Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later 2 : /* 3 : * Intel SMP support routines. 4 : * 5 : * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> 6 : * (c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com> 7 : * (c) 2002,2003 Andi Kleen, SuSE Labs. 8 : * 9 : * i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com> 10 : */ 11 : 12 : #include <linux/init.h> 13 : 14 : #include <linux/mm.h> 15 : #include <linux/delay.h> 16 : #include <linux/spinlock.h> 17 : #include <linux/export.h> 18 : #include <linux/kernel_stat.h> 19 : #include <linux/mc146818rtc.h> 20 : #include <linux/cache.h> 21 : #include <linux/interrupt.h> 22 : #include <linux/cpu.h> 23 : #include <linux/gfp.h> 24 : 25 : #include <asm/mtrr.h> 26 : #include <asm/tlbflush.h> 27 : #include <asm/mmu_context.h> 28 : #include <asm/proto.h> 29 : #include <asm/apic.h> 30 : #include <asm/idtentry.h> 31 : #include <asm/nmi.h> 32 : #include <asm/mce.h> 33 : #include <asm/trace/irq_vectors.h> 34 : #include <asm/kexec.h> 35 : #include <asm/virtext.h> 36 : 37 : /* 38 : * Some notes on x86 processor bugs affecting SMP operation: 39 : * 40 : * Pentium, Pentium Pro, II, III (and all CPUs) have bugs. 41 : * The Linux implications for SMP are handled as follows: 42 : * 43 : * Pentium III / [Xeon] 44 : * None of the E1AP-E3AP errata are visible to the user. 45 : * 46 : * E1AP. see PII A1AP 47 : * E2AP. see PII A2AP 48 : * E3AP. see PII A3AP 49 : * 50 : * Pentium II / [Xeon] 51 : * None of the A1AP-A3AP errata are visible to the user. 52 : * 53 : * A1AP. see PPro 1AP 54 : * A2AP. see PPro 2AP 55 : * A3AP. see PPro 7AP 56 : * 57 : * Pentium Pro 58 : * None of 1AP-9AP errata are visible to the normal user, 59 : * except occasional delivery of 'spurious interrupt' as trap #15. 60 : * This is very rare and a non-problem. 61 : * 62 : * 1AP. Linux maps APIC as non-cacheable 63 : * 2AP. worked around in hardware 64 : * 3AP. fixed in C0 and above steppings microcode update. 65 : * Linux does not use excessive STARTUP_IPIs. 66 : * 4AP. worked around in hardware 67 : * 5AP. symmetric IO mode (normal Linux operation) not affected. 68 : * 'noapic' mode has vector 0xf filled out properly. 69 : * 6AP. 'noapic' mode might be affected - fixed in later steppings 70 : * 7AP. We do not assume writes to the LVT deassering IRQs 71 : * 8AP. We do not enable low power mode (deep sleep) during MP bootup 72 : * 9AP. We do not use mixed mode 73 : * 74 : * Pentium 75 : * There is a marginal case where REP MOVS on 100MHz SMP 76 : * machines with B stepping processors can fail. XXX should provide 77 : * an L1cache=Writethrough or L1cache=off option. 78 : * 79 : * B stepping CPUs may hang. There are hardware work arounds 80 : * for this. We warn about it in case your board doesn't have the work 81 : * arounds. Basically that's so I can tell anyone with a B stepping 82 : * CPU and SMP problems "tough". 83 : * 84 : * Specific items [From Pentium Processor Specification Update] 85 : * 86 : * 1AP. Linux doesn't use remote read 87 : * 2AP. Linux doesn't trust APIC errors 88 : * 3AP. We work around this 89 : * 4AP. Linux never generated 3 interrupts of the same priority 90 : * to cause a lost local interrupt. 91 : * 5AP. Remote read is never used 92 : * 6AP. not affected - worked around in hardware 93 : * 7AP. not affected - worked around in hardware 94 : * 8AP. worked around in hardware - we get explicit CS errors if not 95 : * 9AP. only 'noapic' mode affected. Might generate spurious 96 : * interrupts, we log only the first one and count the 97 : * rest silently. 98 : * 10AP. not affected - worked around in hardware 99 : * 11AP. Linux reads the APIC between writes to avoid this, as per 100 : * the documentation. Make sure you preserve this as it affects 101 : * the C stepping chips too. 102 : * 12AP. not affected - worked around in hardware 103 : * 13AP. not affected - worked around in hardware 104 : * 14AP. we always deassert INIT during bootup 105 : * 15AP. not affected - worked around in hardware 106 : * 16AP. not affected - worked around in hardware 107 : * 17AP. not affected - worked around in hardware 108 : * 18AP. not affected - worked around in hardware 109 : * 19AP. not affected - worked around in BIOS 110 : * 111 : * If this sounds worrying believe me these bugs are either ___RARE___, 112 : * or are signal timing bugs worked around in hardware and there's 113 : * about nothing of note with C stepping upwards. 114 : */ 115 : 116 : static atomic_t stopping_cpu = ATOMIC_INIT(-1); 117 : static bool smp_no_nmi_ipi = false; 118 : 119 0 : static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs) 120 : { 121 : /* We are registered on stopping cpu too, avoid spurious NMI */ 122 0 : if (raw_smp_processor_id() == atomic_read(&stopping_cpu)) 123 : return NMI_HANDLED; 124 : 125 0 : cpu_emergency_vmxoff(); 126 0 : stop_this_cpu(NULL); 127 : 128 0 : return NMI_HANDLED; 129 : } 130 : 131 : /* 132 : * this function calls the 'stop' function on all other CPUs in the system. 133 : */ 134 0 : DEFINE_IDTENTRY_SYSVEC(sysvec_reboot) 135 : { 136 0 : ack_APIC_irq(); 137 0 : cpu_emergency_vmxoff(); 138 0 : stop_this_cpu(NULL); 139 0 : } 140 : 141 0 : static int register_stop_handler(void) 142 : { 143 0 : return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback, 144 : NMI_FLAG_FIRST, "smp_stop"); 145 : } 146 : 147 0 : static void native_stop_other_cpus(int wait) 148 : { 149 0 : unsigned long flags; 150 0 : unsigned long timeout; 151 : 152 0 : if (reboot_force) 153 : return; 154 : 155 : /* 156 : * Use an own vector here because smp_call_function 157 : * does lots of things not suitable in a panic situation. 158 : */ 159 : 160 : /* 161 : * We start by using the REBOOT_VECTOR irq. 162 : * The irq is treated as a sync point to allow critical 163 : * regions of code on other cpus to release their spin locks 164 : * and re-enable irqs. Jumping straight to an NMI might 165 : * accidentally cause deadlocks with further shutdown/panic 166 : * code. By syncing, we give the cpus up to one second to 167 : * finish their work before we force them off with the NMI. 168 : */ 169 0 : if (num_online_cpus() > 1) { 170 : /* did someone beat us here? */ 171 0 : if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1) 172 : return; 173 : 174 : /* sync above data before sending IRQ */ 175 0 : wmb(); 176 : 177 0 : apic_send_IPI_allbutself(REBOOT_VECTOR); 178 : 179 : /* 180 : * Don't wait longer than a second for IPI completion. The 181 : * wait request is not checked here because that would 182 : * prevent an NMI shutdown attempt in case that not all 183 : * CPUs reach shutdown state. 184 : */ 185 0 : timeout = USEC_PER_SEC; 186 0 : while (num_online_cpus() > 1 && timeout--) 187 0 : udelay(1); 188 : } 189 : 190 : /* if the REBOOT_VECTOR didn't work, try with the NMI */ 191 0 : if (num_online_cpus() > 1) { 192 : /* 193 : * If NMI IPI is enabled, try to register the stop handler 194 : * and send the IPI. In any case try to wait for the other 195 : * CPUs to stop. 196 : */ 197 0 : if (!smp_no_nmi_ipi && !register_stop_handler()) { 198 : /* Sync above data before sending IRQ */ 199 0 : wmb(); 200 : 201 0 : pr_emerg("Shutting down cpus with NMI\n"); 202 : 203 0 : apic_send_IPI_allbutself(NMI_VECTOR); 204 : } 205 : /* 206 : * Don't wait longer than 10 ms if the caller didn't 207 : * reqeust it. If wait is true, the machine hangs here if 208 : * one or more CPUs do not reach shutdown state. 209 : */ 210 : timeout = USEC_PER_MSEC * 10; 211 0 : while (num_online_cpus() > 1 && (wait || timeout--)) 212 0 : udelay(1); 213 : } 214 : 215 0 : local_irq_save(flags); 216 0 : disable_local_APIC(); 217 0 : mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 218 0 : local_irq_restore(flags); 219 : } 220 : 221 : /* 222 : * Reschedule call back. KVM uses this interrupt to force a cpu out of 223 : * guest mode. 224 : */ 225 5050 : DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_reschedule_ipi) 226 : { 227 2525 : ack_APIC_irq(); 228 2525 : trace_reschedule_entry(RESCHEDULE_VECTOR); 229 2525 : inc_irq_stat(irq_resched_count); 230 2525 : scheduler_ipi(); 231 2525 : trace_reschedule_exit(RESCHEDULE_VECTOR); 232 : } 233 : 234 256 : DEFINE_IDTENTRY_SYSVEC(sysvec_call_function) 235 : { 236 130 : ack_APIC_irq(); 237 135 : trace_call_function_entry(CALL_FUNCTION_VECTOR); 238 139 : inc_irq_stat(irq_call_count); 239 139 : generic_smp_call_function_interrupt(); 240 140 : trace_call_function_exit(CALL_FUNCTION_VECTOR); 241 141 : } 242 : 243 23528 : DEFINE_IDTENTRY_SYSVEC(sysvec_call_function_single) 244 : { 245 11763 : ack_APIC_irq(); 246 11763 : trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR); 247 11766 : inc_irq_stat(irq_call_count); 248 11766 : generic_smp_call_function_single_interrupt(); 249 11762 : trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR); 250 11764 : } 251 : 252 0 : static int __init nonmi_ipi_setup(char *str) 253 : { 254 0 : smp_no_nmi_ipi = true; 255 0 : return 1; 256 : } 257 : 258 : __setup("nonmi_ipi", nonmi_ipi_setup); 259 : 260 : struct smp_ops smp_ops = { 261 : .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu, 262 : .smp_prepare_cpus = native_smp_prepare_cpus, 263 : .smp_cpus_done = native_smp_cpus_done, 264 : 265 : .stop_other_cpus = native_stop_other_cpus, 266 : #if defined(CONFIG_KEXEC_CORE) 267 : .crash_stop_other_cpus = kdump_nmi_shootdown_cpus, 268 : #endif 269 : .smp_send_reschedule = native_smp_send_reschedule, 270 : 271 : .cpu_up = native_cpu_up, 272 : .cpu_die = native_cpu_die, 273 : .cpu_disable = native_cpu_disable, 274 : .play_dead = native_play_dead, 275 : 276 : .send_call_func_ipi = native_send_call_func_ipi, 277 : .send_call_func_single_ipi = native_send_call_func_single_ipi, 278 : }; 279 : EXPORT_SYMBOL_GPL(smp_ops);