_PRIVATE(inode)))
1417 : return LSM_RET_DEFAULT(inode_getsecurity);
1418 : /*
1419 : * Only one module will provide an attribute with a given name.
1420 : */
1421 0 : hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1422 0 : rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1423 0 : if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1424 0 : return rc;
1425 : }
1426 : return LSM_RET_DEFAULT(inode_getsecurity);
1427 : }
1428 :
1429 0 : int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1430 : {
1431 0 : struct security_hook_list *hp;
1432 0 : int rc;
1433 :
1434 0 : if (unlikely(IS_PRIVATE(inode)))
1435 : return LSM_RET_DEFAULT(inode_setsecurity);
1436 : /*
1437 : * Only one module will provide an attribute with a given name.
1438 : */
1439 0 : hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1440 0 : rc = hp->hook.inode_setsecurity(inode, name, value, size,
1441 : flags);
1442 0 : if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1443 0 : return rc;
1444 : }
1445 : return LSM_RET_DEFAULT(inode_setsecurity);
1446 : }
1447 :
1448 0 : int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1449 : {
1450 0 : if (unlikely(IS_PRIVATE(inode)))
1451 : return 0;
1452 0 : return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1453 : }
1454 : EXPORT_SYMBOL(security_inode_listsecurity);
1455 :
1456 0 : void security_inode_getsecid(struct inode *inode, u32 *secid)
1457 : {
1458 0 : call_void_hook(inode_getsecid, inode, secid);
1459 0 : }
1460 :
1461 4 : int security_inode_copy_up(struct dentry *src, struct cred **new)
1462 : {
1463 8 : return call_int_hook(inode_copy_up, 0, src, new);
1464 : }
1465 : EXPORT_SYMBOL(security_inode_copy_up);
1466 :
1467 0 : int security_inode_copy_up_xattr(const char *name)
1468 : {
1469 0 : struct security_hook_list *hp;
1470 0 : int rc;
1471 :
1472 : /*
1473 : * The implementation can return 0 (accept the xattr), 1 (discard the
1474 : * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1475 : * any other error code incase of an error.
1476 : */
1477 0 : hlist_for_each_entry(hp,
1478 : &security_hook_heads.inode_copy_up_xattr, list) {
1479 0 : rc = hp->hook.inode_copy_up_xattr(name);
1480 0 : if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1481 0 : return rc;
1482 : }
1483 :
1484 : return LSM_RET_DEFAULT(inode_copy_up_xattr);
1485 : }
1486 : EXPORT_SYMBOL(security_inode_copy_up_xattr);
1487 :
1488 8509 : int security_kernfs_init_security(struct kernfs_node *kn_dir,
1489 : struct kernfs_node *kn)
1490 : {
1491 17018 : return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1492 : }
1493 :
1494 46815 : int security_file_permission(struct file *file, int mask)
1495 : {
1496 46815 : int ret;
1497 :
1498 93630 : ret = call_int_hook(file_permission, 0, file, mask);
1499 46815 : if (ret)
1500 : return ret;
1501 :
1502 46815 : return fsnotify_perm(file, mask);
1503 : }
1504 :
1505 65851 : int security_file_alloc(struct file *file)
1506 : {
1507 65851 : int rc = lsm_file_alloc(file);
1508 :
1509 65851 : if (rc)
1510 : return rc;
1511 131702 : rc = call_int_hook(file_alloc_security, 0, file);
1512 65851 : if (unlikely(rc))
1513 0 : security_file_free(file);
1514 : return rc;
1515 : }
1516 :
1517 65228 : void security_file_free(struct file *file)
1518 : {
1519 65228 : void *blob;
1520 :
1521 130456 : call_void_hook(file_free_security, file);
1522 :
1523 65244 : blob = file->f_security;
1524 65244 : if (blob) {
1525 0 : file->f_security = NULL;
1526 0 : kmem_cache_free(lsm_file_cache, blob);
1527 : }
1528 65244 : }
1529 :
1530 14852 : int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1531 : {
1532 29704 : return call_int_hook(file_ioctl, 0, file, cmd, arg);
1533 : }
1534 : EXPORT_SYMBOL_GPL(security_file_ioctl);
1535 :
1536 35805 : static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1537 : {
1538 : /*
1539 : * Does we have PROT_READ and does the application expect
1540 : * it to imply PROT_EXEC? If not, nothing to talk about...
1541 : */
1542 35805 : if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1543 : return prot;
1544 28506 : if (!(current->personality & READ_IMPLIES_EXEC))
1545 : return prot;
1546 : /*
1547 : * if that's an anonymous mapping, let it.
1548 : */
1549 0 : if (!file)
1550 0 : return prot | PROT_EXEC;
1551 : /*
1552 : * ditto if it's not on noexec mount, except that on !MMU we need
1553 : * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1554 : */
1555 0 : if (!path_noexec(&file->f_path)) {
1556 : #ifndef CONFIG_MMU
1557 : if (file->f_op->mmap_capabilities) {
1558 : unsigned caps = file->f_op->mmap_capabilities(file);
1559 : if (!(caps & NOMMU_MAP_EXEC))
1560 : return prot;
1561 : }
1562 : #endif
1563 0 : return prot | PROT_EXEC;
1564 : }
1565 : /* anything on noexec mount won't get PROT_EXEC */
1566 : return prot;
1567 : }
1568 :
1569 35805 : int security_mmap_file(struct file *file, unsigned long prot,
1570 : unsigned long flags)
1571 : {
1572 35805 : int ret;
1573 107415 : ret = call_int_hook(mmap_file, 0, file, prot,
1574 : mmap_prot(file, prot), flags);
1575 35805 : if (ret)
1576 0 : return ret;
1577 35805 : return ima_file_mmap(file, prot);
1578 : }
1579 :
1580 40779 : int security_mmap_addr(unsigned long addr)
1581 : {
1582 122337 : return call_int_hook(mmap_addr, 0, addr);
1583 : }
1584 :
1585 9732 : int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1586 : unsigned long prot)
1587 : {
1588 9732 : int ret;
1589 :
1590 19464 : ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1591 9732 : if (ret)
1592 0 : return ret;
1593 9732 : return ima_file_mprotect(vma, prot);
1594 : }
1595 :
1596 240 : int security_file_lock(struct file *file, unsigned int cmd)
1597 : {
1598 480 : return call_int_hook(file_lock, 0, file, cmd);
1599 : }
1600 :
1601 4733 : int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1602 : {
1603 9466 : return call_int_hook(file_fcntl, 0, file, cmd, arg);
1604 : }
1605 :
1606 0 : void security_file_set_fowner(struct file *file)
1607 : {
1608 0 : call_void_hook(file_set_fowner, file);
1609 0 : }
1610 :
1611 0 : int security_file_send_sigiotask(struct task_struct *tsk,
1612 : struct fown_struct *fown, int sig)
1613 : {
1614 0 : return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1615 : }
1616 :
1617 54 : int security_file_receive(struct file *file)
1618 : {
1619 108 : return call_int_hook(file_receive, 0, file);
1620 : }
1621 :
1622 17733 : int security_file_open(struct file *file)
1623 : {
1624 17733 : int ret;
1625 :
1626 53058 : ret = call_int_hook(file_open, 0, file);
1627 17735 : if (ret)
1628 : return ret;
1629 :
1630 17592 : return fsnotify_perm(file, MAY_OPEN);
1631 : }
1632 :
1633 1736 : int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1634 : {
1635 1736 : int rc = lsm_task_alloc(task);
1636 :
1637 1736 : if (rc)
1638 : return rc;
1639 3472 : rc = call_int_hook(task_alloc, 0, task, clone_flags);
1640 1736 : if (unlikely(rc))
1641 0 : security_task_free(task);
1642 : return rc;
1643 : }
1644 :
1645 1659 : void security_task_free(struct task_struct *task)
1646 : {
1647 3318 : call_void_hook(task_free, task);
1648 :
1649 1659 : kfree(task->security);
1650 1659 : task->security = NULL;
1651 1659 : }
1652 :
1653 0 : int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1654 : {
1655 0 : int rc = lsm_cred_alloc(cred, gfp);
1656 :
1657 0 : if (rc)
1658 : return rc;
1659 :
1660 0 : rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1661 0 : if (unlikely(rc))
1662 0 : security_cred_free(cred);
1663 : return rc;
1664 : }
1665 :
1666 10336 : void security_cred_free(struct cred *cred)
1667 : {
1668 : /*
1669 : * There is a failure case in prepare_creds() that
1670 : * may result in a call here with ->security being NULL.
1671 : */
1672 10336 : if (unlikely(cred->security == NULL))
1673 : return;
1674 :
1675 20672 : call_void_hook(cred_free, cred);
1676 :
1677 10337 : kfree(cred->security);
1678 10337 : cred->security = NULL;
1679 : }
1680 :
1681 10458 : int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1682 : {
1683 10458 : int rc = lsm_cred_alloc(new, gfp);
1684 :
1685 10458 : if (rc)
1686 : return rc;
1687 :
1688 31374 : rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1689 10458 : if (unlikely(rc))
1690 0 : security_cred_free(new);
1691 : return rc;
1692 : }
1693 :
1694 0 : void security_transfer_creds(struct cred *new, const struct cred *old)
1695 : {
1696 0 : call_void_hook(cred_transfer, new, old);
1697 0 : }
1698 :
1699 0 : void security_cred_getsecid(const struct cred *c, u32 *secid)
1700 : {
1701 0 : *secid = 0;
1702 0 : call_void_hook(cred_getsecid, c, secid);
1703 0 : }
1704 : EXPORT_SYMBOL(security_cred_getsecid);
1705 :
1706 0 : int security_kernel_act_as(struct cred *new, u32 secid)
1707 : {
1708 0 : return call_int_hook(kernel_act_as, 0, new, secid);
1709 : }
1710 :
1711 0 : int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1712 : {
1713 0 : return call_int_hook(kernel_create_files_as, 0, new, inode);
1714 : }
1715 :
1716 0 : int security_kernel_module_request(char *kmod_name)
1717 : {
1718 0 : int ret;
1719 :
1720 0 : ret = call_int_hook(kernel_module_request, 0, kmod_name);
1721 0 : if (ret)
1722 0 : return ret;
1723 0 : return integrity_kernel_module_request(kmod_name);
1724 : }
1725 :
1726 0 : int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1727 : bool contents)
1728 : {
1729 0 : int ret;
1730 :
1731 0 : ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1732 0 : if (ret)
1733 0 : return ret;
1734 0 : return ima_read_file(file, id, contents);
1735 : }
1736 : EXPORT_SYMBOL_GPL(security_kernel_read_file);
1737 :
1738 0 : int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1739 : enum kernel_read_file_id id)
1740 : {
1741 0 : int ret;
1742 :
1743 0 : ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1744 0 : if (ret)
1745 0 : return ret;
1746 0 : return ima_post_read_file(file, buf, size, id);
1747 : }
1748 : EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1749 :
1750 0 : int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1751 : {
1752 0 : int ret;
1753 :
1754 0 : ret = call_int_hook(kernel_load_data, 0, id, contents);
1755 0 : if (ret)
1756 0 : return ret;
1757 0 : return ima_load_data(id, contents);
1758 : }
1759 : EXPORT_SYMBOL_GPL(security_kernel_load_data);
1760 :
1761 0 : int security_kernel_post_load_data(char *buf, loff_t size,
1762 : enum kernel_load_data_id id,
1763 : char *description)
1764 : {
1765 0 : int ret;
1766 :
1767 0 : ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1768 : description);
1769 0 : if (ret)
1770 0 : return ret;
1771 0 : return ima_post_load_data(buf, size, id, description);
1772 : }
1773 : EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1774 :
1775 61 : int security_task_fix_setuid(struct cred *new, const struct cred *old,
1776 : int flags)
1777 : {
1778 183 : return call_int_hook(task_fix_setuid, 0, new, old, flags);
1779 : }
1780 :
1781 103 : int security_task_fix_setgid(struct cred *new, const struct cred *old,
1782 : int flags)
1783 : {
1784 206 : return call_int_hook(task_fix_setgid, 0, new, old, flags);
1785 : }
1786 :
1787 0 : int security_task_setpgid(struct task_struct *p, pid_t pgid)
1788 : {
1789 0 : return call_int_hook(task_setpgid, 0, p, pgid);
1790 : }
1791 :
1792 0 : int security_task_getpgid(struct task_struct *p)
1793 : {
1794 0 : return call_int_hook(task_getpgid, 0, p);
1795 : }
1796 :
1797 0 : int security_task_getsid(struct task_struct *p)
1798 : {
1799 0 : return call_int_hook(task_getsid, 0, p);
1800 : }
1801 :
1802 0 : void security_task_getsecid(struct task_struct *p, u32 *secid)
1803 : {
1804 0 : *secid = 0;
1805 0 : call_void_hook(task_getsecid, p, secid);
1806 0 : }
1807 : EXPORT_SYMBOL(security_task_getsecid);
1808 :
1809 9 : int security_task_setnice(struct task_struct *p, int nice)
1810 : {
1811 27 : return call_int_hook(task_setnice, 0, p, nice);
1812 : }
1813 :
1814 6 : int security_task_setioprio(struct task_struct *p, int ioprio)
1815 : {
1816 18 : return call_int_hook(task_setioprio, 0, p, ioprio);
1817 : }
1818 :
1819 2 : int security_task_getioprio(struct task_struct *p)
1820 : {
1821 4 : return call_int_hook(task_getioprio, 0, p);
1822 : }
1823 :
1824 0 : int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1825 : unsigned int flags)
1826 : {
1827 0 : return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1828 : }
1829 :
1830 222 : int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1831 : struct rlimit *new_rlim)
1832 : {
1833 444 : return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1834 : }
1835 :
1836 3 : int security_task_setscheduler(struct task_struct *p)
1837 : {
1838 9 : return call_int_hook(task_setscheduler, 0, p);
1839 : }
1840 :
1841 5 : int security_task_getscheduler(struct task_struct *p)
1842 : {
1843 10 : return call_int_hook(task_getscheduler, 0, p);
1844 : }
1845 :
1846 0 : int security_task_movememory(struct task_struct *p)
1847 : {
1848 0 : return call_int_hook(task_movememory, 0, p);
1849 : }
1850 :
1851 40 : int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1852 : int sig, const struct cred *cred)
1853 : {
1854 80 : return call_int_hook(task_kill, 0, p, info, sig, cred);
1855 : }
1856 :
1857 696 : int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1858 : unsigned long arg4, unsigned long arg5)
1859 : {
1860 696 : int thisrc;
1861 696 : int rc = LSM_RET_DEFAULT(task_prctl);
1862 696 : struct security_hook_list *hp;
1863 :
1864 2782 : hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1865 696 : thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1866 696 : if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1867 157 : rc = thisrc;
1868 157 : if (thisrc != 0)
1869 : break;
1870 : }
1871 : }
1872 696 : return rc;
1873 : }
1874 :
1875 9552 : void security_task_to_inode(struct task_struct *p, struct inode *inode)
1876 : {
1877 19104 : call_void_hook(task_to_inode, p, inode);
1878 9552 : }
1879 :
1880 0 : int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1881 : {
1882 0 : return call_int_hook(ipc_permission, 0, ipcp, flag);
1883 : }
1884 :
1885 0 : void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1886 : {
1887 0 : *secid = 0;
1888 0 : call_void_hook(ipc_getsecid, ipcp, secid);
1889 0 : }
1890 :
1891 0 : int security_msg_msg_alloc(struct msg_msg *msg)
1892 : {
1893 0 : int rc = lsm_msg_msg_alloc(msg);
1894 :
1895 0 : if (unlikely(rc))
1896 : return rc;
1897 0 : rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1898 0 : if (unlikely(rc))
1899 0 : security_msg_msg_free(msg);
1900 : return rc;
1901 : }
1902 :
1903 0 : void security_msg_msg_free(struct msg_msg *msg)
1904 : {
1905 0 : call_void_hook(msg_msg_free_security, msg);
1906 0 : kfree(msg->security);
1907 0 : msg->security = NULL;
1908 0 : }
1909 :
1910 0 : int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1911 : {
1912 0 : int rc = lsm_ipc_alloc(msq);
1913 :
1914 0 : if (unlikely(rc))
1915 : return rc;
1916 0 : rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1917 0 : if (unlikely(rc))
1918 0 : security_msg_queue_free(msq);
1919 : return rc;
1920 : }
1921 :
1922 0 : void security_msg_queue_free(struct kern_ipc_perm *msq)
1923 : {
1924 0 : call_void_hook(msg_queue_free_security, msq);
1925 0 : kfree(msq->security);
1926 0 : msq->security = NULL;
1927 0 : }
1928 :
1929 0 : int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1930 : {
1931 0 : return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1932 : }
1933 :
1934 0 : int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1935 : {
1936 0 : return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1937 : }
1938 :
1939 0 : int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1940 : struct msg_msg *msg, int msqflg)
1941 : {
1942 0 : return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1943 : }
1944 :
1945 0 : int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1946 : struct task_struct *target, long type, int mode)
1947 : {
1948 0 : return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1949 : }
1950 :
1951 0 : int security_shm_alloc(struct kern_ipc_perm *shp)
1952 : {
1953 0 : int rc = lsm_ipc_alloc(shp);
1954 :
1955 0 : if (unlikely(rc))
1956 : return rc;
1957 0 : rc = call_int_hook(shm_alloc_security, 0, shp);
1958 0 : if (unlikely(rc))
1959 0 : security_shm_free(shp);
1960 : return rc;
1961 : }
1962 :
1963 0 : void security_shm_free(struct kern_ipc_perm *shp)
1964 : {
1965 0 : call_void_hook(shm_free_security, shp);
1966 0 : kfree(shp->security);
1967 0 : shp->security = NULL;
1968 0 : }
1969 :
1970 0 : int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1971 : {
1972 0 : return call_int_hook(shm_associate, 0, shp, shmflg);
1973 : }
1974 :
1975 0 : int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1976 : {
1977 0 : return call_int_hook(shm_shmctl, 0, shp, cmd);
1978 : }
1979 :
1980 0 : int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1981 : {
1982 0 : return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1983 : }
1984 :
1985 0 : int security_sem_alloc(struct kern_ipc_perm *sma)
1986 : {
1987 0 : int rc = lsm_ipc_alloc(sma);
1988 :
1989 0 : if (unlikely(rc))
1990 : return rc;
1991 0 : rc = call_int_hook(sem_alloc_security, 0, sma);
1992 0 : if (unlikely(rc))
1993 0 : security_sem_free(sma);
1994 : return rc;
1995 : }
1996 :
1997 0 : void security_sem_free(struct kern_ipc_perm *sma)
1998 : {
1999 0 : call_void_hook(sem_free_security, sma);
2000 0 : kfree(sma->security);
2001 0 : sma->security = NULL;
2002 0 : }
2003 :
2004 0 : int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2005 : {
2006 0 : return call_int_hook(sem_associate, 0, sma, semflg);
2007 : }
2008 :
2009 0 : int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2010 : {
2011 0 : return call_int_hook(sem_semctl, 0, sma, cmd);
2012 : }
2013 :
2014 0 : int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2015 : unsigned nsops, int alter)
2016 : {
2017 0 : return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2018 : }
2019 :
2020 18999 : void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2021 : {
2022 18999 : if (unlikely(inode && IS_PRIVATE(inode)))
2023 : return;
2024 37652 : call_void_hook(d_instantiate, dentry, inode);
2025 : }
2026 : EXPORT_SYMBOL(security_d_instantiate);
2027 :
2028 45 : int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2029 : char **value)
2030 : {
2031 45 : struct security_hook_list *hp;
2032 :
2033 90 : hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2034 0 : if (lsm != NULL && strcmp(lsm, hp->lsm))
2035 0 : continue;
2036 0 : return hp->hook.getprocattr(p, name, value);
2037 : }
2038 : return LSM_RET_DEFAULT(getprocattr);
2039 : }
2040 :
2041 0 : int security_setprocattr(const char *lsm, const char *name, void *value,
2042 : size_t size)
2043 : {
2044 0 : struct security_hook_list *hp;
2045 :
2046 0 : hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2047 0 : if (lsm != NULL && strcmp(lsm, hp->lsm))
2048 0 : continue;
2049 0 : return hp->hook.setprocattr(name, value, size);
2050 : }
2051 : return LSM_RET_DEFAULT(setprocattr);
2052 : }
2053 :
2054 404 : int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2055 : {
2056 808 : return call_int_hook(netlink_send, 0, sk, skb);
2057 : }
2058 :
2059 0 : int security_ismaclabel(const char *name)
2060 : {
2061 0 : return call_int_hook(ismaclabel, 0, name);
2062 : }
2063 : EXPORT_SYMBOL(security_ismaclabel);
2064 :
2065 0 : int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2066 : {
2067 0 : struct security_hook_list *hp;
2068 0 : int rc;
2069 :
2070 : /*
2071 : * Currently, only one LSM can implement secid_to_secctx (i.e this
2072 : * LSM hook is not "stackable").
2073 : */
2074 0 : hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2075 0 : rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2076 0 : if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2077 0 : return rc;
2078 : }
2079 :
2080 : return LSM_RET_DEFAULT(secid_to_secctx);
2081 : }
2082 : EXPORT_SYMBOL(security_secid_to_secctx);
2083 :
2084 0 : int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2085 : {
2086 0 : *secid = 0;
2087 0 : return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2088 : }
2089 : EXPORT_SYMBOL(security_secctx_to_secid);
2090 :
2091 0 : void security_release_secctx(char *secdata, u32 seclen)
2092 : {
2093 0 : call_void_hook(release_secctx, secdata, seclen);
2094 0 : }
2095 : EXPORT_SYMBOL(security_release_secctx);
2096 :
2097 0 : void security_inode_invalidate_secctx(struct inode *inode)
2098 : {
2099 0 : call_void_hook(inode_invalidate_secctx, inode);
2100 0 : }
2101 : EXPORT_SYMBOL(security_inode_invalidate_secctx);
2102 :
2103 0 : int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2104 : {
2105 0 : return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2106 : }
2107 : EXPORT_SYMBOL(security_inode_notifysecctx);
2108 :
2109 0 : int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2110 : {
2111 0 : return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2112 : }
2113 : EXPORT_SYMBOL(security_inode_setsecctx);
2114 :
2115 0 : int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2116 : {
2117 0 : return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2118 : }
2119 : EXPORT_SYMBOL(security_inode_getsecctx);
2120 :
2121 : #ifdef CONFIG_WATCH_QUEUE
2122 : int security_post_notification(const struct cred *w_cred,
2123 : const struct cred *cred,
2124 : struct watch_notification *n)
2125 : {
2126 : return call_int_hook(post_notification, 0, w_cred, cred, n);
2127 : }
2128 : #endif /* CONFIG_WATCH_QUEUE */
2129 :
2130 : #ifdef CONFIG_KEY_NOTIFICATIONS
2131 : int security_watch_key(struct key *key)
2132 : {
2133 : return call_int_hook(watch_key, 0, key);
2134 : }
2135 : #endif
2136 :
2137 : #ifdef CONFIG_SECURITY_NETWORK
2138 :
2139 : int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2140 : {
2141 : return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2142 : }
2143 : EXPORT_SYMBOL(security_unix_stream_connect);
2144 :
2145 : int security_unix_may_send(struct socket *sock, struct socket *other)
2146 : {
2147 : return call_int_hook(unix_may_send, 0, sock, other);
2148 : }
2149 : EXPORT_SYMBOL(security_unix_may_send);
2150 :
2151 : int security_socket_create(int family, int type, int protocol, int kern)
2152 : {
2153 : return call_int_hook(socket_create, 0, family, type, protocol, kern);
2154 : }
2155 :
2156 : int security_socket_post_create(struct socket *sock, int family,
2157 : int type, int protocol, int kern)
2158 : {
2159 : return call_int_hook(socket_post_create, 0, sock, family, type,
2160 : protocol, kern);
2161 : }
2162 :
2163 : int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2164 : {
2165 : return call_int_hook(socket_socketpair, 0, socka, sockb);
2166 : }
2167 : EXPORT_SYMBOL(security_socket_socketpair);
2168 :
2169 : int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2170 : {
2171 : return call_int_hook(socket_bind, 0, sock, address, addrlen);
2172 : }
2173 :
2174 : int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2175 : {
2176 : return call_int_hook(socket_connect, 0, sock, address, addrlen);
2177 : }
2178 :
2179 : int security_socket_listen(struct socket *sock, int backlog)
2180 : {
2181 : return call_int_hook(socket_listen, 0, sock, backlog);
2182 : }
2183 :
2184 : int security_socket_accept(struct socket *sock, struct socket *newsock)
2185 : {
2186 : return call_int_hook(socket_accept, 0, sock, newsock);
2187 : }
2188 :
2189 : int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2190 : {
2191 : return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2192 : }
2193 :
2194 : int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2195 : int size, int flags)
2196 : {
2197 : return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2198 : }
2199 :
2200 : int security_socket_getsockname(struct socket *sock)
2201 : {
2202 : return call_int_hook(socket_getsockname, 0, sock);
2203 : }
2204 :
2205 : int security_socket_getpeername(struct socket *sock)
2206 : {
2207 : return call_int_hook(socket_getpeername, 0, sock);
2208 : }
2209 :
2210 : int security_socket_getsockopt(struct socket *sock, int level, int optname)
2211 : {
2212 : return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2213 : }
2214 :
2215 : int security_socket_setsockopt(struct socket *sock, int level, int optname)
2216 : {
2217 : return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2218 : }
2219 :
2220 : int security_socket_shutdown(struct socket *sock, int how)
2221 : {
2222 : return call_int_hook(socket_shutdown, 0, sock, how);
2223 : }
2224 :
2225 : int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2226 : {
2227 : return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2228 : }
2229 : EXPORT_SYMBOL(security_sock_rcv_skb);
2230 :
2231 : int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2232 : int __user *optlen, unsigned len)
2233 : {
2234 : return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2235 : optval, optlen, len);
2236 : }
2237 :
2238 : int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2239 : {
2240 : return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2241 : skb, secid);
2242 : }
2243 : EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2244 :
2245 : int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2246 : {
2247 : return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2248 : }
2249 :
2250 : void security_sk_free(struct sock *sk)
2251 : {
2252 : call_void_hook(sk_free_security, sk);
2253 : }
2254 :
2255 : void security_sk_clone(const struct sock *sk, struct sock *newsk)
2256 : {
2257 : call_void_hook(sk_clone_security, sk, newsk);
2258 : }
2259 : EXPORT_SYMBOL(security_sk_clone);
2260 :
2261 : void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2262 : {
2263 : call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2264 : }
2265 : EXPORT_SYMBOL(security_sk_classify_flow);
2266 :
2267 : void security_req_classify_flow(const struct request_sock *req,
2268 : struct flowi_common *flic)
2269 : {
2270 : call_void_hook(req_classify_flow, req, flic);
2271 : }
2272 : EXPORT_SYMBOL(security_req_classify_flow);
2273 :
2274 : void security_sock_graft(struct sock *sk, struct socket *parent)
2275 : {
2276 : call_void_hook(sock_graft, sk, parent);
2277 : }
2278 : EXPORT_SYMBOL(security_sock_graft);
2279 :
2280 : int security_inet_conn_request(const struct sock *sk,
2281 : struct sk_buff *skb, struct request_sock *req)
2282 : {
2283 : return call_int_hook(inet_conn_request, 0, sk, skb, req);
2284 : }
2285 : EXPORT_SYMBOL(security_inet_conn_request);
2286 :
2287 : void security_inet_csk_clone(struct sock *newsk,
2288 : const struct request_sock *req)
2289 : {
2290 : call_void_hook(inet_csk_clone, newsk, req);
2291 : }
2292 :
2293 : void security_inet_conn_established(struct sock *sk,
2294 : struct sk_buff *skb)
2295 : {
2296 : call_void_hook(inet_conn_established, sk, skb);
2297 : }
2298 : EXPORT_SYMBOL(security_inet_conn_established);
2299 :
2300 : int security_secmark_relabel_packet(u32 secid)
2301 : {
2302 : return call_int_hook(secmark_relabel_packet, 0, secid);
2303 : }
2304 : EXPORT_SYMBOL(security_secmark_relabel_packet);
2305 :
2306 : void security_secmark_refcount_inc(void)
2307 : {
2308 : call_void_hook(secmark_refcount_inc);
2309 : }
2310 : EXPORT_SYMBOL(security_secmark_refcount_inc);
2311 :
2312 : void security_secmark_refcount_dec(void)
2313 : {
2314 : call_void_hook(secmark_refcount_dec);
2315 : }
2316 : EXPORT_SYMBOL(security_secmark_refcount_dec);
2317 :
2318 : int security_tun_dev_alloc_security(void **security)
2319 : {
2320 : return call_int_hook(tun_dev_alloc_security, 0, security);
2321 : }
2322 : EXPORT_SYMBOL(security_tun_dev_alloc_security);
2323 :
2324 : void security_tun_dev_free_security(void *security)
2325 : {
2326 : call_void_hook(tun_dev_free_security, security);
2327 : }
2328 : EXPORT_SYMBOL(security_tun_dev_free_security);
2329 :
2330 : int security_tun_dev_create(void)
2331 : {
2332 : return call_int_hook(tun_dev_create, 0);
2333 : }
2334 : EXPORT_SYMBOL(security_tun_dev_create);
2335 :
2336 : int security_tun_dev_attach_queue(void *security)
2337 : {
2338 : return call_int_hook(tun_dev_attach_queue, 0, security);
2339 : }
2340 : EXPORT_SYMBOL(security_tun_dev_attach_queue);
2341 :
2342 : int security_tun_dev_attach(struct sock *sk, void *security)
2343 : {
2344 : return call_int_hook(tun_dev_attach, 0, sk, security);
2345 : }
2346 : EXPORT_SYMBOL(security_tun_dev_attach);
2347 :
2348 : int security_tun_dev_open(void *security)
2349 : {
2350 : return call_int_hook(tun_dev_open, 0, security);
2351 : }
2352 : EXPORT_SYMBOL(security_tun_dev_open);
2353 :
2354 : int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2355 : {
2356 : return call_int_hook(sctp_assoc_request, 0, ep, skb);
2357 : }
2358 : EXPORT_SYMBOL(security_sctp_assoc_request);
2359 :
2360 : int security_sctp_bind_connect(struct sock *sk, int optname,
2361 : struct sockaddr *address, int addrlen)
2362 : {
2363 : return call_int_hook(sctp_bind_connect, 0, sk, optname,
2364 : address, addrlen);
2365 : }
2366 : EXPORT_SYMBOL(security_sctp_bind_connect);
2367 :
2368 : void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2369 : struct sock *newsk)
2370 : {
2371 : call_void_hook(sctp_sk_clone, ep, sk, newsk);
2372 : }
2373 : EXPORT_SYMBOL(security_sctp_sk_clone);
2374 :
2375 : #endif /* CONFIG_SECURITY_NETWORK */
2376 :
2377 : #ifdef CONFIG_SECURITY_INFINIBAND
2378 :
2379 : int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2380 : {
2381 : return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2382 : }
2383 : EXPORT_SYMBOL(security_ib_pkey_access);
2384 :
2385 : int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2386 : {
2387 : return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2388 : }
2389 : EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2390 :
2391 : int security_ib_alloc_security(void **sec)
2392 : {
2393 : return call_int_hook(ib_alloc_security, 0, sec);
2394 : }
2395 : EXPORT_SYMBOL(security_ib_alloc_security);
2396 :
2397 : void security_ib_free_security(void *sec)
2398 : {
2399 : call_void_hook(ib_free_security, sec);
2400 : }
2401 : EXPORT_SYMBOL(security_ib_free_security);
2402 : #endif /* CONFIG_SECURITY_INFINIBAND */
2403 :
2404 : #ifdef CONFIG_SECURITY_NETWORK_XFRM
2405 :
2406 : int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2407 : struct xfrm_user_sec_ctx *sec_ctx,
2408 : gfp_t gfp)
2409 : {
2410 : return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2411 : }
2412 : EXPORT_SYMBOL(security_xfrm_policy_alloc);
2413 :
2414 : int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2415 : struct xfrm_sec_ctx **new_ctxp)
2416 : {
2417 : return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2418 : }
2419 :
2420 : void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2421 : {
2422 : call_void_hook(xfrm_policy_free_security, ctx);
2423 : }
2424 : EXPORT_SYMBOL(security_xfrm_policy_free);
2425 :
2426 : int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2427 : {
2428 : return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2429 : }
2430 :
2431 : int security_xfrm_state_alloc(struct xfrm_state *x,
2432 : struct xfrm_user_sec_ctx *sec_ctx)
2433 : {
2434 : return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2435 : }
2436 : EXPORT_SYMBOL(security_xfrm_state_alloc);
2437 :
2438 : int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2439 : struct xfrm_sec_ctx *polsec, u32 secid)
2440 : {
2441 : return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2442 : }
2443 :
2444 : int security_xfrm_state_delete(struct xfrm_state *x)
2445 : {
2446 : return call_int_hook(xfrm_state_delete_security, 0, x);
2447 : }
2448 : EXPORT_SYMBOL(security_xfrm_state_delete);
2449 :
2450 : void security_xfrm_state_free(struct xfrm_state *x)
2451 : {
2452 : call_void_hook(xfrm_state_free_security, x);
2453 : }
2454 :
2455 : int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2456 : {
2457 : return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2458 : }
2459 :
2460 : int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2461 : struct xfrm_policy *xp,
2462 : const struct flowi_common *flic)
2463 : {
2464 : struct security_hook_list *hp;
2465 : int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2466 :
2467 : /*
2468 : * Since this function is expected to return 0 or 1, the judgment
2469 : * becomes difficult if multiple LSMs supply this call. Fortunately,
2470 : * we can use the first LSM's judgment because currently only SELinux
2471 : * supplies this call.
2472 : *
2473 : * For speed optimization, we explicitly break the loop rather than
2474 : * using the macro
2475 : */
2476 : hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2477 : list) {
2478 : rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2479 : break;
2480 : }
2481 : return rc;
2482 : }
2483 :
2484 : int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2485 : {
2486 : return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2487 : }
2488 :
2489 : void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2490 : {
2491 : int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2492 : 0);
2493 :
2494 : BUG_ON(rc);
2495 : }
2496 : EXPORT_SYMBOL(security_skb_classify_flow);
2497 :
2498 : #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2499 :
2500 : #ifdef CONFIG_KEYS
2501 :
2502 : int security_key_alloc(struct key *key, const struct cred *cred,
2503 : unsigned long flags)
2504 : {
2505 : return call_int_hook(key_alloc, 0, key, cred, flags);
2506 : }
2507 :
2508 : void security_key_free(struct key *key)
2509 : {
2510 : call_void_hook(key_free, key);
2511 : }
2512 :
2513 : int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2514 : enum key_need_perm need_perm)
2515 : {
2516 : return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2517 : }
2518 :
2519 : int security_key_getsecurity(struct key *key, char **_buffer)
2520 : {
2521 : *_buffer = NULL;
2522 : return call_int_hook(key_getsecurity, 0, key, _buffer);
2523 : }
2524 :
2525 : #endif /* CONFIG_KEYS */
2526 :
2527 : #ifdef CONFIG_AUDIT
2528 :
2529 : int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2530 : {
2531 : return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2532 : }
2533 :
2534 : int security_audit_rule_known(struct audit_krule *krule)
2535 : {
2536 : return call_int_hook(audit_rule_known, 0, krule);
2537 : }
2538 :
2539 : void security_audit_rule_free(void *lsmrule)
2540 : {
2541 : call_void_hook(audit_rule_free, lsmrule);
2542 : }
2543 :
2544 : int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2545 : {
2546 : return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2547 : }
2548 : #endif /* CONFIG_AUDIT */
2549 :
2550 : #ifdef CONFIG_BPF_SYSCALL
2551 : int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2552 : {
2553 : return call_int_hook(bpf, 0, cmd, attr, size);
2554 : }
2555 : int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2556 : {
2557 : return call_int_hook(bpf_map, 0, map, fmode);
2558 : }
2559 : int security_bpf_prog(struct bpf_prog *prog)
2560 : {
2561 : return call_int_hook(bpf_prog, 0, prog);
2562 : }
2563 : int security_bpf_map_alloc(struct bpf_map *map)
2564 : {
2565 : return call_int_hook(bpf_map_alloc_security, 0, map);
2566 : }
2567 : int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2568 : {
2569 : return call_int_hook(bpf_prog_alloc_security, 0, aux);
2570 : }
2571 : void security_bpf_map_free(struct bpf_map *map)
2572 : {
2573 : call_void_hook(bpf_map_free_security, map);
2574 : }
2575 : void security_bpf_prog_free(struct bpf_prog_aux *aux)
2576 : {
2577 : call_void_hook(bpf_prog_free_security, aux);
2578 : }
2579 : #endif /* CONFIG_BPF_SYSCALL */
2580 :
2581 3260 : int security_locked_down(enum lockdown_reason what)
2582 : {
2583 6520 : return call_int_hook(locked_down, 0, what);
2584 : }
2585 : EXPORT_SYMBOL(security_locked_down);
2586 :
2587 : #ifdef CONFIG_PERF_EVENTS
2588 0 : int security_perf_event_open(struct perf_event_attr *attr, int type)
2589 : {
2590 0 : return call_int_hook(perf_event_open, 0, attr, type);
2591 : }
2592 :
2593 0 : int security_perf_event_alloc(struct perf_event *event)
2594 : {
2595 0 : return call_int_hook(perf_event_alloc, 0, event);
2596 : }
2597 :
2598 0 : void security_perf_event_free(struct perf_event *event)
2599 : {
2600 0 : call_void_hook(perf_event_free, event);
2601 0 : }
2602 :
2603 0 : int security_perf_event_read(struct perf_event *event)
2604 : {
2605 0 : return call_int_hook(perf_event_read, 0, event);
2606 : }
2607 :
2608 0 : int security_perf_event_write(struct perf_event *event)
2609 : {
2610 0 : return call_int_hook(perf_event_write, 0, event);
2611 : }
2612 : #endif /* CONFIG_PERF_EVENTS */
|