
Update on Landlock: Lifting the File Reparenting Limits 

and Supporting Network Rules

Linux Security Summit North America

2022-06-24

Mickaël Salaün

https://creativecommons.org/licenses/by-sa/4.0/
https://digikod.net/


Update on Landlock

Landlock is available in mainline since 2021 

(Linux 5.13), but with some limitations due to 

the iterative approach.

Landlock is now enabled by default on 

multiple distros: Ubuntu 22.04 LTS, Fedora 36, 

Arch Linux, Alpine Linux, Gentoo

This talk is about the challenge of renaming 

and linking files, and network access-control 

for the sandboxing use case.

https://git.launchpad.net/~ubuntu-kernel/ubuntu/+source/linux/+git/jammy/commit/?id=dd51cf78272d9e36270796a563c801d251d7f06c
https://gitlab.com/cki-project/kernel-ark/-/commit/6970e5d6cb60a5eef2443cc0683c58a5d4531639
https://aur.archlinux.org/cgit/aur.git/commit/?h=linux-mainline&id=c00e40103af7018ef2c235121a6726b47a14858d
https://gitlab.alpinelinux.org/alpine/aports/-/commit/b49410ac39b3c9ef46434b9d5daa79f2c845015e


Sandboxing A security approach to isolate a software 

component from the rest of the system.

An innocuous and trusted process can 

become malicious during its lifetime

because of bugs exploited by attackers.

Sandbox properties:

 Follow the least privilege principle

 Innocuous and composable security policies



What is 

Landlock?

Landlock is the first Mandatory Access 

Control available to unprivileged

processes on Linux.

It enables to developers to add built-in

application sandboxing to protect 

against:

• Exploitable bugs in trusted applications (embedded 

policy)

• Untrusted applications (sandbox managers or container 

runtimes)



Lifting the File Reparenting Limits

The rename(2) and link(2) use cases



Initial 

filesystem 

access-control 

types

 Execute, read or write to a file

 List a directory or remove files

 Create files according to their type



File hierarchy 

identification

Because of the unprivileged nature of 

Landlock, file hierarchy are identified 

thanks to ephemeral inode tagging.

Constraints for a sandboxed processes are 

a composition of policy layers.



Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

1st layer
etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R

2nd layer

home user/

.cache app RW

Pictures cool.jpg R

3rd layer

R

RW

R Read

W Write

X eXecute



File hierarchy 

modification

Sandboxed processes could initially only 

link and rename files to the same 

directory (i.e., file reparenting is always 

denied).

Arbitrary renaming and linking may 

indeed change the security policy in 

unexpected ways.



What could go wrong with file reparenting?

home user/ R

tools fooX

foo

$ ln ~/tools/foo ~/work/foo

foo (content) would get RWX permissions!

work W

R Read

W Write

X eXecute



A new 

filesystem 

access-control 

type: FS_REFER

Requirements:

 FS_REFER to link or rename a file from or 

to a different directory (i.e., reparent a 

file hierarchy).

 Linking also requires a FS_MAKE_* access 

right on the destination directory, and 

renaming also requires a FS_REMOVE_* 

access right on the source’s (file or 

directory) parent.

 The destination directory hierarchy must 

also always have the same or a superset 

of restrictions of the source hierarchy.



What would be legitimate?

home user/ RF

tools fooXW

foo

$ ln ~/tools/foo ~/work/foo

work W

~/work/foo only gets RW, less than RWX

F reFer

W Write

X eXecute

R Read

fooW

RF



How to compare path permissions?

home user/ RF

tools fooXW

foo

$ ln ~/tools/foo ~/work/foo

work W

rights(~/tools/foo, layer1) ≥ rights(~/work/foo, layer1)

F reFer

W Write

X eXecute

R Read

Wwork

user RF

W

F

R

home

footools XW

X

W

user RF

F

R

home

foo



Multilayer

partial ordering 

problem

 Collect all access-rights at once and 

finally compare the combination of all of 

them.

 Impact: 16 layers max



Gracefully 

handling 

rename or link 

denials

If a reparenting action is denied because 

of FS_MAKE_* or FS_REMOVE_* deny with 

EACCES, otherwise with EXDEV.



A new ABI 

version: 2

Tied to the new FS_REFER access-control 

type, a new Landlock ABI version is 

returned by the kernel: 2

int abi = landlock_create_ruleset(NULL, 
0, LANDLOCK_CREATE_RULESET_VERSION);

Useful to leverage available features in a 

best-effort security approach.



Supporting Network Rules

Main author: Konstantin Meskhidze (Huawei)



A minimal 

firewall

Goal: restrict the sandboxed processes 

and protect outside ones

A sandbox is not a system-wide firewall:

 Applications (developers) know protocols and 

(configured) ports ⇒ what

 but probably not IP addresses (e.g., local network, NAT, 

IPv4/IPv6) resolved with DNS ⇒ who

The in-review version is focused on TCP:

 New rule types:

 TCP_CONNECT + port

 TCP_BIND + port

 Minimal overhead

https://lore.kernel.org/r/20220621082313.3330667-1-konstantin.meskhidze@huawei.com


Any though?  Is handling port range worth it?

 How to meaningfully and efficiently 

restrict UDP?

 What if we only handle bind, recvfrom, 

sendto and deny “unconnected” UDP?

 What about other protocols?

 What about other socket types (e.g., 

vsock)?



Demo



What’s next?



Roadmap Short term:

 Add audit features to ease debugging

 New minimal access-control types:

 Network

 Process signaling

 Improve kernel performance



Roadmap Medium term:

 Extend access-control types to address 

the current limitations:

 Filesystem

 Network

 Add the ability to follow a deny listing 

approach



Questions?

https://docs.kernel.org/userspace-api/landlock.html

Past talks: https://landlock.io

landlock@lists.linux.dev

Thank you

https://docs.kernel.org/userspace-api/landlock.html
https://landlock.io/
mailto:landlock@lists.linux.dev

