
Sandboxing your application with Landlock, illustration

with the p7zip case

Pass the Salt

2022-07-04

Mickaël Salaün

https://creativecommons.org/licenses/by-sa/4.0/
https://digikod.net/

Sandboxing your application

Landlock is available in mainline since 2021

(Linux 5.13), but with some limitations due to

the iterative approach.

Landlock is now enabled by default on

multiple distros: Ubuntu 22.04 LTS, Fedora 35,

Arch Linux, Alpine Linux, Gentoo

This talk is about the steps to sandbox an

application, illustrated with p7zip.

https://git.launchpad.net/~ubuntu-kernel/ubuntu/+source/linux/+git/jammy/commit/?id=dd51cf78272d9e36270796a563c801d251d7f06c
https://gitlab.com/cki-project/kernel-ark/-/commit/6970e5d6cb60a5eef2443cc0683c58a5d4531639
https://aur.archlinux.org/cgit/aur.git/commit/?h=linux-mainline&id=c00e40103af7018ef2c235121a6726b47a14858d
https://gitlab.alpinelinux.org/alpine/aports/-/commit/b49410ac39b3c9ef46434b9d5daa79f2c845015e

Developers and

users

It is assumed that with enough skills and

time, most applications could be

compromised.

Problem (as developers):

• We don’t want to participate to

malicious actions through our software

because of security bug exploitation.

• We have a responsibility for users,

especially to protect their (personal)

data: every new app increases (user)

attack surface.

Sandboxing A security approach to isolate a software

component from the rest of the system.

An innocuous and trusted process can

become malicious during its lifetime

because of bugs exploited by attackers.

Sandbox properties:

 Follow the least privilege principle

 Innocuous and composable security policies

What is

Landlock?

Landlock is an access control system

available to unprivileged processes on

Linux, thanks to 3 dedicated syscalls.

It enables developers to add built-in

application sandboxing.

Filesystem access-control

Filesystem

properties

Access-control rights:

 Execute, read or write to a file

 List a directory or remove files

 Create files according to their type

 Rename or link files

File hierarchy identification: ephemeral

inode tagging

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

1st layer
etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R

2nd layer

home user/

.cache app RW

Pictures cool.jpg R

3rd layer

R

RW

R Read

W Write

X eXecute

Implementing sandboxing

How to patch

an application?

1. Define the threat model: which data is

trusted or untrusted?

2. Identify the complex parts of the code:

where there is a good chance to find

bugs?

3. Identify and patch the configuration

handling to infer a security policy.

4. Identify and patch the most generic

places to enforce the security policy for

the rest of the lifetime of the thread.

Application

compatibility

Forward compatibility for applications is

handled by the kernel development

process.

Backward compatibility for applications is

the responsibility of their developers.

Each new Landlock feature increments the

ABI version, which is useful to leverage

available features in a best-effort

security approach.

Step 1: Check the Landlock ABI

int abi = landlock_create_ruleset(NULL, 0, LANDLOCK_CREATE_RULESET_VERSION);

if (abi < 0)
return 0;

Step 2: Create a ruleset

int ruleset_fd;
struct landlock_ruleset_attr ruleset_attr = {

.handled_access_fs =
LANDLOCK_ACCESS_FS_EXECUTE |
LANDLOCK_ACCESS_FS_WRITE_FILE |
[…]
LANDLOCK_ACCESS_FS_MAKE_REG,

};

ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0);
if (ruleset_fd < 0)

error_exit("Failed to create a ruleset");

Step 3: Add rules

int err;
struct landlock_path_beneath_attr path_beneath = {

.allowed_access = LANDLOCK_ACCESS_FS_EXECUTE | […] ,
};

path_beneath.parent_fd = open("/usr", O_PATH | O_CLOEXEC);
if (path_beneath.parent_fd < 0)

error_exit("Failed to open file");

err = landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0);
close(path_beneath.parent_fd);
if (err)

error_exit("Failed to update ruleset");

Step 4: Enforce the ruleset

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
error_exit("Failed to restrict privileges");

if (landlock_restrict_self(ruleset_fd, 0))
error_exit("Failed to enforce ruleset");

close(ruleset_fd);

Full example: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/samples/landlock/sandboxer.c

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/samples/landlock/sandboxer.c

Demo with p7zip

Sandboxing PR: https://github.com/jinfeihan57/p7zip/pull/184

And now, let’s say there is a bug in the gzip parser…

https://github.com/jinfeihan57/p7zip/pull/184

What’s next?

Roadmap Short term:

 Add audit features to ease debugging

 New minimal access-control types:

 Network

 Process signaling

 Improve kernel performance

Roadmap Medium term:

 Extend access-control types to address

the current limitations:

 Filesystem

 Network

 Add the ability to follow a deny listing

approach

Contribute Develop new (kernel) features (e.g., new

access types)

 Write new tests (e.g., kunit)

 Challenge the implementation

 Improve documentation

 Sandbox your applications and others’

Questions?

https://docs.kernel.org/userspace-api/landlock.html

Past talks: https://landlock.io

landlock@lists.linux.dev

Thank you!

https://docs.kernel.org/userspace-api/landlock.html
https://landlock.io/
mailto:landlock@lists.linux.dev

