
Linux sandboxing with Landlock

A picture containing text, clipart

Description automatically generated

2024-09-17

Mickaël Salaün – kernel maintainer

Open Source Summit Europe

https://creativecommons.org/licenses/by-sa/4.0/
https://digikod.net/

Once upon a time… not so far away

A company developing a product used all over the world finally gets a

worldwide coverage in the news, unfortunately not a good one:

Millions of machines compromised because of this software!

You are a developer, what can you do to prevent such malicious

exploitation?

How could this happen?

bugs

+

malicious actors

=

exploited vulnerabilities

Real-life exploits

What could we do about this?

• Remove all bugs?

• Use another programming language?

• Test everything?

• Encrypt data?

• Limit access of our product!

Protect data

https://xkcd.com/1200

https://xkcd.com/1200

Virtual machine Pros

• Duplicate the whole system and then

mitigates its exposure

Cons

• Shipping a VM instead of an installer is a

hard sell because of size, overhead and

complexity

• Does not provide an access control

system

Container Pros

• Well known developer tool

• Lighter than a VM

Cons

• May increase the attack surface and

comes with its own vulnerabilities:

namespaces and embed dependencies

• May provide some coarse-grained

control for file access, but not native to

apps/services: increased configuration

AppArmor,

SELinux,

Smack, or

Tomoyo

Pros

• Real access control systems

Cons

• Security policy is system-wide and

cannot be embedded in apps/services:

complex and static configuration

BPF LSM Pros

• Dynamic security policies

Cons

• Security policy is system-wide and

cannot be embedded in apps/services:

complex eBPF programs

• Difficult to deal with files

seccomp-bpf Pros

• Dynamic security policies

• Reduces the kernel attack surface

• Embeddable in apps/services:

unprivileged

Cons

• Not an access control system: cannot

identify files nor other kernel semantic

• Fixed set of syscalls: update issues

• Scoped to a set of processes

Landlock Pros

• Real access control system

• Dynamic security policies

• Embeddable in apps/services:

unprivileged

Cons

• Scoped to a set of processes

Sandboxing

What is

sandboxing?

“A restricted, controlled execution

environment that prevents potentially

malicious software [...] from accessing any

system resources except those for which

the software is authorized.”

Tailored and

embedded

security policy

Developers are in the best position to

reason about the required accesses

according to legitimate behaviors:

• Application semantics

• Static and dynamic configuration

• Interactions

Dynamic policy

composition

Safe security

mechanism

Principle of least privilege

• No privileged accounts or services

• No SUID binaries

Innocuous access control

• Only increase restrictions

Protecting against bypasses

• Each process should be protected from

less-privileged ones

Non-Linux

systems

Main sandbox mechanisms:

• XNU Sandbox (iOS)

• Pledge and Unveil (OpenBSD)

• Capsicum (FreeBSD)

• AppContainer (Windows)

Landlock properties

Use case #1 Untrusted applications: protect from

potentially malicious third-party code.

Candidates:

• Container runtimes

• Init systems

Use case #2 Exploitable bugs in trusted

applications: protect from vulnerable

code maintained by developers.

Candidates:

• Parsers: archive tools, file format

conversion, renderers…

• Web browsers

• Network and system services

Useful

development

properties

Embedded policies: testable with a CI

and always synchronized with app

semantic

Set of small policies: easier to maintain

and audit

Composable policies: lockless

concurrent policy development

Well-defined backward compatibility

with ABI versions: stable and consistent

results

How Landlock

works?

Restrict ambient rights according to the

kernel semantic (e.g., global filesystem

access) for a set of processes, thanks to

3 dedicated syscalls.

Security policies are inherited by all new

children processes.

A one-way set of restrictions: cannot be

disabled once enabled.

Current access

control

Implicit restrictions

• Process impersonation (e.g., ptrace)

• Filesystem topology changes (e.g.,

mounts)

Explicit access rights

• Filesystem

• Networking

Current

filesystem

access rights

• Execute, read or write to a file

• List a directory or remove files

• Create files according to their type

• Rename or link files

• IOCTL commands to devices

Current

networking

access rights

• Connect to a TCP port

• Bind to a TCP port

Upcoming IPC

scoping

Scope sandboxes:

• Connect to abstract UNIX sockets

• Send signals

Landlock interface

Step 1: Check backward compatibility

int abi = landlock_create_ruleset(NULL, 0, LANDLOCK_CREATE_RULESET_VERSION);

if (abi < 0)
 return 0;

Step 2: Create a ruleset

int ruleset_fd;
struct landlock_ruleset_attr ruleset_attr = {
 .handled_access_fs =
 LANDLOCK_ACCESS_FS_EXECUTE |
 LANDLOCK_ACCESS_FS_WRITE_FILE |
 […]
 LANDLOCK_ACCESS_FS_MAKE_REG,
};

ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0);
if (ruleset_fd < 0)
 error_exit("Failed to create a ruleset");

Step 3: Add rules

int err;
struct landlock_path_beneath_attr path_beneath = {
 .allowed_access = LANDLOCK_ACCESS_FS_EXECUTE | […] ,
};

path_beneath.parent_fd = open("/usr", O_PATH | O_CLOEXEC);
if (path_beneath.parent_fd < 0)
 error_exit("Failed to open file");

err = landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0);
close(path_beneath.parent_fd);
if (err)
 error_exit("Failed to update ruleset");

Step 4: Enforce the ruleset

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
 error_exit("Failed to restrict privileges");

if (landlock_restrict_self(ruleset_fd, 0))
 error_exit("Failed to enforce ruleset");

close(ruleset_fd);

Full example: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/samples/landlock/sandboxer.c

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/samples/landlock/sandboxer.c

Adoption

Linux

distributions

Most distros support Landlock by default:

• Arch Linux

• Ubuntu

• Debian

• Fedora

• chromeOS

• WSL2

• Azure Linux

• Gentoo

• Flatcar…

Landlock

helpers

Examples of sandbox tools:

• setpriv

• Firejail

• Minijail

Examples of sandbox libraries:

• Landlock Rust crate

• Landlock Go library

• Minijail

• Pledge for Linux

Landlocked

apps

Examples of sandboxed apps:

• Zathura (document viewer)

• Pacman (package manager)

• Cloud Hypervisor (VM monitor)

• Suricata (network IDS)

• Polkadot (blockchain SDK)

• wireproxy (Wireguard client)

• GNOME LocalSearch (search engine)

• XZ Utils (archive manager)

Getting noticed by attackers too!

Landlock support in XZ Utils:

• 5.6.0 (2024-02-24)

• 5.6.1 (2024-03-09)

• 5.6.2 (2024-05-29)

A qr code with black squares

Description automatically generated

https://git.tukaani.org/?p=xz.git;a=commitdiff;h=328c52da8a2bbb81307644efdb58db2c422d9ba7

Try Landlock

WARNING: The "sandboxer" is a demonstration program,
not a tool with a stable interface.

$ cargo install landlock --examples

$ sandboxer

Wrap-up

Roadmap Ongoing and next steps:

• Add new access-control types: socket

creation, UDP port use…

• Add audit support to ease debugging

and provide metrics

• Develop a new sandboxer tool

• Improve adoption
A qr code with a few black squares

Description automatically generated

https://github.com/orgs/landlock-lsm/projects/1

Contribute Kernel contributors: Günther Noack,

Konstantin Meskhidze, Jeff Xu, Ivanov

Mikhail, Jann Horn, Tahera Fahimi…

Contribution ideas:

• Develop new access types and tests

• Improve libraries: Rust, Go…

• Improve documentation

• Challenge implementations

https://github.com/landlock-lsm/rust-landlock
https://github.com/landlock-lsm/go-landlock

Questions?

landlock@lists.linux.dev

Thank you!

A qr code with a few squares

Description automatically generated

mailto:landlock@lists.linux.dev
https://docs.kernel.org/userspace-api/landlock.html

	Introduction
	Slide 1: Linux sandboxing with Landlock
	Slide 2: Once upon a time… not so far away
	Slide 3: How could this happen?
	Slide 4: Real-life exploits
	Slide 5: What could we do about this?
	Slide 6: Protect data
	Slide 7: Virtual machine
	Slide 8: Container
	Slide 9: AppArmor, SELinux, Smack, or Tomoyo
	Slide 10: BPF LSM
	Slide 11: seccomp-bpf
	Slide 12: Landlock

	Sandboxing
	Slide 13: Sandboxing
	Slide 14: What is sandboxing?
	Slide 15: Tailored and embedded security policy
	Slide 16: Dynamic policy composition
	Slide 17: Safe security mechanism
	Slide 18: Non-Linux systems

	Landlock properties
	Slide 19: Landlock properties
	Slide 20: Use case #1
	Slide 21: Use case #2
	Slide 22: Useful development properties
	Slide 23: How Landlock works?
	Slide 24: Current access control
	Slide 25: Current filesystem access rights
	Slide 26: Current networking access rights
	Slide 27: Upcoming IPC scoping

	Landlock interface
	Slide 28: Landlock interface
	Slide 29: Step 1: Check backward compatibility
	Slide 30: Step 2: Create a ruleset
	Slide 31: Step 3: Add rules
	Slide 32: Step 4: Enforce the ruleset

	Adoption
	Slide 33: Adoption
	Slide 34: Linux distributions
	Slide 35: Landlock helpers
	Slide 36: Landlocked apps
	Slide 37: Getting noticed by attackers too!
	Slide 38: Try Landlock

	Wrap-up
	Slide 39: Wrap-up
	Slide 40: Roadmap
	Slide 41: Contribute
	Slide 42: Questions?

