
Landlock: The Linux sandboxing mechanism

How to protect your users?

2024-01-22

Mickaël Salaün

https://creativecommons.org/licenses/by-sa/4.0/
https://digikod.net/

Agenda

1. State of the security

2. Defense challenges and sandboxes

3. State of the art

4. Landlock

5. Demo

6. Filesystem access-control

7. Network access-control

8. Audit

9. Ongoing development

State of the security

Pragmatic

statement #1

Attacker

It is assumed that with enough skills and

time, most applications could be

compromised.

Defender

An innocuous and trusted process can

become malicious during its lifetime

because of bugs exploited by attackers.

Protecting data != admin rights

https://xkcd.com/1200

https://xkcd.com/1200

Pragmatic

statement #2

Attacker

Bulletproof (and useful) software is costly

and very difficult to achieve (if ever

possible).

Defender

Pragmatic multi-layer security increases

guarantees and confidence.

Pragmatic

statement #3

Attacker

Every running app/service increases (user)

attack surface.

Defender

Hardening increases attack cost.

How much does it cost?

How much does it cost?

Trusted

Computing

Base

Assumptions: hardware and supply chains

are secure, the configuration is secure

(enough), and other critical parts of the

system (e.g., kernel, important services)

are trusted and uncompromised.

We trust the honesty and well-intention of

people in charge of our security, according

to our point of view:

• Sysadmin

• Developer

• User

Consequence

of a breach

There are multiple and different levels of

trust and different consequences in case

of a breach: system, user, or app data.

We want to protect each level of this TCB

as much as possible.

Defense challenges and sandboxes

How to protect

an application?

Reactive solutions

Fix bugs quickly and push updates widely

How to protect

an application?

Proactive solutions

• Look for bugs (e.g., audit, fuzzing) and

fix them

• Add more tests and use them

• Use safer languages and libraries

• Leverage linters, compilers and other

tools

• Consider (most) software as potentially

malicious and protect the rest of the

system from them

Sandboxing A security approach to isolate a software

component from the rest of the system.

Sandboxing A security approach to isolate a software

component from the rest of the system.

An innocuous and trusted process can

become malicious during its lifetime

because of bugs exploited by attackers.

Sandboxing A security approach to isolate a software

component from the rest of the system.

An innocuous and trusted process can

become malicious during its lifetime

because of bugs exploited by attackers.

Sandbox properties:

 Follow the least privilege principle

 Innocuous and composable security

policies

State of the art

Non-Linux

systems

• XNU Sandbox

• Capsicum

• Pledge and Unveil

• AppContainer and Application Guard

Available Linux security features

System (admin or vendor)

Netfilter

PAM

SELinux

User (unpriv)

DAC

App developer (unpriv)

seccomp

Landlock

Comparisons of different sandbox-ish mechanisms

Performance
Fine-grained
control

Embedded
policy

Unprivileged
use

Virtual Machine

SELinux

namespaces

seccomp-bpf

Landlock

Yes, compared to others

No, compared to others

In some way, but with limitations

Landlock

Landlock’s goal Landlock is an access control system

available to unprivileged processes on

Linux, which empowers developers and

users to sandbox their applications.

It enables to create safe security

sandboxes as new security layers in

addition to the existing system-wide

access-controls to help mitigate the

security impact of bugs or unexpected

behaviors.

Threat models Untrusted applications

Protect from malicious third-party code

thanks to sandbox managers or container

runtimes.

Exploitable bugs in trusted applications

Protect from vulnerable code maintained

by app developers, thanks to embedded

security policy.

Use cases Built-it application sandboxing, e.g.:

• Parsers hardening (e.g., archive tools, file

format conversion, renderers, etc.)

• Web browsers

• Network and system services

Sandbox managers, e.g.:

• Containers

• Init systems

Tailored and

embedded

security policy

Developers are in the best position to

reason about the required accesses

according to legitimate behaviors:

• Application semantics

• Static and dynamic configuration

• User interaction

Testable and can be kept in sync with

evolving business logic over time.

How Landlock

works?

Restrict ambient rights according to the

kernel semantic (e.g., global filesystem

access) for a set of processes, thanks to 3

dedicated syscalls.

Security policies are inherited by all new

children processes.

A one-way set of restrictions: cannot be

disabled once enabled.

Sandbox policies hierarchy

P1

P2 P3

P4

P1

P3

P_ Sandbox creator

Sandbox domain

A Linux

Security

Module

Security framework for the kernel:

 Majors: SELinux, AppArmor… Landlock

 Integrity/authenticity: IMA/EVM

 Hardening: Yama, Lockdown…

Landlock is a stackable LSM

What does it

bring?

3 new system calls:

• landlock_create_ruleset()

• landlock_add_rule()

• landlock_restrict_self()

Linux 6.7:

• Kernel: 2000+ SLOC

• Tests: 5400+ SLOC

• Documentation: 6000+ words

Unprivileged

access control

Prevent bypass through other processes.

Follow the principle of least privilege

(i.e., no SUID).

Limit the kernel attack surface: simple

policy declaration, without bytecode.

Multiple and different applications:

independent but innocuous and

composable security policies.

Multi-layer security

• Nested sandboxes

• Composed sandboxes

Composable

security

policies

Compose with other access-control

systems: LSM stacking

Compose all Landlock sandbox policies

 Standalone policies targeting different services/apps

Kernel constraints

 No file extended attributes

 No (absolute) path

Developer advantages

 Lockless concurrent development: no bottleneck

because of one global policy

 Easier to maintain a set of small policies

Current access-

control

Implicit restrictions

• Process impersonation (e.g., ptrace)

• Filesystem topology changes (e.g.,

mounts)

Explicit access rights

• Files

• Networking (TCP)

• …

Where is

Landlock?

Part of the mainline Linux kernel since

v5.13 (2021)

Enabled by default on multiple distros:

 Ubuntu 22.04 LTS

 Fedora 35

 Arch Linux

 Alpine Linux

 Gentoo

 Debian Sid

 chromeOS

 CBL-Mariner

 WSL2

Demo: sandboxed web service

Netdev conference

https://netdevconf.info/0x16/sessions/tutorial/how-to-sandbox-a-network-application-with-landlock.html

Filesystem access-control

Filesystem

access rights

 Execute, read or write to a file

 List a directory or remove files

 Create files according to their type

 Rename or link files

File hierarchy

identification

Ephemeral inode tagging

• Access rights are tied to inodes by user space thanks to

opened file descriptors

• Lifetime of such tags depends on associated sandbox

domain lifetimes and underlying superblock lifetimes

File hierarchy check

• When requesting access to a file, walk through all

parent files until all domains have been checked (or the

root is reached)

Example of filesystem policy composition

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

R Read

W Write

X eXecute

1st layer

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R
R Read

W Write

X eXecute

2nd layer

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R

home user/

.cache app RW

Pictures cool.jpg R
R Read

W Write

X eXecute

3rd layer

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R

home user/

.cache app RW

Pictures cool.jpg R

3rd layer

R Read

W Write

X eXecute

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R

2nd layer

home user/

.cache app RW

Pictures cool.jpg R

3rd layer

R
R Read

W Write

X eXecute

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

1st layer
etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R

2nd layer

home user/

.cache app RW

Pictures cool.jpg R

3rd layer

R

RW

R Read

W Write

X eXecute

Network access-control

Network

restrictions

Goal

Restrict sandboxed processes and

protect outside ones; not a system-wide

firewall:

 Applications (developers) know

protocols and (configured) ports ⇒ what

 but probably not IP addresses (e.g., local

network, NAT, IPv4/IPv6) resolved with

DNS ⇒ who

Network access

rights

TCP access rights (Linux 6.7)

Minimal app-centric firewall to control:

 Bindings to TCP ports

 Connections to TCP ports

Future features

• TCP listen right

• Socket creation

• Abstract unix sockets

Audit support: denied access logs

Non-goal:

Track access

requests

 Not the goal of Landlock

 The LSM framework is not design to see

everything, but mainly to deny actions

Other kernel features and related tools are

available: e.g. trace-cmd, bpftrace

Goal: Log

Landlock

denials

Help users with different use cases:

 App developers: to ease and speed up

sandboxing support

 Power users: to understand denials

 Sysadmins: to look for users’ issues

 Tailored distro maintainers: to get usage

metrics from their fleet

 Security experts: to detect attack

attempts

Constraints Security policies are:

 Unprivileged

 Multiple and standalone

 Nested

 Dynamic

Not available to unprivileged users

Relying on the Linux audit mechanism

Wrap-up

Landlock LSM Unprivileged access control:

• The Linux sandboxing mechanism

• Can confine trusted and untrusted code

• Composable security policies

Landlock tools Libraries: Rust, Go, Haskell, C…

Development: glibc, strace

Some early public users:

 Minijail (chromeOS sandbox manager)

 Suricata (network IDS)

 Landlock Make (hermetic build system)

 Game of Trees (version control system)

 Keysas (USB malware cleaning station)

 rust-wasm-landlock (sandboxed WebAssembly

runtime)

 …

https://github.com/landlock-lsm/rust-landlock
https://github.com/landlock-lsm/go-landlock
https://source.chromium.org/chromiumos/chromiumos/codesearch/+/main:src/platform/minijail/landlock_util.h
https://github.com/OISF/suricata/pull/7697
https://justine.lol/make/
https://git.gameoftrees.org/gitweb/?p=got-portable.git;a=blob;f=compat/landlock.c
https://github.com/r3dlight/keysas
https://github.com/micheleberetta98/rust-wasm-landlock

Landlock

roadmap

Ongoing and next steps:

 Add new access-control types: IOCTL,

networking, signals…

 Update and merge audit features to ease

debugging

 Improve kernel performance

See GitHub issues: landlock-lsm/linux

https://github.com/landlock-lsm/linux/issues

Contribute Develop new (kernel) features (e.g., new

access types)

 Write new tests (Kselftest or KUnit)

 Challenge the implementation

 Improve documentation

 Sandbox your applications and others’

 Secure Open Source Rewards

 Google Patch Rewards

https://sos.dev/
https://bughunters.google.com/about/patch-rewards

Questions?

https://docs.kernel.org/userspace-api/landlock.html

Past talks: https://landlock.io

landlock@lists.linux.dev

Thank you!

https://docs.kernel.org/userspace-api/landlock.html
https://landlock.io/
mailto:landlock@lists.linux.dev

	Introduction
	Slide 1: Landlock: The Linux sandboxing mechanism
	Slide 2: Agenda

	State of the security
	Slide 3: State of the security
	Slide 4: Pragmatic statement #1
	Slide 5: Protecting data != admin rights
	Slide 6: Pragmatic statement #2
	Slide 7: Pragmatic statement #3
	Slide 8: How much does it cost?
	Slide 9: How much does it cost?
	Slide 10: Trusted Computing Base
	Slide 11: Consequence of a breach

	Defense
	Slide 12: Defense challenges and sandboxes
	Slide 13: How to protect an application?
	Slide 14: How to protect an application?
	Slide 15: Sandboxing
	Slide 16: Sandboxing
	Slide 17: Sandboxing

	State of the art
	Slide 18: State of the art
	Slide 19: Non-Linux systems
	Slide 20: Available Linux security features
	Slide 21: Comparisons of different sandbox-ish mechanisms

	Landlock
	Slide 22: Landlock
	Slide 23: Landlock’s goal
	Slide 24: Threat models
	Slide 25: Use cases
	Slide 26: Tailored and embedded security policy
	Slide 27: How Landlock works?
	Slide 28: Sandbox policies hierarchy
	Slide 29: A Linux Security Module
	Slide 30: What does it bring?
	Slide 31: Unprivileged access control
	Slide 32: Multi-layer security
	Slide 33: Composable security policies
	Slide 34: Current access-control
	Slide 35: Where is Landlock?

	Demo
	Slide 36: Demo: sandboxed web service
	Slide 37

	Filesystem access-control
	Slide 38: Filesystem access-control
	Slide 39: Filesystem access rights
	Slide 40: File hierarchy identification
	Slide 41: Example of filesystem policy composition
	Slide 42: Example of filesystem policy composition
	Slide 43: Example of filesystem policy composition
	Slide 44: Example of filesystem policy composition
	Slide 45: Example of filesystem policy composition
	Slide 46: Example of filesystem policy composition
	Slide 47: Example of filesystem policy composition

	Network access-control
	Slide 48: Network access-control
	Slide 49: Network restrictions
	Slide 50: Network access rights

	Audit
	Slide 51: Audit support: denied access logs
	Slide 52: Non-goal: Track access requests
	Slide 53: Goal: Log Landlock denials
	Slide 54: Constraints

	Wrap-up
	Slide 56: Wrap-up
	Slide 57: Landlock LSM
	Slide 58: Landlock tools
	Slide 59: Landlock roadmap
	Slide 60: Contribute
	Slide 61: Questions?

