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Who am I?

● Günther Noack
● Interested in computer security for 20+ years
● Staff Software Engineer at Google in Zürich
● Landlock contributor since 2022, reviewer since 2024
● Author and maintainer of the Go Landlock library
● Likes to run and swim in his free time



Outline

● Landlock Motivation
● Technical Overview
● Landlock IOCTL support
● Other Notable News
● Upcoming Features



Motivation



Motivation

Attacked 
ProcessAttacker

SSH keys
Cookies

Love letters
Git repos

Bank 
documents

gains unauthorized 
access over

Actually 
required files



Let’s restrict the ambient access!
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Attempt 1: Seccomp-BPF

Seccomp-BPF is an unprivileged, BPF-scriptable “packet filter” for system calls.

Rules are defined in terms of the permitted syscall numbers and argument values.

Problems:

Users need to maintain an up-to-date list of existing used syscalls

● Shared libraries (including glibc!) change the syscalls that they use over time.
● These might still be unknown at the time of policy definition
● Leads to compatibility problems

We can’t follow pointer arguments from BPF scripts

● Making decisions based on file paths is not feasible without resorting to more involved 
trickery.



SELinux, AppArmor

● Mandatory Access Control
● Policies usually defined by system administrators or Linux distribution

○ Needs to be kept in sync with the sandboxed software
● SELinux and AppArmor are only available on a subset of distributions



Landlock Summary

● Introduced in Linux 5.13 (2021) by Mickaël Salaün
● Unprivileged sandboxing mechanism
● Lets processes define security policies for themselves
● Backwards-compatibility story is well-supported
● Software developers are in charge of defining policies

○ Developers know their software best
○ Policies are maintained as part of the code

● Policies specified in terms of meaningful abstraction boundaries
● Better granularity for the security policy (e.g. enable policy after initialization 

phase)



Vision

● Make Landlock simple to use for software developers
● Useful not only for building sandboxing tools,
● but also for self-sandboxing of normal Linux programs

Examples

● “Pipeline” tools: xzdec, convert, grep, …
● Network tools: netcat, ping, …
● Document viewers (e.g. zathura)
● etc.



Technical Overview
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Enforcing a Landlock ruleset

The Landlock ruleset defines the policy to be enforced.

1. Create ruleset file descriptor and define the restricted operations: 
landlock_create_ruleset(2)

2. (Optionally) add exceptions: landlock_add_rule(2)
3. Enforce ruleset: landlock_restrict_self(2)



1. landlock_create_ruleset(2)

struct landlock_ruleset_attr ruleset_attr = {
    .handled_access_fs  = landlock_fs_access_rights[abi-1],
    .handled_access_net = landlock_net_access_rights[abi-1],
};
int ruleset_fd = landlock_create_ruleset(
    &ruleset_attr, sizeof(ruleset_attr), 0);

if (ruleset_fd < 0) {
  /* error */
}

The operations to 
be restricted
(bit masks)



2. landlock_add_rule(2) (file example)

struct landlock_path_beneath_attr attr = {
    .allowed_access = LANDLOCK_ACCESS_FS_READ_FILE,
    .parent_fd = dir_or_file_fd,
};
int res = landlock_add_rule(
    ruleset_fd,
    LANDLOCK_RULE_PATH_BENEATH, &attr, 0);

if (res < 0) {
  /* error */
}

Define exceptions to the 
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3. landlock_restrict_self(2)

int res = landlock_restrict_self(ruleset_fd, 0);
Enforce

if (res < 0) {
  /* error */
}



1. File system operations
2. TCP networking

Restrictable operations
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Restrictable operations (file system)
Common operations:
LANDLOCK_ACCESS_FS_EXECUTE, LANDLOCK_ACCESS_FS_WRITE_FILE, 
LANDLOCK_ACCESS_FS_READ_FILE, LANDLOCK_ACCESS_FS_TRUNCATE, 
LANDLOCK_ACCESS_FS_READ_DIR

Directory entry manipulation:
LANDLOCK_ACCESS_FS_REMOVE_DIR, LANDLOCK_ACCESS_FS_REMOVE_FILE, 
LANDLOCK_ACCESS_FS_MAKE_CHAR, LANDLOCK_ACCESS_FS_MAKE_DIR, 
LANDLOCK_ACCESS_FS_MAKE_REG, LANDLOCK_ACCESS_FS_MAKE_SOCK, 
LANDLOCK_ACCESS_FS_MAKE_FIFO, LANDLOCK_ACCESS_FS_MAKE_BLOCK, 
LANDLOCK_ACCESS_FS_MAKE_SYM, LANDLOCK_ACCESS_FS_REFER

IOCTL:
LANDLOCK_ACCESS_FS_IOCTL_DEV

Opening for 
reading/writing, 
executing, 
truncation

Using ioctl(2) on device files (new!)



Restrictable operations (TCP)

LANDLOCK_ACCESS_NET_BIND_TCP
LANDLOCK_ACCESS_NET_CONNECT_TCP

Exceptions (rules) can be defined per port 
number.

Upcoming restrictions: see later slides
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Backwards compatibility and ABI versioning

Software developers often do not know what kernel the software will run on.

● Landlock is versioned with ABI versions
● Userspace can probe for the available ABI version
● If needed, restrict only a subset of what you mean to restrict

This problem will become less relevant as older Linux versions phase out



Landlock Limitations

● Landlock is getting built incrementally
● Restricts many important operations already, but some are still missing

Some operations are additionally limited when using Landlock:

● Manipulation of file system topology (i.e. mounting, pivot_root)
● Requires NO_NEW_PRIVS flag
● Restricted use of ptrace()



IOCTL support



IOCTL interface

From ioctl(2):

int ioctl(int fd, unsigned long op, ...);

                                        void *argp

Example:

struct winsize ws;
if (ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) < 0)
  err(1, “TIOCGWINSZ”);

generic multiplexer!
e.g. TIOCGWINSZ, FS_IOC_GETFLAGS, …



Motivation for IOCTL support in Landlock

We try to apply the “principle of least privilege” with Landlock

Without Landlock IOCTL support:

● On any opened file, ioctl(2) can be called
● It is difficult to say what functionality that even entails
● It becomes difficult to reason about a program’s privileges

We should have Landlock policies that

● restrict the bulk of IOCTL commands by default,
● and which have narrow exceptions where needed.



IOCTL: What are these operations?

fs/ioctl.c

ops for file systemsops for COW file 
systemsTrivial ops
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Some for regular 
files, like FIOQSIZE

controlling per-page 
sharing of file 

contents (“reflink”)

file system specific 
(e.g. resize, trim, 

encryption), getting 
block size, etc.

filp->f_op
->unlocked_ioctl()

FIONREAD

syscall

device 
files

other 
files

many! sockets, 
pipes, …



filp->f_op->unlocked_ioctl() is hard to reason about

Sometimes implemented like this:

static long my_ioctl(struct file *filp, unsigned int cmd,
                     unsigned long arg) {
    acquire_resources(filp);
    switch (cmd) {
    case MY_IOCTL1: /* … */ break;
    case MY_IOCTL2: /* … */ break;
    }
    release_resources(filp);
}

This executes code,
even for unknown cmds!
Can be complicated.



What are the criteria by which we can allow or deny?
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg);

Need to strike a balance between flexibility and ease of use.

● Properties of file
○ Criteria: File path: Yes (uncontroversial; fits into existing Landlock scheme)
○ Criteria: File “type”: Difficult as configurable allow-list

■ …and device numbers?  Also difficult
● Properties of cmd / op

○ Criteria: Encoded Read/Write flag (_IO, _IOR, _IOW, _IOWR): Not feasible*
○ Criteria: Configurable allow-lists: Difficult
○ Criteria: Hardcoded allow-lists: Yes

User-configurability complicates implementation, but benefit is unclear.
Avoid Seccomp-BPF-style programmability.

* https://lwn.net/Articles/428140/

https://lwn.net/Articles/428140/


Final decision: Restrict non-trivial device IOCTLs by path

● File path: Restriction can be configured by file path
● File type: Only restrict IOCTLs for device files 

(LANDLOCK_ACCESS_FS_IOCTL_DEV access right)
● Op: Harmless operations are permitted independent of the access right:

○ Trivial and reasonable:
■ FIOCLEX, FIONCLEX, FIONBIO, FIOASYNC

○ Error code consistency (do not work on device files):
■ FIOQSIZE, FS_IOC_FIEMAP
■ FICLONE, FICLONERANGE, FIDEDUPERANGE

○ Operate on file system, not on file:
■ FIFREEZE, FITHAW, FIGETBSZ, FS_IOC_FSUUID, FS_IOC_GETFSSYSFSPATH



Final decision: Restrict non-trivial device IOCTLs by path

In other words:

For non-device files, or if LANDLOCK_ACCESS_FS_IOCTL_DEV is allowed:
● all IOCTLs are permitted

If LANDLOCK_ACCESS_FS_IOCTL_DEV is restricted on a given device file:
● FIOCLEX, FIONCLEX, FIONBIO and FIOASYNC can still be used
● Some other operations also work, but are audited to be safe
● No IOCTL gets dispatched to the device driver

The usual landlock_path_beneath_attr rule can be used to allow 
LANDLOCK_ACCESS_FS_IOCTL_DEV on a file or directory hierarchy, even when it is 
generally forbidden by default.



Notable News



March 2024: Landlock was disabled in the XZ Backdoor

The attackers who created a backdoor in the XZ compression library disabled XZ’s 
Landlock sandbox, by sabotaging a check for Landlock presence in the 
CMakeFile.

Screenshot: https://news.ycombinator.com/item?id=39874404

https://news.ycombinator.com/item?id=39874404


August 2024: CVE-2024-42318 (cred_transfer)

https://www.cve.org/CVERecord/?id=CVE-2024-42318
“Don’t lose track of restrictions on cred_transfer”

● Processes could disable their Landlock policy through the use of keyctl()
● Spotted and fixed by Jann Horn 🙏

A more comprehensive fix is also out, which should get rid of the cred_transfer() 
LSM hook altogether.

https://www.cve.org/CVERecord/?id=CVE-2024-42318


restricted Landlock domain

Problems with TIOCSTI IOCTL and equivalents

● TIOCSTI emulates TTY keypresses
● frequently misused for privilege escalation
● recommended solution: pseudoterminals

○ 1000+ lines of C, requires a process that shovels data 
to and from the pseudoterminal

● affects landlocked programs, but 
pseudo-ttys are not realistic for small tools

● same thing is possible with the copy&paste 
subcommands of the TIOCLINUX IOCTL

TTY
input buffer

user 
keypresses

/bin/sh

landlocked tool

can write to 
input buffer

read commands 
from input buffer



TIOCSTI and equivalents now require CAP_SYS_ADMIN

This functionality should now 
require CAP_SYS_ADMIN by 
default:

TIOCSTI: Linux 6.2 (2022), fixed by 
Kees Cook

TIOCLINUX’s Copy&Paste: Linux 
6.7 (2023), fixed by Hanno Böck

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=TIOCSTI, 
captured 2024-08-23

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=TIOCSTI


Upcoming Features



IPC Restrictions: Connecting to Abstract UNIX Socket

Abstract UNIX domain sockets behave like named UNIX Domain Sockets, but 
they are not exposed in the file system, but registered in a kernel-global list by 
name.

Status: Patch in review (Tahera Fahimi)



IPC Restrictions: Signal scoping support

Restrict the sending of signals across processes in different Landlock domains.

Status: Patch in review (Tahera Fahimi)



Upcoming restrictable network operations

Already supported:
● bind()
● connect()

Upcoming restrictions currently in 
consideration:
● Creation of new sockets (socket(2))
● listen(2)
● connect(2) with AF_UNSPEC
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Creation of new sockets (socket(2))

Lets us easily deny the use of a whole 
range of uncommon socket types and 
families.

Status: Patch in review (Mikhail Ivanov)
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listen(2)

Putting a socket in passive mode (start 
listening)

Restricting bind(2) is not enough – it is 
possible to listen(2) without doing a bind(2) 
before.

Status: Patch in review (Mikhail Ivanov)
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Disassociation (connect(2) with AF_UNSPEC)

Disassociating an existing connection

This operation resets a socket back into a 
state where is can be used for new listen(2) 
or connect(2) operations.

Status: Not in review yet
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Questions



Questions

🌎 https://landlock.io/

📬 https://subspace.kernel.org/lists.linux.dev.html

🐞 https://github.com/landlock-lsm/linux/issues

https://landlock.io/
https://subspace.kernel.org/lists.linux.dev.html
https://github.com/landlock-lsm/linux/issues

