Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Copyright (C) 1995 Linus Torvalds
4 : * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 : * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 : */
7 : #include <linux/sched.h> /* test_thread_flag(), ... */
8 : #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 : #include <linux/kdebug.h> /* oops_begin/end, ... */
10 : #include <linux/extable.h> /* search_exception_tables */
11 : #include <linux/memblock.h> /* max_low_pfn */
12 : #include <linux/kfence.h> /* kfence_handle_page_fault */
13 : #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
14 : #include <linux/mmiotrace.h> /* kmmio_handler, ... */
15 : #include <linux/perf_event.h> /* perf_sw_event */
16 : #include <linux/hugetlb.h> /* hstate_index_to_shift */
17 : #include <linux/prefetch.h> /* prefetchw */
18 : #include <linux/context_tracking.h> /* exception_enter(), ... */
19 : #include <linux/uaccess.h> /* faulthandler_disabled() */
20 : #include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
21 : #include <linux/mm_types.h>
22 :
23 : #include <asm/cpufeature.h> /* boot_cpu_has, ... */
24 : #include <asm/traps.h> /* dotraplinkage, ... */
25 : #include <asm/fixmap.h> /* VSYSCALL_ADDR */
26 : #include <asm/vsyscall.h> /* emulate_vsyscall */
27 : #include <asm/vm86.h> /* struct vm86 */
28 : #include <asm/mmu_context.h> /* vma_pkey() */
29 : #include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
30 : #include <asm/desc.h> /* store_idt(), ... */
31 : #include <asm/cpu_entry_area.h> /* exception stack */
32 : #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
33 : #include <asm/kvm_para.h> /* kvm_handle_async_pf */
34 : #include <asm/vdso.h> /* fixup_vdso_exception() */
35 :
36 : #define CREATE_TRACE_POINTS
37 : #include <asm/trace/exceptions.h>
38 :
39 : /*
40 : * Returns 0 if mmiotrace is disabled, or if the fault is not
41 : * handled by mmiotrace:
42 : */
43 : static nokprobe_inline int
44 295857 : kmmio_fault(struct pt_regs *regs, unsigned long addr)
45 : {
46 295857 : if (unlikely(is_kmmio_active()))
47 : if (kmmio_handler(regs, addr) == 1)
48 : return -1;
49 295857 : return 0;
50 : }
51 :
52 : /*
53 : * Prefetch quirks:
54 : *
55 : * 32-bit mode:
56 : *
57 : * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
58 : * Check that here and ignore it. This is AMD erratum #91.
59 : *
60 : * 64-bit mode:
61 : *
62 : * Sometimes the CPU reports invalid exceptions on prefetch.
63 : * Check that here and ignore it.
64 : *
65 : * Opcode checker based on code by Richard Brunner.
66 : */
67 : static inline int
68 0 : check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
69 : unsigned char opcode, int *prefetch)
70 : {
71 0 : unsigned char instr_hi = opcode & 0xf0;
72 0 : unsigned char instr_lo = opcode & 0x0f;
73 :
74 0 : switch (instr_hi) {
75 0 : case 0x20:
76 : case 0x30:
77 : /*
78 : * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
79 : * In X86_64 long mode, the CPU will signal invalid
80 : * opcode if some of these prefixes are present so
81 : * X86_64 will never get here anyway
82 : */
83 0 : return ((instr_lo & 7) == 0x6);
84 : #ifdef CONFIG_X86_64
85 : case 0x40:
86 : /*
87 : * In 64-bit mode 0x40..0x4F are valid REX prefixes
88 : */
89 0 : return (!user_mode(regs) || user_64bit_mode(regs));
90 : #endif
91 0 : case 0x60:
92 : /* 0x64 thru 0x67 are valid prefixes in all modes. */
93 0 : return (instr_lo & 0xC) == 0x4;
94 0 : case 0xF0:
95 : /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
96 0 : return !instr_lo || (instr_lo>>1) == 1;
97 0 : case 0x00:
98 : /* Prefetch instruction is 0x0F0D or 0x0F18 */
99 0 : if (get_kernel_nofault(opcode, instr))
100 : return 0;
101 :
102 0 : *prefetch = (instr_lo == 0xF) &&
103 0 : (opcode == 0x0D || opcode == 0x18);
104 0 : return 0;
105 : default:
106 : return 0;
107 : }
108 : }
109 :
110 0 : static bool is_amd_k8_pre_npt(void)
111 : {
112 0 : struct cpuinfo_x86 *c = &boot_cpu_data;
113 :
114 0 : return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
115 : c->x86_vendor == X86_VENDOR_AMD &&
116 : c->x86 == 0xf && c->x86_model < 0x40);
117 : }
118 :
119 : static int
120 0 : is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
121 : {
122 0 : unsigned char *max_instr;
123 0 : unsigned char *instr;
124 0 : int prefetch = 0;
125 :
126 : /* Erratum #91 affects AMD K8, pre-NPT CPUs */
127 0 : if (!is_amd_k8_pre_npt())
128 : return 0;
129 :
130 : /*
131 : * If it was a exec (instruction fetch) fault on NX page, then
132 : * do not ignore the fault:
133 : */
134 0 : if (error_code & X86_PF_INSTR)
135 : return 0;
136 :
137 0 : instr = (void *)convert_ip_to_linear(current, regs);
138 0 : max_instr = instr + 15;
139 :
140 : /*
141 : * This code has historically always bailed out if IP points to a
142 : * not-present page (e.g. due to a race). No one has ever
143 : * complained about this.
144 : */
145 0 : pagefault_disable();
146 :
147 0 : while (instr < max_instr) {
148 0 : unsigned char opcode;
149 :
150 0 : if (user_mode(regs)) {
151 0 : if (get_user(opcode, instr))
152 : break;
153 : } else {
154 0 : if (get_kernel_nofault(opcode, instr))
155 : break;
156 : }
157 :
158 0 : instr++;
159 :
160 0 : if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
161 : break;
162 : }
163 :
164 0 : pagefault_enable();
165 0 : return prefetch;
166 : }
167 :
168 : DEFINE_SPINLOCK(pgd_lock);
169 : LIST_HEAD(pgd_list);
170 :
171 : #ifdef CONFIG_X86_32
172 : static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
173 : {
174 : unsigned index = pgd_index(address);
175 : pgd_t *pgd_k;
176 : p4d_t *p4d, *p4d_k;
177 : pud_t *pud, *pud_k;
178 : pmd_t *pmd, *pmd_k;
179 :
180 : pgd += index;
181 : pgd_k = init_mm.pgd + index;
182 :
183 : if (!pgd_present(*pgd_k))
184 : return NULL;
185 :
186 : /*
187 : * set_pgd(pgd, *pgd_k); here would be useless on PAE
188 : * and redundant with the set_pmd() on non-PAE. As would
189 : * set_p4d/set_pud.
190 : */
191 : p4d = p4d_offset(pgd, address);
192 : p4d_k = p4d_offset(pgd_k, address);
193 : if (!p4d_present(*p4d_k))
194 : return NULL;
195 :
196 : pud = pud_offset(p4d, address);
197 : pud_k = pud_offset(p4d_k, address);
198 : if (!pud_present(*pud_k))
199 : return NULL;
200 :
201 : pmd = pmd_offset(pud, address);
202 : pmd_k = pmd_offset(pud_k, address);
203 :
204 : if (pmd_present(*pmd) != pmd_present(*pmd_k))
205 : set_pmd(pmd, *pmd_k);
206 :
207 : if (!pmd_present(*pmd_k))
208 : return NULL;
209 : else
210 : BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
211 :
212 : return pmd_k;
213 : }
214 :
215 : /*
216 : * Handle a fault on the vmalloc or module mapping area
217 : *
218 : * This is needed because there is a race condition between the time
219 : * when the vmalloc mapping code updates the PMD to the point in time
220 : * where it synchronizes this update with the other page-tables in the
221 : * system.
222 : *
223 : * In this race window another thread/CPU can map an area on the same
224 : * PMD, finds it already present and does not synchronize it with the
225 : * rest of the system yet. As a result v[mz]alloc might return areas
226 : * which are not mapped in every page-table in the system, causing an
227 : * unhandled page-fault when they are accessed.
228 : */
229 : static noinline int vmalloc_fault(unsigned long address)
230 : {
231 : unsigned long pgd_paddr;
232 : pmd_t *pmd_k;
233 : pte_t *pte_k;
234 :
235 : /* Make sure we are in vmalloc area: */
236 : if (!(address >= VMALLOC_START && address < VMALLOC_END))
237 : return -1;
238 :
239 : /*
240 : * Synchronize this task's top level page-table
241 : * with the 'reference' page table.
242 : *
243 : * Do _not_ use "current" here. We might be inside
244 : * an interrupt in the middle of a task switch..
245 : */
246 : pgd_paddr = read_cr3_pa();
247 : pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
248 : if (!pmd_k)
249 : return -1;
250 :
251 : if (pmd_large(*pmd_k))
252 : return 0;
253 :
254 : pte_k = pte_offset_kernel(pmd_k, address);
255 : if (!pte_present(*pte_k))
256 : return -1;
257 :
258 : return 0;
259 : }
260 : NOKPROBE_SYMBOL(vmalloc_fault);
261 :
262 : void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
263 : {
264 : unsigned long addr;
265 :
266 : for (addr = start & PMD_MASK;
267 : addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
268 : addr += PMD_SIZE) {
269 : struct page *page;
270 :
271 : spin_lock(&pgd_lock);
272 : list_for_each_entry(page, &pgd_list, lru) {
273 : spinlock_t *pgt_lock;
274 :
275 : /* the pgt_lock only for Xen */
276 : pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
277 :
278 : spin_lock(pgt_lock);
279 : vmalloc_sync_one(page_address(page), addr);
280 : spin_unlock(pgt_lock);
281 : }
282 : spin_unlock(&pgd_lock);
283 : }
284 : }
285 :
286 : static bool low_pfn(unsigned long pfn)
287 : {
288 : return pfn < max_low_pfn;
289 : }
290 :
291 : static void dump_pagetable(unsigned long address)
292 : {
293 : pgd_t *base = __va(read_cr3_pa());
294 : pgd_t *pgd = &base[pgd_index(address)];
295 : p4d_t *p4d;
296 : pud_t *pud;
297 : pmd_t *pmd;
298 : pte_t *pte;
299 :
300 : #ifdef CONFIG_X86_PAE
301 : pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
302 : if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
303 : goto out;
304 : #define pr_pde pr_cont
305 : #else
306 : #define pr_pde pr_info
307 : #endif
308 : p4d = p4d_offset(pgd, address);
309 : pud = pud_offset(p4d, address);
310 : pmd = pmd_offset(pud, address);
311 : pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
312 : #undef pr_pde
313 :
314 : /*
315 : * We must not directly access the pte in the highpte
316 : * case if the page table is located in highmem.
317 : * And let's rather not kmap-atomic the pte, just in case
318 : * it's allocated already:
319 : */
320 : if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
321 : goto out;
322 :
323 : pte = pte_offset_kernel(pmd, address);
324 : pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
325 : out:
326 : pr_cont("\n");
327 : }
328 :
329 : #else /* CONFIG_X86_64: */
330 :
331 : #ifdef CONFIG_CPU_SUP_AMD
332 : static const char errata93_warning[] =
333 : KERN_ERR
334 : "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
335 : "******* Working around it, but it may cause SEGVs or burn power.\n"
336 : "******* Please consider a BIOS update.\n"
337 : "******* Disabling USB legacy in the BIOS may also help.\n";
338 : #endif
339 :
340 0 : static int bad_address(void *p)
341 : {
342 0 : unsigned long dummy;
343 :
344 0 : return get_kernel_nofault(dummy, (unsigned long *)p);
345 : }
346 :
347 0 : static void dump_pagetable(unsigned long address)
348 : {
349 0 : pgd_t *base = __va(read_cr3_pa());
350 0 : pgd_t *pgd = base + pgd_index(address);
351 0 : p4d_t *p4d;
352 0 : pud_t *pud;
353 0 : pmd_t *pmd;
354 0 : pte_t *pte;
355 :
356 0 : if (bad_address(pgd))
357 0 : goto bad;
358 :
359 0 : pr_info("PGD %lx ", pgd_val(*pgd));
360 :
361 0 : if (!pgd_present(*pgd))
362 : goto out;
363 :
364 0 : p4d = p4d_offset(pgd, address);
365 0 : if (bad_address(p4d))
366 0 : goto bad;
367 :
368 0 : pr_cont("P4D %lx ", p4d_val(*p4d));
369 0 : if (!p4d_present(*p4d) || p4d_large(*p4d))
370 0 : goto out;
371 :
372 0 : pud = pud_offset(p4d, address);
373 0 : if (bad_address(pud))
374 0 : goto bad;
375 :
376 0 : pr_cont("PUD %lx ", pud_val(*pud));
377 0 : if (!pud_present(*pud) || pud_large(*pud))
378 0 : goto out;
379 :
380 0 : pmd = pmd_offset(pud, address);
381 0 : if (bad_address(pmd))
382 0 : goto bad;
383 :
384 0 : pr_cont("PMD %lx ", pmd_val(*pmd));
385 0 : if (!pmd_present(*pmd) || pmd_large(*pmd))
386 0 : goto out;
387 :
388 0 : pte = pte_offset_kernel(pmd, address);
389 0 : if (bad_address(pte))
390 0 : goto bad;
391 :
392 0 : pr_cont("PTE %lx", pte_val(*pte));
393 0 : out:
394 0 : pr_cont("\n");
395 0 : return;
396 0 : bad:
397 0 : pr_info("BAD\n");
398 : }
399 :
400 : #endif /* CONFIG_X86_64 */
401 :
402 : /*
403 : * Workaround for K8 erratum #93 & buggy BIOS.
404 : *
405 : * BIOS SMM functions are required to use a specific workaround
406 : * to avoid corruption of the 64bit RIP register on C stepping K8.
407 : *
408 : * A lot of BIOS that didn't get tested properly miss this.
409 : *
410 : * The OS sees this as a page fault with the upper 32bits of RIP cleared.
411 : * Try to work around it here.
412 : *
413 : * Note we only handle faults in kernel here.
414 : * Does nothing on 32-bit.
415 : */
416 0 : static int is_errata93(struct pt_regs *regs, unsigned long address)
417 : {
418 : #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
419 0 : if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
420 0 : || boot_cpu_data.x86 != 0xf)
421 : return 0;
422 :
423 0 : if (user_mode(regs))
424 : return 0;
425 :
426 0 : if (address != regs->ip)
427 : return 0;
428 :
429 0 : if ((address >> 32) != 0)
430 : return 0;
431 :
432 0 : address |= 0xffffffffUL << 32;
433 0 : if ((address >= (u64)_stext && address <= (u64)_etext) ||
434 0 : (address >= MODULES_VADDR && address <= MODULES_END)) {
435 0 : printk_once(errata93_warning);
436 0 : regs->ip = address;
437 0 : return 1;
438 : }
439 : #endif
440 : return 0;
441 : }
442 :
443 : /*
444 : * Work around K8 erratum #100 K8 in compat mode occasionally jumps
445 : * to illegal addresses >4GB.
446 : *
447 : * We catch this in the page fault handler because these addresses
448 : * are not reachable. Just detect this case and return. Any code
449 : * segment in LDT is compatibility mode.
450 : */
451 0 : static int is_errata100(struct pt_regs *regs, unsigned long address)
452 : {
453 : #ifdef CONFIG_X86_64
454 0 : if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
455 : return 1;
456 : #endif
457 : return 0;
458 : }
459 :
460 : /* Pentium F0 0F C7 C8 bug workaround: */
461 0 : static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
462 : unsigned long address)
463 : {
464 : #ifdef CONFIG_X86_F00F_BUG
465 : if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
466 : idt_is_f00f_address(address)) {
467 : handle_invalid_op(regs);
468 : return 1;
469 : }
470 : #endif
471 0 : return 0;
472 : }
473 :
474 0 : static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
475 : {
476 0 : u32 offset = (index >> 3) * sizeof(struct desc_struct);
477 0 : unsigned long addr;
478 0 : struct ldttss_desc desc;
479 :
480 0 : if (index == 0) {
481 0 : pr_alert("%s: NULL\n", name);
482 0 : return;
483 : }
484 :
485 0 : if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
486 0 : pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
487 0 : return;
488 : }
489 :
490 0 : if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
491 : sizeof(struct ldttss_desc))) {
492 0 : pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
493 : name, index);
494 0 : return;
495 : }
496 :
497 0 : addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
498 : #ifdef CONFIG_X86_64
499 0 : addr |= ((u64)desc.base3 << 32);
500 : #endif
501 0 : pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
502 : name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
503 : }
504 :
505 : static void
506 0 : show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
507 : {
508 0 : if (!oops_may_print())
509 : return;
510 :
511 0 : if (error_code & X86_PF_INSTR) {
512 0 : unsigned int level;
513 0 : pgd_t *pgd;
514 0 : pte_t *pte;
515 :
516 0 : pgd = __va(read_cr3_pa());
517 0 : pgd += pgd_index(address);
518 :
519 0 : pte = lookup_address_in_pgd(pgd, address, &level);
520 :
521 0 : if (pte && pte_present(*pte) && !pte_exec(*pte))
522 0 : pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
523 : from_kuid(&init_user_ns, current_uid()));
524 0 : if (pte && pte_present(*pte) && pte_exec(*pte) &&
525 0 : (pgd_flags(*pgd) & _PAGE_USER) &&
526 0 : (__read_cr4() & X86_CR4_SMEP))
527 0 : pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
528 : from_kuid(&init_user_ns, current_uid()));
529 : }
530 :
531 0 : if (address < PAGE_SIZE && !user_mode(regs))
532 0 : pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
533 : (void *)address);
534 : else
535 0 : pr_alert("BUG: unable to handle page fault for address: %px\n",
536 : (void *)address);
537 :
538 0 : pr_alert("#PF: %s %s in %s mode\n",
539 : (error_code & X86_PF_USER) ? "user" : "supervisor",
540 : (error_code & X86_PF_INSTR) ? "instruction fetch" :
541 : (error_code & X86_PF_WRITE) ? "write access" :
542 : "read access",
543 : user_mode(regs) ? "user" : "kernel");
544 0 : pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
545 : !(error_code & X86_PF_PROT) ? "not-present page" :
546 : (error_code & X86_PF_RSVD) ? "reserved bit violation" :
547 : (error_code & X86_PF_PK) ? "protection keys violation" :
548 : "permissions violation");
549 :
550 0 : if (!(error_code & X86_PF_USER) && user_mode(regs)) {
551 0 : struct desc_ptr idt, gdt;
552 0 : u16 ldtr, tr;
553 :
554 : /*
555 : * This can happen for quite a few reasons. The more obvious
556 : * ones are faults accessing the GDT, or LDT. Perhaps
557 : * surprisingly, if the CPU tries to deliver a benign or
558 : * contributory exception from user code and gets a page fault
559 : * during delivery, the page fault can be delivered as though
560 : * it originated directly from user code. This could happen
561 : * due to wrong permissions on the IDT, GDT, LDT, TSS, or
562 : * kernel or IST stack.
563 : */
564 0 : store_idt(&idt);
565 :
566 : /* Usable even on Xen PV -- it's just slow. */
567 0 : native_store_gdt(&gdt);
568 :
569 0 : pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
570 : idt.address, idt.size, gdt.address, gdt.size);
571 :
572 0 : store_ldt(ldtr);
573 0 : show_ldttss(&gdt, "LDTR", ldtr);
574 :
575 0 : store_tr(tr);
576 0 : show_ldttss(&gdt, "TR", tr);
577 : }
578 :
579 0 : dump_pagetable(address);
580 : }
581 :
582 : static noinline void
583 0 : pgtable_bad(struct pt_regs *regs, unsigned long error_code,
584 : unsigned long address)
585 : {
586 0 : struct task_struct *tsk;
587 0 : unsigned long flags;
588 0 : int sig;
589 :
590 0 : flags = oops_begin();
591 0 : tsk = current;
592 0 : sig = SIGKILL;
593 :
594 0 : printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
595 0 : tsk->comm, address);
596 0 : dump_pagetable(address);
597 :
598 0 : if (__die("Bad pagetable", regs, error_code))
599 0 : sig = 0;
600 :
601 0 : oops_end(flags, regs, sig);
602 0 : }
603 :
604 0 : static void sanitize_error_code(unsigned long address,
605 : unsigned long *error_code)
606 : {
607 : /*
608 : * To avoid leaking information about the kernel page
609 : * table layout, pretend that user-mode accesses to
610 : * kernel addresses are always protection faults.
611 : *
612 : * NB: This means that failed vsyscalls with vsyscall=none
613 : * will have the PROT bit. This doesn't leak any
614 : * information and does not appear to cause any problems.
615 : */
616 0 : if (address >= TASK_SIZE_MAX)
617 0 : *error_code |= X86_PF_PROT;
618 : }
619 :
620 0 : static void set_signal_archinfo(unsigned long address,
621 : unsigned long error_code)
622 : {
623 0 : struct task_struct *tsk = current;
624 :
625 0 : tsk->thread.trap_nr = X86_TRAP_PF;
626 0 : tsk->thread.error_code = error_code | X86_PF_USER;
627 0 : tsk->thread.cr2 = address;
628 : }
629 :
630 : static noinline void
631 0 : page_fault_oops(struct pt_regs *regs, unsigned long error_code,
632 : unsigned long address)
633 : {
634 0 : unsigned long flags;
635 0 : int sig;
636 :
637 0 : if (user_mode(regs)) {
638 : /*
639 : * Implicit kernel access from user mode? Skip the stack
640 : * overflow and EFI special cases.
641 : */
642 : goto oops;
643 : }
644 :
645 : #ifdef CONFIG_VMAP_STACK
646 : /*
647 : * Stack overflow? During boot, we can fault near the initial
648 : * stack in the direct map, but that's not an overflow -- check
649 : * that we're in vmalloc space to avoid this.
650 : */
651 : if (is_vmalloc_addr((void *)address) &&
652 : (((unsigned long)current->stack - 1 - address < PAGE_SIZE) ||
653 : address - ((unsigned long)current->stack + THREAD_SIZE) < PAGE_SIZE)) {
654 : unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
655 : /*
656 : * We're likely to be running with very little stack space
657 : * left. It's plausible that we'd hit this condition but
658 : * double-fault even before we get this far, in which case
659 : * we're fine: the double-fault handler will deal with it.
660 : *
661 : * We don't want to make it all the way into the oops code
662 : * and then double-fault, though, because we're likely to
663 : * break the console driver and lose most of the stack dump.
664 : */
665 : asm volatile ("movq %[stack], %%rsp\n\t"
666 : "call handle_stack_overflow\n\t"
667 : "1: jmp 1b"
668 : : ASM_CALL_CONSTRAINT
669 : : "D" ("kernel stack overflow (page fault)"),
670 : "S" (regs), "d" (address),
671 : [stack] "rm" (stack));
672 : unreachable();
673 : }
674 : #endif
675 :
676 : /*
677 : * Buggy firmware could access regions which might page fault. If
678 : * this happens, EFI has a special OOPS path that will try to
679 : * avoid hanging the system.
680 : */
681 0 : if (IS_ENABLED(CONFIG_EFI))
682 : efi_crash_gracefully_on_page_fault(address);
683 :
684 : /* Only not-present faults should be handled by KFENCE. */
685 0 : if (!(error_code & X86_PF_PROT) &&
686 : kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
687 : return;
688 :
689 0 : oops:
690 : /*
691 : * Oops. The kernel tried to access some bad page. We'll have to
692 : * terminate things with extreme prejudice:
693 : */
694 0 : flags = oops_begin();
695 :
696 0 : show_fault_oops(regs, error_code, address);
697 :
698 0 : if (task_stack_end_corrupted(current))
699 0 : printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
700 :
701 0 : sig = SIGKILL;
702 0 : if (__die("Oops", regs, error_code))
703 0 : sig = 0;
704 :
705 : /* Executive summary in case the body of the oops scrolled away */
706 0 : printk(KERN_DEFAULT "CR2: %016lx\n", address);
707 :
708 0 : oops_end(flags, regs, sig);
709 : }
710 :
711 : static noinline void
712 715 : kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
713 : unsigned long address, int signal, int si_code)
714 : {
715 715 : WARN_ON_ONCE(user_mode(regs));
716 :
717 : /* Are we prepared to handle this kernel fault? */
718 715 : if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
719 : /*
720 : * Any interrupt that takes a fault gets the fixup. This makes
721 : * the below recursive fault logic only apply to a faults from
722 : * task context.
723 : */
724 715 : if (in_interrupt())
725 : return;
726 :
727 : /*
728 : * Per the above we're !in_interrupt(), aka. task context.
729 : *
730 : * In this case we need to make sure we're not recursively
731 : * faulting through the emulate_vsyscall() logic.
732 : */
733 3 : if (current->thread.sig_on_uaccess_err && signal) {
734 0 : sanitize_error_code(address, &error_code);
735 :
736 0 : set_signal_archinfo(address, error_code);
737 :
738 : /* XXX: hwpoison faults will set the wrong code. */
739 0 : force_sig_fault(signal, si_code, (void __user *)address);
740 : }
741 :
742 : /*
743 : * Barring that, we can do the fixup and be happy.
744 : */
745 3 : return;
746 : }
747 :
748 : /*
749 : * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
750 : * instruction.
751 : */
752 0 : if (is_prefetch(regs, error_code, address))
753 : return;
754 :
755 0 : page_fault_oops(regs, error_code, address);
756 : }
757 :
758 : /*
759 : * Print out info about fatal segfaults, if the show_unhandled_signals
760 : * sysctl is set:
761 : */
762 : static inline void
763 0 : show_signal_msg(struct pt_regs *regs, unsigned long error_code,
764 : unsigned long address, struct task_struct *tsk)
765 : {
766 0 : const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
767 :
768 0 : if (!unhandled_signal(tsk, SIGSEGV))
769 : return;
770 :
771 0 : if (!printk_ratelimit())
772 : return;
773 :
774 0 : printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
775 0 : loglvl, tsk->comm, task_pid_nr(tsk), address,
776 0 : (void *)regs->ip, (void *)regs->sp, error_code);
777 :
778 0 : print_vma_addr(KERN_CONT " in ", regs->ip);
779 :
780 0 : printk(KERN_CONT "\n");
781 :
782 0 : show_opcodes(regs, loglvl);
783 : }
784 :
785 : /*
786 : * The (legacy) vsyscall page is the long page in the kernel portion
787 : * of the address space that has user-accessible permissions.
788 : */
789 591007 : static bool is_vsyscall_vaddr(unsigned long vaddr)
790 : {
791 591007 : return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
792 : }
793 :
794 : static void
795 715 : __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
796 : unsigned long address, u32 pkey, int si_code)
797 : {
798 715 : struct task_struct *tsk = current;
799 :
800 715 : if (!user_mode(regs)) {
801 715 : kernelmode_fixup_or_oops(regs, error_code, address, pkey, si_code);
802 715 : return;
803 : }
804 :
805 0 : if (!(error_code & X86_PF_USER)) {
806 : /* Implicit user access to kernel memory -- just oops */
807 0 : page_fault_oops(regs, error_code, address);
808 0 : return;
809 : }
810 :
811 : /*
812 : * User mode accesses just cause a SIGSEGV.
813 : * It's possible to have interrupts off here:
814 : */
815 0 : local_irq_enable();
816 :
817 : /*
818 : * Valid to do another page fault here because this one came
819 : * from user space:
820 : */
821 0 : if (is_prefetch(regs, error_code, address))
822 : return;
823 :
824 0 : if (is_errata100(regs, address))
825 : return;
826 :
827 0 : sanitize_error_code(address, &error_code);
828 :
829 0 : if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
830 : return;
831 :
832 0 : if (likely(show_unhandled_signals))
833 0 : show_signal_msg(regs, error_code, address, tsk);
834 :
835 0 : set_signal_archinfo(address, error_code);
836 :
837 0 : if (si_code == SEGV_PKUERR)
838 0 : force_sig_pkuerr((void __user *)address, pkey);
839 :
840 0 : force_sig_fault(SIGSEGV, si_code, (void __user *)address);
841 :
842 0 : local_irq_disable();
843 : }
844 :
845 : static noinline void
846 713 : bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
847 : unsigned long address)
848 : {
849 713 : __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
850 713 : }
851 :
852 : static void
853 2 : __bad_area(struct pt_regs *regs, unsigned long error_code,
854 : unsigned long address, u32 pkey, int si_code)
855 : {
856 2 : struct mm_struct *mm = current->mm;
857 : /*
858 : * Something tried to access memory that isn't in our memory map..
859 : * Fix it, but check if it's kernel or user first..
860 : */
861 2 : mmap_read_unlock(mm);
862 :
863 2 : __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
864 2 : }
865 :
866 : static noinline void
867 2 : bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
868 : {
869 2 : __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
870 2 : }
871 :
872 0 : static inline bool bad_area_access_from_pkeys(unsigned long error_code,
873 : struct vm_area_struct *vma)
874 : {
875 : /* This code is always called on the current mm */
876 0 : bool foreign = false;
877 :
878 0 : if (!boot_cpu_has(X86_FEATURE_OSPKE))
879 : return false;
880 0 : if (error_code & X86_PF_PK)
881 : return true;
882 : /* this checks permission keys on the VMA: */
883 0 : if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
884 0 : (error_code & X86_PF_INSTR), foreign))
885 0 : return true;
886 : return false;
887 : }
888 :
889 : static noinline void
890 0 : bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
891 : unsigned long address, struct vm_area_struct *vma)
892 : {
893 : /*
894 : * This OSPKE check is not strictly necessary at runtime.
895 : * But, doing it this way allows compiler optimizations
896 : * if pkeys are compiled out.
897 : */
898 0 : if (bad_area_access_from_pkeys(error_code, vma)) {
899 : /*
900 : * A protection key fault means that the PKRU value did not allow
901 : * access to some PTE. Userspace can figure out what PKRU was
902 : * from the XSAVE state. This function captures the pkey from
903 : * the vma and passes it to userspace so userspace can discover
904 : * which protection key was set on the PTE.
905 : *
906 : * If we get here, we know that the hardware signaled a X86_PF_PK
907 : * fault and that there was a VMA once we got in the fault
908 : * handler. It does *not* guarantee that the VMA we find here
909 : * was the one that we faulted on.
910 : *
911 : * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
912 : * 2. T1 : set PKRU to deny access to pkey=4, touches page
913 : * 3. T1 : faults...
914 : * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
915 : * 5. T1 : enters fault handler, takes mmap_lock, etc...
916 : * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
917 : * faulted on a pte with its pkey=4.
918 : */
919 0 : u32 pkey = vma_pkey(vma);
920 :
921 0 : __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
922 : } else {
923 0 : __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
924 : }
925 0 : }
926 :
927 : static void
928 0 : do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
929 : vm_fault_t fault)
930 : {
931 : /* Kernel mode? Handle exceptions or die: */
932 0 : if (!user_mode(regs)) {
933 0 : kernelmode_fixup_or_oops(regs, error_code, address, SIGBUS, BUS_ADRERR);
934 0 : return;
935 : }
936 :
937 : /* User-space => ok to do another page fault: */
938 0 : if (is_prefetch(regs, error_code, address))
939 : return;
940 :
941 0 : sanitize_error_code(address, &error_code);
942 :
943 0 : if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
944 : return;
945 :
946 0 : set_signal_archinfo(address, error_code);
947 :
948 : #ifdef CONFIG_MEMORY_FAILURE
949 : if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
950 : struct task_struct *tsk = current;
951 : unsigned lsb = 0;
952 :
953 : pr_err(
954 : "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
955 : tsk->comm, tsk->pid, address);
956 : if (fault & VM_FAULT_HWPOISON_LARGE)
957 : lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
958 : if (fault & VM_FAULT_HWPOISON)
959 : lsb = PAGE_SHIFT;
960 : force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
961 : return;
962 : }
963 : #endif
964 0 : force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
965 : }
966 :
967 0 : static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
968 : {
969 0 : if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
970 : return 0;
971 :
972 0 : if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
973 0 : return 0;
974 :
975 : return 1;
976 : }
977 :
978 : /*
979 : * Handle a spurious fault caused by a stale TLB entry.
980 : *
981 : * This allows us to lazily refresh the TLB when increasing the
982 : * permissions of a kernel page (RO -> RW or NX -> X). Doing it
983 : * eagerly is very expensive since that implies doing a full
984 : * cross-processor TLB flush, even if no stale TLB entries exist
985 : * on other processors.
986 : *
987 : * Spurious faults may only occur if the TLB contains an entry with
988 : * fewer permission than the page table entry. Non-present (P = 0)
989 : * and reserved bit (R = 1) faults are never spurious.
990 : *
991 : * There are no security implications to leaving a stale TLB when
992 : * increasing the permissions on a page.
993 : *
994 : * Returns non-zero if a spurious fault was handled, zero otherwise.
995 : *
996 : * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
997 : * (Optional Invalidation).
998 : */
999 : static noinline int
1000 0 : spurious_kernel_fault(unsigned long error_code, unsigned long address)
1001 : {
1002 0 : pgd_t *pgd;
1003 0 : p4d_t *p4d;
1004 0 : pud_t *pud;
1005 0 : pmd_t *pmd;
1006 0 : pte_t *pte;
1007 0 : int ret;
1008 :
1009 : /*
1010 : * Only writes to RO or instruction fetches from NX may cause
1011 : * spurious faults.
1012 : *
1013 : * These could be from user or supervisor accesses but the TLB
1014 : * is only lazily flushed after a kernel mapping protection
1015 : * change, so user accesses are not expected to cause spurious
1016 : * faults.
1017 : */
1018 0 : if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1019 0 : error_code != (X86_PF_INSTR | X86_PF_PROT))
1020 : return 0;
1021 :
1022 0 : pgd = init_mm.pgd + pgd_index(address);
1023 0 : if (!pgd_present(*pgd))
1024 : return 0;
1025 :
1026 0 : p4d = p4d_offset(pgd, address);
1027 0 : if (!p4d_present(*p4d))
1028 : return 0;
1029 :
1030 0 : if (p4d_large(*p4d))
1031 : return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1032 :
1033 0 : pud = pud_offset(p4d, address);
1034 0 : if (!pud_present(*pud))
1035 : return 0;
1036 :
1037 0 : if (pud_large(*pud))
1038 0 : return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1039 :
1040 0 : pmd = pmd_offset(pud, address);
1041 0 : if (!pmd_present(*pmd))
1042 : return 0;
1043 :
1044 0 : if (pmd_large(*pmd))
1045 0 : return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1046 :
1047 0 : pte = pte_offset_kernel(pmd, address);
1048 0 : if (!pte_present(*pte))
1049 : return 0;
1050 :
1051 0 : ret = spurious_kernel_fault_check(error_code, pte);
1052 0 : if (!ret)
1053 : return 0;
1054 :
1055 : /*
1056 : * Make sure we have permissions in PMD.
1057 : * If not, then there's a bug in the page tables:
1058 : */
1059 0 : ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1060 0 : WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1061 :
1062 : return ret;
1063 : }
1064 : NOKPROBE_SYMBOL(spurious_kernel_fault);
1065 :
1066 : int show_unhandled_signals = 1;
1067 :
1068 : static inline int
1069 296352 : access_error(unsigned long error_code, struct vm_area_struct *vma)
1070 : {
1071 : /* This is only called for the current mm, so: */
1072 296352 : bool foreign = false;
1073 :
1074 : /*
1075 : * Read or write was blocked by protection keys. This is
1076 : * always an unconditional error and can never result in
1077 : * a follow-up action to resolve the fault, like a COW.
1078 : */
1079 296352 : if (error_code & X86_PF_PK)
1080 : return 1;
1081 :
1082 : /*
1083 : * SGX hardware blocked the access. This usually happens
1084 : * when the enclave memory contents have been destroyed, like
1085 : * after a suspend/resume cycle. In any case, the kernel can't
1086 : * fix the cause of the fault. Handle the fault as an access
1087 : * error even in cases where no actual access violation
1088 : * occurred. This allows userspace to rebuild the enclave in
1089 : * response to the signal.
1090 : */
1091 296352 : if (unlikely(error_code & X86_PF_SGX))
1092 : return 1;
1093 :
1094 : /*
1095 : * Make sure to check the VMA so that we do not perform
1096 : * faults just to hit a X86_PF_PK as soon as we fill in a
1097 : * page.
1098 : */
1099 296350 : if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1100 296352 : (error_code & X86_PF_INSTR), foreign))
1101 : return 1;
1102 :
1103 296350 : if (error_code & X86_PF_WRITE) {
1104 : /* write, present and write, not present: */
1105 141752 : if (unlikely(!(vma->vm_flags & VM_WRITE)))
1106 : return 1;
1107 141752 : return 0;
1108 : }
1109 :
1110 : /* read, present: */
1111 154598 : if (unlikely(error_code & X86_PF_PROT))
1112 : return 1;
1113 :
1114 : /* read, not present: */
1115 154598 : if (unlikely(!vma_is_accessible(vma)))
1116 0 : return 1;
1117 :
1118 : return 0;
1119 : }
1120 :
1121 295858 : bool fault_in_kernel_space(unsigned long address)
1122 : {
1123 : /*
1124 : * On 64-bit systems, the vsyscall page is at an address above
1125 : * TASK_SIZE_MAX, but is not considered part of the kernel
1126 : * address space.
1127 : */
1128 295858 : if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1129 : return false;
1130 :
1131 295858 : return address >= TASK_SIZE_MAX;
1132 : }
1133 :
1134 : /*
1135 : * Called for all faults where 'address' is part of the kernel address
1136 : * space. Might get called for faults that originate from *code* that
1137 : * ran in userspace or the kernel.
1138 : */
1139 : static void
1140 0 : do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1141 : unsigned long address)
1142 : {
1143 : /*
1144 : * Protection keys exceptions only happen on user pages. We
1145 : * have no user pages in the kernel portion of the address
1146 : * space, so do not expect them here.
1147 : */
1148 0 : WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1149 :
1150 : #ifdef CONFIG_X86_32
1151 : /*
1152 : * We can fault-in kernel-space virtual memory on-demand. The
1153 : * 'reference' page table is init_mm.pgd.
1154 : *
1155 : * NOTE! We MUST NOT take any locks for this case. We may
1156 : * be in an interrupt or a critical region, and should
1157 : * only copy the information from the master page table,
1158 : * nothing more.
1159 : *
1160 : * Before doing this on-demand faulting, ensure that the
1161 : * fault is not any of the following:
1162 : * 1. A fault on a PTE with a reserved bit set.
1163 : * 2. A fault caused by a user-mode access. (Do not demand-
1164 : * fault kernel memory due to user-mode accesses).
1165 : * 3. A fault caused by a page-level protection violation.
1166 : * (A demand fault would be on a non-present page which
1167 : * would have X86_PF_PROT==0).
1168 : *
1169 : * This is only needed to close a race condition on x86-32 in
1170 : * the vmalloc mapping/unmapping code. See the comment above
1171 : * vmalloc_fault() for details. On x86-64 the race does not
1172 : * exist as the vmalloc mappings don't need to be synchronized
1173 : * there.
1174 : */
1175 : if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1176 : if (vmalloc_fault(address) >= 0)
1177 : return;
1178 : }
1179 : #endif
1180 :
1181 0 : if (is_f00f_bug(regs, hw_error_code, address))
1182 : return;
1183 :
1184 : /* Was the fault spurious, caused by lazy TLB invalidation? */
1185 0 : if (spurious_kernel_fault(hw_error_code, address))
1186 : return;
1187 :
1188 : /* kprobes don't want to hook the spurious faults: */
1189 0 : if (kprobe_page_fault(regs, X86_TRAP_PF))
1190 : return;
1191 :
1192 : /*
1193 : * Note, despite being a "bad area", there are quite a few
1194 : * acceptable reasons to get here, such as erratum fixups
1195 : * and handling kernel code that can fault, like get_user().
1196 : *
1197 : * Don't take the mm semaphore here. If we fixup a prefetch
1198 : * fault we could otherwise deadlock:
1199 : */
1200 0 : bad_area_nosemaphore(regs, hw_error_code, address);
1201 : }
1202 : NOKPROBE_SYMBOL(do_kern_addr_fault);
1203 :
1204 : /*
1205 : * Handle faults in the user portion of the address space. Nothing in here
1206 : * should check X86_PF_USER without a specific justification: for almost
1207 : * all purposes, we should treat a normal kernel access to user memory
1208 : * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1209 : * The one exception is AC flag handling, which is, per the x86
1210 : * architecture, special for WRUSS.
1211 : */
1212 : static inline
1213 295861 : void do_user_addr_fault(struct pt_regs *regs,
1214 : unsigned long error_code,
1215 : unsigned long address)
1216 : {
1217 295861 : struct vm_area_struct *vma;
1218 295861 : struct task_struct *tsk;
1219 295861 : struct mm_struct *mm;
1220 295861 : vm_fault_t fault;
1221 295861 : unsigned int flags = FAULT_FLAG_DEFAULT;
1222 :
1223 295861 : tsk = current;
1224 295861 : mm = tsk->mm;
1225 :
1226 295861 : if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1227 : /*
1228 : * Whoops, this is kernel mode code trying to execute from
1229 : * user memory. Unless this is AMD erratum #93, which
1230 : * corrupts RIP such that it looks like a user address,
1231 : * this is unrecoverable. Don't even try to look up the
1232 : * VMA or look for extable entries.
1233 : */
1234 0 : if (is_errata93(regs, address))
1235 : return;
1236 :
1237 0 : page_fault_oops(regs, error_code, address);
1238 0 : return;
1239 : }
1240 :
1241 : /* kprobes don't want to hook the spurious faults: */
1242 295861 : if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1243 : return;
1244 :
1245 : /*
1246 : * Reserved bits are never expected to be set on
1247 : * entries in the user portion of the page tables.
1248 : */
1249 295861 : if (unlikely(error_code & X86_PF_RSVD))
1250 0 : pgtable_bad(regs, error_code, address);
1251 :
1252 : /*
1253 : * If SMAP is on, check for invalid kernel (supervisor) access to user
1254 : * pages in the user address space. The odd case here is WRUSS,
1255 : * which, according to the preliminary documentation, does not respect
1256 : * SMAP and will have the USER bit set so, in all cases, SMAP
1257 : * enforcement appears to be consistent with the USER bit.
1258 : */
1259 295861 : if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1260 : !(error_code & X86_PF_USER) &&
1261 : !(regs->flags & X86_EFLAGS_AC))) {
1262 : /*
1263 : * No extable entry here. This was a kernel access to an
1264 : * invalid pointer. get_kernel_nofault() will not get here.
1265 : */
1266 : page_fault_oops(regs, error_code, address);
1267 : return;
1268 : }
1269 :
1270 : /*
1271 : * If we're in an interrupt, have no user context or are running
1272 : * in a region with pagefaults disabled then we must not take the fault
1273 : */
1274 295861 : if (unlikely(faulthandler_disabled() || !mm)) {
1275 713 : bad_area_nosemaphore(regs, error_code, address);
1276 713 : return;
1277 : }
1278 :
1279 : /*
1280 : * It's safe to allow irq's after cr2 has been saved and the
1281 : * vmalloc fault has been handled.
1282 : *
1283 : * User-mode registers count as a user access even for any
1284 : * potential system fault or CPU buglet:
1285 : */
1286 295148 : if (user_mode(regs)) {
1287 280725 : local_irq_enable();
1288 280730 : flags |= FAULT_FLAG_USER;
1289 : } else {
1290 14423 : if (regs->flags & X86_EFLAGS_IF)
1291 14423 : local_irq_enable();
1292 : }
1293 :
1294 295153 : perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1295 :
1296 295149 : if (error_code & X86_PF_WRITE)
1297 141293 : flags |= FAULT_FLAG_WRITE;
1298 295149 : if (error_code & X86_PF_INSTR)
1299 77605 : flags |= FAULT_FLAG_INSTRUCTION;
1300 :
1301 : #ifdef CONFIG_X86_64
1302 : /*
1303 : * Faults in the vsyscall page might need emulation. The
1304 : * vsyscall page is at a high address (>PAGE_OFFSET), but is
1305 : * considered to be part of the user address space.
1306 : *
1307 : * The vsyscall page does not have a "real" VMA, so do this
1308 : * emulation before we go searching for VMAs.
1309 : *
1310 : * PKRU never rejects instruction fetches, so we don't need
1311 : * to consider the PF_PK bit.
1312 : */
1313 295149 : if (is_vsyscall_vaddr(address)) {
1314 295149 : if (emulate_vsyscall(error_code, regs, address))
1315 : return;
1316 : }
1317 : #endif
1318 :
1319 : /*
1320 : * Kernel-mode access to the user address space should only occur
1321 : * on well-defined single instructions listed in the exception
1322 : * tables. But, an erroneous kernel fault occurring outside one of
1323 : * those areas which also holds mmap_lock might deadlock attempting
1324 : * to validate the fault against the address space.
1325 : *
1326 : * Only do the expensive exception table search when we might be at
1327 : * risk of a deadlock. This happens if we
1328 : * 1. Failed to acquire mmap_lock, and
1329 : * 2. The access did not originate in userspace.
1330 : */
1331 295149 : if (unlikely(!mmap_read_trylock(mm))) {
1332 0 : if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1333 : /*
1334 : * Fault from code in kernel from
1335 : * which we do not expect faults.
1336 : */
1337 0 : bad_area_nosemaphore(regs, error_code, address);
1338 0 : return;
1339 : }
1340 0 : retry:
1341 1195 : mmap_read_lock(mm);
1342 : } else {
1343 : /*
1344 : * The above down_read_trylock() might have succeeded in
1345 : * which case we'll have missed the might_sleep() from
1346 : * down_read():
1347 : */
1348 295138 : might_sleep();
1349 : }
1350 :
1351 296348 : vma = find_vma(mm, address);
1352 296353 : if (unlikely(!vma)) {
1353 0 : bad_area(regs, error_code, address);
1354 0 : return;
1355 : }
1356 296353 : if (likely(vma->vm_start <= address))
1357 296335 : goto good_area;
1358 18 : if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1359 2 : bad_area(regs, error_code, address);
1360 2 : return;
1361 : }
1362 16 : if (unlikely(expand_stack(vma, address))) {
1363 0 : bad_area(regs, error_code, address);
1364 0 : return;
1365 : }
1366 :
1367 : /*
1368 : * Ok, we have a good vm_area for this memory access, so
1369 : * we can handle it..
1370 : */
1371 16 : good_area:
1372 296351 : if (unlikely(access_error(error_code, vma))) {
1373 0 : bad_area_access_error(regs, error_code, address, vma);
1374 0 : return;
1375 : }
1376 :
1377 : /*
1378 : * If for any reason at all we couldn't handle the fault,
1379 : * make sure we exit gracefully rather than endlessly redo
1380 : * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1381 : * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1382 : *
1383 : * Note that handle_userfault() may also release and reacquire mmap_lock
1384 : * (and not return with VM_FAULT_RETRY), when returning to userland to
1385 : * repeat the page fault later with a VM_FAULT_NOPAGE retval
1386 : * (potentially after handling any pending signal during the return to
1387 : * userland). The return to userland is identified whenever
1388 : * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1389 : */
1390 296344 : fault = handle_mm_fault(vma, address, flags, regs);
1391 :
1392 296338 : if (fault_signal_pending(fault, regs)) {
1393 : /*
1394 : * Quick path to respond to signals. The core mm code
1395 : * has unlocked the mm for us if we get here.
1396 : */
1397 0 : if (!user_mode(regs))
1398 0 : kernelmode_fixup_or_oops(regs, error_code, address,
1399 : SIGBUS, BUS_ADRERR);
1400 0 : return;
1401 : }
1402 :
1403 : /*
1404 : * If we need to retry the mmap_lock has already been released,
1405 : * and if there is a fatal signal pending there is no guarantee
1406 : * that we made any progress. Handle this case first.
1407 : */
1408 296341 : if (unlikely((fault & VM_FAULT_RETRY) &&
1409 : (flags & FAULT_FLAG_ALLOW_RETRY))) {
1410 1195 : flags |= FAULT_FLAG_TRIED;
1411 1195 : goto retry;
1412 : }
1413 :
1414 295146 : mmap_read_unlock(mm);
1415 295146 : if (likely(!(fault & VM_FAULT_ERROR)))
1416 : return;
1417 :
1418 0 : if (fatal_signal_pending(current) && !user_mode(regs)) {
1419 0 : kernelmode_fixup_or_oops(regs, error_code, address, 0, 0);
1420 0 : return;
1421 : }
1422 :
1423 0 : if (fault & VM_FAULT_OOM) {
1424 : /* Kernel mode? Handle exceptions or die: */
1425 0 : if (!user_mode(regs)) {
1426 0 : kernelmode_fixup_or_oops(regs, error_code, address,
1427 : SIGSEGV, SEGV_MAPERR);
1428 0 : return;
1429 : }
1430 :
1431 : /*
1432 : * We ran out of memory, call the OOM killer, and return the
1433 : * userspace (which will retry the fault, or kill us if we got
1434 : * oom-killed):
1435 : */
1436 0 : pagefault_out_of_memory();
1437 : } else {
1438 0 : if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1439 : VM_FAULT_HWPOISON_LARGE))
1440 0 : do_sigbus(regs, error_code, address, fault);
1441 0 : else if (fault & VM_FAULT_SIGSEGV)
1442 0 : bad_area_nosemaphore(regs, error_code, address);
1443 : else
1444 0 : BUG();
1445 : }
1446 : }
1447 : NOKPROBE_SYMBOL(do_user_addr_fault);
1448 :
1449 : static __always_inline void
1450 295863 : trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1451 : unsigned long address)
1452 : {
1453 295860 : if (!trace_pagefault_enabled())
1454 : return;
1455 :
1456 0 : if (user_mode(regs))
1457 0 : trace_page_fault_user(address, regs, error_code);
1458 : else
1459 0 : trace_page_fault_kernel(address, regs, error_code);
1460 : }
1461 :
1462 : static __always_inline void
1463 295863 : handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1464 : unsigned long address)
1465 : {
1466 591723 : trace_page_fault_entries(regs, error_code, address);
1467 :
1468 295860 : if (unlikely(kmmio_fault(regs, address)))
1469 : return;
1470 :
1471 : /* Was the fault on kernel-controlled part of the address space? */
1472 295859 : if (unlikely(fault_in_kernel_space(address))) {
1473 0 : do_kern_addr_fault(regs, error_code, address);
1474 : } else {
1475 295858 : do_user_addr_fault(regs, error_code, address);
1476 : /*
1477 : * User address page fault handling might have reenabled
1478 : * interrupts. Fixing up all potential exit points of
1479 : * do_user_addr_fault() and its leaf functions is just not
1480 : * doable w/o creating an unholy mess or turning the code
1481 : * upside down.
1482 : */
1483 295860 : local_irq_disable();
1484 : }
1485 : }
1486 :
1487 295868 : DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1488 : {
1489 295868 : unsigned long address = read_cr2();
1490 295869 : irqentry_state_t state;
1491 :
1492 295869 : prefetchw(¤t->mm->mmap_lock);
1493 :
1494 : /*
1495 : * KVM uses #PF vector to deliver 'page not present' events to guests
1496 : * (asynchronous page fault mechanism). The event happens when a
1497 : * userspace task is trying to access some valid (from guest's point of
1498 : * view) memory which is not currently mapped by the host (e.g. the
1499 : * memory is swapped out). Note, the corresponding "page ready" event
1500 : * which is injected when the memory becomes available, is delived via
1501 : * an interrupt mechanism and not a #PF exception
1502 : * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1503 : *
1504 : * We are relying on the interrupted context being sane (valid RSP,
1505 : * relevant locks not held, etc.), which is fine as long as the
1506 : * interrupted context had IF=1. We are also relying on the KVM
1507 : * async pf type field and CR2 being read consistently instead of
1508 : * getting values from real and async page faults mixed up.
1509 : *
1510 : * Fingers crossed.
1511 : *
1512 : * The async #PF handling code takes care of idtentry handling
1513 : * itself.
1514 : */
1515 295871 : if (kvm_handle_async_pf(regs, (u32)address))
1516 0 : return;
1517 :
1518 : /*
1519 : * Entry handling for valid #PF from kernel mode is slightly
1520 : * different: RCU is already watching and rcu_irq_enter() must not
1521 : * be invoked because a kernel fault on a user space address might
1522 : * sleep.
1523 : *
1524 : * In case the fault hit a RCU idle region the conditional entry
1525 : * code reenabled RCU to avoid subsequent wreckage which helps
1526 : * debugability.
1527 : */
1528 295862 : state = irqentry_enter(regs);
1529 :
1530 295863 : instrumentation_begin();
1531 295863 : handle_page_fault(regs, error_code, address);
1532 295844 : instrumentation_end();
1533 :
1534 295844 : irqentry_exit(regs, state);
1535 : }
|