
Linux sandboxing with Landlock

A picture containing text, clipart

Description automatically generated

2025-01-29

Mickaël Salaün – kernel maintainer

Overview & workshop

https://creativecommons.org/licenses/by-sa/4.0/
https://digikod.net/

How does a data breach happen?

bugs

+

malicious actors

=

exploited vulnerabilities

Real-life exploits

Pragmatic

statements

1. An innocuous and trusted process can

become malicious during its lifetime

because of bugs exploited by

attackers.

2. There are multiple and different levels

of trust (TCB) and different

consequences in case of a breach:

system, user, app data…

Agenda

1. Secure development

2. Sandboxing

3. Sandboxing on Linux

4. Landlock status

5. Landlock properties

6. Landlock access control

7. Sandboxing with Landlock

8. Workshop setup

9. Let’s patch ImageMagick!

10. Compatibility

Securing developments

How to protect

an application?

Reactive solutions

Fix bugs quickly and push updates widely

How to protect

an application?

Proactive solutions

• Look for bugs (e.g., audit, fuzzing) and

fix them

• Add more tests and use them

• Use safer languages and libraries

• Leverage linters, compilers and other

tools

• Consider (most) software as potentially

malicious and protect the rest of the

system from them

Protect data

https://xkcd.com/1200

https://xkcd.com/1200

Sandboxing

What is

sandboxing?

“A restricted, controlled execution

environment that prevents potentially

malicious software [...] from accessing any

system resources except those for which

the software is authorized.”

Tailored and

embedded

security policy

Developers are in the best position to

reason about the required accesses

according to legitimate behaviors:

• Application semantics

• Static and dynamic configuration

• Interactions

Safe security

mechanism

Principle of least privilege

• No privileged accounts or services

• No SUID binaries

Innocuous access control

• Only increase restrictions

Protecting against bypasses

• Each process should be protected from

less-privileged ones

Non-Linux

systems

Main sandbox mechanisms:

• XNU Sandbox (iOS)

• Pledge and Unveil (OpenBSD)

• Capsicum (FreeBSD)

• AppContainer (Windows)

Sandboxing on Linux

Virtual machine Pros

• Duplicate the whole system and then

mitigates its exposure

Cons

• Shipping a VM instead of an installer is a

hard sell because of size, overhead and

complexity

• Does not provide an access control

system

Container Pros

• Well known developer tool

• Lighter than a VM

Cons

• May increase the attack surface and

comes with its own vulnerabilities:

namespaces and embed dependencies

• May provide some coarse-grained

control for file access, but not native to

apps/services: increased configuration

AppArmor,

SELinux,

Smack, or

Tomoyo

Pros

• Real access control systems

Cons

• Security policy is system-wide and

cannot be embedded in apps/services:

complex and static configuration

BPF LSM Pros

• Dynamic security policies

Cons

• Security policy is system-wide and

cannot be embedded in apps/services:

complex eBPF programs

• Difficult to deal with files

seccomp-bpf Pros

• Dynamic security policies

• Reduces the kernel attack surface

• Embeddable in apps/services:

unprivileged

Cons

• Not an access control system: cannot

identify files nor other kernel semantic

• Fixed set of syscalls: update issues

• Scoped to a set of processes

Landlock Pros

• Real access control system

• Dynamic security policies

• Embeddable in apps/services:

unprivileged

Cons

• Scoped to a set of processes

Candidates for a sandboxing mechanism

Performance Fine-grained control Embedded policy Unprivileged use

Virtual Machine

SELinux

namespaces

seccomp

Landlock

Yes, compared to others

No, compared to others

In some way, but with limitations

Landlock status

The Linux

kernel

development

One of the largest and most active free

software projects in existence.

New release every ~9 weeks

26+ million single lines of code

Development statistics for Linux 6.12:

• 2000+ developers, including 300+ new

contributors

• 13000+ commits

https://lwn.net/Articles/997959/

Landlock

development

Maintainer: Mickaël Salaün

Reviewer: Günther Noack

Main contributors: Konstantin Meskhidze,

Jeff Xu, Ivanov Mikhail, Jann Horn, Tahera

Fahimi

History 1. Initial RFC (Mar. 2016)

2. 34 patch series with different designs:

seccomp, eBPF, cgroups…

3. Merged in Linux 5.13 (Apr. 2021)

Landlock in

numbers

Single lines of code (Linux 6.12):

• Kernel: ~2500

• Tests: ~7160 (without LTP)

Tests coverage: 92%

Fuzzing coverage with syzkaller: 72%

Documentation: 29 pages

Article: 34 pages

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/security/landlock
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/landlock
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/syscalls/landlock
https://syzkaller.appspot.com/upstream
https://docs.kernel.org/userspace-api/landlock.html
https://landlock.io/talks/2024-06-06_landlock-article.pdf

Linux

distributions

Most distros support Landlock by default:

• Arch Linux

• Ubuntu

• Debian

• Fedora

• chromeOS

• WSL2

• Azure Linux

• Gentoo

• Flatcar

• RHEL (WIP)…

Container

runtimes

Most container runtimes supporting

Landlock:

• Docker

• Podman

• runc

• LXC

• systemd-nspawn

Landlock

helpers

Examples of sandbox tools:

• setpriv

• Minijail

• Firejail

Examples of sandbox libraries:

• Landlock Rust crate

• Landlock Go library

• Minijail

• Pledge for Linux

Landlocked

apps

Examples of sandboxed apps:

• Zathura (document viewer)

• Pacman (package manager)

• Cloud Hypervisor (VM monitor)

• Suricata (network IDS)

• Polkadot (blockchain SDK)

• wireproxy (Wireguard client)

• GNOME LocalSearch (search engine)

• XZ Utils (archive manager)

Getting noticed by attackers too!

Landlock support in XZ Utils:

• 5.6.0 (2024-02-24)

• 5.6.1 (2024-03-09)

• 5.6.2 (2024-05-29)

A qr code with black squares

Description automatically generated

https://git.tukaani.org/?p=xz.git;a=commitdiff;h=328c52da8a2bbb81307644efdb58db2c422d9ba7

Try Landlock

WARNING: The "sandboxer" is a demonstration program,
not a tool with a stable interface.

$ cargo install landlock --examples

$ sandboxer

Landlock properties

Use case #1 Untrusted applications: protect from

potentially malicious third-party code.

Candidates:

• Container runtimes

• Init systems

Use case #2 Exploitable bugs in trusted

applications: protect from vulnerable

code maintained by developers.

Candidates:

• Parsers: archive tools, file format

conversion, renderers…

• Web browsers

• Network and system services

Dynamic policy

composition

Dynamic policy

composition

Dynamic policy

composition

Dynamic policy

composition

Dynamic policy

composition

Sandbox policies hierarchy

P1

P_ Sandboxed process

Sandbox domain

Sandbox policies hierarchy

P2

P1

P_ Sandboxed process

Sandbox domain

Sandbox policies hierarchy

P2

P1

P_ Sandboxed process

Sandbox domain

Sandbox policies hierarchy

P2

P1

P3

P_ Sandboxed process

Sandbox domain

Sandbox policies hierarchy

P2

P1

P3

P_ Sandboxed process

Sandbox domain

Sandbox policies hierarchy

P2

P4

P1

P3

P_ Sandboxed process

Sandbox domain

Useful

development

properties

Embedded policies: testable with a CI

and always synchronized with app

semantic

Set of small policies: easier to maintain

and audit

Composable policies: lockless

concurrent policy development

Well-defined backward compatibility

with ABI versions: stable and consistent

results

How does

Landlock work?

Restrict ambient rights according to the

kernel semantic (e.g., global filesystem

access) for a set of processes, thanks to

3 dedicated syscalls.

Security policies are inherited by all new

children processes.

A one-way set of restrictions: cannot be

disabled once enabled.

Landlock access control

Current access

control

Implicit restrictions

• Process impersonation (e.g., ptrace)

• Filesystem topology changes (e.g.,

mounts)

Explicit access rights

• Filesystem

• Networking

• Signaling

• Abstract unix socket

IPC scoping Scope sandboxes:

• Connect to abstract UNIX sockets

• Send signals

Current

networking

access rights

• Connect to a TCP port

• Bind to a TCP port

Current

filesystem

access rights

• Execute, read or write to a file

• List a directory or remove files

• Create files according to their type

• Rename or link files

• Send IOCTL commands to devices

Example of filesystem policy composition

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

R Read

W Write

X eXecute

1st layer

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R
R Read

W Write

X eXecute

2nd layer

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R

home user/

.cache app RW

Pictures cool.jpg R
R Read

W Write

X eXecute

3rd layer

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R

home user/

.cache app RW

Pictures cool.jpg R

3rd layer

R Read

W Write

X eXecute

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R

2nd layer

home user/

.cache app RW

Pictures cool.jpg R

3rd layer

R
R Read

W Write

X eXecute

Example of filesystem policy composition

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

1st layer
etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R

2nd layer

home user/

.cache app RW

Pictures cool.jpg R

3rd layer

R

RW

R Read

W Write

X eXecute

Sandboxing with Landlock

How to patch

an application?

1. Define the threat model: which data is

trusted or untrusted?

2. Identify the complex parts of the code:

where there is a good chance to find

bugs?

3. Identify and patch the configuration

handling to infer a security policy.

4. Identify and patch the most generic

places to enforce the security policy for

the rest of the lifetime of the thread.

Application

compatibility in

a nutshell

Forward compatibility: kernel

Backward compatibility: responsibility of

application developers

Each new Landlock feature increments the

ABI version, which is useful to leverage

available features in a best-effort

security approach.

Will see more at the end of this talk…

Landlock ABI

versions

1. Linux 5.13: Initial set of FS access rights

2. Linux 5.19: Rename and link

3. Linux 6.2: Truncation

4. Linux 6.7: TCP connect and bind

5. Linux 6.10: IOCTL for devices

6. Linux 6.12: Signal and abstract UNIX

socket

Landlock interface (in C and Rust)

Step 1: Check backward compatibility

int abi = landlock_create_ruleset(NULL, 0, LANDLOCK_CREATE_RULESET_VERSION);

if (abi < 0)

 return 0;

Step 2: Create a ruleset

int ruleset_fd;

struct landlock_ruleset_attr ruleset_attr = {

 .handled_access_fs =

 LANDLOCK_ACCESS_FS_EXECUTE |

 LANDLOCK_ACCESS_FS_WRITE_FILE,

};

ruleset_fd = landlock_create_ruleset(&ruleset_attr,

 sizeof(ruleset_attr), 0);

if (ruleset_fd < 0)

 error_exit("Failed to create a ruleset");

Ruleset::default()

 .handle_access(make_bitflags!(

 AccessFs::{Execute | WriteFile}))?

 .create()?

Step 3: Add rules

int err;

struct landlock_path_beneath_attr path_beneath = {

 .allowed_access = LANDLOCK_ACCESS_FS_EXECUTE,

};

path_beneath.parent_fd = open("/usr",

 O_PATH | O_CLOEXEC);

if (path_beneath.parent_fd < 0)

 error_exit("Failed to open file");

err = landlock_add_rule(ruleset_fd,

 LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0);

close(path_beneath.parent_fd);

if (err)

 error_exit("Failed to update ruleset");

Ruleset::default()

 .handle_access(make_bitflags!(

 AccessFs::{Execute | WriteFile}))?

 .create()?

 .add_rule(

 PathBeneath::new(PathFd::new("/usr")?)

 .allow_access(AccessFs::Execute)

)?

Step 4: Enforce the ruleset

Full example in C

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))

 error_exit("Failed to restrict privileges");

if (landlock_restrict_self(ruleset_fd, 0))

 error_exit("Failed to enforce ruleset");

close(ruleset_fd);

Ruleset::default()

 .handle_access(make_bitflags!(

 AccessFs::{Execute | WriteFile}))?

 .create()?

 .add_rule(

 PathBeneath::new(PathFd::new("/")?)

 .allow_access(AccessFs::Execute)

)?

 .restrict_self()?

Full example in Rust

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/samples/landlock/sandboxer.c
https://github.com/landlock-lsm/rust-landlock/blob/main/examples/sandboxer.rs

Workshop setup

VM setup

See https://github.com/landlock-lsm/workshop-imagemagick

If you already cloned the repository:

git pull
vagrant up
vagrant ssh

https://github.com/landlock-lsm/workshop-imagemagick

Connect to the VM

Once set up, take a snapshot and log in

vagrant snapshot push

vagrant ssh

We can now also use virt-manager to connect to the VM

Steps done by

the VM

provisioning

1. Set up the build environment

2. Build a vulnerable version of

ImageMagick

Let’s patch ImageMagick!

ImageMagick Pretty common set of tools to transform

or display pictures: parse a lot of file

formats

Use cases: CLI tool or (web) server

Attack scenario CVE-2016-3714/ImageTragick: insufficient
shell characters filtering that can lead to
(potentially remote) code execution.

Let’s say we have a vulnerable version, not

necessarily this one. For this workshop we

use an old and vulnerable (long-been-

fixed) ImageMagick version.

Sandboxing this kind of tool can help

mitigate the impact of such vulnerability:

e.g., deny access to secret files

https://nvd.nist.gov/vuln/detail/CVE-2016-3714
https://imagetragick.com/

Agenda

1. Test an exploit

2. Find the sweet spot to restrict the

process

3. Patch + build + test

Test exploit with vulnerable version

Convert from one image format to another

convert /vagrant/exploit/malicious.mvg /tmp/out.png

Solution patches are available in /vagrant/imagemagick-patches/*.patch

Main steps to

patch

1. Declare the Landlock syscalls

2. Find what we want to sandbox and

where it would make sense

3. Create a ruleset

4. Add static rules

5. Add dynamic rules

6. Restrict the task before potentially-

harmful computation

Patch ImageMagick 1/9

1/ Go to the source directory

cd ~/src/ImageMagick-6.9.3-8

Patch ImageMagick 2/9

3/ Import Landlock syscall stubs and access right groups

cp /vagrant/sandboxer.c magick/landlock.h
vim magick/landlock.h

git add -A
git commit

4/ Look at the system’s Landlock definitions and types (updated with up-to-
date 6.12 headers)

vim /usr/include/linux/landlock.h

Patch ImageMagick 3/9

5/ Look at the convert code and find a sweat spot for sandboxing

vim wand/convert.c

Imagemagick doesn’t have a clear separation between argument parsing and
their evaluation: we need to patch the loop parsing arguments.

6/ Include landlock.h and create the ruleset in ConvertImageCommand()

(void) CopyMagickString(image_info->filename,filename,MaxTextExtent);

const struct landlock_ruleset_attr ruleset_attr = {
 .handled_access_fs = ACCESS_FS_ROUGHLY_READ | ACCESS_FS_ROUGHLY_WRITE,
};

+
+
+

0003-WORKSHOP-Create-a-ruleset.patch

Build and test the patched ImageMagick

Regularly build and check convert

make

Test conversion (the convert tool points to ./utilities/convert)

convert /vagrant/exploit/malicious.mvg /tmp/out.png

Debug

strace convert /vagrant/exploit/malicious.mvg /tmp/out.png

Patch ImageMagick 4/9

7/ Create the ruleset

int ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0);

8/ Check for errors and log them

if (ruleset_fd < 0) {
 perror("LANDLOCK: Failed to create a ruleset");
 return MagickFalse;
}

9/ Close the ruleset

close(ruleset_fd);

0003-WORKSHOP-Create-a-ruleset.patch

Patch ImageMagick 5/9

10/

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
 perror("LANDLOCK: Failed to lock privileges");
 return MagickFalse;
}

if (landlock_restrict_self(ruleset_fd, 0)) {
 perror("LANDLOCK: Failed to restrict thread");
 return MagickFalse;
}

0004-WORKSHOP-Restrict-and-break-everything.patch

Build and test the patched ImageMagick

Regularly build and check convert

make && convert /vagrant/exploit/malicious.mvg /tmp/out.png

Patch ImageMagick 6/9

11/ Add static rules: exceptions to the denied-by-default policy

struct landlock_path_beneath_attr rule;

printf("LANDLOCK: Adding rule for /usr");
rule.parent_fd = open("/usr", O_PATH | O_CLOEXEC);
rule.allowed_access = ACCESS_FS_ROUGHLY_READ;
if (landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &rule, 0)) {
 perror("LANDLOCK: Failed to create rule");
 return MagickFalse;
}
close(rule.parent_fd);

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))

+
+
+
+
+
+
+
+
+
+

0005-WORKSHOP-Add-static-restrictions.patch

Patch ImageMagick 7/9

12/ Add more static rules: /dev/null and /tmp (with appropriate access)

printf("LANDLOCK: Adding rule for /dev/null");
rule.parent_fd = open("/dev/null", O_PATH | O_CLOEXEC);
rule.allowed_access = LANDLOCK_ACCESS_FS_READ_FILE;
if (landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &rule, 0)) {
 perror("LANDLOCK: Failed to create rule");
 return MagickFalse;
}
close(rule.parent_fd);

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))

+
+
+
+
+
+
+
+

0005-WORKSHOP-Add-static-restrictions.patch

Patch ImageMagick 8/9

13/ Add a dynamic rule according to CLI arguments

printf("LANDLOCK: Adding rule for %s", filename);
rule.parent_fd = open(filename, O_PATH | O_CLOEXEC);
rule.allowed_access = LANDLOCK_ACCESS_FS_READ_FILE;
if (landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &rule, 0)) {
 perror("LANDLOCK: Failed to create rule");
 return MagickFalse;
}
close(rule.parent_fd);

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))

+
+
+
+
+
+
+
+

0006-WORKSHOP-Handle-input-and-output-files.patch

Patch ImageMagick 9/9

14/ Add more dynamic rules

char *out_path = strdup(argv[i+1]);
const char *out_dir = dirname(out_path);
[...]

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))

+
+
+

0006-WORKSHOP-Handle-input-and-output-files.patch

Build and test the final version

Build and check convert

make && convert /vagrant/exploit/malicious.mvg /tmp/out.png

Exercise left to

the readers

• Make the code more generic and

maintainable

• Support the “fd:” URI scheme

• Support more commands

• Test with different kernel versions with

help from the Landlock test tools

• …and send your patch upstream!

https://github.com/landlock-lsm/landlock-test-tools

Compatibility and best-effort security

Incremental

development

Because it is complex, a new kernel access

control system cannot implement

everything at once.

Landlock is useful as-is and it is gaining

new features over time, which may enable

to either add or remove restrictions.

Restrictions evolution over versions

Always denied

• Get new privileges

• Ptrace a parent sandbox

• Change FS topology

• Reparent files

Configurable

• Read file

• Write file

• …

Always allowed

• Change directory

• Read file metadata

• Change file ownership

• IOCTL

• Truncate file

• …

Landlock v1

Restrictions evolution over versions

Always denied

• Get new privileges

• Ptrace a parent sandbox

• Change FS topology

• Reparent files

Configurable

• Read file

• Write file

• …

• Reparent files

Always allowed

• Change directory

• Read file metadata

• Change file ownership

• IOCTL

• Truncate file

• …

Landlock v1

Landlock v2

Always denied

• Get new privileges

• Ptrace a parent sandbox

• Change FS topology

• Reparent files

Restrictions evolution over versions

Always denied

• Get new privileges

• Ptrace a parent sandbox

• Change FS topology

• Reparent files

Configurable

• Read file

• Write file

• …

• Reparent files

• Truncate file

Always allowed

• Change directory

• Read file metadata

• Change file ownership

• IOCTL

• Truncate file

• …

Landlock v1

Landlock v2

Landlock v3

Always denied

• Get new privileges

• Ptrace a parent sandbox

• Change FS topology

• Reparent files

Always allowed

• Change directory

• Read file metadata

• Change file ownership

• IOCTL

• Truncate file

• …

Application

compatibility

Forward compatibility for applications is handled

by the kernel development process.

Backward compatibility for applications is the

responsibility of their developers, who may not

be aware of the kernel on which their

application will run.

Each new Landlock feature increments the

Landlock ABI version, which is useful to

implement a fallback mechanism: best-effort

approach.

Good

sandboxing

rules

1. Transparent to users

2. Best-effort with minimal requirement

3. Handle strict restrictions

4. Runtime configuration with maximum

execution

Rule #1:

Transparent to

users

Most of the time, configurations are not updated.

Requirements:

• Leverage the current application’s configuration

as much as possible

• Dynamic checks to identify required runtime

resources

Rule #2: Best-

effort with

minimal

requirement

Don’t break my application!

Enforce restrictions as much as possible

according to the running kernel, and being able

to disable the whole sandboxing if a required

feature is not supported (e.g., the refer access

right for file reparenting).

Use case:

• For end users, opportunistically sandbox

applications without error

Rule #3: Handle

strict

restrictions

Create an option to force sandboxing and error

out if anything goes wrong (not enabled by

default).

Use cases:

1. For developers and CI tests, to be sure that

sandboxing is not an issue for legitimate use

2. For security software, to be sure that a set of

security properties are guarantee

Rule #4:

Runtime

configuration

with maximum

execution

Help identify sandboxing specific code issues.

Run the same code as much as possible (i.e.,

same behavior: check same files, make same

syscalls…) but only enforce restrictions when

requested.

Should be simple to set or unset at run time

according to:

• Test environment (e.g., build profile, variables)

• User configuration

Wrap-up

ImageMagick

patch

• Use the native CLI arguments:

• Transparent for users

• Well integrated with all supported use cases

• Quick to implement a first PoC

• Quicker when we already know the app

code

Roadmap Ongoing and next steps:

• Add new access-control types: socket

creation, UDP port use…

• Add audit support to ease debugging

and provide metrics

• Develop a new sandboxer tool

• Improve adoption
A qr code with a few black squares

Description automatically generated

https://github.com/orgs/landlock-lsm/projects/1

Contribute  Develop new new access types

 Improve libraries: Rust, Go…

 Challenge the implementation

 Improve documentation or tests

 Sandbox your applications and others’

 Secure Open Source Rewards

 Google Patch Rewards

https://github.com/landlock-lsm/rust-landlock
https://github.com/landlock-lsm/go-landlock
https://sos.dev/
https://bughunters.google.com/about/patch-rewards

Questions?

landlock@lists.linux.dev

Thank you!

A qr code with a few squares

Description automatically generated

mailto:landlock@lists.linux.dev
https://docs.kernel.org/userspace-api/landlock.html

	Introduction
	Slide 1: Linux sandboxing with Landlock
	Slide 2: How does a data breach happen?
	Slide 3: Real-life exploits
	Slide 4: Pragmatic statements
	Slide 5: Agenda

	Securing developments
	Slide 6: Securing developments
	Slide 7: How to protect an application?
	Slide 8: How to protect an application?
	Slide 9: Protect data

	Sandboxing
	Slide 10: Sandboxing
	Slide 11: What is sandboxing?
	Slide 12: Tailored and embedded security policy
	Slide 13: Safe security mechanism
	Slide 14: Non-Linux systems

	Sandboxing on Linux
	Slide 15: Sandboxing on Linux
	Slide 16: Virtual machine
	Slide 17: Container
	Slide 18: AppArmor, SELinux, Smack, or Tomoyo
	Slide 19: BPF LSM
	Slide 20: seccomp-bpf
	Slide 21: Landlock
	Slide 22: Candidates for a sandboxing mechanism

	Landlock status
	Slide 23: Landlock status
	Slide 24: The Linux kernel development
	Slide 25: Landlock development
	Slide 26: History
	Slide 27: Landlock in numbers
	Slide 28: Linux distributions
	Slide 29: Container runtimes
	Slide 30: Landlock helpers
	Slide 31: Landlocked apps
	Slide 32: Getting noticed by attackers too!
	Slide 33: Try Landlock

	Landlock properties
	Slide 34: Landlock properties
	Slide 35: Use case #1
	Slide 36: Use case #2
	Slide 37: Dynamic policy composition
	Slide 38: Dynamic policy composition
	Slide 39: Dynamic policy composition
	Slide 40: Dynamic policy composition
	Slide 41: Dynamic policy composition
	Slide 42: Sandbox policies hierarchy
	Slide 43: Sandbox policies hierarchy
	Slide 44: Sandbox policies hierarchy
	Slide 45: Sandbox policies hierarchy
	Slide 46: Sandbox policies hierarchy
	Slide 47: Sandbox policies hierarchy
	Slide 48: Useful development properties
	Slide 49: How does Landlock work?

	Landlock access control
	Slide 50: Landlock access control
	Slide 51: Current access control
	Slide 52: IPC scoping
	Slide 53: Current networking access rights
	Slide 54: Current filesystem access rights
	Slide 55: Example of filesystem policy composition
	Slide 56: Example of filesystem policy composition
	Slide 57: Example of filesystem policy composition
	Slide 58: Example of filesystem policy composition
	Slide 59: Example of filesystem policy composition
	Slide 60: Example of filesystem policy composition
	Slide 61: Example of filesystem policy composition

	Sandboxing with Landlock
	Slide 62: Sandboxing with Landlock
	Slide 63: How to patch an application?
	Slide 64: Application compatibility in a nutshell
	Slide 65: Landlock ABI versions

	Landlock interface
	Slide 66: Landlock interface (in C and Rust)
	Slide 67: Step 1: Check backward compatibility
	Slide 68: Step 2: Create a ruleset
	Slide 69: Step 3: Add rules
	Slide 70: Step 4: Enforce the ruleset

	Workshop setup
	Slide 71: Workshop setup
	Slide 72: VM setup
	Slide 73: Connect to the VM
	Slide 74: Steps done by the VM provisioning

	Let’s patch ImageMagick!
	Slide 75: Let’s patch ImageMagick!
	Slide 76: ImageMagick
	Slide 77: Attack scenario
	Slide 78: Agenda
	Slide 79: Test exploit with vulnerable version
	Slide 80: Main steps to patch
	Slide 81: Patch ImageMagick 1/9
	Slide 82: Patch ImageMagick 2/9
	Slide 83: Patch ImageMagick 3/9
	Slide 84: Build and test the patched ImageMagick
	Slide 85: Patch ImageMagick 4/9
	Slide 86: Patch ImageMagick 5/9
	Slide 87: Build and test the patched ImageMagick
	Slide 88: Patch ImageMagick 6/9
	Slide 89: Patch ImageMagick 7/9
	Slide 90: Patch ImageMagick 8/9
	Slide 91: Patch ImageMagick 9/9
	Slide 92: Build and test the final version
	Slide 93: Exercise left to the readers

	Compatibility
	Slide 94: Compatibility and best-effort security
	Slide 95: Incremental development
	Slide 96: Restrictions evolution over versions
	Slide 97: Restrictions evolution over versions
	Slide 98: Restrictions evolution over versions
	Slide 99: Application compatibility
	Slide 100: Good sandboxing rules
	Slide 101: Rule #1: Transparent to users
	Slide 102: Rule #2: Best-effort with minimal requirement
	Slide 103: Rule #3: Handle strict restrictions
	Slide 104: Rule #4: Runtime configuration with maximum execution

	Wrap-up
	Slide 105: Wrap-up
	Slide 106: ImageMagick patch
	Slide 107: Roadmap
	Slide 108: Contribute
	Slide 109: Questions?

