
Landlock workshop: Sandboxing application in practice

Let’s sandbox ImageMagick!

2024-01-22

Mickaël Salaün

https://creativecommons.org/licenses/by-sa/4.0/
https://digikod.net/

Sandboxing an application

Landlock is available in mainline since 2021

(Linux 5.13), but with some limitations due to

the iterative approach.

Landlock is now enabled by default on

multiple distros: Ubuntu 22.04 LTS, Fedora 35,

Arch Linux, Alpine Linux, Gentoo, Debian Sid,

chromeOS, CBL-Mariner, WSL2

This workshop is about sandboxing

ImageMagick

https://git.launchpad.net/~ubuntu-kernel/ubuntu/+source/linux/+git/jammy/commit/?id=dd51cf78272d9e36270796a563c801d251d7f06c
https://gitlab.com/cki-project/kernel-ark/-/commit/6970e5d6cb60a5eef2443cc0683c58a5d4531639
https://aur.archlinux.org/cgit/aur.git/commit/?h=linux-mainline&id=c00e40103af7018ef2c235121a6726b47a14858d
https://gitlab.alpinelinux.org/alpine/aports/-/commit/b49410ac39b3c9ef46434b9d5daa79f2c845015e

Workshop setup

Goal of this

workshop

About the steps to sandbox a CLI application.

Use an old and vulnerable (long-been-fixed)
ImageMagick version to illustrate how
sandboxing can mitigate vulnerabilities.

VM setup

See https://github.com/landlock-lsm/workshop-imagemagick

If you already cloned the repository:

git pull
vagrant up
vagrant ssh

https://github.com/landlock-lsm/workshop-imagemagick

Connect to the VM

Once set up, take a snapshot and log in

vagrant snapshot push

vagrant ssh

We can now also use virt-manager to connect to the VM

Steps done by

the VM

provisioning

1. Set up the build environment

2. Build a vulnerable version of

ImageMagick

3. Install the created package

Sandboxing with Landlock

Developers and

users

It is assumed that with enough skills and

time, most applications could be

compromised.

Problem (as developers):

• We don’t want to participate to

malicious actions through our software

because of security bug exploitation.

• We have a responsibility for users,

especially to protect their (personal)

data: every running app/service

increases (user) attack surface.

What is

Landlock?

Landlock is an access control system

available to unprivileged processes on

Linux, thanks to 3 dedicated syscalls.

It enables developers to add built-in

application sandboxing.

Useful as-is and still in gaining new

features.

Implementing sandboxing

How to patch

an application?

1. Define the threat model: which data is

trusted or untrusted?

2. Identify the complex parts of the code:

where there is a good chance to find

bugs?

3. Identify and patch the configuration

handling to infer a security policy.

4. Identify and patch the most generic

places to enforce the security policy for

the rest of the lifetime of the thread.

Application

compatibility in

a nutshell

Forward compatibility: kernel

Backward compatibility: responsibility of

application developers

Each new Landlock feature increments the

ABI version, which is useful to leverage

available features in a best-effort

security approach.

Will see more at the end of this talk…

Step 1: Check the Landlock ABI

int abi = landlock_create_ruleset(NULL, 0, LANDLOCK_CREATE_RULESET_VERSION);

if (abi < 0)
 return 0;

Step 2: Create a ruleset

int ruleset_fd;
struct landlock_ruleset_attr ruleset_attr = {
 .handled_access_fs =
 LANDLOCK_ACCESS_FS_EXECUTE |
 LANDLOCK_ACCESS_FS_WRITE_FILE |
 […]
 LANDLOCK_ACCESS_FS_MAKE_REG,
};

ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0);
if (ruleset_fd < 0)
 error_exit("Failed to create a ruleset");

Step 3: Add rules

int err;
struct landlock_path_beneath_attr path_beneath = {
 .allowed_access = LANDLOCK_ACCESS_FS_EXECUTE | […] ,
};

path_beneath.parent_fd = open("/usr", O_PATH | O_CLOEXEC);
if (path_beneath.parent_fd < 0)
 error_exit("Failed to open file");

err = landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0);
close(path_beneath.parent_fd);
if (err)
 error_exit("Failed to update ruleset");

Step 4: Enforce the ruleset

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
 error_exit("Failed to restrict privileges");

if (landlock_restrict_self(ruleset_fd, 0))
 error_exit("Failed to enforce ruleset");

close(ruleset_fd);

Full example: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/samples/landlock/sandboxer.c

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/samples/landlock/sandboxer.c

Let’s patch ImageMagick!

ImageMagick Pretty common set of tools to transform or
display pictures: parse a lot of file formats

Use cases: CLI tool or (web) server

Attack scenario CVE-2016-3714/ImageTragick: insufficient
shell characters filtering that can lead to
(potentially remote) code execution.

Let’s say we have a vulnerable version (not

necessarily this one).

Sandboxing this kind of tool can help

mitigate the impact of such vulnerability:

e.g., deny access to secret files

https://nvd.nist.gov/vuln/detail/CVE-2016-3714
https://imagetragick.com/

Agenda

1. Test an exploit

2. Find the sweet spot to restrict the

process

3. Patch + build + test

Test exploit with vulnerable version

Convert from one image format to another

convert /vagrant/exploit/malicious.mvg /tmp/out.png

Solution patches are available in /vagrant/imagemagick-patches/*.patch

Main steps to

patch

1. Declare the Landlock syscalls

2. Find what we want to sandbox and

where it would make sense

3. Create a ruleset

4. Add static rules

5. Add dynamic rules

6. Restrict the task before potentially-

harmful computation

Patch ImageMagick 1/9

1/ Go to the source directory

cd ~/imagemagick/src/ImageMagick-6.9.3-8

2/ Prepare a clean repository to work on

/vagrant/imagemagick-patches/init-repo.sh

Patch ImageMagick 2/9

3/ Import Landlock syscall stubs and access right groups

cp /vagrant/sandboxer.c magick/landlock.h
vim magick/landlock.h

git add -A
git commit

4/ Look at the system’s Landlock definitions and types

vim /usr/include/linux/landlock.h

Patch ImageMagick 3/9

5/ Look at the convert code and find a sweat spot for sandboxing

vim wand/convert.c

Imagemagick doesn’t have a clear separation between argument parsing and
their evaluation: we need to patch the loop parsing arguments.

6/ Include landlock.h and prepare a ruleset

(void) CopyMagickString(image_info->filename,filename,MaxTextExtent);

const struct landlock_ruleset_attr ruleset_attr = {
 .handled_access_fs = ACCESS_FS_ROUGHLY_READ | ACCESS_FS_ROUGHLY_WRITE,
};

+
+
+

0003-WORKSHOP-Create-a-ruleset.patch

Build and test the patched ImageMagick

Regularly build and check convert

make
./utilities/convert /vagrant/exploit/malicious.mvg /tmp/out.png

Patch ImageMagick 4/9

7/ Create the ruleset

int ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0);

8/ Check for errors and log them

if (ruleset_fd < 0) {
 perror("LANDLOCK: Failed to create a ruleset");
 return MagickFalse;
}

9/ Close the ruleset

close(ruleset_fd);

0003-WORKSHOP-Create-a-ruleset.patch

Patch ImageMagick 5/9

10/ Include landlock.h and create the ruleset in ConvertImageCommand()

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
 perror("LANDLOCK: Failed to lock privileges");

if (landlock_restrict_self(ruleset_fd, 0)) {
 perror("LANDLOCK: Failed to restrict thread");
 return MagickFalse;
}

0004-WORKSHOP-Restrict-and-break-everything.patch

Build and test the patched ImageMagick

Regularly build and check convert

make
./utilities/convert /vagrant/exploit/malicious.mvg /tmp/out.png

Patch ImageMagick 6/9

11/ Add static rules: exceptions to the denied-by-default policy

struct landlock_path_beneath_attr rule;

printf("LANDLOCK: Adding rule for /usr");
rule.parent_fd = open("/usr", O_PATH | O_CLOEXEC);
rule.handled_access_fs = ACCESS_FS_ROUGHLY_READ;
if (landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &rule, 0))
 perror("LANDLOCK: Failed to create rule");

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))

+
+
+
+
+
+
+

0005-WORKSHOP-Add-static-restrictions.patch

Patch ImageMagick 7/9

12/ Add more static rules: /dev/null and /tmp (with appropriate access)

printf("LANDLOCK: Adding rule for /dev/null");
rule.parent_fd = open("/dev/null", O_PATH | O_CLOEXEC);
rule.handled_access_fs = LANDLOCK_ACCESS_FS_READ_FILE;
if (landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &rule, 0))
 perror("LANDLOCK: Failed to create rule");

[...]

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))

+
+
+
+
+
+
+
+

0005-WORKSHOP-Add-static-restrictions.patch

Patch ImageMagick 8/9

13/ Add a dynamic rule according to CLI arguments

printf("LANDLOCK: Adding rule for %s", filename);
rule.parent_fd = open(filename, O_PATH | O_CLOEXEC);
rule.handled_access_fs = LANDLOCK_ACCESS_FS_READ_FILE;
if (landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &rule, 0))
 perror("LANDLOCK: Failed to create rule");

[...]

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))

+
+
+
+
+
+
+
+

0006-WORKSHOP-Handle-input-and-output-files.patch

Patch ImageMagick 9/9

14/ Add more dynamic rules

char *out_path = strdup(argv[i+1]);
const char *out_dir = dirname(out_path);
[...]

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))

+
+
+

0006-WORKSHOP-Handle-input-and-output-files.patch

Build and install the patched ImageMagick

Once everything looks OK, build and install the package

cd ../..
makepkg -efi --nocheck

convert /vagrant/exploit/malicious.mvg /tmp/out.png

Exercise left to

the readers

• Make the code more generic and

maintainable

• Support the “fd:” URI scheme

• Support more commands

• Build a new kernel with the KUnit

Landlock patch and run tests

• Test with different kernel versions thanks

to the Landlock test tools

• …and send your patch upstream!

https://github.com/landlock-lsm/landlock-test-tools

Compatibility and best-effort security

Incremental

development

Because it is complex, a new kernel access

control system cannot implement

everything at once.

Landlock is useful as-is and it is gaining

new features over time, which may enable

to either add or remove restrictions.

Restrictions evolution over versions

Always denied

• Get new privileges

• Ptrace a parent sandbox

• Change FS topology

• Reparent files

Configurable

• Read file

• Write file

• …

• Reparent files

• Truncate file

Always allowed

• Change directory

• Read file metadata

• Change file ownership

• IOCTL

• Truncate file

• …

Landlock v1

Landlock v2

Landlock v3

Always denied

• Get new privileges

• Ptrace a parent sandbox

• Change FS topology

• Reparent files

Always allowed

• Change directory

• Read file metadata

• Change file ownership

• IOCTL

• Truncate file

• …

Application

compatibility

Forward compatibility for applications is handled

by the kernel development process.

Backward compatibility for applications is the

responsibility of their developers, who may not

be aware of the kernel on which their

application will run.

Each new Landlock feature increments the

Landlock ABI version, which is useful to

implement a fallback mechanism: best-effort

approach.

Good

sandboxing

rules

1. Transparent to users

2. Best-effort with minimal requirement

3. Handle strict restrictions

4. Runtime configuration with maximum

execution

Rule #1:

Transparent to

users

Most of the time, configurations are not updated.

Requirements:

• Leverage the current application’s configuration

as much as possible

• Dynamic checks to identify required runtime

resources

Rule #2: Best-

effort with

minimal

requirement

Don’t break my application!

Enforce restrictions as much as possible

according to the running kernel, and being able

to disable the whole sandboxing if a required

feature is not supported (e.g., the refer access

right for file reparenting).

Use case:

• For end users, opportunistically sandbox

applications without error

Rule #3: Handle

strict

restrictions

Create an option to force sandboxing and error

out if anything goes wrong (not enabled by

default).

Use cases:

1. For developers and CI tests, to be sure that

sandboxing is not an issue for legitimate use

2. For security software, to be sure that a set of

security properties are guarantee

Rule #4:

Runtime

configuration

with maximum

execution

Help identify sandboxing specific code issues.

Run the same code as much as possible (i.e.,

same behavior: check same files, make same

syscalls…) but only enforce restrictions when

requested.

Should be simple to set or unset at run time

according to:

• Test environment (e.g., build profile, variables)

• User configuration

Wrap-up

ImageMagick

patch

• Use the native CLI arguments:

• Transparent for users

• Well integrated with all supported use cases

• Quick to implement a first PoC

• Quicker when we already know the app

code

Contribute  Develop new (kernel) features (e.g., new

access types)

 See GitHub issues: landlock-lsm/linux

 Write new tests (Kselftest or KUnit)

 Challenge the implementation

 Improve documentation

 Sandbox your applications and others’

 Secure Open Source Rewards

 Google Patch Rewards

https://github.com/landlock-lsm/linux/issues
https://sos.dev/
https://bughunters.google.com/about/patch-rewards

Questions?

https://docs.kernel.org/userspace-api/landlock.html

Past talks: https://landlock.io

landlock@lists.linux.dev

Thank you!

https://docs.kernel.org/userspace-api/landlock.html
https://landlock.io/
mailto:landlock@lists.linux.dev

	Introduction
	Slide 1: Landlock workshop: Sandboxing application in practice
	Slide 2: Sandboxing an application

	Setup
	Slide 3: Workshop setup
	Slide 4: Goal of this workshop
	Slide 5: VM setup
	Slide 6: Connect to the VM
	Slide 7: Steps done by the VM provisioning

	Sandboxing with Landlock
	Slide 8: Sandboxing with Landlock
	Slide 9: Developers and users
	Slide 10: What is Landlock?

	Implementing sandboxing
	Slide 11: Implementing sandboxing
	Slide 12: How to patch an application?
	Slide 13: Application compatibility in a nutshell
	Slide 14: Step 1: Check the Landlock ABI
	Slide 15: Step 2: Create a ruleset
	Slide 16: Step 3: Add rules
	Slide 17: Step 4: Enforce the ruleset

	Patching
	Slide 18: Let’s patch ImageMagick!
	Slide 19: ImageMagick
	Slide 20: Attack scenario
	Slide 21: Agenda
	Slide 22: Test exploit with vulnerable version
	Slide 23: Main steps to patch
	Slide 24: Patch ImageMagick 1/9
	Slide 25: Patch ImageMagick 2/9
	Slide 26: Patch ImageMagick 3/9
	Slide 27: Build and test the patched ImageMagick
	Slide 28: Patch ImageMagick 4/9
	Slide 29: Patch ImageMagick 5/9
	Slide 30: Build and test the patched ImageMagick
	Slide 31: Patch ImageMagick 6/9
	Slide 32: Patch ImageMagick 7/9
	Slide 33: Patch ImageMagick 8/9
	Slide 34: Patch ImageMagick 9/9
	Slide 35: Build and install the patched ImageMagick
	Slide 36: Exercise left to the readers

	Compatibility
	Slide 37: Compatibility and best-effort security
	Slide 38: Incremental development
	Slide 39: Restrictions evolution over versions
	Slide 40: Application compatibility
	Slide 41: Good sandboxing rules
	Slide 42: Rule #1: Transparent to users
	Slide 43: Rule #2: Best-effort with minimal requirement
	Slide 44: Rule #3: Handle strict restrictions
	Slide 45: Rule #4: Runtime configuration with maximum execution

	Wrap-up
	Slide 46: Wrap-up
	Slide 47: ImageMagick patch
	Slide 48: Contribute
	Slide 49: Questions?

