
Günther Noack
Google Switzerland

Update on Landlock:
IOCTL support

Who am I?

● Günther Noack
● Interested in computer security for 20+ years
● Staff Software Engineer at Google in Zürich
● Landlock contributor since 2022, reviewer since 2024
● Author and maintainer of the Go Landlock library
● Likes to run and swim in his free time

Outline

● Landlock Motivation
● Technical Overview
● Landlock IOCTL support
● Other Notable News
● Upcoming Features

Motivation

Motivation

Attacked
ProcessAttacker

SSH keys
Cookies

Love letters
Git repos

Bank
documents

gains unauthorized
access over

Actually
required files

Let’s restrict the ambient access!

Attacked
ProcessAttacker

SSH keys
Cookies

Love letters
Git repos

Bank
documents

gains unauthorized
access over

Actually
required files

Principle of Least Privilege

Attempt 1: Seccomp-BPF

Seccomp-BPF is an unprivileged, BPF-scriptable “packet filter” for system calls.

Rules are defined in terms of the permitted syscall numbers and argument values.

Problems:

Users need to maintain an up-to-date list of existing used syscalls

● Shared libraries (including glibc!) change the syscalls that they use over time.
● These might still be unknown at the time of policy definition
● Leads to compatibility problems

We can’t follow pointer arguments from BPF scripts

● Making decisions based on file paths is not feasible without resorting to more involved
trickery.

SELinux, AppArmor

● Mandatory Access Control
● Policies usually defined by system administrators or Linux distribution

○ Needs to be kept in sync with the sandboxed software
● SELinux and AppArmor are only available on a subset of distributions

Landlock Summary

● Introduced in Linux 5.13 (2021) by Mickaël Salaün
● Unprivileged sandboxing mechanism
● Lets processes define security policies for themselves
● Backwards-compatibility story is well-supported
● Software developers are in charge of defining policies

○ Developers know their software best
○ Policies are maintained as part of the code

● Policies specified in terms of meaningful abstraction boundaries
● Better granularity for the security policy (e.g. enable policy after initialization

phase)

Vision

● Make Landlock simple to use for software developers
● Useful not only for building sandboxing tools,
● but also for self-sandboxing of normal Linux programs

Examples

● “Pipeline” tools: xzdec, convert, grep, …
● Network tools: netcat, ping, …
● Document viewers (e.g. zathura)
● etc.

Technical Overview

Architecture of a landlocked program

Userspace
process

Linux kernel

System calls

Landlock
Linux Security
Module

System
call impl

Check
whether
permitted

Enable
Landlock for
the calling

thread

Initialization

System
call impl

Drop rights Process untrusted input

Enforcing a Landlock ruleset

The Landlock ruleset defines the policy to be enforced.

1. Create ruleset file descriptor and define the restricted operations:
landlock_create_ruleset(2)

2. (Optionally) add exceptions: landlock_add_rule(2)
3. Enforce ruleset: landlock_restrict_self(2)

1. landlock_create_ruleset(2)

struct landlock_ruleset_attr ruleset_attr = {
 .handled_access_fs = landlock_fs_access_rights[abi-1],
 .handled_access_net = landlock_net_access_rights[abi-1],
};
int ruleset_fd = landlock_create_ruleset(
 &ruleset_attr, sizeof(ruleset_attr), 0);

if (ruleset_fd < 0) {
 /* error */
}

The operations to
be restricted
(bit masks)

2. landlock_add_rule(2) (file example)

struct landlock_path_beneath_attr attr = {
 .allowed_access = LANDLOCK_ACCESS_FS_READ_FILE,
 .parent_fd = dir_or_file_fd,
};
int res = landlock_add_rule(
 ruleset_fd,
 LANDLOCK_RULE_PATH_BENEATH, &attr, 0);

if (res < 0) {
 /* error */
}

Define exceptions to the
restricted operations

/

home

alice

usr

libbob

Documents

3. landlock_restrict_self(2)

int res = landlock_restrict_self(ruleset_fd, 0);
Enforce

if (res < 0) {
 /* error */
}

1. File system operations
2. TCP networking

Restrictable operations

/

home

alice

usr

libbob

Documents

Restrictable operations (file system)
Common operations:
LANDLOCK_ACCESS_FS_EXECUTE, LANDLOCK_ACCESS_FS_WRITE_FILE,
LANDLOCK_ACCESS_FS_READ_FILE, LANDLOCK_ACCESS_FS_TRUNCATE,
LANDLOCK_ACCESS_FS_READ_DIR

Directory entry manipulation:
LANDLOCK_ACCESS_FS_REMOVE_DIR, LANDLOCK_ACCESS_FS_REMOVE_FILE,
LANDLOCK_ACCESS_FS_MAKE_CHAR, LANDLOCK_ACCESS_FS_MAKE_DIR,
LANDLOCK_ACCESS_FS_MAKE_REG, LANDLOCK_ACCESS_FS_MAKE_SOCK,
LANDLOCK_ACCESS_FS_MAKE_FIFO, LANDLOCK_ACCESS_FS_MAKE_BLOCK,
LANDLOCK_ACCESS_FS_MAKE_SYM, LANDLOCK_ACCESS_FS_REFER

IOCTL:
LANDLOCK_ACCESS_FS_IOCTL_DEV

Opening for
reading/writing,
executing,
truncation

Using ioctl(2) on device files (new!)

Restrictable operations (TCP)

LANDLOCK_ACCESS_NET_BIND_TCP
LANDLOCK_ACCESS_NET_CONNECT_TCP

Exceptions (rules) can be defined per port
number.

Upcoming restrictions: see later slides

socket() socket()

bind()

listen()

accept()

send()

recv()

close()

send()

recv()

close()

connect()

Client Server

Backwards compatibility and ABI versioning

Software developers often do not know what kernel the software will run on.

● Landlock is versioned with ABI versions
● Userspace can probe for the available ABI version
● If needed, restrict only a subset of what you mean to restrict

This problem will become less relevant as older Linux versions phase out

Landlock Limitations

● Landlock is getting built incrementally
● Restricts many important operations already, but some are still missing

Some operations are additionally limited when using Landlock:

● Manipulation of file system topology (i.e. mounting, pivot_root)
● Requires NO_NEW_PRIVS flag
● Restricted use of ptrace()

IOCTL support

IOCTL interface

From ioctl(2):

int ioctl(int fd, unsigned long op, ...);

 void *argp

Example:

struct winsize ws;
if (ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) < 0)
 err(1, “TIOCGWINSZ”);

generic multiplexer!
e.g. TIOCGWINSZ, FS_IOC_GETFLAGS, …

Motivation for IOCTL support in Landlock

We try to apply the “principle of least privilege” with Landlock

Without Landlock IOCTL support:

● On any opened file, ioctl(2) can be called
● It is difficult to say what functionality that even entails
● It becomes difficult to reason about a program’s privileges

We should have Landlock policies that

● restrict the bulk of IOCTL commands by default,
● and which have narrow exceptions where needed.

IOCTL: What are these operations?

fs/ioctl.c

ops for file systemsops for COW file
systemsTrivial ops

manipulating
close-on-exec, async
and buffered-IO flags

Some for regular
files, like FIOQSIZE

controlling per-page
sharing of file

contents (“reflink”)

file system specific
(e.g. resize, trim,

encryption), getting
block size, etc.

filp->f_op
->unlocked_ioctl()

FIONREAD

syscall

device
files

other
files

many! sockets,
pipes, …

filp->f_op->unlocked_ioctl() is hard to reason about

Sometimes implemented like this:

static long my_ioctl(struct file *filp, unsigned int cmd,
 unsigned long arg) {
 acquire_resources(filp);
 switch (cmd) {
 case MY_IOCTL1: /* … */ break;
 case MY_IOCTL2: /* … */ break;
 }
 release_resources(filp);
}

This executes code,
even for unknown cmds!
Can be complicated.

What are the criteria by which we can allow or deny?
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg);

Need to strike a balance between flexibility and ease of use.

● Properties of file
○ Criteria: File path: Yes (uncontroversial; fits into existing Landlock scheme)
○ Criteria: File “type”: Difficult as configurable allow-list

■ …and device numbers? Also difficult
● Properties of cmd / op

○ Criteria: Encoded Read/Write flag (_IO, _IOR, _IOW, _IOWR): Not feasible*
○ Criteria: Configurable allow-lists: Difficult
○ Criteria: Hardcoded allow-lists: Yes

User-configurability complicates implementation, but benefit is unclear.
Avoid Seccomp-BPF-style programmability.

* https://lwn.net/Articles/428140/

https://lwn.net/Articles/428140/

Final decision: Restrict non-trivial device IOCTLs by path

● File path: Restriction can be configured by file path
● File type: Only restrict IOCTLs for device files

(LANDLOCK_ACCESS_FS_IOCTL_DEV access right)
● Op: Harmless operations are permitted independent of the access right:

○ Trivial and reasonable:
■ FIOCLEX, FIONCLEX, FIONBIO, FIOASYNC

○ Error code consistency (do not work on device files):
■ FIOQSIZE, FS_IOC_FIEMAP
■ FICLONE, FICLONERANGE, FIDEDUPERANGE

○ Operate on file system, not on file:
■ FIFREEZE, FITHAW, FIGETBSZ, FS_IOC_FSUUID, FS_IOC_GETFSSYSFSPATH

Final decision: Restrict non-trivial device IOCTLs by path

In other words:

For non-device files, or if LANDLOCK_ACCESS_FS_IOCTL_DEV is allowed:
● all IOCTLs are permitted

If LANDLOCK_ACCESS_FS_IOCTL_DEV is restricted on a given device file:
● FIOCLEX, FIONCLEX, FIONBIO and FIOASYNC can still be used
● Some other operations also work, but are audited to be safe
● No IOCTL gets dispatched to the device driver

The usual landlock_path_beneath_attr rule can be used to allow
LANDLOCK_ACCESS_FS_IOCTL_DEV on a file or directory hierarchy, even when it is
generally forbidden by default.

Notable News

March 2024: Landlock was disabled in the XZ Backdoor

The attackers who created a backdoor in the XZ compression library disabled XZ’s
Landlock sandbox, by sabotaging a check for Landlock presence in the
CMakeFile.

Screenshot: https://news.ycombinator.com/item?id=39874404

https://news.ycombinator.com/item?id=39874404

August 2024: CVE-2024-42318 (cred_transfer)

https://www.cve.org/CVERecord/?id=CVE-2024-42318
“Don’t lose track of restrictions on cred_transfer”

● Processes could disable their Landlock policy through the use of keyctl()
● Spotted and fixed by Jann Horn 🙏

A more comprehensive fix is also out, which should get rid of the cred_transfer()
LSM hook altogether.

https://www.cve.org/CVERecord/?id=CVE-2024-42318

restricted Landlock domain

Problems with TIOCSTI IOCTL and equivalents

● TIOCSTI emulates TTY keypresses
● frequently misused for privilege escalation
● recommended solution: pseudoterminals

○ 1000+ lines of C, requires a process that shovels data
to and from the pseudoterminal

● affects landlocked programs, but
pseudo-ttys are not realistic for small tools

● same thing is possible with the copy&paste
subcommands of the TIOCLINUX IOCTL

TTY
input buffer

user
keypresses

/bin/sh

landlocked tool

can write to
input buffer

read commands
from input buffer

TIOCSTI and equivalents now require CAP_SYS_ADMIN

This functionality should now
require CAP_SYS_ADMIN by
default:

TIOCSTI: Linux 6.2 (2022), fixed by
Kees Cook

TIOCLINUX’s Copy&Paste: Linux
6.7 (2023), fixed by Hanno Böck

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=TIOCSTI,
captured 2024-08-23

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=TIOCSTI

Upcoming Features

IPC Restrictions: Connecting to Abstract UNIX Socket

Abstract UNIX domain sockets behave like named UNIX Domain Sockets, but
they are not exposed in the file system, but registered in a kernel-global list by
name.

Status: Patch in review (Tahera Fahimi)

IPC Restrictions: Signal scoping support

Restrict the sending of signals across processes in different Landlock domains.

Status: Patch in review (Tahera Fahimi)

Upcoming restrictable network operations

Already supported:
● bind()
● connect()

Upcoming restrictions currently in
consideration:
● Creation of new sockets (socket(2))
● listen(2)
● connect(2) with AF_UNSPEC

socket() socket()

bind()

listen()

accept()

send()

recv()

close()

send()

recv()

close()

connect()

Client Server

Creation of new sockets (socket(2))

Lets us easily deny the use of a whole
range of uncommon socket types and
families.

Status: Patch in review (Mikhail Ivanov)

socket() socket()

bind()

listen()

accept()

send()

recv()

close()

send()

recv()

close()

connect()

Client Server

listen(2)

Putting a socket in passive mode (start
listening)

Restricting bind(2) is not enough – it is
possible to listen(2) without doing a bind(2)
before.

Status: Patch in review (Mikhail Ivanov)

socket() socket()

bind()

listen()

accept()

send()

recv()

close()

send()

recv()

close()

connect()

Client Server

Disassociation (connect(2) with AF_UNSPEC)

Disassociating an existing connection

This operation resets a socket back into a
state where is can be used for new listen(2)
or connect(2) operations.

Status: Not in review yet

socket() socket()

bind()

listen()

accept()

send()

recv()

close()

send()

recv()

close()

connect()

Client Server

“disassociate”

Questions

Questions

🌎 https://landlock.io/

📬 https://subspace.kernel.org/lists.linux.dev.html

🐞 https://github.com/landlock-lsm/linux/issues

https://landlock.io/
https://subspace.kernel.org/lists.linux.dev.html
https://github.com/landlock-lsm/linux/issues

