1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
use crate::{uapi, Access, CompatError};
#[cfg(test)]
use std::convert::TryInto;
#[cfg(test)]
use strum::{EnumCount, IntoEnumIterator};
#[cfg(test)]
use strum_macros::{EnumCount as EnumCountMacro, EnumIter};
/// Version of the Landlock [ABI](https://en.wikipedia.org/wiki/Application_binary_interface).
///
/// `ABI` enables getting the features supported by a specific Landlock ABI
/// (without relying on the kernel version which may not be accessible or patched).
/// For example, [`AccessFs::from_all(ABI::V1)`](Access::from_all)
/// gets all the file system access rights defined by the first version.
///
/// Without `ABI`, it would be hazardous to rely on the the full set of access flags
/// (e.g., `BitFlags::<AccessFs>::all()` or `BitFlags::ALL`),
/// a moving target that would change the semantics of your Landlock rule
/// when migrating to a newer version of this crate.
/// Indeed, a simple `cargo update` or `cargo install` run by any developer
/// can result in a new version of this crate (fixing bugs or bringing non-breaking changes).
/// This crate cannot give any guarantee concerning the new restrictions resulting from
/// these unknown bits (i.e. access rights) that would not be controlled by your application but by
/// a future version of this crate instead.
/// Because we cannot know what the effect on your application of an unknown restriction would be
/// when handling an untested Landlock access right (i.e. denied-by-default access),
/// it could trigger bugs in your application.
///
/// This crate provides a set of tools to sandbox as much as possible
/// while guaranteeing a consistent behavior thanks to the [`Compatible`] methods.
/// You should also test with different relevant kernel versions,
/// see [landlock-test-tools](https://github.com/landlock-lsm/landlock-test-tools) and
/// [CI integration](https://github.com/landlock-lsm/rust-landlock/pull/41).
///
/// This way, we can have the guarantee that the use of a set of tested Landlock ABI works as
/// expected because features brought by newer Landlock ABI will never be enabled by default
/// (cf. [Linux kernel compatibility contract](https://docs.kernel.org/userspace-api/landlock.html#compatibility)).
///
/// In a nutshell, test the access rights you request on a kernel that support them and
/// on a kernel that doesn't support them.
#[cfg_attr(
test,
derive(Debug, PartialEq, Eq, PartialOrd, EnumIter, EnumCountMacro)
)]
#[derive(Copy, Clone)]
#[non_exhaustive]
pub enum ABI {
/// Kernel not supporting Landlock, either because it is not built with Landlock
/// or Landlock is not enabled at boot.
Unsupported = 0,
/// First Landlock ABI, introduced with
/// [Linux 5.13](https://git.kernel.org/stable/c/17ae69aba89dbfa2139b7f8024b757ab3cc42f59).
V1 = 1,
/// Second Landlock ABI, introduced with
/// [Linux 5.19](https://git.kernel.org/stable/c/cb44e4f061e16be65b8a16505e121490c66d30d0).
V2 = 2,
/// Third Landlock ABI, introduced with
/// [Linux 6.2](https://git.kernel.org/stable/c/299e2b1967578b1442128ba8b3e86ed3427d3651).
V3 = 3,
/// Fourth Landlock ABI, introduced with
/// [Linux 6.7](https://git.kernel.org/stable/c/136cc1e1f5be75f57f1e0404b94ee1c8792cb07d).
V4 = 4,
/// Fifth Landlock ABI, introduced with
/// [Linux 6.10](https://git.kernel.org/stable/c/2fc0e7892c10734c1b7c613ef04836d57d4676d5).
V5 = 5,
}
impl ABI {
// Must remain private to avoid inconsistent behavior by passing Ok(self) to a builder method,
// e.g. to make it impossible to call ruleset.handle_fs(ABI::new_current()?)
fn new_current() -> Self {
ABI::from(unsafe {
// Landlock ABI version starts at 1 but errno is only set for negative values.
uapi::landlock_create_ruleset(
std::ptr::null(),
0,
uapi::LANDLOCK_CREATE_RULESET_VERSION,
)
})
}
// There is no way to not publicly expose an implementation of an external trait such as
// From<i32>. See RFC https://github.com/rust-lang/rfcs/pull/2529
fn from(value: i32) -> ABI {
match value {
// The only possible error values should be EOPNOTSUPP and ENOSYS, but let's interpret
// all kind of errors as unsupported.
n if n <= 0 => ABI::Unsupported,
1 => ABI::V1,
2 => ABI::V2,
3 => ABI::V3,
4 => ABI::V4,
// Returns the greatest known ABI.
_ => ABI::V5,
}
}
#[cfg(test)]
fn is_known(value: i32) -> bool {
value > 0 && value < ABI::COUNT as i32
}
}
#[test]
fn abi_from() {
// EOPNOTSUPP (-95), ENOSYS (-38)
for n in [-95, -38, -1, 0] {
assert_eq!(ABI::from(n), ABI::Unsupported);
}
let mut last_i = 1;
let mut last_abi = ABI::Unsupported;
for (i, abi) in ABI::iter().enumerate() {
last_i = i.try_into().unwrap();
last_abi = abi;
assert_eq!(ABI::from(last_i), last_abi);
}
assert_eq!(ABI::from(last_i + 1), last_abi);
assert_eq!(ABI::from(9), last_abi);
}
#[test]
fn known_abi() {
assert!(!ABI::is_known(-1));
assert!(!ABI::is_known(0));
assert!(!ABI::is_known(99));
let mut last_i = -1;
for (i, _) in ABI::iter().enumerate().skip(1) {
last_i = i as i32;
assert!(ABI::is_known(last_i));
}
assert!(!ABI::is_known(last_i + 1));
}
#[cfg(test)]
lazy_static! {
static ref TEST_ABI: ABI = match std::env::var("LANDLOCK_CRATE_TEST_ABI") {
Ok(s) => {
let n = s.parse::<i32>().unwrap();
if ABI::is_known(n) || n == 0 {
ABI::from(n)
} else {
panic!("Unknown ABI: {n}");
}
}
Err(std::env::VarError::NotPresent) => ABI::iter().last().unwrap(),
Err(e) => panic!("Failed to read LANDLOCK_CRATE_TEST_ABI: {e}"),
};
}
#[cfg(test)]
pub(crate) fn can_emulate(mock: ABI, partial_support: ABI, full_support: Option<ABI>) -> bool {
mock < partial_support
|| mock <= *TEST_ABI
|| if let Some(full) = full_support {
full <= *TEST_ABI
} else {
partial_support <= *TEST_ABI
}
}
#[cfg(test)]
pub(crate) fn get_errno_from_landlock_status() -> Option<i32> {
use std::io::Error;
if unsafe {
uapi::landlock_create_ruleset(std::ptr::null(), 0, uapi::LANDLOCK_CREATE_RULESET_VERSION)
} < 0
{
match Error::last_os_error().raw_os_error() {
// Returns ENOSYS when the kernel is not built with Landlock support,
// or EOPNOTSUPP when Landlock is supported but disabled at boot time.
ret @ Some(libc::ENOSYS | libc::EOPNOTSUPP) => ret,
// Other values can only come from bogus seccomp filters or debug tampering.
_ => unreachable!(),
}
} else {
None
}
}
#[test]
fn current_kernel_abi() {
// Ensures that the tested Landlock ABI is the latest known version supported by the running
// kernel. If this test failed, you need set the LANDLOCK_CRATE_TEST_ABI environment variable
// to the Landlock ABI version supported by your kernel. With a missing variable, the latest
// Landlock ABI version known by this crate is automatically set.
// From Linux 5.13 to 5.18, you need to run: LANDLOCK_CRATE_TEST_ABI=1 cargo test
assert_eq!(*TEST_ABI, ABI::new_current());
}
// CompatState is not public outside this crate.
/// Returned by ruleset builder.
#[cfg_attr(test, derive(Debug))]
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum CompatState {
/// Initial undefined state.
Init,
/// All requested restrictions are enforced.
Full,
/// Some requested restrictions are enforced, following a best-effort approach.
Partial,
/// The running system doesn't support Landlock.
No,
/// Final unsupported state.
Dummy,
}
impl CompatState {
fn update(&mut self, other: Self) {
*self = match (*self, other) {
(CompatState::Init, other) => other,
(CompatState::Dummy, _) => CompatState::Dummy,
(_, CompatState::Dummy) => CompatState::Dummy,
(CompatState::No, CompatState::No) => CompatState::No,
(CompatState::Full, CompatState::Full) => CompatState::Full,
(_, _) => CompatState::Partial,
}
}
}
#[test]
fn compat_state_update_1() {
let mut state = CompatState::Full;
state.update(CompatState::Full);
assert_eq!(state, CompatState::Full);
state.update(CompatState::No);
assert_eq!(state, CompatState::Partial);
state.update(CompatState::Full);
assert_eq!(state, CompatState::Partial);
state.update(CompatState::Full);
assert_eq!(state, CompatState::Partial);
state.update(CompatState::No);
assert_eq!(state, CompatState::Partial);
state.update(CompatState::Dummy);
assert_eq!(state, CompatState::Dummy);
state.update(CompatState::Full);
assert_eq!(state, CompatState::Dummy);
}
#[test]
fn compat_state_update_2() {
let mut state = CompatState::Full;
state.update(CompatState::Full);
assert_eq!(state, CompatState::Full);
state.update(CompatState::No);
assert_eq!(state, CompatState::Partial);
state.update(CompatState::Full);
assert_eq!(state, CompatState::Partial);
}
#[cfg_attr(test, derive(Debug, PartialEq))]
#[derive(Copy, Clone)]
pub(crate) struct Compatibility {
abi: ABI,
pub(crate) level: Option<CompatLevel>,
pub(crate) state: CompatState,
}
impl From<ABI> for Compatibility {
fn from(abi: ABI) -> Self {
Compatibility {
abi,
level: Default::default(),
state: CompatState::Init,
}
}
}
impl Compatibility {
// Compatibility is a semi-opaque struct.
#[allow(clippy::new_without_default)]
pub(crate) fn new() -> Self {
ABI::new_current().into()
}
pub(crate) fn update(&mut self, state: CompatState) {
self.state.update(state);
}
pub(crate) fn abi(&self) -> ABI {
self.abi
}
}
pub(crate) mod private {
use crate::CompatLevel;
pub trait OptionCompatLevelMut {
fn as_option_compat_level_mut(&mut self) -> &mut Option<CompatLevel>;
}
}
/// Properly handles runtime unsupported features.
///
/// This guarantees consistent behaviors across crate users
/// and runtime kernels even if this crate get new features.
/// It eases backward compatibility and enables future-proofness.
///
/// Landlock is a security feature designed to help improve security of a running system
/// thanks to application developers.
/// To protect users as much as possible,
/// compatibility with the running system should then be handled in a best-effort way,
/// contrary to common system features.
/// In some circumstances
/// (e.g. applications carefully designed to only be run with a specific set of kernel features),
/// it may be required to error out if some of these features are not available
/// and will then not be enforced.
pub trait Compatible: Sized + private::OptionCompatLevelMut {
/// To enable a best-effort security approach,
/// Landlock features that are not supported by the running system
/// are silently ignored by default,
/// which is a sane choice for most use cases.
/// However, on some rare circumstances,
/// developers may want to have some guarantees that their applications
/// will not run if a certain level of sandboxing is not possible.
/// If we really want to error out when not all our requested requirements are met,
/// then we can configure it with `set_compatibility()`.
///
/// The `Compatible` trait is implemented for all object builders
/// (e.g. [`Ruleset`](crate::Ruleset)).
/// Such builders have a set of methods to incrementally build an object.
/// These build methods rely on kernel features that may not be available at runtime.
/// The `set_compatibility()` method enables to control the effect of
/// the following build method calls starting after the `set_compatibility()` call.
/// Such effect can be:
/// * to silently ignore unsupported features
/// and continue building ([`CompatLevel::BestEffort`]);
/// * to silently ignore unsupported features
/// and ignore the whole build ([`CompatLevel::SoftRequirement`]);
/// * to return an error for any unsupported feature ([`CompatLevel::HardRequirement`]).
///
/// Taking [`Ruleset`](crate::Ruleset) as an example,
/// the [`handle_access()`](crate::RulesetAttr::handle_access()) build method
/// returns a [`Result`] that can be [`Err(RulesetError)`](crate::RulesetError)
/// with a nested [`CompatError`].
/// Such error can only occur with a running Linux kernel not supporting the requested
/// Landlock accesses *and* if the current compatibility level is
/// [`CompatLevel::HardRequirement`].
/// However, such error is not possible with [`CompatLevel::BestEffort`]
/// nor [`CompatLevel::SoftRequirement`].
///
/// The order of this call is important because
/// it defines the behavior of the following build method calls that return a [`Result`].
/// If `set_compatibility(CompatLevel::HardRequirement)` is called on an object,
/// then a [`CompatError`] may be returned for the next method calls,
/// until the next call to `set_compatibility()`.
/// This enables to change the behavior of a set of build method calls,
/// for instance to be sure that the sandbox will at least restrict some access rights.
///
/// New objects inherit the compatibility configuration of their parents, if any.
/// For instance, [`Ruleset::create()`](crate::Ruleset::create()) returns
/// a [`RulesetCreated`](crate::RulesetCreated) object that inherits the
/// `Ruleset`'s compatibility configuration.
///
/// # Example with `SoftRequirement`
///
/// Let's say an application legitimately needs to rename files between directories.
/// Because of [previous Landlock limitations](https://docs.kernel.org/userspace-api/landlock.html#file-renaming-and-linking-abi-2),
/// this was forbidden with the [first version of Landlock](ABI::V1),
/// but it is now handled starting with the [second version](ABI::V2).
/// For this use case, we only want the application to be sandboxed
/// if we have the guarantee that it will not break a legitimate usage (i.e. rename files).
/// We then create a ruleset which will either support file renaming
/// (thanks to [`AccessFs::Refer`](crate::AccessFs::Refer)) or silently do nothing.
///
/// ```
/// use landlock::*;
///
/// fn ruleset_handling_renames() -> Result<RulesetCreated, RulesetError> {
/// Ok(Ruleset::default()
/// // This ruleset must either handle the AccessFs::Refer right,
/// // or it must silently ignore the whole sandboxing.
/// .set_compatibility(CompatLevel::SoftRequirement)
/// .handle_access(AccessFs::Refer)?
/// // However, this ruleset may also handle other (future) access rights
/// // if they are supported by the running kernel.
/// .set_compatibility(CompatLevel::BestEffort)
/// .handle_access(AccessFs::from_all(ABI::V5))?
/// .create()?)
/// }
/// ```
///
/// # Example with `HardRequirement`
///
/// Security-dedicated applications may want to ensure that
/// an untrusted software component is subject to a minimum of restrictions before launching it.
/// In this case, we want to create a ruleset which will at least support
/// all restrictions provided by the [first version of Landlock](ABI::V1),
/// and opportunistically handle restrictions supported by newer kernels.
///
/// ```
/// use landlock::*;
///
/// fn ruleset_fragile() -> Result<RulesetCreated, RulesetError> {
/// Ok(Ruleset::default()
/// // This ruleset must either handle at least all accesses defined by
/// // the first Landlock version (e.g. AccessFs::WriteFile),
/// // or the following handle_access() call must return a wrapped
/// // AccessError<AccessFs>::Incompatible error.
/// .set_compatibility(CompatLevel::HardRequirement)
/// .handle_access(AccessFs::from_all(ABI::V1))?
/// // However, this ruleset may also handle new access rights
/// // (e.g. AccessFs::Refer defined by the second version of Landlock)
/// // if they are supported by the running kernel,
/// // but without returning any error otherwise.
/// .set_compatibility(CompatLevel::BestEffort)
/// .handle_access(AccessFs::from_all(ABI::V5))?
/// .create()?)
/// }
/// ```
fn set_compatibility(mut self, level: CompatLevel) -> Self {
*self.as_option_compat_level_mut() = Some(level);
self
}
/// Cf. [`set_compatibility()`](Compatible::set_compatibility()):
///
/// - `set_best_effort(true)` translates to `set_compatibility(CompatLevel::BestEffort)`.
///
/// - `set_best_effort(false)` translates to `set_compatibility(CompatLevel::HardRequirement)`.
#[deprecated(note = "Use set_compatibility() instead")]
fn set_best_effort(self, best_effort: bool) -> Self
where
Self: Sized,
{
self.set_compatibility(match best_effort {
true => CompatLevel::BestEffort,
false => CompatLevel::HardRequirement,
})
}
}
#[test]
#[allow(deprecated)]
fn deprecated_set_best_effort() {
use crate::{CompatLevel, Compatible, Ruleset};
assert_eq!(
Ruleset::default().set_best_effort(true).compat,
Ruleset::default()
.set_compatibility(CompatLevel::BestEffort)
.compat
);
assert_eq!(
Ruleset::default().set_best_effort(false).compat,
Ruleset::default()
.set_compatibility(CompatLevel::HardRequirement)
.compat
);
}
/// See the [`Compatible`] documentation.
#[cfg_attr(test, derive(EnumIter))]
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum CompatLevel {
/// Takes into account the build requests if they are supported by the running system,
/// or silently ignores them otherwise.
/// Never returns a compatibility error.
#[default]
BestEffort,
/// Takes into account the build requests if they are supported by the running system,
/// or silently ignores the whole build object otherwise.
/// Never returns a compatibility error.
/// If not supported,
/// the call to [`RulesetCreated::restrict_self()`](crate::RulesetCreated::restrict_self())
/// will return a
/// [`RestrictionStatus { ruleset: RulesetStatus::NotEnforced, no_new_privs: false, }`](crate::RestrictionStatus).
SoftRequirement,
/// Takes into account the build requests if they are supported by the running system,
/// or returns a compatibility error otherwise ([`CompatError`]).
HardRequirement,
}
impl From<Option<CompatLevel>> for CompatLevel {
fn from(opt: Option<CompatLevel>) -> Self {
match opt {
None => CompatLevel::default(),
Some(ref level) => *level,
}
}
}
// TailoredCompatLevel could be replaced with AsMut<Option<CompatLevel>>, but only traits defined
// in the current crate can be implemented for types defined outside of the crate. Furthermore it
// provides a default implementation which is handy for types such as BitFlags.
pub trait TailoredCompatLevel {
fn tailored_compat_level<L>(&mut self, parent_level: L) -> CompatLevel
where
L: Into<CompatLevel>,
{
parent_level.into()
}
}
impl<T> TailoredCompatLevel for T
where
Self: Compatible,
{
// Every Compatible trait implementation returns its own compatibility level, if set.
fn tailored_compat_level<L>(&mut self, parent_level: L) -> CompatLevel
where
L: Into<CompatLevel>,
{
// Using a mutable reference is not required but it makes the code simpler (no double AsRef
// implementations for each Compatible types), and more importantly it guarantees
// consistency with Compatible::set_compatibility().
match self.as_option_compat_level_mut() {
None => parent_level.into(),
// Returns the most constrained compatibility level.
Some(ref level) => parent_level.into().max(*level),
}
}
}
#[test]
fn tailored_compat_level() {
use crate::{AccessFs, PathBeneath, PathFd};
fn new_path(level: CompatLevel) -> PathBeneath<PathFd> {
PathBeneath::new(PathFd::new("/").unwrap(), AccessFs::Execute).set_compatibility(level)
}
for parent_level in CompatLevel::iter() {
assert_eq!(
new_path(CompatLevel::BestEffort).tailored_compat_level(parent_level),
parent_level
);
assert_eq!(
new_path(CompatLevel::HardRequirement).tailored_compat_level(parent_level),
CompatLevel::HardRequirement
);
}
assert_eq!(
new_path(CompatLevel::SoftRequirement).tailored_compat_level(CompatLevel::SoftRequirement),
CompatLevel::SoftRequirement
);
for child_level in CompatLevel::iter() {
assert_eq!(
new_path(child_level).tailored_compat_level(CompatLevel::BestEffort),
child_level
);
assert_eq!(
new_path(child_level).tailored_compat_level(CompatLevel::HardRequirement),
CompatLevel::HardRequirement
);
}
}
// CompatResult is not public outside this crate.
pub enum CompatResult<A>
where
A: Access,
{
// Fully matches the request.
Full,
// Partially matches the request.
Partial(CompatError<A>),
// Doesn't matches the request.
No(CompatError<A>),
}
// TryCompat is not public outside this crate.
pub trait TryCompat<A>
where
Self: Sized + TailoredCompatLevel,
A: Access,
{
fn try_compat_inner(&mut self, abi: ABI) -> Result<CompatResult<A>, CompatError<A>>;
// Default implementation for objects without children.
//
// If returning something other than Ok(Some(self)), the implementation must use its own
// compatibility level, if any, with self.tailored_compat_level(default_compat_level), and pass
// it with the abi and compat_state to each child.try_compat(). See PathBeneath implementation
// and the self.allowed_access.try_compat() call.
//
// # Warning
//
// Errors must be prioritized over incompatibility (i.e. return Err(e) over Ok(None)) for all
// children.
fn try_compat_children<L>(
self,
_abi: ABI,
_parent_level: L,
_compat_state: &mut CompatState,
) -> Result<Option<Self>, CompatError<A>>
where
L: Into<CompatLevel>,
{
Ok(Some(self))
}
// Update compat_state and return an error according to try_compat_*() error, or to the
// compatibility level, i.e. either route compatible object or error.
fn try_compat<L>(
mut self,
abi: ABI,
parent_level: L,
compat_state: &mut CompatState,
) -> Result<Option<Self>, CompatError<A>>
where
L: Into<CompatLevel>,
{
let compat_level = self.tailored_compat_level(parent_level);
let some_inner = match self.try_compat_inner(abi) {
Ok(CompatResult::Full) => {
compat_state.update(CompatState::Full);
true
}
Ok(CompatResult::Partial(error)) => match compat_level {
CompatLevel::BestEffort => {
compat_state.update(CompatState::Partial);
true
}
CompatLevel::SoftRequirement => {
compat_state.update(CompatState::Dummy);
false
}
CompatLevel::HardRequirement => {
compat_state.update(CompatState::Dummy);
return Err(error);
}
},
Ok(CompatResult::No(error)) => match compat_level {
CompatLevel::BestEffort => {
compat_state.update(CompatState::No);
false
}
CompatLevel::SoftRequirement => {
compat_state.update(CompatState::Dummy);
false
}
CompatLevel::HardRequirement => {
compat_state.update(CompatState::Dummy);
return Err(error);
}
},
Err(error) => {
// Safeguard to help for test consistency.
compat_state.update(CompatState::Dummy);
return Err(error);
}
};
// At this point, any inner error have been returned, so we can proceed with
// try_compat_children()?.
match self.try_compat_children(abi, compat_level, compat_state)? {
Some(n) if some_inner => Ok(Some(n)),
_ => Ok(None),
}
}
}