LCOV - code coverage report
Current view: top level - mm - mempool.c (source / functions) Hit Total Coverage
Test: landlock.info Lines: 64 172 37.2 %
Date: 2021-04-22 12:43:58 Functions: 9 17 52.9 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  *  linux/mm/mempool.c
       4             :  *
       5             :  *  memory buffer pool support. Such pools are mostly used
       6             :  *  for guaranteed, deadlock-free memory allocations during
       7             :  *  extreme VM load.
       8             :  *
       9             :  *  started by Ingo Molnar, Copyright (C) 2001
      10             :  *  debugging by David Rientjes, Copyright (C) 2015
      11             :  */
      12             : 
      13             : #include <linux/mm.h>
      14             : #include <linux/slab.h>
      15             : #include <linux/highmem.h>
      16             : #include <linux/kasan.h>
      17             : #include <linux/kmemleak.h>
      18             : #include <linux/export.h>
      19             : #include <linux/mempool.h>
      20             : #include <linux/blkdev.h>
      21             : #include <linux/writeback.h>
      22             : #include "slab.h"
      23             : 
      24             : #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
      25             : static void poison_error(mempool_t *pool, void *element, size_t size,
      26             :                          size_t byte)
      27             : {
      28             :         const int nr = pool->curr_nr;
      29             :         const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
      30             :         const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
      31             :         int i;
      32             : 
      33             :         pr_err("BUG: mempool element poison mismatch\n");
      34             :         pr_err("Mempool %p size %zu\n", pool, size);
      35             :         pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
      36             :         for (i = start; i < end; i++)
      37             :                 pr_cont("%x ", *(u8 *)(element + i));
      38             :         pr_cont("%s\n", end < size ? "..." : "");
      39             :         dump_stack();
      40             : }
      41             : 
      42             : static void __check_element(mempool_t *pool, void *element, size_t size)
      43             : {
      44             :         u8 *obj = element;
      45             :         size_t i;
      46             : 
      47             :         for (i = 0; i < size; i++) {
      48             :                 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
      49             : 
      50             :                 if (obj[i] != exp) {
      51             :                         poison_error(pool, element, size, i);
      52             :                         return;
      53             :                 }
      54             :         }
      55             :         memset(obj, POISON_INUSE, size);
      56             : }
      57             : 
      58             : static void check_element(mempool_t *pool, void *element)
      59             : {
      60             :         /* Mempools backed by slab allocator */
      61             :         if (pool->free == mempool_free_slab || pool->free == mempool_kfree) {
      62             :                 __check_element(pool, element, ksize(element));
      63             :         } else if (pool->free == mempool_free_pages) {
      64             :                 /* Mempools backed by page allocator */
      65             :                 int order = (int)(long)pool->pool_data;
      66             :                 void *addr = kmap_atomic((struct page *)element);
      67             : 
      68             :                 __check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
      69             :                 kunmap_atomic(addr);
      70             :         }
      71             : }
      72             : 
      73             : static void __poison_element(void *element, size_t size)
      74             : {
      75             :         u8 *obj = element;
      76             : 
      77             :         memset(obj, POISON_FREE, size - 1);
      78             :         obj[size - 1] = POISON_END;
      79             : }
      80             : 
      81             : static void poison_element(mempool_t *pool, void *element)
      82             : {
      83             :         /* Mempools backed by slab allocator */
      84             :         if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) {
      85             :                 __poison_element(element, ksize(element));
      86             :         } else if (pool->alloc == mempool_alloc_pages) {
      87             :                 /* Mempools backed by page allocator */
      88             :                 int order = (int)(long)pool->pool_data;
      89             :                 void *addr = kmap_atomic((struct page *)element);
      90             : 
      91             :                 __poison_element(addr, 1UL << (PAGE_SHIFT + order));
      92             :                 kunmap_atomic(addr);
      93             :         }
      94             : }
      95             : #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
      96           0 : static inline void check_element(mempool_t *pool, void *element)
      97             : {
      98           0 : }
      99             : static inline void poison_element(mempool_t *pool, void *element)
     100             : {
     101             : }
     102             : #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
     103             : 
     104         300 : static __always_inline void kasan_poison_element(mempool_t *pool, void *element)
     105             : {
     106           2 :         if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
     107         298 :                 kasan_slab_free_mempool(element);
     108           2 :         else if (pool->alloc == mempool_alloc_pages)
     109           2 :                 kasan_free_pages(element, (unsigned long)pool->pool_data);
     110             : }
     111             : 
     112           0 : static void kasan_unpoison_element(mempool_t *pool, void *element)
     113             : {
     114           0 :         if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
     115           0 :                 kasan_unpoison_range(element, __ksize(element));
     116           0 :         else if (pool->alloc == mempool_alloc_pages)
     117           0 :                 kasan_alloc_pages(element, (unsigned long)pool->pool_data);
     118           0 : }
     119             : 
     120         300 : static __always_inline void add_element(mempool_t *pool, void *element)
     121             : {
     122           0 :         BUG_ON(pool->curr_nr >= pool->min_nr);
     123         300 :         poison_element(pool, element);
     124         300 :         kasan_poison_element(pool, element);
     125         300 :         pool->elements[pool->curr_nr++] = element;
     126         300 : }
     127             : 
     128           0 : static void *remove_element(mempool_t *pool)
     129             : {
     130           0 :         void *element = pool->elements[--pool->curr_nr];
     131             : 
     132           0 :         BUG_ON(pool->curr_nr < 0);
     133           0 :         kasan_unpoison_element(pool, element);
     134           0 :         check_element(pool, element);
     135           0 :         return element;
     136             : }
     137             : 
     138             : /**
     139             :  * mempool_exit - exit a mempool initialized with mempool_init()
     140             :  * @pool:      pointer to the memory pool which was initialized with
     141             :  *             mempool_init().
     142             :  *
     143             :  * Free all reserved elements in @pool and @pool itself.  This function
     144             :  * only sleeps if the free_fn() function sleeps.
     145             :  *
     146             :  * May be called on a zeroed but uninitialized mempool (i.e. allocated with
     147             :  * kzalloc()).
     148             :  */
     149           0 : void mempool_exit(mempool_t *pool)
     150             : {
     151           0 :         while (pool->curr_nr) {
     152           0 :                 void *element = remove_element(pool);
     153           0 :                 pool->free(element, pool->pool_data);
     154             :         }
     155           0 :         kfree(pool->elements);
     156           0 :         pool->elements = NULL;
     157           0 : }
     158             : EXPORT_SYMBOL(mempool_exit);
     159             : 
     160             : /**
     161             :  * mempool_destroy - deallocate a memory pool
     162             :  * @pool:      pointer to the memory pool which was allocated via
     163             :  *             mempool_create().
     164             :  *
     165             :  * Free all reserved elements in @pool and @pool itself.  This function
     166             :  * only sleeps if the free_fn() function sleeps.
     167             :  */
     168           0 : void mempool_destroy(mempool_t *pool)
     169             : {
     170           0 :         if (unlikely(!pool))
     171             :                 return;
     172             : 
     173           0 :         mempool_exit(pool);
     174           0 :         kfree(pool);
     175             : }
     176             : EXPORT_SYMBOL(mempool_destroy);
     177             : 
     178          24 : int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
     179             :                       mempool_free_t *free_fn, void *pool_data,
     180             :                       gfp_t gfp_mask, int node_id)
     181             : {
     182          24 :         spin_lock_init(&pool->lock);
     183          24 :         pool->min_nr = min_nr;
     184          24 :         pool->pool_data = pool_data;
     185          24 :         pool->alloc  = alloc_fn;
     186          24 :         pool->free   = free_fn;
     187          24 :         init_waitqueue_head(&pool->wait);
     188             : 
     189          24 :         pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
     190             :                                             gfp_mask, node_id);
     191          24 :         if (!pool->elements)
     192             :                 return -ENOMEM;
     193             : 
     194             :         /*
     195             :          * First pre-allocate the guaranteed number of buffers.
     196             :          */
     197         324 :         while (pool->curr_nr < pool->min_nr) {
     198         300 :                 void *element;
     199             : 
     200         300 :                 element = pool->alloc(gfp_mask, pool->pool_data);
     201         300 :                 if (unlikely(!element)) {
     202           0 :                         mempool_exit(pool);
     203           0 :                         return -ENOMEM;
     204             :                 }
     205         624 :                 add_element(pool, element);
     206             :         }
     207             : 
     208             :         return 0;
     209             : }
     210             : EXPORT_SYMBOL(mempool_init_node);
     211             : 
     212             : /**
     213             :  * mempool_init - initialize a memory pool
     214             :  * @pool:      pointer to the memory pool that should be initialized
     215             :  * @min_nr:    the minimum number of elements guaranteed to be
     216             :  *             allocated for this pool.
     217             :  * @alloc_fn:  user-defined element-allocation function.
     218             :  * @free_fn:   user-defined element-freeing function.
     219             :  * @pool_data: optional private data available to the user-defined functions.
     220             :  *
     221             :  * Like mempool_create(), but initializes the pool in (i.e. embedded in another
     222             :  * structure).
     223             :  *
     224             :  * Return: %0 on success, negative error code otherwise.
     225             :  */
     226          15 : int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
     227             :                  mempool_free_t *free_fn, void *pool_data)
     228             : {
     229          15 :         return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
     230             :                                  pool_data, GFP_KERNEL, NUMA_NO_NODE);
     231             : 
     232             : }
     233             : EXPORT_SYMBOL(mempool_init);
     234             : 
     235             : /**
     236             :  * mempool_create - create a memory pool
     237             :  * @min_nr:    the minimum number of elements guaranteed to be
     238             :  *             allocated for this pool.
     239             :  * @alloc_fn:  user-defined element-allocation function.
     240             :  * @free_fn:   user-defined element-freeing function.
     241             :  * @pool_data: optional private data available to the user-defined functions.
     242             :  *
     243             :  * this function creates and allocates a guaranteed size, preallocated
     244             :  * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
     245             :  * functions. This function might sleep. Both the alloc_fn() and the free_fn()
     246             :  * functions might sleep - as long as the mempool_alloc() function is not called
     247             :  * from IRQ contexts.
     248             :  *
     249             :  * Return: pointer to the created memory pool object or %NULL on error.
     250             :  */
     251           9 : mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
     252             :                                 mempool_free_t *free_fn, void *pool_data)
     253             : {
     254           9 :         return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
     255             :                                    GFP_KERNEL, NUMA_NO_NODE);
     256             : }
     257             : EXPORT_SYMBOL(mempool_create);
     258             : 
     259           9 : mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
     260             :                                mempool_free_t *free_fn, void *pool_data,
     261             :                                gfp_t gfp_mask, int node_id)
     262             : {
     263           9 :         mempool_t *pool;
     264             : 
     265           9 :         pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
     266           9 :         if (!pool)
     267             :                 return NULL;
     268             : 
     269           9 :         if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
     270             :                               gfp_mask, node_id)) {
     271           0 :                 kfree(pool);
     272           0 :                 return NULL;
     273             :         }
     274             : 
     275             :         return pool;
     276             : }
     277             : EXPORT_SYMBOL(mempool_create_node);
     278             : 
     279             : /**
     280             :  * mempool_resize - resize an existing memory pool
     281             :  * @pool:       pointer to the memory pool which was allocated via
     282             :  *              mempool_create().
     283             :  * @new_min_nr: the new minimum number of elements guaranteed to be
     284             :  *              allocated for this pool.
     285             :  *
     286             :  * This function shrinks/grows the pool. In the case of growing,
     287             :  * it cannot be guaranteed that the pool will be grown to the new
     288             :  * size immediately, but new mempool_free() calls will refill it.
     289             :  * This function may sleep.
     290             :  *
     291             :  * Note, the caller must guarantee that no mempool_destroy is called
     292             :  * while this function is running. mempool_alloc() & mempool_free()
     293             :  * might be called (eg. from IRQ contexts) while this function executes.
     294             :  *
     295             :  * Return: %0 on success, negative error code otherwise.
     296             :  */
     297           0 : int mempool_resize(mempool_t *pool, int new_min_nr)
     298             : {
     299           0 :         void *element;
     300           0 :         void **new_elements;
     301           0 :         unsigned long flags;
     302             : 
     303           0 :         BUG_ON(new_min_nr <= 0);
     304           0 :         might_sleep();
     305             : 
     306           0 :         spin_lock_irqsave(&pool->lock, flags);
     307           0 :         if (new_min_nr <= pool->min_nr) {
     308           0 :                 while (new_min_nr < pool->curr_nr) {
     309           0 :                         element = remove_element(pool);
     310           0 :                         spin_unlock_irqrestore(&pool->lock, flags);
     311           0 :                         pool->free(element, pool->pool_data);
     312           0 :                         spin_lock_irqsave(&pool->lock, flags);
     313             :                 }
     314           0 :                 pool->min_nr = new_min_nr;
     315           0 :                 goto out_unlock;
     316             :         }
     317           0 :         spin_unlock_irqrestore(&pool->lock, flags);
     318             : 
     319             :         /* Grow the pool */
     320           0 :         new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
     321             :                                      GFP_KERNEL);
     322           0 :         if (!new_elements)
     323             :                 return -ENOMEM;
     324             : 
     325           0 :         spin_lock_irqsave(&pool->lock, flags);
     326           0 :         if (unlikely(new_min_nr <= pool->min_nr)) {
     327             :                 /* Raced, other resize will do our work */
     328           0 :                 spin_unlock_irqrestore(&pool->lock, flags);
     329           0 :                 kfree(new_elements);
     330           0 :                 goto out;
     331             :         }
     332           0 :         memcpy(new_elements, pool->elements,
     333           0 :                         pool->curr_nr * sizeof(*new_elements));
     334           0 :         kfree(pool->elements);
     335           0 :         pool->elements = new_elements;
     336           0 :         pool->min_nr = new_min_nr;
     337             : 
     338           0 :         while (pool->curr_nr < pool->min_nr) {
     339           0 :                 spin_unlock_irqrestore(&pool->lock, flags);
     340           0 :                 element = pool->alloc(GFP_KERNEL, pool->pool_data);
     341           0 :                 if (!element)
     342           0 :                         goto out;
     343           0 :                 spin_lock_irqsave(&pool->lock, flags);
     344           0 :                 if (pool->curr_nr < pool->min_nr) {
     345           0 :                         add_element(pool, element);
     346             :                 } else {
     347           0 :                         spin_unlock_irqrestore(&pool->lock, flags);
     348           0 :                         pool->free(element, pool->pool_data);     /* Raced */
     349           0 :                         goto out;
     350             :                 }
     351             :         }
     352           0 : out_unlock:
     353           0 :         spin_unlock_irqrestore(&pool->lock, flags);
     354             : out:
     355             :         return 0;
     356             : }
     357             : EXPORT_SYMBOL(mempool_resize);
     358             : 
     359             : /**
     360             :  * mempool_alloc - allocate an element from a specific memory pool
     361             :  * @pool:      pointer to the memory pool which was allocated via
     362             :  *             mempool_create().
     363             :  * @gfp_mask:  the usual allocation bitmask.
     364             :  *
     365             :  * this function only sleeps if the alloc_fn() function sleeps or
     366             :  * returns NULL. Note that due to preallocation, this function
     367             :  * *never* fails when called from process contexts. (it might
     368             :  * fail if called from an IRQ context.)
     369             :  * Note: using __GFP_ZERO is not supported.
     370             :  *
     371             :  * Return: pointer to the allocated element or %NULL on error.
     372             :  */
     373        8650 : void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
     374             : {
     375        8650 :         void *element;
     376        8650 :         unsigned long flags;
     377        8650 :         wait_queue_entry_t wait;
     378        8650 :         gfp_t gfp_temp;
     379             : 
     380        8650 :         VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
     381        8650 :         might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
     382             : 
     383        8650 :         gfp_mask |= __GFP_NOMEMALLOC;   /* don't allocate emergency reserves */
     384        8650 :         gfp_mask |= __GFP_NORETRY;      /* don't loop in __alloc_pages */
     385        8650 :         gfp_mask |= __GFP_NOWARN;       /* failures are OK */
     386             : 
     387        8650 :         gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
     388             : 
     389             : repeat_alloc:
     390             : 
     391        8650 :         element = pool->alloc(gfp_temp, pool->pool_data);
     392        8650 :         if (likely(element != NULL))
     393        8650 :                 return element;
     394             : 
     395           0 :         spin_lock_irqsave(&pool->lock, flags);
     396           0 :         if (likely(pool->curr_nr)) {
     397           0 :                 element = remove_element(pool);
     398           0 :                 spin_unlock_irqrestore(&pool->lock, flags);
     399             :                 /* paired with rmb in mempool_free(), read comment there */
     400           0 :                 smp_wmb();
     401             :                 /*
     402             :                  * Update the allocation stack trace as this is more useful
     403             :                  * for debugging.
     404             :                  */
     405           0 :                 kmemleak_update_trace(element);
     406           0 :                 return element;
     407             :         }
     408             : 
     409             :         /*
     410             :          * We use gfp mask w/o direct reclaim or IO for the first round.  If
     411             :          * alloc failed with that and @pool was empty, retry immediately.
     412             :          */
     413           0 :         if (gfp_temp != gfp_mask) {
     414           0 :                 spin_unlock_irqrestore(&pool->lock, flags);
     415           0 :                 gfp_temp = gfp_mask;
     416           0 :                 goto repeat_alloc;
     417             :         }
     418             : 
     419             :         /* We must not sleep if !__GFP_DIRECT_RECLAIM */
     420           0 :         if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
     421           0 :                 spin_unlock_irqrestore(&pool->lock, flags);
     422           0 :                 return NULL;
     423             :         }
     424             : 
     425             :         /* Let's wait for someone else to return an element to @pool */
     426           0 :         init_wait(&wait);
     427           0 :         prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
     428             : 
     429           0 :         spin_unlock_irqrestore(&pool->lock, flags);
     430             : 
     431             :         /*
     432             :          * FIXME: this should be io_schedule().  The timeout is there as a
     433             :          * workaround for some DM problems in 2.6.18.
     434             :          */
     435           0 :         io_schedule_timeout(5*HZ);
     436             : 
     437           0 :         finish_wait(&pool->wait, &wait);
     438           0 :         goto repeat_alloc;
     439             : }
     440             : EXPORT_SYMBOL(mempool_alloc);
     441             : 
     442             : /**
     443             :  * mempool_free - return an element to the pool.
     444             :  * @element:   pool element pointer.
     445             :  * @pool:      pointer to the memory pool which was allocated via
     446             :  *             mempool_create().
     447             :  *
     448             :  * this function only sleeps if the free_fn() function sleeps.
     449             :  */
     450        8650 : void mempool_free(void *element, mempool_t *pool)
     451             : {
     452        8650 :         unsigned long flags;
     453             : 
     454        8650 :         if (unlikely(element == NULL))
     455             :                 return;
     456             : 
     457             :         /*
     458             :          * Paired with the wmb in mempool_alloc().  The preceding read is
     459             :          * for @element and the following @pool->curr_nr.  This ensures
     460             :          * that the visible value of @pool->curr_nr is from after the
     461             :          * allocation of @element.  This is necessary for fringe cases
     462             :          * where @element was passed to this task without going through
     463             :          * barriers.
     464             :          *
     465             :          * For example, assume @p is %NULL at the beginning and one task
     466             :          * performs "p = mempool_alloc(...);" while another task is doing
     467             :          * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
     468             :          * may end up using curr_nr value which is from before allocation
     469             :          * of @p without the following rmb.
     470             :          */
     471        8650 :         smp_rmb();
     472             : 
     473             :         /*
     474             :          * For correctness, we need a test which is guaranteed to trigger
     475             :          * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
     476             :          * without locking achieves that and refilling as soon as possible
     477             :          * is desirable.
     478             :          *
     479             :          * Because curr_nr visible here is always a value after the
     480             :          * allocation of @element, any task which decremented curr_nr below
     481             :          * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
     482             :          * incremented to min_nr afterwards.  If curr_nr gets incremented
     483             :          * to min_nr after the allocation of @element, the elements
     484             :          * allocated after that are subject to the same guarantee.
     485             :          *
     486             :          * Waiters happen iff curr_nr is 0 and the above guarantee also
     487             :          * ensures that there will be frees which return elements to the
     488             :          * pool waking up the waiters.
     489             :          */
     490        8650 :         if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
     491           0 :                 spin_lock_irqsave(&pool->lock, flags);
     492           0 :                 if (likely(pool->curr_nr < pool->min_nr)) {
     493           0 :                         add_element(pool, element);
     494           0 :                         spin_unlock_irqrestore(&pool->lock, flags);
     495           0 :                         wake_up(&pool->wait);
     496           0 :                         return;
     497             :                 }
     498           0 :                 spin_unlock_irqrestore(&pool->lock, flags);
     499             :         }
     500        8650 :         pool->free(element, pool->pool_data);
     501             : }
     502             : EXPORT_SYMBOL(mempool_free);
     503             : 
     504             : /*
     505             :  * A commonly used alloc and free fn.
     506             :  */
     507        8948 : void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
     508             : {
     509        8948 :         struct kmem_cache *mem = pool_data;
     510        8948 :         VM_BUG_ON(mem->ctor);
     511        8948 :         return kmem_cache_alloc(mem, gfp_mask);
     512             : }
     513             : EXPORT_SYMBOL(mempool_alloc_slab);
     514             : 
     515        8650 : void mempool_free_slab(void *element, void *pool_data)
     516             : {
     517        8650 :         struct kmem_cache *mem = pool_data;
     518        8650 :         kmem_cache_free(mem, element);
     519        8650 : }
     520             : EXPORT_SYMBOL(mempool_free_slab);
     521             : 
     522             : /*
     523             :  * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
     524             :  * specified by pool_data
     525             :  */
     526           0 : void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
     527             : {
     528           0 :         size_t size = (size_t)pool_data;
     529           0 :         return kmalloc(size, gfp_mask);
     530             : }
     531             : EXPORT_SYMBOL(mempool_kmalloc);
     532             : 
     533           0 : void mempool_kfree(void *element, void *pool_data)
     534             : {
     535           0 :         kfree(element);
     536           0 : }
     537             : EXPORT_SYMBOL(mempool_kfree);
     538             : 
     539             : /*
     540             :  * A simple mempool-backed page allocator that allocates pages
     541             :  * of the order specified by pool_data.
     542             :  */
     543           2 : void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
     544             : {
     545           2 :         int order = (int)(long)pool_data;
     546           2 :         return alloc_pages(gfp_mask, order);
     547             : }
     548             : EXPORT_SYMBOL(mempool_alloc_pages);
     549             : 
     550           0 : void mempool_free_pages(void *element, void *pool_data)
     551             : {
     552           0 :         int order = (int)(long)pool_data;
     553           0 :         __free_pages(element, order);
     554           0 : }
     555             : EXPORT_SYMBOL(mempool_free_pages);

Generated by: LCOV version 1.14